2016年《电磁场与电磁波》仿真实验
电磁场与电磁波 点电荷模拟实验报告
重庆大学电磁场与电磁波课程实践报告题目:点电荷电场模拟实验日期:2013 年12 月7 日N=28《电磁场与电磁波》课程实践点电荷电场模拟实验1.实验背景电磁场与电磁波课程内容理论性强,概念抽象,较难理解。
在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。
MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。
为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。
2.实验目的应用MATLAB 模拟点电荷的电场线和等势线3.实验原理根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即:E V =-∇r真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1212010244q q V V V R R πεπε=+=+本实验中,为便于数值计算,电势可取为1212q q V R R =+4.实验内容应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号:(1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷);(2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷);(3) 两个等量同号电荷的电场线和等势线;(4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2);(5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。
、n=28(1)电偶极子的电场线和等势线(等量异号点电荷对q2:q1 = 1,q2为负电荷);程序1:clear allq=1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(2)两个不等量异号电荷的电场线和等势线(q2:q1 = 1 + n/2,q2为负电荷);程序2:clear allq=15;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(3)两个等量同号电荷的电场线和等势线;程序3:clear allq=-1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(4)两个不等量同号电荷的电场线和等势线(q2:q1 = 1 + n/2);程序4:clear allq=-15;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1)); dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(5)三个电荷,q1、q2为(1)中的电偶极子,q3为位于(0,0,0)的单位正电荷程序5:clear allq=1;q3=-1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);R3=sqrt(X.^2+Y.^2);U=1./R1-q./R2-q3./R3;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);dth3=11;th3=(dth3:dth3:360-dth3)*pi/180;x3=r0*cos(th3);y3=r0*sin(th3);streamline(X,Y,Ex,Ey,x3,y3);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)从实验过程中学习到的东西:1.灵活学习,大胆求证,当不清楚E1,E2,前面符号的正负时,随便假设一个,再根据电荷的正负关系,看得到的图形是否正确,若不正确则再修改符号2.注意q的正负与两电荷是否异号有关,异号与同号q的正负不同3.学习初步使用matlab软件,为以后的学习打好基础4.更加深入地了解电荷的电场线与等势线。
电磁场与电磁波实验报告
实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。
2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。
程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。
2016年《电磁场与电磁波》仿真实验
2016年《电磁场与电磁波》仿真实验D《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像………………………………………………………………………………………12四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。
电磁场与电磁波实验报告
电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。
2.理解电磁波的概念和基本特性。
3.掌握测量和分析不同电磁波的实验方法。
实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。
在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。
2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。
通过电磁感应现象,可以观察到电磁场的作用力。
3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。
电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。
实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。
实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。
实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。
通过光栅片的衍射效应,可以观察到电磁波的波长。
《电磁场与电磁波》仿真实验
