艺考生高考文科数学复习课件:第七章数列测试
新课标2023版高考数学一轮总复习第7章数列第2节等差数列课件
2
= 2 a 中 ,所以 S 奇-S 偶= a中 .
n-1 2 a中
n 为偶数时,S 偶-S 奇=n2d.
,S 偶
数列{an}是等差数列⇔数列的前 n 项和公式 Sn=d2n2+a1-d2n⇔ Sn=An2+Bn(A,B 为常数),所以当 d≠0 时,等差数列前 n 项和公式 可以看成关于 n 的二次函数,且常数项为 0.
D.785<d≤235
D
解析:由题意可得aa190≤>11,,
即215+9d>1, 215+8d≤1,
解得785<d≤235.
5.已知等差数列 5,427,347,…,则前 n 项和 Sn=_________. 114(75n-5n2) 解析:由题知公差 d=-57,所以 Sn=na1+nn- 2 1 d=114(75n-5n2).
证明:因为 bn+1-bn=2an+21-1-2an2-1=21-421an-1-2an2-1 =2a4na-n 1-2an2-1=2,
所以数列{bn}是公差为 2 的等差数列. 又 b1=2a12-1=2,所以 bn=2+(n-1)×2=2n, 所以 2n=2an2-1,解得 an=n+ 2n1.
B 解析:方法一:设等差数列{an}的公差为 d,
则3100aa11++31002××2 299dd==1, 5,
解得d=1150, a1=1700,
所以 S40=1700×40+40×2 39×1150=8.故选 B.
方法二:设等差数列前 n 项和为 Sn=An2+Bn,
100A+10B=1, 由题意知900A+30B=5,
(1)在等差数列{an}中,已知 a3+a8=6,则 3a2+a16 的值为
() A.24
B.18
高考数学一轮复习规划第七章数列高考大题冲关系列课件
n
所以 ∑
k=1
ca2kk-ak+c21k<
1
n
∑
2k=1
2kk-1= 124-n2+n-21 <2
2.
解
[冲关策略] 解决由等差数列、等比数列组成的综合问题,第一要根 据两数列的概念,设出相应的基本量,然后充分使用通项公式、求和公 式、数列的性质等确定基本量.解综合题的关键在于审清题目,弄懂来龙 去脉,揭示问题的内在联系和隐含条件.
解
所以 c2n-c2n≠0,且c2n+c2n1--cc22nn+2=22·4·4n+n 1=4, 所以数列{c2n-c2n}是等比数列. ②由题意知,ca2nn-anc+21n=2n-12·42nn+1=42n·22-2n1<24·n222n,
所以
ca2nn-anc+21n<
24·n222n= 22n·2n= 12·2nn-1,
所以 cn=6+(n-1)×12=12n-6,
所以数列{cn}的通项公式为 cn=12n-6.
解
[冲关策略] (1)数列与函数的综合问题一般是以函数作为背景,给出 数列所满足的条件.解决这类问题的关键是利用函数知识,将条件进行准 确转化.
(2)此类问题多考查函数思想及性质(多为单调性),注意题中的限制条 件,如定义域.
解
(2)因为 3bn+(n-4)an=0,所以 bn=(n-4)×34n.
变式训练 3 已知函数 f(x)=log3(ax+b)的图象经过点 A(2,1)和 B(5,2), an=an+b,n∈N*.
