随机信号分析习题

合集下载

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。

随机信号分析(常建平李海林)习题答案解析

随机信号分析(常建平李海林)习题答案解析

完美 WORD 格式1-9 已知随机变量X的分布函数为0 , x 02F (x) kx , 0 x 1X1 , x 1求:①系数 k;②X落在区间(0.3,0.7) 内的概率;③随机变量X的概率密度。

解:第①问利用F X (x) 右连续的性质k =1P 0.3 X 0.7 P 0.3 X 0.7 P X 0.7 第②问F 0.7 F 0.3第③问f (x)Xd F(x)Xdx2x 0 x 10 else专业知识分享完美 WORD 格式x1-10 已知随机变量X 的概率密度为( ) ( )f x ke xX(拉普拉斯分布),求:①系数k ②X落在区间 (0,1)内的概率③随机变量 X的分布函数解:第①问f x dx 1 k12第②问x2P x X x F x F x f x dx1 2 2 1x1随机变量 X落在区间( x1 , x2 ] 的概率 P{ x1 X x2} 就是曲线y f x 下的曲边梯形的面积。

1P 0 X 1 P 0 X 1 f x dx1 2 1 e1第③问12 f x12xe xxe xxF x f ( x)dx1 1x x xe dx x 0 e x 02 20 1 1 1xx x xe dx e dx x 0 1 e x 02 0 2 2专业知识分享完美 WORD 格式1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000 辆汽车进出汽车站,问汽车站出事故的次数不小于 2 的概率是多少?n=1- 分布 (0 1)n ,p 0,np=二项分布泊松分布n 成立,0不成立, p q高斯分布实际计算中,只需满足,二项分布就趋近于泊松分布n 10 p 0.1P X kk e==np k!汽车站出事故的次数不小于 2 的概率P(k 2) 1 P k 0 P k 10.1P(k 2) 1 1.1e 答案专业知识分享完美 WORD 格式1-12 已知随机变量 (X,Y)的概率密度为f (x, y) XY(3 x 4 y),ke x 0, y 0, 其它0求:①系数k?②( X ,Y)的分布函数?③P{0 X 1,0 X 2} ?第③问方法一:联合分布函数F XY (x, y) 性质:若任意四个实数 a ab b ,满足1, 2, 1, 2a a bb ,满足a1 a2,b1 b2 ,则P{a X a ,b Y b}F XY(a ,b ) F XY(a ,b) F XY(a ,b ) F XY(a ,b)1 2 1 2 2 2 1 1 1 2 2 1P{0X 1,0 Y 2} F XY(1,2) F XY(0,0) F XY(1,0) F XY(0,2)方法二:利用P{( x, y) D } f XY u,v dudvD2 1P{0X 1,0 Y 2} f XY x,y dxdy0 0专业知识分享完美 WORD 格式1-13 已知随机变量(X,Y) 的概率密度为f (x, y)1, 0 x 1, y x0 , 其它①求条件概率密度 f X (x| y)和f Y ( y | x) ?②判断X 和Y 是否独立?给出理由。

随机信号分析[常建平 李海林]习题答案解析

随机信号分析[常建平 李海林]习题答案解析

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解:第①问 ()112f x dx k ∞-∞==⎰ 第②问 {}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

随机信号分析(第3版)习题及答案

随机信号分析(第3版)习题及答案

1. 有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===2. 设随机试验X求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

(北P181,T3) 解:(1)()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1F x y u x y u x y u x y u x y u x y u x y =+++-+-++-+--()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1f x y x y x y x y x y x y x y δδδδδδ=+++-+-++-+--(2) X 的分布律为()()00.070.180.150.4010.080.320.200.60P X P X ==++===++=Y 的分布律为()()()10.070.080.1500.180.320.5010.150.200.35P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为()()()()()()()()()()111,10.080001,00.400.320.72111,10.20P Z P XY P X Y P Z P XY P X P X Y P Z P XY P X Y =-==-===-======+===+======== (4)因为()()()00.4010.600.6010.1500.5010.350.20E X E Y =⨯+⨯==-⨯+⨯+⨯=()()10.0800.7210.200.12E XY =-⨯+⨯+⨯=则()()()()ov ,0.120.600.200C X Y E XY E X E Y =-=-⨯=X 与Y 的相关系数0XY ρ=,可见它们无关。