年《电磁场与电磁波》仿真实验————————————————————————————————作者:————————————————————————————————日期:《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (12)四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
电磁场与电磁波实验报告电磁波反射和折射实验
电磁场与电磁波实验报告电磁波反射和折射实验实验目的:1. 探究电磁波在不同介质中的反射和折射规律;2. 学习使用测量工具和观察现象,从实验中深化对电磁波的认知。
实验器材:1. 实验室用的电磁波发生器、接收器和天线;2. 不同介质的板子,如玻璃、塑料、水等;3. 直尺、支架、测角器等测量工具。
实验原理:1. 电磁波反射规律当电磁波从空气传播到介质边界时,如果介质的折射率大于空气,那么电磁波会被反射回来。
反射角等于入射角,即角度相等。
2. 电磁波折射规律当电磁波传播到介质边界时,如果两侧的折射率不同,电磁波会发生折射。
角度满足斯涅尔定律,即入射角和折射角的正弦之比在两个不同介质中是常数,即:sinθ1/sinθ2=n2/n1,其中θ1是入射角,θ2是折射角,n1和n2分别是两个介质的折射率。
实验步骤:1. 将电磁波发生器的天线对准接收器,并调整距离,使得接收器接收到最大强度的信号。
2. 选择一个介质板,将其放置在天线和接收器之间。
记录下入射角和反射角的值。
3. 更换不同的介质板,如玻璃、水、塑料等,重复步骤2。
4. 对于折射实验,将介质板斜放,入射光线从上方斜射入水中,观察折射出来的角度。
5. 测量介质板的厚度,并计算出介质的折射率。
实验结果:1. 反射实验中,记录下了不同介质的入射角和反射角。
通过比较不同介质的反射角可以发现,当折射率越大的时候,反射角越小,反之越大。
2. 折射实验中,记录下了入射角和折射角的值,并计算出了水的折射率。
分析与讨论:通过实验发现,电磁波的反射和折射规律与光学的规律相同,具有相似的物理原理。
另外,实验中需要注意精确度,例如使用测角器来测量角度,要保证角度的精确度,以免影响结果。
此外,实验中不同介质的反射、折射规律的不同也需要谨慎对待。
电磁场与电磁波实验报告电磁波反射和折射实验
电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验一电磁波反射和折射实验一、实验目的1、熟悉S426型分光仪的使用方法2、掌握分光仪验证电磁波反射定律的方法3、掌握分光仪验证电磁波折射定律的方法二、实验设备与仪器S426型分光仪三、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
四、实验内容与步骤1、熟悉分光仪的结构和调整方法。
2、连接仪器,调整系统。
仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。
3、测量入射角和反射角反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。
而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。
这是小平台上的0刻度就与金属板的法线方向一致。
转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角,五、实验结果及分析记录实验测得数据,验证电磁波的反射定律表格分析:(1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。
(2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角不会完全等于反射角,由差值一栏可以看出在55度左右的误差最小。
越向两边误差越大,说明测量仪器在55度的入射角能产生最好的特性。
2、观察介质板(玻璃板)上的反射和折射实验将金属换做玻璃板,观察、测试电磁波在该介质板上的反射和折射现象,自行设计实验步骤和表格,计算反射系数和透射系数,验证透射系数和反射系数相加是否等于1 。
电磁场与电磁波实验
电磁场与电磁波实验LT实验一 电磁波参量的测量一、实验目的1.在学习均匀平面电磁场特性的基础上,观察电磁波传播特性。
2.熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定相位常数和波速。
二、实验原理两束等幅,同频率的均匀平面电磁波,在自由空间以相同或相反方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。
本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ值,再由β=2πλ⁄,ν=λf =ωβ⁄得到电磁波的主要参数:β,ν等。
图1-1其中λ的测量方法如下:设入射波为:E i=E0i e−jϕ。
当入射波以入射角θ1向介质板斜投射时,则在分界面上产生反射波E r和折射波E t。
设介质板的反射系数为R,由空气进入介质板的折射系数为T0,由介质板进入空气的折射系数为T c,另外,可动板P r2固定板P r1都是金属板,其电场反射系数为-1。
在一次近似的条件下,接收喇叭P r3处的相干波分别为E r1=−RT0T c E0i e−jϕ1,E r2=−RT0T c E0i e−jϕ2。
在P r3处相干波合成为E r=E r1+E r2=−RT0T c E0i(e−jϕ1+e−jϕ2)式中Δϕ=ϕ1−ϕ2=2β∗ΔL为了准确测量,一般采用P r3零指示法,⁄)=0或Δϕ=(2n+1)π即cos(Δϕ2n=0,1,2…这里n表示相干波合成驻波场的波节点(E r=0)数。
同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。
故把n=0时E r=0的驻波节点为参考节点的位置L0,又因Δϕ=2∗(2πλ⁄)∗ΔL⁄)∗ΔL或4ΔL=故(2n+1)π=2∗(2πλ(2n+1)λ(n为半波长数,一般n=4可得λ=2(L n−L0)n已足够)图2-2 相干波E r1和E r2分布图三、实验内容1.了解电磁波综合测试仪的工作特点,使用方法,特别要熟悉和掌握利用相干波原理测试电磁波波长的方法。
2016年《电磁场与电磁波》仿真实验
2016年《电磁场与电磁波》仿真实验《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像………………………………………………………………………………………12四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。
电磁场与电磁波实验报告.