(1)求 an; (2)设数列{an}的前 n 项和为 Sn,bn=2n+2 Sn,求数列{bn}的前 n 项和 Tn. 解 (1)由函数 f(x)=log3(ax+b)的图象经过点 A(2,1)和 B(5,2),
全国卷文科数列-复习
数列(文) 复习【知识梳理】一、数列的通项公式如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
(对于不是等差数列又不是等比数列的数列的通项公式只能找第n 项与n 的规律)例如:①:1 ,2 ,3 ,4, 5 ,… ②:514131211,,,,… 数列①的通项公式是n a = n (n N +∈),数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;/③不是每个数列都有通项公式。
例如,1,,,,……二、数列{na }的前n 项和nS 与通项na 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥三、等差数列1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(1)n n a a d n +-=≥或1(2)n n a a d n --=≥。
2、等差数列的通项公式:1(1)n a a n d =+-;—说明:1、等差数列的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
2、(),(为常数B A BAn a n +=⇒{}n a 是等差数列 )例:1.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)2. 等差数列12-=n a n ,=--1n n a a3.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )6703、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
高考数学 艺体生文化课 第七章 数列测试课件.pptx
4.(2009新课标卷)等比数列{an}的前n项和为Sn,且4a1,2a2,a3
成等差数列.若a1=1,则S4= ( )
A.7
B.8
C.15
D.16
【答案】 C
【解析】 Q 4a1, 2a2 , a3成等差数列,4a1 a3 4a2 ,即4a1 a1q2 4a1q, q2 4q 4 0,q 2.又a1 1, S4 15, 选C.
5.(2007新课标卷,文)已知a,b,c,d成等比数列,且曲线y=x2-
2x+3的顶点是(b,c),则ad等于 ( )
A.3
B.2
C.1
D.-2
【答案】 B 【解析】 y x2 2x 3的顶点为(1, 2), a,b, c, d成等比数列, 所以bc ad 2,选B.
6.(2014年6月湖北省襄阳市普通高中调研测试)等差数列{an} 的公差d<0,且a2a4=12,a2+a4=8,则数列{an}的通项公式是
(2)当d>1时,记cnab=nn ,求数列{cn}的前n项和Tn.
(2)由d
1, 得 : an
2n
1, bn
2n1.所以cn
2n 1 2n1
,
所以Tn
1 20
3 21
5 22
7 23
2n 1① 2n1
两边都乘以 1 2
得到
1 2 Tn
1 21
3 22
5 23
7 24
2n 1② 2n
①
②得到
1 2
等比数列,则{an}的前n项和Sn= ( )
A.n(n 1) B.n(n 1) C. n(n 1) 2
D. n(n 1) 2
【答案】 A
高考备考课件 数学 第7章 第4讲 数列求和、数列的综合应用
11--31134=4207.
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书
5.(2020年安阳月考 )已知正项等比数列 {an}满足a2=4,a4 +a6=80.记bn = log2an,则数列{bn}的前50项和为________.
【答案】1 275
【解析】设首项为a1,公比为q的正项等比数列{an}满足a,an-an-1是首项为1,公比为3的等比数列,则数列{an}
的通项公式是an=3n-2 1.(
)
【答案】(1)√ (2)√ (3)√ (4)× (5)√
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书
2
第七章 数 列
重难突破 能力提升
栏目索引
高考备考指南
公式法求和
数学 系统复习用书
∈N*.
(2019年哈尔滨模拟)数列{an}满足a1=1,nan+1=(n+1)an+3n(n+1),n
(1)证明:数列ann是等差数列,并求数列{an}的通项公式;
(2)令bn=ann-4n,求数列{bn}的前n项和Sn.
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书
【解析】(1)证明:数列{an}满足a1=1,nan+1=(n+1)an+3n(n+1),n∈N*,
na1+an 2
较
为合理.( )
(2)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=a11--aqn+1.(
)
(3)当n≥2时,n2-1 1=12n-1 1-n+1 1.(
)
栏目索引
第七章 数 列
高考备考指南
数学 系统复习用书
高考数学 艺体生文化课 第七章 数列 第1节 等差数列课件.pptx
14.在等差数列{an}中,a1+ a3+ a5=105, a2+ a4+ a6=99,
Sn表示数列{an}的前n项和,则使达到最大值的n是 ( )
A.21
B.20
C.19
D.18
【答案】 B
【解析】 因为a1 a3 a5 3a3 105, a2 a4 a6 3a4 99, 所以a3 35, a4 33,所以d 2, a1 39,
由an
a1
(n
1)d
39
2(n
1)
41
2n
0,解得n
41, 2
所以n 20当时,Sn达到最大值。
或:Sn
39n
n(n 1) 2
(2)
n2
40,
当n 40 20时有最大值.故选B. 2 (1)
15.(2018西安质检)已知数列{an}满足a1=15,且3an+1=3an-2.若
ak·ak+1<0,则正整数k= ( )
;
若它的第k项满足5<ak<8,则k=
.
