公务员行测常用数学公式汇总
公务员行测必备数学公式总结(全)
一、基础公式1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法分配律:a × (b + c) = a × b + a × c二、分数和小数1. 分数的基本性质:分子和分母同时乘以或除以相同的数(0除外),分数的值不变。
2. 小数的基本性质:小数点向左或向右移动一位,数值相应地乘以或除以10。
三、百分比和比例1. 百分比的基本性质:百分比可以表示为分数或小数,例如50% = 0.5 = 1/2。
2. 比例的基本性质:比例是两个分数的等价关系,例如a:b =c:d可以表示为a/b = c/d。
四、代数1. 一元一次方程:ax + b = 0,其中a和b是常数,x是未知数。
2. 二元一次方程组:ax + = c,dx + ey = f,其中a、b、c、d、e、f是常数,x和y是未知数。
3. 一元二次方程:ax^2 + bx + c = 0,其中a、b、c是常数,x是未知数。
五、几何1. 三角形面积公式:S = 1/2 底高2. 矩形面积公式:S = 长宽3. 圆面积公式:S = π r^2,其中r是圆的半径4. 球体积公式:V = 4/3 π r^3,其中r是球的半径六、概率1. 概率的基本性质:概率的值介于0和1之间,包括0和1。
2. 独立事件的概率:两个独立事件同时发生的概率等于各自发生的概率的乘积。
3. 条件概率:在已知一个事件发生的条件下,另一个事件发生的概率。
七、统计学1. 平均数:一组数值的总和除以数值的个数。
2. 中位数:一组数值按照大小排列后,位于中间位置的数值。
3. 众数:一组数值中出现次数最多的数值。
八、其他1. 对数的基本性质:对数可以表示为指数的倒数,例如log_a(b) = c等价于a^c = b。
公务员考试行测常用公式汇总
公务员考试行测常用公式汇总公务员考试的行测部分是考察考生的基础综合能力和应用能力,其中涉及到一些常用的数学公式。
掌握这些公式,对于提高解题效率和正确率非常重要。
本文将对公务员考试行测常用公式进行汇总,以帮助考生更好地备考。
一、数学相关公式1. 百分数转化公式(1)百分数与小数之间的转化:百分数 = 小数× 100%,小数= 百分数÷ 100%。
(2)百分数与分数之间的转化:百分数 = 分子÷分母×100%。
2. 相关系数公式(1)两组数X和Y的相关系数:相关系数 = Σ[(X - X') × (Y -Y')] ÷ [√(Σ(X - X')²) ×√(Σ(Y - Y')²)] (其中,X'和Y'分别代表X和Y的平均数)。
3. 平均数和加权平均数公式(1)平均数:平均数 = 总和÷个数。
(2)加权平均数:加权平均数 = (数值1 ×权数1 + 数值2 ×权数2 + ……)÷(权数1 + 权数2 + ……)。
4. 利率和利息公式(1)简单利息:利息 = 本金×利率×时间。
(2)复合利息:利息 = 本金× (1 + 利率) ^ 时间 - 本金。
5. 平方和立方公式(1)平方公式:(a + b)² = a² +2ab + b²。
(2)立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³。
二、逻辑推理相关公式1. 正确率、灵敏度和特异度公式(1)正确率:正确率 = (TP + TN)÷总数。
(2)灵敏度:灵敏度 = TP ÷(TP + FN)。
(3)特异度:特异度 = TN ÷(TN + FP)。
公务员考试行测常用公式汇总
公务员考试行测常用公式汇总在公务员考试的行政职业能力测试中,行测部分是一个非常重要的组成部分。
在行测中,常常会涉及到一些数学和逻辑方面的问题,需要运用一些公式来解答。
掌握一些常用的公式将有助于提高解题能力和效率。
本文将为大家总结一些常用的行测公式。
1. 百分数转化公式:百分数转化为小数:百分数/100小数转化为百分数:小数×1002. 比例的计算公式:比例公式:已知两个比例中的三项,求第四项。
设已知比例为a:b=c:d,求第四项x。
则有a/b=c/d,即x=b×(c/d)。
3. 平均数的计算公式:平均数 = 总和 / 个数4. 利息的计算公式:简单利息:利息 = 本金×利率×时间复利公式:利息 = 本金× (1 + 利率) ^ 时间,其中,^ 表示乘方运算。
5. 面积和体积的计算公式:矩形面积:面积 = 长×宽三角形面积:面积 = 底边×高 / 2圆的面积:面积 = π×半径^2,其中,π可以取近似值3.14长方体体积:体积 = 长×宽×高6. 比例尺的计算公式:比例尺公式:图上距离 / 实际距离 = 图上长度 / 实际长度7. 工作效率的计算公式:工作效率 = 完成的工作量 / 耗费的时间8. 速度、距离和时间的计算公式:速度 = 距离 / 时间时间 = 距离 / 速度距离 = 速度×时间9. 利率的计算公式:利率 = 利息 / 本金× 100%本金 = 利息 / 利率× 100%10. 计票百分比的计算公式:计票百分比 = 得票数 / 总票数× 100%11. 正方形的对角线长度公式:对角线长度 = 边长×√212. 三角形三边关系公式:设三角形的三边长度分别为a、b、c,则有以下关系: a + b > ca + c > bb +c > a13. 速度与距离的关系公式:v = s / t,其中v为速度,s为距离,t为时间。