电磁场与电磁波实验报告.中南⼤学信息科学与⼯程学院课题名称:电磁场与电磁波实验报告信息科学与⼯程学院通信⼯程1201 学班学姓院:级:号:名:0909120927 苏⽂强指导⽼师:陈宁实验⼀电磁波反射实验⼀实验⽬的1. 掌握微波分光仪的基本使⽤⽅法;2. 了解3cm 信号源的产⽣、传输及基本特性;3. 验证电磁波反射定律。
⼆预习内容电磁波的反射定律三实验原理微波与其它波段的⽆线电波相⽐具有:波长极短,频率很⾼,振荡周期极短的特点。
微波传输具有似光特性,其传播为直线传播。
电磁波在传播过程中如遇到障碍物,必定要发⽣反射。
本实验以⼀块⼤的⾦属板作为障碍物来研究当电磁波以某⼀⼊射⾓投射到此⾦属板上所遵循的反射定律,即:反射电磁波位于⼊射电磁波和通过⼊射点的法线所决定的平⾯上反射电磁波和⼊射电磁波分别位于法线两侧;反射⾓θr 等于⼊射⾓θi。
原理如图1.1所⽰。
图1.1四实验内容与步骤1. 调整微波分光仪的两喇叭⼝⾯使其互相正对,它们各⾃的轴线应在⼀条直线上,指⽰两喇叭位置的指针分别指于⼯作平台的0-180 刻度处。
将⽀座放在⼯作平台上,并利⽤平台上的定位销和刻线对正⽀座,拉起平台上四个压紧螺钉旋转⼀个⾓度后放下,即可压紧⽀座。
2. 将反射全属板放到⽀座上,应使⾦属板平⾯与⽀座下⾯的⼩圆盘上的90-90 这对刻线⼀致,这时⼩平台上的0 刻度就与⾦属板的法线⽅向⼀致。
将⾦属板与发射、接收喇叭锁定,以保证实验稳定可靠。
3. 打开信号源开关,将三厘⽶固态信号源设置在:“电压”和“等幅”档。
4. 调节可变衰减器,使得活动臂上微安表的读数为满量程的80%左右。
5. 转动微波分光仪的⼩平台,使固定臂指针指在刻度为30 度处,这个⾓度数就是⼊射⾓度数,然后转动活动臂,使得表头指⽰最⼤,此时活动臂上指针所指的刻度就是反射⾓度数,记下该⾓度读数。
如果此时表头指⽰太⼤或太⼩,应调整微波分光仪中的可变衰减器或晶体检波器,使表头指⽰接近满量程的80%做此项实验。
华中科技大学电磁场与电磁波课程仿真实验报告
《电磁场与电磁波》课程仿真实验报告学号*********姓名Crainax专业光学与电子信息学院院(系)******2016 年11月27日1.实验目的1)理解均匀波导中电磁波的分析方法,TEM/TE/TM 模式的传输特性;2)了解HFSS 仿真的基本原理、操作步骤;3)会用HFSS 对金属波导的导波特性进行仿真;4)画出波导主模的电磁场分布;5)理解波导中的模式、单模传输、色散与截止频率等概念。
2.实验原理2.1导波原理如图1,z轴与金属波导管的轴线重合。
假设:1)波导管内填充的介质是均匀、线性、各向同性的;2)波导管内无自由电荷和传导电流;3)波导管内的场是时谐场。
图1 矩形波导以电场为例子,将上式代入亥姆霍兹方程 2E+k2E=0,并在直角坐标内展开,即有:其中k c表示电磁波在与传播方向相垂直的平面上的波数。
如果导波沿z方向传播,则对波导中传播的电磁波进行分析可知:1)场的横向分量可由纵向分量表示;2)既满足亥姆霍兹方程有满足边界条件的解很多,每个解对应一个波形(或称之为模式)3)k c是在特定边界条件下的特征值,当相移常数β=0 时,意味着波导系统不在传播,此时k c=k,k c称为截止波数。
2.2 矩形波导中传输模式的纵向传输特性波导中的电磁波在传输方向的波数β由下式给出:式中k为自由空间中同频率的电磁波的波数。
要使波导中存在导波,则β必须为实数,即如上式不满足,则电磁波不能在波导内传输,即截止。
矩形波导中TE10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。
由于TE10模的截止波长最长且等于2a,用它来传输可以保证单模传输。
当波导尺寸给定且有a>2b时,则要求电磁波的工作波长满足a<λ<2a λ>2b当工作波长给定时,则波导尺寸必须满足3.实验内容在HFSS中完成圆波导的设计与仿真,要求画出电场分布,获得色散曲线。
模型半径为:4.20mm.1)探讨圆波导的横截面尺寸发生变化时,主模(TE11模)的场分布和传播特性如何变化;2)探讨圆波导的填充介质发生变化时,主模(TE11模)的场分布和传播特性如何变化;3)比较圆波导中前两个模式的差别(提示:TE11模和TM01模式,两者的截止波长分别为3.41a,2.62a)4.仿真实验步骤1)理论计算(给出截止频率计算过程及结果);圆波导中的TM波:容易得到TM模式下对应截至频率(c)TM01=(h)TM01/2 = (HZ)即为TM模式下的极限频率。
电磁场与电磁波实验报告
电磁场与电磁波实验报告班级:学号:姓名:实验一:验证电磁波的反射和折射定律1学时1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律;1研究电磁波在良好导体表面上的全反射;2研究电磁波在良好介质表面上的反射和折射;3研究电磁波全反射和全折射的条件;2、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角;3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验;1、实验目的1研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面出现的衍射波强度不是均匀的,中央最强;2研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源;由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度;两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;当然电磁波通过每个缝也有狭缝现象;因此实验将是衍射和干涉两者结合的结果;为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°;因此取较大的b,则干涉强受单缝衍射影响大;干涉加强的角度为:干涉减弱的角度为:3、实验结果图2.1 