【答案】 2n 10;8 【解析】
n 1时, a1 S1 8, n 1时, an Sn Sn1 n2 9n (n 1)2 9(n 1), an 2n 10,并且满足n 1时, a1 8, 所以an 2n 10, 则ak 2k 10. 5 2k 10 8, 解得7.5 k 9,k 8.
如果三个数a,A,b成等差数列,那么A=a b
项.
2
叫做a与b的等差中
4(1.等)Sn差数n(列a1的2 a前n )n;项和:
n(n 1) (2)Sn na1 2 d.
5.等差数列的性质: 等和性:若项数m,n,p,q满足m+n=p+q,则am+an=ap+aq.
(word完整版)高考文科数学数列复习题有答案(2021年整理)
(word完整版)高考文科数学数列复习题有答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高考文科数学数列复习题有答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高考文科数学数列复习题有答案(word版可编辑修改)的全部内容。
高考文科数学数列复习题一、选择题1.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是( )A .5B .4C .3D .22.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于( )A .40B .42C .43D .453.已知等差数列{}n a 的公差为2,若1a 、3a 、4a 成等比数列,则2a 等于( ) A .-4 B .-6 C .-8 D .-10 4.在等差数列{}n a 中,已知11253,4,33,n a a a a n =+==则为( )A 。
48 B.49 C.50 D.51 5.在等比数列{n a }中,2a =8,6a =64,,则公比q 为( )A .2B .3C .4D .8 6。
—1,a,b,c ,-9成等比数列,那么( )A .3,9b ac == B.3,9b ac =-= C.3,9b ac ==- D.3,9b ac =-=- 7.数列{}n a 满足11,(2),n n n a a a n n a -=+≥=则( )A .(1)2n n +B 。
(1)2n n - C. (2)(1)2n n ++ D 。
高考数学文科二轮专题攻略课件:第七讲 等差数列与等比数列
∴
q d
3,或
1
q d
4, 8,
∴Sn=na1+ 1 n(n-1)d= 1 n2- 3 n或4n2-5n.
2
22
考点聚焦 栏目索引
考点二 等差、等比数列的性质
1.等差数列的性质
高考导航
(1)若m,n,p,q∈N*,且m+n=p+q,则am+an=ap+aq; (2)Sm,S2m-Sm,S3m-S2m,…仍成等差数列;
1.证明数列{an}是等差数列的两种基本方法 高考导航 (1)利用定义证明an+1-an(n∈N*)为一常数; (2)利用等差中项,即证明2an=an-1+an+1(n≥2,n∈N*). 2.证明数列{an}是等比数列的两种基本方法 (1)利用定义证明 an1 (n∈N*)为一不为零的常数;
an
(2)利用等比中项,即证明 an2 =an-1an+1(n≥2,n∈N*).
考点聚焦 栏目索引
命题角度一:等差数列的判定与证明
高考导航
(2017课标全国Ⅰ,17,12分)记Sn为等比数列{an}的前n项和.已知S2 =2,S3=-6. (1)求{an}的通项公式; (2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
解析 (1)设{an}的公比为q,由题设可得
aa11
Sn=na1+
n(n 2
1)
d=
d 2
[(n-8)2-64],所以当n=8时,数列{an}的前n项和取
得最小值.故选C.