公务员考试行测常见基础公式汇总
公务员考试行测常见基础公式汇总公务员考试中,行政职业能力测验(简称行测)是重要的组成部分。
其中涉及到众多的知识点和公式,掌握这些基础公式对于提高解题效率和准确性至关重要。
下面为大家汇总了一些行测常见的基础公式。
一、数量关系1、等差数列通项公式:$a_n = a_1 +(n 1)d$,其中$a_n$表示第$n$项的值,$a_1$表示首项,$d$表示公差。
例如,已知一个等差数列的首项为 3,公差为 2,求第 10 项的值。
则$a_{10} = 3 +(10 1)×2 = 21$等差数列求和公式:$S_n =\frac{n(a_1 + a_n)}{2}$,其中$S_n$表示前$n$项的和。
例如,求上述等差数列前 10 项的和,$a_{10} = 21$,则$S_{10}=\frac{10×(3 + 21)}{2} = 120$2、等比数列通项公式:$a_n = a_1×q^{n 1}$,其中$q$为公比。
例如,一个等比数列的首项为 2,公比为 3,求第 5 项的值。
则$a_{5} = 2×3^{5 1} = 162$等比数列求和公式:$S_n =\frac{a_1(1 q^n)}{1 q}$($q ≠1$)3、行程问题相遇问题:$S =(v_1 + v_2)×t$,其中$S$表示路程,$v_1$、$v_2$表示两个物体的速度,$t$表示相遇时间。
例如,甲、乙两人分别以 5 米/秒和 3 米/秒的速度相向而行,经过10 秒相遇,求他们最初的距离。
则$S =(5 + 3)×10 = 80$米追及问题:$S =(v_1 v_2)×t$例如,甲以 8 米/秒的速度追赶以 5 米/秒速度前行的乙,经过 10 秒追上,求他们最初的距离差。
则$S =(8 5)×10 = 30$米4、工程问题工作总量=工作效率×工作时间例如,一项工程,甲单独完成需要 10 天,乙单独完成需要 15 天,两人合作需要的时间为:$1÷(\frac{1}{10} +\frac{1}{15})=6$天5、利润问题利润=售价成本利润率=利润÷成本×100%例如,一件商品成本为 80 元,售价为 100 元,则利润为$100 80 =20$元,利润率为$20÷80×100\%= 25\%$二、资料分析1、增长率增长率=(现期量基期量)÷基期量×100%例如,某地区去年的 GDP 为 100 亿元,今年为 120 亿元,则增长率为$(120 100)÷100×100\%= 20\%$2、平均数平均数=总数÷个数例如,某班级 5 名学生的成绩分别为 80、90、85、95、70 分,平均成绩为$(80 + 90 + 85 + 95 + 70)÷5 = 84$分3、比重比重=部分÷整体×100%例如,某公司总人数为 500 人,其中男性 250 人,则男性所占比重为$250÷500×100\%= 50\%$三、判断推理1、集合推理“所有的 S 都是P”可以推出“有的 S 是P”“某个 S 是P”可以推出“有的 S 是P”2、翻译推理“如果……那么……”:前推后“只有……才……”:后推前3、逻辑论证加强论证:增加论据、建立联系、补充前提削弱论证:削弱论据、切断联系、否定前提四、言语理解与表达虽然言语理解与表达部分没有像数量关系和资料分析那样有明确的公式,但一些解题技巧和规律还是需要掌握的。
国家公务员常用数学公式汇总!!!【中公教育】
国家公务员常用数学公式汇总!!!【中公教育】分享一、基础代数公式1. 平方差公式:(a+b)³(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘: am³an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p=(a≠0,p为正整数)4. 等差数列:(1)sn ==na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n =+1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai ;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn =(q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am²an=ak²ai ;(5)am-an=(m-n)d(6)=q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的关系:x1+x2=- ,x1²x2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