单缝衍射的I-α曲线图2.2双缝干涉的I-α曲线实验三:布朗格衍射的实验1、实验目的本实验是仿造X射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替X射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件;这个条件就是布拉格方程;1掌握100面,110面点阵的反射波产生干涉的条件,得出布拉格方程;2了解直线极化和圆极化波特性参数的测试方法;2、实验原理任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关;晶体内的离子、原子或分子占据着点阵的结构, 两相邻结点的距离叫晶体的晶格常数;真实晶体的晶格常数约在10−8厘米的数量级,X 射线的波长与晶体的常数属于同一数量级,实际上晶体是起着衍射光栅的作用,因此可以利用 X 射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构得了解;本实验是仿造 X 射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替 X 射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件,这个条件就是布拉格方程;它是这样说的,当波长为入的平面波射到间距为α的晶面上,入射角为Θ°,当满足条件时n为整数发生衍射;衍射线在所考虑的晶面反射线方向;在布拉格衍射实验中采用入射线与晶面的夹角即通称的入射角,是为了在实验时方便,因为当被研究晶面的法线与分光仪上度盘的 0 度刻度一致时,入射线与反射线的方向在度盘上有相同的示数,不容易搞错,操作方便;3、实验结果图3.1 布拉格衍射I-θ关系曲线由实验数据可得,两侧发生衍射的角度大约在34°和65°附近;根据布拉格方程nλ=2aCOSθ,将λ=32mm,a=40mm代入得:当n=1时,θ=66.42°;当n=2时,θ=36.87°.实验测得数据与理论计算值比较接近,可验证布拉格方程;69°附近产生的峰值可能是由其他实验组影响造成的,不计入考虑;实验四:均匀无损耗媒质参量的测量2学时1、实验目的了解电磁波在真空中传播特性和相干原理;1在学习均匀平面电磁波的基础上,观察电磁波传播特性,E、H、S互相垂直;2推导相干波理论数学模型,自行调节测量仪器,测量基本参量;3测定自由空间内电磁波波长λ、频率f,并确定电磁波的相位常数β和波速υη的测量;4了解电磁波的其他参量,如波阻抗5利用相干波接点位移法推导测量均匀无损耗媒质参量的ε和μ的数学模型6了解均匀无损耗媒质参量λ、β、的差别7熟悉均匀无损耗媒质分界面对电磁波的反射和折射的特性;2、实验原理迈克尔逊干涉试验的基本原理见下图 13 所示:在平面波前进的方向上放置一个成45°的半透射板,由于该板的作用,将入射波分成两束波:一束由于反射向 A 方向传播;另一束透过半透射板向B 方向传播;由于A﹑B 处全反射板的作用,两列波就再次回到半透射板并到达接收喇叭处,于是接收喇叭收到两束同频率且振动方向一致的两个波;如果这两个波的位相差为2π的整数倍,则干涉加强;当相位差为π的奇数倍则干涉减弱;因此在 A 处放一固定板,让 B 处的反射板移动,当表头指示从一次极小变到又一次极小时,则 B 处的反射板就移动λ⁄2的距离,因此有这个距离就可求得平面波的波长;3、实验结果()()mm 32.341-443.5-91.5621n 0L -3L 2=⨯=-⨯=λ实验五:利用微波衰减测量湿度、厚度2学时1、实验目的学习介质特性参量:相移常数和衰减常数的测量方法,自行推导出介质厚度和湿度的数学模型,设计实验方法;1了解被测量的物质所用波为TEM 波,TEM 波产生的条件; 2相移常数和衰减常数测量方法; 3湿度、厚度测量方法 4信号处理方法 2、实验原理同迈克尔干涉实验原理 3、实验结果491.5602.5592.4067.4172.2357.2643.532.13-+-+-+-=91.2=n33221100L L L L L L L L L -'+-'+-'+-'=∆()()mm80.271-432.13-2.05521n 0-32ˊ=⨯=-''⨯'L L λ()d L /1/∆+= λλ()d /91.21/32.3480.27+=mmd 6.12≈。
电磁场与电磁波实验报告
电磁场与电磁波实验报告
实验目的:通过实验探究电磁场和电磁波的相关性质,加深对电磁
学原理的理解,掌握相关实验操作技巧。
一、实验仪器与材料
本次实验所用仪器设备包括:
1. 电磁场产生装置;
2. 电场仪表;
3. 磁场仪表;
4. 信号发生器;
5. 示波器等。
二、实验步骤
1. 观察并记录电磁场产生装置的工作原理,了解电磁场的形成过程;
2. 利用电场仪表和磁场仪表分别测量电磁场的电场分量和磁场分量,并记录实验数据;
3. 通过调节信号发生器的频率和幅度,产生不同频率的电磁波,并
利用示波器观察并记录波形;
4. 将电磁场和电磁波的实验数据整理,形成图表和曲线。
三、实验结果与分析
根据实验数据,我们可以观察到电磁场和电磁波在不同频率下的表现。