考点聚焦 栏目索引
3.(2018重庆调研)在各项均为正数的等比数列{an}中,若a5=5,则
log5a1+log5a2+…+log5a9=
高三文科数学数列专题复习PPT课件
bn1
12bn
1 4
且 b1
7 2
,Tn
为 bn 的前n项和。
求证:数列
b
n
1 2
是等比数列,并求
bn
ቤተ መጻሕፍቲ ባይዱ
、T n
3
第二课时 数列通项与求和
一、基础自测 二轮P53 1、2、3、4 二轮P59 1、2、3、4 二轮P60 9、10
二、典例分析 二轮P55 例1 变式训练
4
三、体验高考 巩固提高
14
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX
时 间:XX年XX月XX日
15
二轮P52 9 P53 12(1)
12(1)变式
2
本次统考理9:已知等差数列 an 的前n项和为 S n , 若M、N、P三点共线,O为坐标原点,且 ONa15OM a6OP
(直线MP不过点O),则 S 20 等于(B )
A.15 B.10 C.40 D.20
本次统考理20:已知数列 bn 满足
二轮P59 6、7 P60 10 二轮P63 2 P64 5
5
6
7
8
9
10
11
12
13
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
第一课时 等差数列与等比数列 一、基础自测
二轮P47 1、2、3、4、5 P51 1、2、3、4、7、8
高考数学艺体生文化课总复习第七章数列第3节数列通项点金课件
【解析】 a1
1,由an1
2n
an得
an1 an
2n ,
所以 a2 21, a3 22 , a4 23,, an 2n1,
a1
a2
a3
an1
所以 a2 a3 a4 an 21 22 23 2n1,
a1 a2 a3
an1
n ( n1)
an
1 23(n1)
【解析】 (1)当n 2时, an Sn Sn1 2n1,
当n 1时, a1 2 1 1,满足an 2n1,
数列{an}的通项公式为an 2n1(n N*).
(2)由(1)得, bn
log4
an
1
n
2
1
,
则bn1bn
n
2
2
n 1 2
1, 2
数列{bn}是首项为1,公差d
1 的等差数列, 2
专题训练
1.(公式法)(2014福建)在等比数列{an}中,a2=3,a5=81. (1)求an的通项公式; (2)设bn=log3an,求数列{bn}的前n项和Sn.
【解析】 (1)设{an}的公比为q,则由a2
3, a5
81得
a1q a1q
3, 4 81,
两式相除,得 a1q4 a1q
q3
81 3
27,?所以 aq131,, 所以an
3n1.
(2)bn log3 an log3 3n1 n 1,
所以Sn
0 1
2
3
(n
1)
n(n 1) . 2
2.(2016新课标Ⅲ卷)已知各项都为正数的数列{an}满足a1=1, an2-(2an+1-1)an-2an+1=0. (1)求a2,a3; (2)求{an}的通项公式.
2021版新高考数学一轮复习第七章数列7.4数列求和课件新人教B版
提示:(1)√.因为数列{an}为等比数列,且公比不等于1,则其前n项和为Sn =
(2)√.因为sin21°+sin289°=sin22°+sin288°=sin23°+sin287°=1,所以
sin21°+sin22°+sin23°+…+sin287°+sin288°+sin289°可用倒序相加求和.
【解析】由题知cn =an ·bn =(2n+1)2n-1,………………………………写通项
故Tn=3×20+5×21+7×22+…+(2n+1)×2n-1,……………………写前n项和 2Tn=3×21+5×22+7×23+…+(2n+1)×2n,…………………………乘公比 上述两式相减得,-Tn=3+22+23+…+2n-(2n+1)×2n ………………错位相减
(3)2+4+6+8+…+2n=_n_2+_n_.
(4)12+22+…+n2=______________.
(5)13+23+33+…+n3=____________.
【知识点辨析】 ꢀ(正确的打“√”,错误的打“×”)
(1)如果数列{a}为n 等比数列,且公比不等于1,则其前n项和为S= n
.(ꢀꢀ)
命题角度2 与裂项相消求和有关的综合问题
【典例】已知函数y=loga(x-1)+3(a>0,a≠1)的图象所过定点的横、纵坐标
分别是等差数列{an}的第二项与第三项,若bn=
2025年高考数学一轮复习-第七章-数列【课件】
(2)根据递推关系证明等差、等比数列.
(3)常用的求和的基本方法:分组法、错位相减法、倒序相加法、裂项法等.
(4)利用函数思想研究数列的最值问题.
(5)数列与不等式相结合的综合问题.
3.重视思想方法的应用
(1)函数与方程思想:数列本身就是函数,函数方法可以用来研究数列问题;在
数列的
综合应用
项公式与前n项和公式.