2024国考行测资料公式汇总
2024国考行测资料公式汇总一、概述随着国家发展和改革的不断推进,国家公务员考试作为选拔和录用优秀人才的重要途径,备受关注和热议。
而国家公务员考试中的行政职业能力测验(简称行测),作为其中的一项重要考试科目,涵盖了诸多知识点和应试技巧。
其中,数学实在是行测中的一大难点,而其中的公式更是让考生头疼的部分。
我们特整理了以下2024国考行测资料公式,以便考生备考时能够更好地复习和掌握相关知识点。
二、数量关系题目公式1. 平均值计算公式平均值 = 总值 / 个数2. 比例计算公式两者之比 = 较多者 / 较少者3. 反比例计算公式两者之比 = 较少者 / 较多者4. 增减百分比计算公式百分比增加 = (增加值 / 原值) * 100百分比减少 = (减少值 / 原值) * 1005. 资料图计算公式根据柱状图、折线图或饼状图进行计算6. 存在关系计算公式混合物的平均浓度 = (已知浓度1 * 体积1 + 已知浓度2 * 体积2) / (体积1 + 体积2)三、判断推理题目公式1. 判断题公式真命题的否定为假命题假命题的否定为真命题2. 排序题公式正序排列:A<B<C逆序排列:A>B>C3. 相同字母代表相同物品四、言语理解与表达题目公式1. 近义词、反义词近义词:意思相近的词反义词:意思相反的词2. 词类变化名词→形容词→动词→副词→数词→代词→连词→介词→感叹词3. 词语搭配正词相反:冷热、高低动名结合:吃饭、送信五、综合分析题目公式1. 逻辑判断公式A→B 非B→非AA→B 非A→非B2. 选择判断公式对A的肯定是否定了B的否定3. 数字推理公式数字之和、差、乘积、商之间的规律4. 资料分析公式根据给出的数据进行图表和数据的计算和分析六、总结以上整理的2024国考行测资料公式只是行测知识点的冰山一角,但通过对这些公式的学习和掌握,能让考生更快地应对行测考试中的数量关系、判断推理、言语理解与表达、综合分析等题目类型。
行测数学公式大全
行测数学公式大全1.基本运算公式:-加法:a+b=c-减法:a-b=c-乘法:a×b=c-除法:a÷b=c2.代数公式:- 二次方程:ax² + bx + c = 0- 因式分解:(a + b)² = a² + 2ab + b²- 提取公因式:ab + ac = a(b + c)-幂的乘法:(a^m)×(a^n)=a^(m+n)-幂的除法:(a^m)÷(a^n)=a^(m-n)3.几何公式:-周长:周长=2×(长+宽)-面积:面积=长×宽-体积:体积=高×底面积-三角形面积:面积=1/2×底×高-圆周长:周长=2×π×半径-圆面积:面积=π×半径²-圆柱体体积:体积=π×半径²×高-圆锥体体积:体积=1/3×π×半径²×高4.概率与统计公式:-事件的概率:P(A)=m/n-互斥事件的概率:P(A或B)=P(A)+P(B)-独立事件的概率:P(A且B)=P(A)×P(B)-组合计数:C(n,r)=n!/(r!×(n-r)!)-排列计数:P(n,r)=n!/(n-r)!-平均数:平均数=(数值之和)/(数据个数)-方差:方差=[(每个数据值减去均值的差的平方和)/(数据个数)] -标准差:标准差=方差的平方根5.三角函数公式:- 正弦函数:sin(A) = 对边 / 斜边- 余弦函数:cos(A) = 邻边 / 斜边- 正切函数:tan(A) = 对边 / 邻边- 余切函数:cot(A) = 邻边 / 对边- 正割函数:sec(A) = 斜边 / 对边- 余割函数:csc(A) = 斜边 / 邻边- 三角恒等式:sin²(A) + cos²(A) = 1以上只是数学公式的一小部分,根据复杂程度、考试的具体内容和要求,还有更多的数学公式需要考生掌握。
国考行测常用公式汇总
国考行测常用公式汇总行测中常用的公式汇总如下:1.面积公式:-矩形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-圆的面积公式:面积=π×半径×半径2.周长公式:-矩形的周长公式:周长=2×(长+宽)-正方形的周长公式:周长=4×边长-圆的周长公式:周长=2×π×半径3.速度公式:-速度=路程÷时间4.平均速度公式:-平均速度=总路程÷总时间5.利率公式:-简单利率公式:利息=本金×利率×时间-复利公式:总利息=本金×(1+利率)^时间-本金6.百分数公式:-数值=百分数×基数-百分数=数值÷基数×1007.利率换算公式:-年利率=月利率×12-年利率=日利率×3658.容积公式:-正方体的体积公式:体积=边长×边长×边长-矩形体的体积公式:体积=长×宽×高-圆柱体的体积公式:体积=π×半径×半径×高9.等差数列公式:- 第 n 项公式:an = a1 + (n - 1) × d- 前 n 项和公式:Sn = (a1 + an) × n ÷ 210.三角形面积公式:-三角形的面积公式:面积=底×高÷211.三角函数公式:- 正弦定理:(a/sinA) = (b/sinB) = (c/sinC)- 余弦定理:c² = a² + b² - 2ab × cosC12.排列组合公式:-排列公式:n个不同的物体中,选择r个的排列数为:A(n,r)=n!÷(n-r)!-组合公式:n个不同的物体中,选择r个的组合数为:C(n,r)=n!÷(r!×(n-r)!)以上是常用的行测公式汇总,在备考行测时,重要的是理解公式的应用场景,熟练掌握计算方法,并在实践中多加练习,运用灵活。