电磁场的电场分量和磁场分量呈现出明显的变化规律,频率越高,波动频率越密集;而电磁波的波形随着频率的增加呈现出不同的特征,频率在一定范围内变化会引起频率响应的变化。
四、结论与思考
通过本次实验,我们深入了解了电磁场和电磁波的相关特性,了解
到电磁场和电磁波在不同频率下的表现差异。
同时,我们也发现了实
验过程中需要注意的细节问题,如仪器的校准和操作注意事项等。
通
过实验,我们不仅加深了对电磁学理论知识的理解,也提高了实验操
作的技巧和分析能力。
综上所述,电磁场与电磁波实验为我们提供了一个直观、具体的实
践平台,促进了电磁学知识的学习与应用,为我们日后的研究与工作
打下了坚实的基础。
北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量
电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
一、实验目的1.了解谐振腔的基本知识。
2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。
谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。
谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。
如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。
电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。
选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。
假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。
2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。
这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。
电磁场与电磁波静电场物理模拟实验报告
电磁场与电磁波实验报告实验项目:__ 静电场物理模拟_____________________一、实验目的要求1. 理解物理模拟法的实验原理和应用条件。
2. 学习用物理模拟法研究静电场。
3. 加深对静电场场强和电位的理解。
二、实验内容1. 了解装置电路及实验原理。
2. 描绘矩形水槽薄水层中两个点电极产生的二维静电场。
三、实验仪器与软件矩形水槽、坐标纸两张、稳压电源和电压表,模拟电极、导线、固定支架。
四、实验原理理论上讲,如果知道了电荷的分布,就可以确定静电场的分布。
电场既可以用电场强度0E(电力线)来描述,又可以用电势U (等势面、线)来描述。
由于标量的测量和计算比矢量简便,因此,人们更愿意用电势来描述电场。
在给定条件下,确定系统静电场分布的方法,一般有解析法﹑数值模拟法和物理模拟法。
解析法只能求解一些简单的问题;数值模拟法,也就是数值计算方法,它能解决一些复杂的问题,虽计算量很大,但在计算机的帮助下,目前已经得到长足的发展,应用很广,数值模拟也有不足之处,对于一些形状比较复杂的带电体或电极周围静电场的分布,求解也非常困难。
模拟法作为一种重要的实验研究方法,它本质上是用一种易于实现﹑便于测量的物理状态或过程来模拟另一种不易实现﹑不便测量的物理状态或过程。
其条件是两种状态或过程有两组一一对应的物理量,并且满足相同形式的数学规律。
由于静电场中不存在电流,一般磁电式仪表,在有电流时才会有反应,因此难以确定静电场的等势线。
由于在一定条件下电介质中的稳恒电流场与静电场服从相同的数学规律,可以用恒定电流的电场模拟静电场。
如接到直流电源两端的小圆柱形电极之间形成的恒定电场,可以用来模拟等量异种电荷之间的静电场。
静电场与稳恒电流场的对应关系为导体上的电荷 ±Q电场强度 E介电常数极间电流±I 电场强度E电导率电位移 D=E无电荷区0E dS ε⋅=⎰电位满足 02=∇U电流密度 J=E无源区0E dS σ⋅=⎰电位满足 02=∇U根据上表中的对应关系可知,要想在实验上用稳恒电流场来模拟静电场,需要满足下面三个条件:⑴电极系统与导体几何形状相同或相似; ⑵导电质与电介质分布规律相同或相似;⑶电极的电导率远大于导电质的电导率,以保证电极表面为等势面。
2016年《电磁场与电磁波》仿真实验
《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (12)四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、./、.\和.^。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。
程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。
电磁场与电磁波实验报告2
电磁场与电磁波实验报告设入射波为,当入射波以入射角向介质板斜投射时,则在φj i i e E E -=01θ分界面上产生反射波和折射波。
设介质板的反射系数为r E t E 介质板的折射系数为,由介质板进入空气的折射系数为0T这里 ;;()13112r r r L L L ββφ=+=()()231322222L L L L L L r r r r βββφ=+∆+=+=其中。
12L L L -=∆又因为为定值,则随可动板位移而变化。
当移动值,使有零1L 2L 2r P L ∆3r P 指示输出时,必有与反相。