随机信号分析习题

随机信号分析习题

第十章随机过程的基本概念1、利用重复抛掷硬币的实验定义一个随机过程出现正面与反面的概率相等。

求:的一维分布函数和,的二维分布函数。

解:以随机变量Y记抛掷硬币的实验结果,则且<1)、当时,若,则;若,则。

于是类似可得<2)、当时,若,则;若,则。

于是2、设随机过程是。

随机变量,概率分布列为求;<1)、一维分布函数和; <2)、二维分布函数。

解:<1)因为,可取值为, ,<将A 代入即得),而,,. 所以因为.只能取0值,故(2>、因为,由所以3、设随机过程,其中与是相互独立的随机变量,均服从标准正态分布。

求的一维和二维分布。

解:因为对任意固定的是正态随机变量,故所以,服从正态分布,从而也是随机过程的一维分布。

其次,对任意固定的,则依维正态随机向量的性质,服从二维正态分布,且所以,二维分布是数学期望向量为<0,0),协方差矩阵为的二维正态分布。

4、设随机过程,其中为常数,是服从标准正态分布的随机变量。

求的一维分布函数和协方差函数。

解:故的一维分布函数为。

协方差函数是随机过程在任意两个时刻和的状态和的二阶中心混合矩其中故其中5、已知随机过程的均值函数和协方差函数是普通函数。

求随机过程的均值函数和协方差函数。

解因为是普通函数,有,故6、设有随机过程和任一实数,定义随机过程证明:和分别是的一维和二维分布函数。

解:设的一维和二维概率密度分别为和,则若考虑到对任意的是离散型随机变量,则有7、随机相位正弦波其中是正常数。

是在内均匀分布的随机变量。

求的概率密度函数、均值函数、方差函数和相关函数。

b5E2RGbCAP解:因为的概率密度函数为所以:1)、依特征函数的定义,有:<1)故由积分的性质,若是周期为的周期函数,则故 <2)比较<1)和<2)式得,的概率密度函数为2)、由定义,得3)、令,则,得8、设有两个随机过程与,其中为常数,为上均匀分布的随机变量。

随机信号分析试题

随机信号分析试题

姓名年级学院专业学号密封线内不答题一.填空题(每空3分共33分) 1.随机变量X ,Y 独立的条件是 。

2.若窄带信号()X t 通过一个幅度为A 的宽带系统输出()Y t ,则二者的关系为 。

3.白噪声通过理想带通系统后,其输出功率谱密度为 分布。

4.实信号)(t x 的解析信号是 。

5.随机变量X 服从0,1分布(P x p ==)1()的特征函数()X φυ= 。

6.若信号()X t 与()Y t 恒有12(,)0R t t =,则()X t 与()Y t 彼此 。

7.若信号()X t 与()Y t 无关, 如果 则 ()X t 与()Y t 独立。

8.若信号()X t 与()Y t 都是高斯信号,则()X t 与()Y t 独立的充要条件是 。

9.随机信号的平稳性包括 。

10.白噪声信号的()R τ= 。

11.随机信号()X t 均值各态历经表示 。

二、(12分)设正态分布随机变量),(~2σμN X 的特征函数。

姓名年级学院专业学号密封线内不答题三、(12分)假定三维随机变量),(~),,(321x x C X X X μ⎪⎪⎪⎭⎫ ⎝⎛=321x μ, ⎪⎪⎪⎭⎫ ⎝⎛=820242024x C 求(1)1X 的密度函数;(2)),(21X X 的密度函数;(3)31X X +的密度函数。

姓名年级学院专业学号密封线内不答题四、(14分)已知)()cos()()()(0t N t a t N t S t X ++=+=θω,其中θω,,0a 为常数,白噪声)(t N 的功率谱为2/0N 。

求此RC 电路输入前、后的信噪比?姓名年级学院专业学号密封线内不答题五、(15分) 1. 给出严格平稳随机过程和广义平稳随机过程的定义。

2.给出严格各态历经和广义各态历经的定义。

姓名 年级 学院 专业 学号 密封线内不答题 3.解释等效噪声带宽。

六、(14分)设随机过程()cos()X t A t ωϕ=+,其中ϕ是在(−π, π)中均匀分布的随机变量,A 、ω为常数。

随机信号分析(常建平+李海林)习题答案.