2023年:新高考Ⅱ卷·T18
2.能解决等差与等比数列之间、 2022年:新高考Ⅰ卷·T17(2)
数列与函数、不等式之间的综合 2022年:新高考Ⅱ卷·T17
问题.
2021年:新高考Ⅰ卷·T17
角度
考查内容
课程标准
高考真题
1.题型设置:常以一个小题和一个大题的形式呈现;
数列的计算中,方程思想的应用极为广泛,如等差数列、等比数列基本量的计算
中,几乎处处使用方程思想.
(2)化归与转化思想:把一般数列转化为等差数列、等比数列加以解决,把一
般数列的求和通过分组、分拆、重组化为基本数列求和等.
(3)分类与整合思想:套用等比数列求和公式时,要分公比等于1和不等于1两
种情形;根据an,Sn关系解决问题时,分n=1,n≥2讨论;在含有(-1)n的数列问题中,分n
(1)重视数列概念的理解:深刻把握数列的项、项数、前n项和等概念.同时注
意数列是自变量为正整数的一类特殊函数.
(2)重视两类特殊数列:等差数列、等比数列的概念、性质、通项公式和前n
项和公式的理解与记忆.复习时要注意基础,强化落实,切实提高运算能力.
(3)重视Sn与an关系的理解与应用.
2.熟练掌握解决以下问题的方法规律
2024届高考二轮复习文科数学课件:数列
(2)解 (方法一 利用前 n 项和求最值)由题意可知72 =a4a9,即
(a1+6)2=(a1+3)(a1+8),解得 a1=-12,
所以 an=-12+(n-1)×1=n-13,所以
(-1)
Sn=-12n+
求解,求解时要巧用性质整体代换,减少计算量.
3.强化转化:准确转化已知条件是解决数列问题的基础,转化的过程就是一
个建立已知和所求,探索解题思路的过程.
真题感悟
1.(2022全国乙,文10)已知等比数列{an}的前3项和为168,a2-a5=42,则
a6=( D )
A.14
B.12
C.6
D.3
解析 (方法一)设公比为 q(q≠0),则
a1+a2+a3=a1(1+q+q2)=168,a2-a5=a1q-a1q4=a1q(1-q)(1+q+q2)=42,所以
1
q(1-q)=4,解得
1
1 5
5
q=2,从而可得 a1=96,所以 a6=a1q =96×(2) =3.故选
D.
(方法二)设等比数列{an}的公比为 q,q≠0.若 q=1,则 a2-a5=0,与题意矛盾.
专题二数列
考情分析
1.题型、题量稳定:高考对该部分的考查一般为“2小”或“1大”或“1小1大”,
分值在10分到17分之间,多为中、低档题.
2.重点突出:(1)客观题重点考查等差数列、等比数列的基本运算、性质和
应用及数列的递推关系等;
(2)主观题主要考查数列通项公式,数列前n项和的求法,证明数列是等差或
(word完整版)高考文科数学数列经典大题训练(附答案)(2021年整理)
(word完整版)高考文科数学数列经典大题训练(附答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高考文科数学数列经典大题训练(附答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高考文科数学数列经典大题训练(附答案)(word版可编辑修改)的全部内容。
1。
(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列;(2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式.2.(本小题满分12分)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1。
求数列{}n a 的通项公式。
2。
设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和。
3.设数列{}n a 满足21112,32n n n a a a -+=-=(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S4。
已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.5.已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.1。
新课标2023版高考数学一轮总复习第7章数列解答题模板构建4高考中的数列问题课件
[规范解答] 解:(1)设等差数列{an}的公差为 d,等比数列{bn}的公比为 q(q>0).
依题意,得33qq= 2=31+5+2d4,d, 解得dq= =33, ,
3分
故 an=3+3(n-1)=3n,bn=3×3n-1=3n.
所以{an}的通项公式为 an=3n,{bn}的通项公式为 bn=3n.5 分
①证明:当 n=1 时,bn+b1bn n+2=bb2b1 3=28=b10, 即当 n=1 时,bn+b1bn n+2是{bn}中的第 10 项.