故可采用改变的位置,使输出最大1r E 2r E 2r P 3r P 或零指示重复出现。
从而测出电磁波的波长和相位常数。
下面用数学式λβ来表达测定波长的关系式。
在处的相干波合成为3r P ()210021φφj j i c r r r e e E T RT E E E --+-=+=或写成(1-2)()⎪⎭⎫ ⎝⎛+-∆Φ-=200212cos 2φφj i c r eE T RT E 式中L∆=-=∆Φβφφ221为了测量准确,一般采用零指示法,即3r P 02cos =∆φ或,n=0,1,2......π)12(+=∆Φn 这里n 表示相干波合成驻波场的波节点()数。
同时,除n=0以外的n 0=r E 值,又表示相干波合成驻波的半波长数。
故把n=0时驻波节点为参考0=r E 节点的位置0L 又因(1-3)L∆⎪⎭⎫⎝⎛=∆λπφ22故()Ln ∆⎪⎭⎫⎝⎛=+λππ2212或(1-4)λ)12(4+=∆n L 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。
当n=0的节点处作为第一个波节点,对其他N 值则有:0L n=1, ,对应第二个波节点,或第一个半波长数。
()λ24401=-=∆L L L n=1,,对应第三个波节点,或第二个半波长数。
()λ24412=-=∆L L L三、实验步骤读数机构上得到所有节点位置,并记录。
电磁场与电磁波 【matlab】实验一 带电粒子在电磁场中的受力与运动特性研究实验
电磁场与电磁波实验实验一带电粒子在电磁场中的受力与运动特性研究实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。
一带电粒子在电磁场中的受力与运动特性研究实验一、实验目的:1.通过虚拟仿真,观察带电粒子在电磁场中的运动行为。
2.学习运用Matlab 对电磁场进行数值模拟的方法。
二、实验原理带电粒子在磁场中运动会受到磁场力的作用,且随着初始运动方向和磁场分布的不同,其运动轨迹会发生不同的变化。
设带电粒子电量为q,以速度v 运动,则受到外磁场的作用力为:F qv B=⨯ 该公式表明:(1)磁场作用力同时垂直于磁感应强度和粒子运动速度;(2)磁场作用力只作用于运动的带电粒子,且永远不对带电粒子做功,只改变其运动方向。
若带电量为q 的运动电荷所在空间同时存在电场和磁场,则它所受的电场力和磁场力的综合即为洛伦兹力:()F q E v B =+⨯ 若不考虑粒子所受重力的作用,上式综合牛顿运动定律就可以精确确定带电粒子在电磁场中的运动轨迹。
设带电粒子质量为m,电量为q,进入电场E 与磁场B 方向正交的叠加电磁场中。
以电磁场中某点为原点,以电场E 为OY 方向,以磁感应强度B 为OZ 方向建立直角坐标系O-XYZ,则电场E 只有Y 分量,磁感应强度B 只有Z 分量,带电粒子在该电磁场中的运动微分方程为:22()d r m q E v B dt=+⨯ 上式可以在直角坐标系中展开为如下形式:2222220d x qB dy dtm dt d y qE qB dx dtm m dt d z dt⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩令1w x =,2dx w dt =,3w y =,4dy w dt =,5w z =,6dz w dt =,则上式可以化简为如下一阶微分线性方程组:12243442566dw w dt dw qB w dt m dw w dt dw qE qB w dt m m dw w dt dw dt ⎧=⎪⎪⎪=⎪⎪⎪=⎪⎨⎪=-⎪⎪⎪=⎪⎪=⎪⎩通过Matlab 编写程序,即可求解上述微分方程组。
电磁场与电磁波实验报告
辽宁工程技术大学实验报告坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为DownPlateAssign Material > pec(设置材料为理想导体perfect conductor)(3)创建上极板六面体Draw > Box(创建下极板六面体)上极板起点:(X,Y,Z)>(0, 0, 3)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为UpPlateAssign Material > pec(设置材料为理想导体perfect conductor)(4)创建中间的介质六面体Draw > Box(创建下极板六面体)介质板起点:(X,Y,Z)>(0, 0, 2)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 1)将六面体重命名为mediumAssign Material > mica(设置材料为云母mica,也可以根据实际情况设置新材料)(5)创建计算区域(Region)Padding Percentage:0%忽略电场的边缘效应(fringing effect)2.设置激励(Assign Excitation)(1)选中上极板UpPlate,Maxwell 3D> Excitations > Assign(计划,分配) >Voltage > 5V(2)选中下极板DownPlate,Maxwell 3D> Excitations > Assign >Voltage > 0V3.设置计算参数(Assign Executive Parameter)Maxwell 3D > Parameters > Assign > Matrix (矩阵)> Voltage1, Voltage24.