随机信号分析(常建平+李海林)习题答案.

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f x dx k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

随机信号分析习题课

随机信号分析习题课

4、均值为m X ,相关函数为RX ( ) e 的平稳随机信号输 入微分电路,该电路的输出信号为 Y (t ) X '(t ) 。求:t)功率谱密度函数; X(t)和Y(t)的互相关函数 RXY ( ); X(t)和Y(t)的功率谱密度函数S XY ( ) ;

判断X(t)与Y(t)是否联合平稳? 若X(t)与Y(t)联合平稳,求互功率谱密度函数 S XY ( ) 。
7、 随机过程 X (t ) X 0t Y0 cos(0t ) ,其中0 为常数,X0 和Y0是均值为0、方差为1的高斯随机变量, 是在 [0, 2 ] 内 均匀分布的随机变量,且X0、Y0和 彼此之间相互独立。判 断X(t)是否各态历经?为什么?

5、设随机变量X的均值为3,方差为2,现定义新的随机变量 Y=aX+b,试问a、b满足什么条件时随机变量X与Y正交? 6、已知随机过程 X (t ) cos(0t ) , Y (t ) V (t )cos(0t ) , 是与V(t)无关的随机变量,在 [0, 2 ] 内均匀分布,0 为 常数,V(t)是均值为 mV 、自相关函数为 RV ( ) 的平稳随机过 程。
4均值为相关函数为的平稳随机信号输入微分电路该电路的输出信号为是与vt无关的随机变量在内均匀分布常数vt是均值为自相关函数为的平稳随机过5设随机变量x的均值为3方差为2现定义新的随机变量yaxb试问ab满足什么条件时随机变量x与y正交
随机信号分析习题
1、若为随机变量X的概率密度函数 f X ( x) Ae3 x (x 0) ,

A=? 求X的特征函数。
2、若随机过程X(t)的功率谱密度为 S X ()



X(t)的自相关函数 ; X(t)的均值; X(t)的均方值; X(t)的方差; X(t)的相关系数。

随机信号分析(第3版)习题及答案

随机信号分析(第3版)习题及答案

1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

《随机信号基础》练习题

《随机信号基础》练习题

《随机信号分析》练习题一、 概念题1.叙述随机试验的三个条件。

2.写出事件A 的概率P(A)所满足的三个条件。

3.何谓古典概型?其概率是如何计算的? 4.两个事件独立的充要条件。

5.两个随机变量独立的充要条件。

6.两个随机过程的独立是如何定义的?7.随机变量X 服从正态分布,写出其概率密度函数表达式,并说明其中各个参数的意义。

8.简述一维随机变量分布函数F (x )的性质。

9.已知连续型随机变量X 的分布特性,分别用分布函数)(x F X 和概率密度函数)(x f X 表示概率}{21x X x P ≤<。

10. 随机变量X 的特征函数)(μX C 是如何定义的?写出由)(μX C 计算k阶矩)(k X E 的公式。

11.设X 1,X 2,…,Xn 为相互独立的随机变量,其特征函数分别为C 1(μ),C 2(μ),…,Cn(μ),设∑==n i i X Y 1,则C Y (μ)=?12. 对于一般的复随机变量,其数学期望、方差、协方差各是实数还是复数?13. 写出随机过程X(t)的n 维分布函数定义式。

14. 简述随机过程宽平稳性与严平稳性的区别。

15. 平稳过程与各态历经过程有何关系?16. 设平稳随机过程X(t)的自相关函数为R X (τ),X(t)依均方意义连续的条件是?17. 已知平稳随机过程X(t)、Y(t)的相关时间分别为X τ和Y τ,若X τ>Y τ,说明X(t) 与Y(t)的起伏程度那个较大?18. 两个随机过程广义联合平稳的条件是什么?19. 平稳随机过程)(t X 的功率谱密度)(ωX G 的物理意义是什么?)(ωX G 与物理谱密度有何关系?20. 白噪声的功率谱密度和自相关函数有何特点? 21. 简述维纳-辛钦定理并写出其表达式。