公务员行测数学公式及计算技巧汇总
常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )³(a -b )=a 2-b 22. 完全平方公式:(a ±b )2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a ±b )(a 2ab+b 2) 3. 同底数幂相乘: a m³a n=am +n(m 、n 为正整数,a ≠0)同底数幂相除:a m÷a n=am -n(m 、n 为正整数,a ≠0)a 0=1(a ≠0)a -p =pa1(a ≠0,p 为正整数)4. 等差数列: (1)s n =2)(1na a n ⨯+=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ; (3)n =da a n 1-+1;(4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列:(1)a n =a 1q -1;(2)s n =qq a n-11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ²a n =a k ²a i ; (5)a m -a n =(m-n)d (6)nm a a =q (m-n)(其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=aac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-ab ,x 1²x 2=ac二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
国家公务员考试【行测】必备的数学公式
这些数学公式还比较全面,大家看看,记记!公式分类公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n +2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=π(R+r)l球的表面积S=4π*r2圆柱侧面积S=c*h=2π*h圆锥侧面积S=1/2*c*l=π*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式V=1/3*π*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式 V=s*h 圆柱体V=π*r2h。
公务员考试行测常用数学公式汇总
常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )×(a -b )=a 2-b 22. 完全平方公式:(a±b)2=a 2±2ab +b 2完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2)3. 同底数幂相乘: a m ×a n =a m +n (m 、n 为正整数,a≠0)同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0)a 0=1(a≠0)a -p =p a1(a≠0,p 为正整数) 4. 等差数列:(1)s n =2)(1n a a n ⨯+=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ;(3)n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)5. 等比数列:(1)a n =a 1q -1;(2)s n =qq a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ·a n =a k ·a i ;(5)a m -a n =(m-n)d(6)nm a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=ac 二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
公务员行测计算公式大全
行测计算公式若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。
若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数(1)选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;(2)所需计算数据多,计算复杂时考虑尾数判断快速得到答案。