②解:设bn+b1bn n+2是{bn}中的第 m 项, 则bn+b1bn n+2=bm, 即[3n+1-32n]-[32n+2-2]=3m-2, 得 m=33nn2+-72n=3n2-3n2-n+2 9n=n+3-9 2n.
(1)解:设正项等比数列{an}的公比为 q(q>0). 由 a4=2a3+3a2,可得 a2q2=2a2q+3a2, 得 q2-2q-3=0, 解得 q=3 或-1(舍). 由 S4=a111--qq4=a111--381=40,解得 a1=1, 所以 an=3n-1.
(2)由 b1=a1=1,b4=a1+a3=1+9=10,所以公差 d=b4-3 b1=3, 所以 bn=b1+(n-1)d=3n-2.
解:(1)选①:因为 a3,a4,a5-8 成等差数列, 所以 2a4=a3+a5-8, 所以 16a1=4a1+16a1-8,解得 a1=2, 所以 an=2n. 选②:因为 S2,S3+4,S4 成等差数列, 所以 2(S3+4)=S2+S4,即 2a111--223+4=a111--222+a111--224, 所以 14a1+8=18a1, 解得 a1=2,所以 an=2n.
2023版新高考新教材高考总复习 第7章 数列 教学课件
,Sn的最小
解析 解法一:设等差数列{an}的公差为d,
∵a2=-3,S5=-10,∴
a1 d 3,
5a1
5
2
4
d
10,
解得
ad1
4, 1,
∴a5=a1+4d=0,Sn=-4n+
n2
2
n
=
1 2
(n2-9n)=
1 2
n
9 2
2
-
81 8
,∵n∈N*,∴n=4或5时,Sn取得最小
值,最小值为-10.
1
2.
(2)Sm,S2m,S3m分别为{an}的前m项,前2m项,前3m项的和,则Sm,S2m-Sm,S3m-S2m成等差数列.
(3)关于非零等差数列奇数项和与偶数项和的性质
(i)若项数为2n,则S偶-S奇=nd, S奇 = an .
S偶 an1
(ii)若项数为2n-1,则S偶=(n-1)an,S奇=nan,S奇-S偶=an, S奇 = n .
;
(6)
(2n
2n 1)(2n1
1)
=
1 2n 1
-
1 2n1
1
;
(7)若{an}为等差数列,公差为d(d≠0),
则
an
1 an1
=
1 d
1 an
1 an1
.
3.常见数列的前n项和
(1)1+2+3+…+n= n(n 1) ;
2
(2)2+4+6+…+2n=n2+n;
(3)1+3+5+…+(2n-1)=n2;
(2)由(1)可知,Sn=
江西省虔州艺术学校高考数列的概念专题及答案百度文库
一、数列的概念选择题1.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .1402.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=( )A .135B .141C .149D .1553.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯4.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+ B .21n +C .2(1)1n -+D .2n5.数列23451,,,,,3579的一个通项公式n a 是( ) A .21nn + B .23nn + C .23nn - D .21nn - 6.在数列{}n a 中,()1111,1(2)nn n a a n a --==+≥,则5a 等于A .32B .53 C .85D .237.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .10248.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+9.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .101010.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .16011.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1013.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019C .11010D .1100914.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .015.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .85233n⨯- B .185233n -⨯- C .85433n⨯-D .185433n -⨯- 16.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个17.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .318.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348B .1358C .1347D .135719.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .17220.设数列{},{}n n a b 满足*172700,,105n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >B .43<b bC .33>a bD .44<a b二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54 C .S 2020=a 2022-1 D .a 1+a 3+a 5+…+a 2021=a 202222.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--23.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 24.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .425.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦26.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 27.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列28.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.29.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列30.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥ 31.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a < 33.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列34.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值35.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B2.D解析:D 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S 因为[][][]1234851,1,[]1,[][]2S S S S S S =======,[]05911[][]3S S S ====,[]161724[][]4S S S ==== ,[]252635[][]5S S S ==== ,[]363740[][]6S S S ====.所以[][][]1240S S S +++=13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯,故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.3.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=,这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.4.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.5.D解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.6.D解析:D 【解析】分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解2345122323a a a a ====,,,.故选D 点睛:对于含有()1n-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.7.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.8.C解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--. 故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.9.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.10.B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.11.A解析:A 【分析】将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】 因为12a =,232a =,343a =,454a =,565a =,故可得1223,12a a ==, 343a =,454a =,565a =, 故可归纳得1+=n n a n. 故选:A. 【点睛】本题考查简单数列通项公式的归纳总结,属基础题.12.C解析:C 【分析】利用443a S S =-计算. 