22. 何为线性系统?23. 写出希尔伯特变换器的频率响应、幅频响应和相频响应表达式。

24. 写出窄带过程的准正弦表达式和莱斯表达式。

随机信号分析(第3版)习题及答案

随机信号分析(第3版)习题及答案

1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

随机信号分析习题【精选】

随机信号分析习题【精选】

随机信号分析习题一1.设函数,试证明是某个随机变量的分布函数。

并求下⎩⎨⎧≤>-=-0, 00 ,1)(x x e x F x )(x F ξ列概率:,。

)1(<ξP )21(≤≤ξP 2.设的联合密度函数为),(Y X ,(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩求。

{}10,10<<<<Y X P 3.设二维随机变量的联合密度函数为),(Y X⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π求:(1)边沿密度,)(x f X )(y f Y (2)条件概率密度,|(|)Y X f y x |(|)X Y f x y 4.设离散型随机变量的可能取值为,取每个值的概率都为,又设随机X {}2,1,0,1-4/1变量。

3()Y g X X X ==-(1)求的可能取值Y (2)确定Y 的分布。

(3)求。

][Y E 5.设两个离散随机变量,的联合概率密度为:X Y )()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)与不相关时的所有值。

X Y A (2)与统计独立时所有值。

X Y A 6.二维随机变量(,)满足:X Y ϕϕsin cos ==Y X 为在[0,2]上均匀分布的随机变量,讨论,的独立性与相关性。

ϕπX Y 7.已知随机变量X 的概率密度为,求的概率密度。

)(x f 2bX Y =)(y f 8.两个随机变量,,已知其联合概率密度为,求的概率密度?X X (,)f x x X X +9.设是零均值,单位方差的高斯随机变量,如图,求的概率密度X ()y g x =()y g x =()Y f y\10.设随机变量和是另两个随机变量和的函数W Z X Y 222W X Y Z X⎧=+⎨=⎩设,是相互独立的高斯变量。

随机信号分析基础第二章习题

随机信号分析基础第二章习题

FX (x; 2) PX (2) x
x
p(x)dx
1
x
0
3
FX (x1, x2; 2, 6) P{X (2) x1, X (6) x2}; P{(X (2) x1 X (6) x2};
用表格来表示所求的联合分布:
x1
x2
x2 2
x1 3
0
3 x1 4 4 x1 6
CX (t1,t2 ) E[{X (t1) mX (t1)}{ X (t2 ) mX (t2 )}]
随机过程X(t)和Y(t)的互相关函数
RXY (t1,t2) E[X (t1)Y (t2)]
互协方差函数
CXY (t1,t2 ) E[{X (t1) mX (t1)}{Y (t2 ) mY (t2 )}]
RX (t1,t2) E[X (t1)X (t2)]
E[a2 cos(0t1 ) cos(0t2 )]
a2 2
E[cos(0
(t1
t2
))
cos(0t1
0t2
2)]
a2 2
cos[0 (t1
t2 )]
0
a2 cos
2
其中 t1 t2
2.11 解:
E[X (t)] E[Acos(0t )]
E{[X (t1) mX (t1)][X (t2) mX (t2)]}
CX (t1, t2 )
2.9 解:(1)直接由定义可得:
E[X (t)] E[Acos(0t) Bsin(0t)] E[A]cos(0t) E[B]sin(0t)
0
(2)由自相关函数的定义: RX (t1,t2) E[X (t1)X (t2)]
x,
2)
1 3

随机信号习题及答案

随机信号习题及答案

;若一个高斯过程不同时刻状态间是互不相关
的,则必定是
的(独立、不独立、不一定)。
7. 若线性系统输入为高斯过程,则该系统输出仍为

二、简答题
1. 请给出随机过程为宽平稳随机过程满足的条件。
2. 若平稳随机过程是信号电压,试说明其数字期望、均方值、方差的物理意义。
3. 给出平稳过程的自相关函数的性质。
ω2
cos 3ω
ω
1
(1) ω6
+ 3ω2
(2) +3
1+ω2
(3) 1+ 2ω + ω2
(4)
1− 3ω2
4.设 A 和 B 为随机变量,我们构成随机过程 X (t) = A cos ω 0t + B sin ω 0t ,式中 ω0 为一常数。(1)证明:
若 A 和 B 具有零均值及相同的方差σ 2 ,且不相关,则 X(t)为(宽)平稳过程;(2)求 X(t)的自相
第一章
1. 二进制无记忆不对称信道,如图所示,传输 0,1,分别以 A0 和 A1 代表发送 0 和 1,以
B0 和
B1
代表接收
0