常用在容斥原理中。
和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;项数=(末项-首项)÷项数+1。
从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……(1)单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔(2)植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;(3)单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔(4)单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔(5)方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n 阶方阵的总人数为n²。
5. 火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)6. 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间7. 队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间队尾→队首:队伍长度=(人速-队伍速度)×时间8. 流水行船问题公式:顺速=船速+水速,逆速=船速-水速9. 往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。
公务员行测计算公式大全
行测计算公式若a∶b=m∶nm、n互质;则a是m的倍数;b是n的倍数..若a=m/n×b;则a=m/m+n×a+b;即a+b是m+n的倍数1选项尾数不同;且运算法则为加、减、乘、乘方运算;优先使用尾数进行判定;2所需计算数据多;计算复杂时考虑尾数判断快速得到答案..常用在容斥原理中..和=首项+末项×项数÷2=平均数×项数=中位数×项数;项数=末项-首项÷项数+1..从1开始;连续的n个奇数相加;总和=n×n;如:1+3+5+7=4×4=16;……1单边线型植树公式两头植树:棵树=总长÷间隔+1;总长=棵树-1×间隔2植树不移动公式:在一条路的一侧等距离栽种m棵树;然后要调整为种n棵树;则不需要移动的树木棵树为:m-1与n-1的最大公约数+1棵;3单边环型植树公式环型植树:棵树=总长÷间隔;总长=棵树×间隔4单边楼间植树公式两头不植:棵树=总长÷间隔-1;总长=棵树+1×间隔5方阵问题:最外层总人数=4×N-1;相邻两层人数相差8人;n阶方阵的总人数为n2..5. 火车过桥核心公式:路程=桥长+车长火车过桥过的不是桥;而是桥长+车长6. 相遇追及问题公式:相遇距离=速度1+速度2×相遇时间追及距离=速度1-速度2×追及时间7. 队伍行进问题公式:队首→队尾:队伍长度=人速+队伍速度×时间队尾→队首:队伍长度=人速-队伍速度×时间8. 流水行船问题公式:顺速=船速+水速;逆速=船速-水速9. 往返相遇问题公式:两岸型两次相遇:S=3S1-S2;第一次相遇距离A为S1;第二次相遇距离B为S2单岸型两次相遇:S=3S1+S2/2;第一次相遇距离A为S1;第二次相遇距离A为S2;左右点出发:第N次迎面相遇;路程和=2N-1×全程;第N次追上相遇;路程差=2N-1×全程..同一点出发:第N次迎面相遇;路程和=2N×全程;第N次追上相遇;路程差=2N×全程..10. 等距离平均速度公式:与所经历的路程相同;求解平均速度;平均速度=2×/+ ..11. 三角形三边关系公式:两边之和大于第三边;两边之差小于第三边..12. 勾股定理:直角三角形中;两直角边的平方和等于斜边的平方..常用勾股数:3、4、5;5、12、13;6、8、10..13. 经济利润问题常用公式利润=售价-进价;利润率=利润÷进价;总利润=单利润×销量售价=进价+利润=原价×折扣14. 溶液问题基本公式溶液=溶质+溶剂;浓度=溶质÷溶液;溶质=溶液×浓度;混合溶液的浓度=溶质1+溶质2÷溶液1+溶液2资料分析公式。
公务员考试数学公式大全