设置自适应计算参数(Create Analysis Setup)Maxwell 3D > Analysis Setup > Add Solution Setup最大迭代次数:Maximum number of passes > 10误差要求:Percent Error > 1%每次迭代加密剖分单元比例:Refinement per Pass> 50%5. Check & Run6. 查看结果Maxwell 3D > Reselts > Solution data > Matrix电容值:31.543pF四、实验体会通过这次实验,初步学会了Maxwell这一软件的运用,所得仿真值与理论值有所差别是因为理论值为理论值为理想状态下所得的结果,但在实际过程中要考虑多种因素对最终结果的影响,无法达到理想的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。
受目前实验室设备条件的限制,目前主要利用MATLAB仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。
本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门......... (4)二、............................................................ 单电荷的场分布1O 三、........................................................ 点电荷电场线的图像12-四、................................................................ 线电荷产生的电位............................................................. : ..... 14 -五、....................................................................... 有限差分法处理电磁场问题17…实验一电磁场仿真软件------ Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。
二、实验原理(一) MATLAB运算1. 算术运算(1) .基本算术运算MATLAB的基本算术运算有:+ (加)、一(减)、*(乘)、/(右除)、\(左除)、八(乘方)。
注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。
(2) .点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。
点运算符有.*、•/、和八。
两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。
例1:用简短命令计算并绘制在= 6范围内的sin(2x)、sinx 2、sin 2x。
程序:x=linspace(0,6)y1=si n(2*x),y2=si n(x42),y3=(si n(x))42;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。
2. plot函数:用来绘制线形图形plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。
plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。
plot(x,y,s)con tour函数:用来绘制等高线图形ezplot函数:对于显式函数f=f(x),在默认范围[-2 n <x<2n ]上绘制函数f(x)的图形;对于隐式函数f=f(x,y),在默认的平面区域[-2 n <x<2n , -2 n <y<2n ]上绘制函数f(x,y)的图形。
3 •具有两个纵坐标标度的图形在MATLAB中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy绘图函数。
调用格式为:plotyy(x1,y1,x2,y2)其中x1,y1对应一条曲线,x2,y2对应另一条曲线。
横坐标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据对,右纵坐标用于x2,y2数据对。
4.三维曲线plot3函数与plot函数用法十分相似,其调用格式为:plot3(x1,y1,z1 选项1,x2,y2,z2选项2,…,xn,yn,zn选项n)其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot函数相同。
当x,y,z 是同维向量时,贝U x,y,z对应元素构成一条三维曲线。
当x,y,z是同维矩阵时,贝U 以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵列数。
5.lege nd命令:为绘制的图形加上图例调用格式:lege nd('stri ng1','stri ng2',...)例如:legend('电信161 班','学号:05401111','张三','Location','best');6. xlabel命令:给X轴加标题调用格式:xlabel('string')例如:xlabel('x');三、实验内容1. 在命令窗口中运行一个加法程序;2. 在命令窗口中练习帮助命令(doc命令)的使用。