【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .13.C解析:C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n na n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==. 故选:C.14.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=, 所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .15.D解析:D 【分析】 取特殊值即可求解. 【详解】当1n =时,11a =,显然AC 不正确,当2n =时,21459a a =+=,显然B 不符合,D 符合 故选:D16.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.17.B解析:B 【分析】由数列的递推关系式以及11a =求出2a ,进而得出3a . 【详解】11a =,21123a a ∴=+=,321523a a -=+= 故选:B18.C解析:C 【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案【详解】解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+= 故选:C19.C解析:C 【分析】由累加法求出233n a n n =+-,所以331n a n n n,设33()1f n n n=+-,由此能导出5n =或6时()f n 有最小值,借此能得到na n的最小值. 【详解】解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+22[12(1)]3333n n n =++⋯+-+=+-所以331n a n nn设33()1f n n n=+-,由对勾函数的性质可知, ()f n 在(上单调递减,在)+∞上单调递减,又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662a a ===, 所以n a n的最小值为62162a =.故选:C.【点睛】本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.20.C解析:C 【分析】 由题意有1328010n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:1328010n n a a +=+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】本题考查了根据数列间的递推关系比较项的大小,属于简单题.二、多选题 21.BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确;对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.22.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC23.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即,即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数, 即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.24.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案.【详解】 解:∵, ∴时,, 化为:,由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减,可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.25.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由,所以 所以数列解析:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭1115()n F F n n -+=++, 令1nn n Fb -=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭以510-32-为公比的等比数列,所以1n n b -+, 所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.26.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.27.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错;选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.28.BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 29.AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A 选项,,所以A 选项正确.对于C 选项,,,所以,解析:AB【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误. 故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.30.BC【分析】设公差d 不为零,由,解得,然后逐项判断.【详解】设公差d 不为零,因为,所以,即,解得,,故A 错误;,故B 正确;若,解得,,故C 正确;D 错误;故选:BC解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 31.ABD【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案.由,可得,故B 正确;由,可得,由,可得,所以,故等差数列是递减数列,即,故A 正确;又,所以,故C 不正确解析:ABD【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.【详解】由67S S =,可得7670S S a -==,故B 正确;由56S S <,可得6560S S a -=>,由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,所以()117179171702a a S a +==<,故D 正确.故选:ABD.【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 32.AD【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确.【详解】因为,所以 ,因为,所以,所以等差数列公差,所以是递减数列,故最大,选项A解析:AD利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> ,因为78S S >,所以8780S S a -=<,所以等差数列{}n a 公差870d a a =-<,所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确;故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.33.AC【分析】由题意可知,即,则时,,可求解出,易知是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出,判断C ,D 的正误.【详解】解:由,得,所以时,,得时,,即时,,当时,由解析:AC【分析】 由题意可知112222n n n n a a a H n -+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误.【详解】解:由112222n n n n a a a H n -+++==, 得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,② 得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确. 25S =,414S =,627S =,故D 错,故选:AC .【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.34.AC【分析】由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值.【详解】解:在递增的等差数列中,由,得,又,联立解得,,则,..故正确,错误;可得数列的解析:AC【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.【详解】解:在递增的等差数列{}n a 中,由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =,则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC .【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.35.BD【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确.【详解】因为,所以,所以,因为公差,所以,故不正确;,故正确;,故不正确;,故正确.故选:BD.解析:BD【分析】由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确.【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;135********()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD.【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。