公务员考试数学公式大全1.代数公式:-二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n)a^0b^n-平方差公式:(a+b)(a-b)=a^2-b^2- 三角恒等式:sin^2 x + cos^2 x = 1, tan x = sin x / cos x - 乘法公式:(a+b)(c+d) = ac + ad + bc + bd2.几何公式:-三角形面积公式:S=1/2*底边*高或S=(a+b+c)/2*r(其中r为内切圆半径)- 三角形三边关系:a/sin A = b/sin B = c/sin C-圆的面积:S=πr^2-圆的周长:C=2πr-球的体积:V=4/3*πr^33.概率与统计公式:-排列:A(n,m)=n!/(n-m)!-组合:C(n,m)=n!/(m!(n-m)!)-随机事件发生的概率:P(A)=m/n(其中,m为事件A发生的次数,n 为总次数)- 期望:E(x) = x1P(x1) + x2P(x2) + ... + xnP(xn)(其中,P(xi)为事件xi发生的概率)- 方差:Var(x) = E(x^2) - (E(x))^24.等差数列与等比数列公式:-等差数列的通项公式:an = a1 + (n-1)d-等差数列的前n项和公式:Sn = (a1 + an)n/2 或 Sn = n/2(a1 + an)-等比数列的通项公式:an = a1 * r^(n-1)-等比数列的前n项和公式:Sn=a1(1-r^n)/(1-r)5.数列与数列极限公式:-等差数列极限公式:lim(n->∞){an} = a(其中,an为等差数列的第n项,a为等差数列的公差)-等比数列极限公式:当,r,<1时,lim(n->∞){an} = 0(其中,an为等比数列的第n项,r为等比数列的公比)这些只是一些常见的数学公式,公务员考试中还可能涉及其他领域的公式,如金融数学、线性代数等。
公务员行测计算公式大全
行测计算公式1. 分数比例形式整除:若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。
若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数2. 尾数法(1)选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;(2)所需计算数据多,计算复杂时考虑尾数判断快速得到答案。
常用在容斥原理中。
3. 等差数列相关公式:和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;项数=(末项-首项)÷项数+1。
从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……4. 几何边端问题相关公式:(1)单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔(2)植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;(3)单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔(4)单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔(5)方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n²。
5-10:行程问题5. 火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)6. 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间7. 队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间队尾→队首:队伍长度=(人速-队伍速度)×时间8. 流水行船问题公式:顺速=船速+水速,逆速=船速-水速9. 往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。
公务员考试行测公式大全
公务员考试行测公式大全1-100公式公式[拼音]gōngshì[释义](一)在自然科学中用数学符号表示几个量之间关系的式子。
具有普遍性,适合于同类关系的所有问题。
【例】表示矩形的面积S和它的长a、宽b之间的关系的公式为S=ab。
(二)谓通行的格式。
【例】《元典章·诏令一》:“凡有玺书颁降并用蒙古新字……所有公式文书咸遵其旧。
”(三)泛指可普遍应用于同类事物的方式方法。
代数:平方差公式:a^2-b^2=(a+b)(a-b)完全平方公式:(a±b)^2=a^2±2*a*b+b^2完全立方公式:(a±b)^3=a^3±3*a^2*b+3*a*b^2±b^3几何:面积计算圆周长: 2πr(πd) 面积: r2π勾孤定律:两直角边的平方和等于斜边的平(首项加末项)乘项数除以2m,n的最小公倍数为t,,最大公约数为l那么t*l=m*n1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 ,S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕ ?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每生产一个不合格品不仅不记分,还要扣除 15 分。某工人生产了 1000 只灯泡,
共得 3525 分,问其中有多少个灯泡不合格?”