1
码,两个正确的转移概率分别为
P(B0
/
A0 )
=
5 6

P(B1
/
A1 )
=
3 4

两个错误的转移概率分别为
P(B1 /
A0 )
=
1 6

P(B0
/
A1 )
=
1 4
,且先ቤተ መጻሕፍቲ ባይዱ概率相等,即:
1.平稳过程 X(t)的双边功率谱密度为 SX (ω) = 32 /(ω2 +16) 。求:(1)该过程的平均功率(在 1 欧负载上); (2) ω 取值范围为(-4,4)的平均功率。

随机信号分析基础作业题

随机信号分析基础作业题

第一章1、有朋自远方来,她乘火车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。

如果她乘火车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。

如果她迟到了,问她最可能搭乘的是哪种交通工具?解:P (A )=0.3P (B )=0.2P (C )=0.1P (D )=0.4P (E |A )=0.25E -迟到,由已知可得P (E |B )=0.4P (E |C )=0.1P (E |D )=0全概率公式:P (E )=P (EA )+P (EB )+P (EC )+P (ED )贝叶斯公式:P (A |E )=P (EA )P (E |A )⋅P (A )0.075P (E )=P (E )=0.165=0.455P (B |E )=P (E |B )⋅P (B )0.08P (E )=0.165=0.485P (C |E )=P (E |C )⋅P (C )0.01P (E )=0.165=0.06P (D |E )=P (E |D )⋅P (D )P (E )=0综上:坐轮船⎧2x -x 3、设随机变量X 服从瑞利分布,其概率密度函数为f ⎪e 2σX 2x(x )=⎨2,⎪σX⎩0,数σX>0,求期望E (X )和方差D (X )。

考察:已知f x(x ),如何求E (X )和D (X )?x >0式中,常x <E (X )=⎰x ⋅f (x )dx-∞22D (X )=E [(X -m x)]=⎰(X -m x)f (x )dx-∞∞∞D (X )=E (X )-E (X )⇒E (X )=⎰x 2⋅f (x )dx-∞222∞6、已知随机变量X 与Y ,有EX =1,EY =3,D (X )=4,D (Y )=16,ρXY=0.5,令U =3X +Y ,V =X -2Y ,试求EU 、EV 、D (U )、D (V )和Cov (U ,V )。

随机信号分析习题.doc

随机信号分析习题.doc

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数。

并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为 ⎥⎦⎤⎢⎣⎡++-=)52(21ex p 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值(2)确定Y 的分布。

(3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f 。

8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度? 9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。

随机信号分析2习题(供参考)

随机信号分析2习题(供参考)

2.1 由下式定义的两电平二进制过程X(t)=A or – A,(n-1)T<t<nT 式中电平A 或-A 以等概率独立出现,T 为正常数,以及n=0,正负1,正负2,正负3…… (1)、画出一个样变函数的草图;(2)、它属于哪一类随机过程? (3)、求一、二维概率密度函数。

(1)(2) 所以是确定的。

(3)2.2 设有下列离散随机过程:X (t )=CC 为随机变量,可能取值为1,2,3,其出现的概率分别为0.6,0.3,0.1 (1) 是确定性随机过程?(2 ) 求任意时刻X(t)的一维概密。

解:(1)是(2) 1X(t)2,p(x,t)0.6(1)0.3(2)0.(3)3x x x δδδ⎧⎪==-+-+-⎨⎪⎩2.3 已知随机过程X(t)为 00),t (Xcos )t (X ωω=是标准高斯随机变量是常熟X ,,求X (t )的一维概率密度。