3. 建立第一个M文件,并运行,观察并保存运行结果。
四、实验步骤1. 在命令窗口中运行一个加法程序(1)点击桌面上matlab7.0快捷方式图标,如图1.1所示,启动该软件。
图1.1 matlab7.0快捷方式图标(2)在打开的界面右方,是命令窗口( Comma nd Win dows),如图1.2所示,在闪动光标处可以写入命令;图1.2 Matlab的命令窗口(3) 在光标处写入如图1.3所示的命令(注意:前两个语句后面有分号,最后一个语句没有分号);按回车键,则得到运行结果为50,如图1.4所示图1.3在命令窗口输入命令图1.4按回车键执行命令得到正确运行结果2. 在命令窗口中练习帮助命令(doc命令)的使用在命令窗口光标处输入命令:doc plot;回车,则进入在线帮助文件,显示plot命令的使用方法页面,如图1.5所示。
图1.5 plot命令的在线帮助页面3. 建立第一个M文件,并运行,观察并保存运行结果。
(1 )点击图标,如图1.6中红色圆圈所示,即创建了一个新的M文件,如图1.7所示。
图1.6红色圆圈的图标用于创建新的M文件图1.7创建的空白M文件(2)在空白M文件中输入“二、实验原理”例子的程序,保存,运行,得到运行结果如图1.8所示。
要求:在E盘建立新文件夹,命名为Fiele_Wave_simulation_2012_10_27将M 文件保存在Fiele_Wave_simulation_2012_10_27目录下,命名为Exp_1.m;特别说明两点:a. M文件名及保存的路径名均应为英文,否则运行出错;b.程序中的所有字符均应为英文状态下输入,特别注意单引号,逗号,空格, 这些细节会导致运行报错,又极难发现。
<1 Editor Vkm.MiiuljLliiOB 2心】2_」0-27YEap_lL »*=£卑;A th f r£l£l - :^>.1 y]=f[tlot C - in' h It 2*pi 1 ; *计SfO 2*pi 1 siniftlSSi2 - [xl yll = rp)ot t'i-< s' , '0 3*pil); n -plot(!R T T 1J' Kl- Tl. J )4 - LrsrntK r=sim y b T=co%3£》图1.8 M文件的保存、运行按键及运行结果五、实验工具1 •计算机1台2. MATLAB仿真软件1套六、实验报告要求1.写出仿真程序源代码。
2.在同一窗口用不同的线性绘制y=sinx , y=cosx在[0,2*pi]上的图像,并加标3. 在同一窗口用不同的线性绘制y=sin2x , y=cos2x在[-2*pi,2*pi]上的图像,并加标注。
(要在图中绘制出姓名与学号)芦「C Mil L—“询輛担实验二单电荷的场分布、实验目的1. 掌握MATLAB 仿真的基本流程与步骤;2. 学会绘制单电荷的等位线和电力线分布图、实验原理1. 基本原理单电荷的外部电位计算公式: q4 n of*等位线就是连接距离电荷等距离的点, 在图上表示就是一圈一圈的圆,而电 力线就是由点向外辐射的线,比较简单,这里就不再赘述2. 参考程序创建向量theta ,确疋theta 的范围为0到2*pi , 半径分别为r=0,1,2,…,10 绘制10个圆 x=linspace(-5,5,100);%创建线性空间向量x,从-5到5,等间距分为100个占八、、% hold on;theta=[0:0.01:2*pi]';%步距为0.01r=0:10; %x=s in (theta)*r;y=cos(theta)*r;plot(x,y,'b') %3. 程序参考运行结果运行程序,获得图像大致如图2.1所示图2.1单电荷的等位线和电力线分布图三、实验内容绘制单电荷的等位线和电力线分布图。
四、实验步骤1. 在E盘建立新文件夹,命名为Fiele_Wave_simulation_2012_10_272. 打开Matlab软件,新建一个空白的M文件,保存在Fiele_Wave_simulation_2012_10_27目录下,命名为Exp_2.m;3. 将源程序拷贝到M文件中,保存;4. 点击运行按钮,观察程序运行结果。
五、实验工具1 .计算机1台2. MATLAB仿真软件1套六、实验报告要求1 •写出仿真程序源代码。
2•绘制单电荷的等位线和电力线分布图。
(要在图中绘制出姓名与学号)实验三点电荷电场线的图像、实验目的学会由解析表达式进行数值求解的方法。
、实验原理1.基本原理考虑一个三点电荷系所构成的系统。
如图所示,其中一个点电荷-q位于坐标原点,另一个-q位于y轴上的点,最后一个+2q位于y轴的-点,则在xoy平面内, 电场强度应满足4环尹i2qx、■-]'-\ v ff /4码% 4溜,(b+Q厂4叫(y切+才和-©14隔J 任意条电场线应该满足方程:(1)求解(1)式可得:这就是电场线满足的方程,常数C取不同值将得到不同的电场线。
2.参考程序解出y=f(x)的表达式再作图是不可能的。
用Matlab语言即能轻松的做到这'点。
其语句是:syms x y % 设置x,y变量;for C=0:0.1:3.0ezplot(2*(y+1)/sqrt((y+1)A2+x A2)-y/sqrt(y A2+x A2)-(y-1)/sqrt((y-1)A2+x A2)-C, [- 5,5,0.1]); %其中取了a=1, C=0, 0.1, 0.2,••…,3.0 hold on;(2)3. 程序参考运行结果运行程序,获得图像大致如图3.1所示x图3.1点电荷电场线的图像三、实验内容根据给出的三点电荷系所构成的系统电场线满足的方程,绘制其图像。