解:(4×1000-3525)÷(4+15) =475÷19=25(个)
11.盈亏问题:
(1)一次盈,一次亏:(盈+亏)÷(两次每人分配数的差)=人数
(2)两次都有盈: (大盈-小盈)÷(两次每人分配数的差)=人数
(4)火车过桥: 列车完全在桥上的时间=(桥长-车长)÷列车速度 列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度
(5)多次相遇: 相向而行,第一次相遇距离甲地 a 千米,第二次相遇距离乙地 b 千米,则甲
乙两地相距 S=3a-b(千米)
(6)钟表问题: 钟面上按“分针”分为 60 小格,时针的转速是分针的 1 ,分针每小时可 12
得失问题(鸡兔同笼问题的推广):
不合格品数=(1 只合格品得分数×产品总数-实得总分数)÷(每只合格品得
分数+每只不合格品扣分数)
=总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每
只合格品得分数+每只不合格品扣分数)
例:“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记 4 分,
和)
6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)
b b2 4ac
b b2 4ac
其中:x1=
2a
;x2=
2a
(b2-4ac 0)
b
c
根与系数的关系:x1+x2=- a ,x1·x2= a
二、基础几何公式
1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于
π≈3.1415926≈ 10 );
n 的圆心角所对的弧长 l 的计算公式: l = nR ; 180
扇形的面积:(1)S
扇=
n 360
πR2;(2)S
扇=
1 2
l
R;
若圆锥的底面半径为 r,母线长为 l,则它的侧面积:S 侧=πr l ;
圆锥的体积:V= 1 Sh= 1 πr2h。 33
三、其他常用知识
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题 直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。另外,由于使 用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
纵观近几年公务员考试真题,无论是国考还是地方考试,集合问题作为一个热点问题 几乎每年都会考到,此类题目的特点是总体难度不大,只要方法得当,一般都很容易求解。 下面为大家介绍用数形结合方法解这类题的经典方法:文氏图。
2400×(1+10.2%×36) =2400×1.3672 =3281.28(元)
6.排列数公式:P
m n
=n(n-1)(n-2)…(n-m+1),(m≤n)
组合数公式:C
m n
=P
m n
÷P
m m
=(规定
C
0 n
=1)。
“装错信封”问题:D1=0,D2=1,D3=2,D4=9,D5=44,D6=265,
常用数学公式汇总(精华版)
一、基础代数公式
1. 平方差公式:(a+b)×(a-b)=a2-b2
2. 完全平方公式:(a±b)2=a2±2ab+b2
完全立方公式:(a±b)3=(a±b)(a2 ab+b2) 3. 同底数幂相乘: am×an=am+n(m、n 为正整数,a≠0)
同底数幂相除:am÷an=am-n(m、n 为正整数,a≠0)
7. 年龄问题:关键是年龄差不变;
几年后年龄=大小年龄差÷倍数差-小年龄
几年前年龄=小年龄-大小年龄差÷倍数差
8. 日期问题:闰年是 366 天,平年是 365 天,其中:1、3、5、7、8、10、12
月都是 31 天,4、6. 9、11 是 30 天,闰年时候 2 月份 29 天,平年 2 月份是 28
阵的人数。
例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10-3)
×3×4=84(人)
5. 利润问题:
(1)利润=销售价(卖出价)-成本;
利润率= 利润 = 销售价-成本 = 销售价 -1;
成本
成本
成本
销售价=成本×(1+利润率);成本= 销售价 。 1+利润率
(2)单利问题
利息=本金×利率×时期;
本利和=本金+利息=本金×(1+利率×时期);
本金=本利和÷(1+利率×时期)。
年利率÷12=月利率;
月利率×12=年利率。
例:某人存款 2400 元,存期 3 年,月利率为 10.2‰(即月利 1 分零 2 毫),三
年到期后,本利和共是多少元?”