解: )2x (ex p 21p(x )2-=π xcos(t)F(x,t)P{X(t)x}P{Xcos(t)x}xxP{X }p()d ()cos(t)cos(t)t t ωωωω-∞=≤=≤=≤==Φ⎰发22xxcos(t)(,)(,)())cos(t)2cos (t)dx p x t F x t p dx ωωω'==-202xx )2cos t ω=-()A or A A A k -=-=∑∞-∞=,;nT t h )t (X k k ()()[]()()()()[]A x A x A -x A -x 0.5t p(x,A x A -x 0.5t p(x,2121+++=++=δδδδδδ))2x1-exp()2⎫-⎪⎭2.4 利用投掷一枚硬币的实验定义随机过程为X(t)=cosπt,出现正面,2t,出现反面,假设出现正面和反面的概论各位1/2,试确定X(t)的一维分布函数Fx(x;1/2), Fx(x;1),以及二维发布函数Fx(x1,x2;1/2,1).解:x1 x2X:(t=1/2)0 1Y (t=1) 1 2[]1f(x,1/2)(x)(x1)2δδ=+-[]1F(x,1/2)(x)(x1)2U U=+-[]1f(x,1)(x-1)(x2)2δδ=+-[]1F(x,1)(x-1)(x2)2U U=+-[]1F(x1,x2,1/2,1)(x)(x-1)(x-1)(x2)2U U U U=+-[]1F(x1,x2,1/2,1)(x2+1)(x1-1)(x1)(x22)2U U U U=+-2.5随机过程X(t)由四条样本函数组成,如图题 2.6,出现的概论分别为p(§1)=1/8,p(§2)=1/4,p(§3)=3/8,p(§4)=1/4,求E[X(t1)],E[X(t2)],E[X(t1)X(t2)]及联合概率密度函数px(x1,x2;t1,t2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断 平稳性。
10、(上节习题课的例题14)考虑一个正弦振荡器,由于器件的热噪声与分布参数的影响,振荡器的输出正弦波可视为一个随机过程
其中振幅 、角频率 与相位 就是相互独立的随机变量,并且已知
(1)求 的一维概率密度;
(2) 就是一阶平稳过程不?
11.设 就是平稳过程,其协方差 就是绝对可积,即 。证明 的均值具有各态历经性。
求 的一维概率密度
13.将上题中的锯齿波过程作一点改动,使每个脉冲的幅度 为服从麦克斯韦(Maxwell)分
布的随机变量
其中 的定义与上题相同。假设不同脉冲的幅度 之间统计独立,并均与 统计独立,求 的一维概率密度 。
14.考虑一个正弦振荡器,由于器件的热噪声与分布参数的影响,振荡器的输出正弦波可视
(2)确定Y的分布。
(3)求 。
5.设两个离散随机变量 , 的联合概率密度为:
试求:(1) 与 不相关时的所有 值。
(2) 与 统计独立时所有 值。
6.二维随机变量( , )满足:
为在[0,2 ]上均匀分布的随机变量,讨论 , 的独立性与相关性。
7.已知随机变量X的概率密度为 ,求 的概率密度 。
8.两个随机变量 , ,已知其联合概率密度为 ,求 的概率密度?
1.设正弦波随机过程为
其中 为常数; 为均匀分布在 内的随机变量,即
(1)试求 时, 的一维概率密度;
(2)试求 时, 的一维概率密度。
2.若随机过程 为
式中, 为在区间 上均匀分布的随机变量,求 及 。
3.设随机振幅信号为
其中 为常数; 就是标准正态随机变量。求该随机信号的均值、方差、相关函数与协方差函数。
4.设随机相位信号
式中 、 皆为常数, 为均匀分布在 上的随机变量。求该随机信号的均值、方差、相关函数与协方差函数。
5.设 , ,其中
, , , 为实常数, ,试求 。
6.数学期望为 、相关函数为 的随机信号 输入
微分电路,该电路输出随机信号 。求 的均值与相关函数。
7.设随机信号 ,其中 就是均值为5、方差为1的随机变量。现设新的
12、设随机过程 ,其中 就是一平稳过程, 就是与 无关的随机变量,讨论过程 的遍历性。
13、设 , ,其中 就是常数, 与 就是相互独立的随机变量,且 ,研究 的各态历经性。
14、随机过程 , ,其中 就是具有一、二阶矩的随机变量,但不服从单点或两点分布 , ,讨论它的各态历经性。
随机信号分析习题四
7、设 就是一个零均值的平稳过程,而且不恒等于一个随机变量,令 , 。判断 就是否为平稳过程。
8、设 , ,其中 与 就是相互独立的随机变量,且 , 。
(1)求 的均值函数与相关函数;
(2)证明 就是宽平稳过程,但不就是严平稳过程。
9.(上节习题课的例题12)考虑随机过程 ,其样本函数就是周期性锯齿波。两个典型的样本函数如图所示。每个样本函数都具有相同的形状,将 时刻以后出现的第一个零值时刻记为 ,假设 就是一个均匀分布的随机变量
随机信号 。试求 的均值、相关函数、协方差函数与方差。
8.利用重复抛掷硬币的实验定义一个随机过程
设“出现正面”与“出现反面”的概率都为1/2。
(1)求 的一维分布函数 与 ;
(2)求 的二维分布函数 。
9.给定一个随机过程 与任一实数 ,定义另一个随机过程
证明 的均值函数与自相关函数分别为 的一维与二维分布函数。
1.已知平稳过程 的相关函数如下,试求它的功率谱密度
(1)
(2)
2.设 为一个随机电报波过程,它的一个样本函数如图所示。已知在任一时刻波形取 与 的概率相同,在时间间隔 内波形变号的次数 服从参数为 的泊松分布
(1)求 的自相关函数;
(2)求 的功率谱密度函数。
3.已知平稳过程 与 的功率谱密度为
求 与 的自相关函数与均方值。
为一个随机过程
其中振幅 、角频率 与相位 就是相互独立的随机变量,并且已知:
求 的一维概率密度。
随机信号分析习题三
1、设有零均值的平稳过程 ,其相关函数为 ,令
求 的方差函数与协方差函数。
2.设 就是平稳过程,且 , ,求随机变量
的数学期望与方差。
3.设随机过程
其中平稳过程 与 及随机变量 三者相互独立,且 , 的相关函数为 , 的相关函数为 ,又 , 。
10.定义随机过程
, 为正常数,设 ,且 与 相互独立,令 ,试求 与 。
11.考虑一维随机游动过程 , ,其中 , , 为一取值
与 的随机变量,已知 , , , ,且 , 相互独立,试求:
1) ;
2) 与 。
12.考虑随机过程 ,其样本函数就是周期性锯齿波。两个典型的样本函数如图所示。每
个样本函数都具有相同的形状,将 时刻以后出现的第一个零值时刻记为 ,假设 就是一个均匀分布的随机变量
求 的数学期望,方差与相关函数。
4.设平稳过程 ,其相关函数为 ,且 , 就是常数。证明:
(1)
(2)
5、设 , ,其中 就是常数, 就是随机变量,具有概率密度函数
讨论 量, 就是与 相互独立的,且在 上服从均匀分布的随机变量,令 , , 就是常数,证明 就是严平稳过程。
随机信号分析习题一
1.设函数 ,试证明 就是某个随机变量 的分布函数。并求下列概率: , 。
2.设 的联合密度函数为
,
求 。
3.设二维随机变量 的联合密度函数为
求:(1)边沿密度 ,
(2)条件概率密度 ,
4.设离散型随机变量 的可能取值为 ,取每个值的概率都为 ,又设随机变量 。
(1)求 的可能取值
4.若 就是平稳随机过程,如图所示证明过程 的功率谱密度为
(1)求 的特征函数, 。
(2)由 ,求 。
13.用特征函数方法求两个数学期望为0,方差为1,互相独立的高斯随机变量 与 之与的概率密度。
14.证明若 依均方收敛,即 ,则 必依概率收敛于 。
15.设 与 为两个二阶矩实随机变量序列, 与 为两个二阶矩实随机变量。若 , ,求证 。
随机信号分析习题二
9.设 就是零均值,单位方差的高斯随机变量, 如图,求 的概率密度
10.设随机变量 与 就是另两个随机变量 与 的函数
设 , 就是相互独立的高斯变量。求随机变量 与 的联合概率密度函数。
11.设随机变量 与 就是另两个随机变量 与 的函数
已知 ,求联合概率密度函数 。
12.设随机变量 为均匀分布,其概率密度
相关文档
最新文档