解:用月利率求。3 年=12 月×3=36 个月
(1)an=a1q-1;
(2)sn
=
a1(· 1-q 1 q
n)(q
1)
(3)若 a,G,b 成等比数列,则:G2=ab;
(4)若 m+n=k+i,则:am·an=ak·ai ; (5)am-an=(m-n)d (6) am =q(m-n)
an (其中:n 为项数,a1 为首项,an 为末项,q 为公比,sn 为等比数列前 n 项的
1. 2X、3X、7X、8X 的尾数都是以 4 为周期进行变化的;4X、9X 的尾数都是以 2 为
周期进行变化的;
另外 5X 和 6X 的尾数恒为 5 和 6,其中 x 属于自然数。
2. 对任意两数 a、b,如果 a-b>0,则 a>b;如果 a-b<0,则 a<b;如果 a
-b=0,则 a=b。
当 a、b 为任意两正数时,如果 a/b>1,则 a>b;如果 a/b<1,则 a<b;如果
追及 11 12 时针与分针一昼夜重合 22 次,垂直 44 次,成 180o22 次。时分秒重叠 2
次 13.容斥原理:
A+B= A B + A B A+B+C= A B C + A B + A C + B C - A B C
其中, A B C =E 14.牛吃草问题:
原有草量=(牛数-每天长草量)×天数,其中:一般设每天长草量为 X 2012 国家公务员考试行测备考数量关系万能解法:文氏图
圆锥 球
= 1 πr2h 3
=
4 3
R
3
4. 与圆有关的公式
设圆的半径为 r,点到圆心的距离为 d,则有:
(1)d﹤r:点在圆内(即圆的内部是到圆心的距离小于半径的点的集合);
(2)d=r:点在圆上(即圆上部分是到圆心的距离等于半径的点的集合);
(3)d﹥r:点在圆外(即圆的外部是到圆心的距离大于半径的点的集合);
a0=1(a≠0)
a-p= 1 (a≠0,p 为正整数) ap
4. 等差数列:
(1)sn
=
(a1
an 2
)
n
=na1+
1 2
n(n-1)d;
(2)an=a1+(n-1)d; (3)n = an a1 +1;
d
(4)若 a,A,b 成等差数列,则:2A=a+b;
(5)若 m+n=k+i,则:am+an=ak+ai ; (其中:n 为项数,a1 为首项,an 为末项,d 为公差,sn 为等差数列前 n 项的和) 5. 等比数列:
a/b=1,则 a=b。
当 a、b 为任意两负数时,如果 a/b>1,则 a<b;如果 a/b<1,则 a>b;如果
a/b=1,则 a=b。
对任意两数 a、b,当很难直接用作差法或者作商法比较大小时,我们通常选取
中间值 C,如果
a>C,且 C>b,则我们说 a>b。
3. 工程问题:
工作量=工作效率×工作时间;工作效率=工作量÷工作时间;
线与圆的位置关系的性质和判定:
如果⊙O 的半径为 r,圆心 O 到直线 l 的距离为 d,那么:
(1)直线 l 与⊙O 相交:d﹤r;
(2)直线 l 与⊙O 相切:d=r;
(3)直线 l 与⊙O 相离:d﹥r;
圆与圆的位置关系的性质和判定:
设两圆半径分别为 R 和 r,圆心距为 d,那么:
(1)两圆外离: d R r ;
(3)两次都是亏: (大亏-小亏)÷(两次每人分配数的差)=人数 (4)一次亏,一次刚好:亏÷(两次每人分配数的差)=人数 (5)一次盈,一次刚好:盈÷(两次每人分配数的差)=人数 例:“小朋友分桃子,每人 10 个少 9 个,每人 8 个多 7 个。问:有多少个小朋友 和多少个桃子?” 解(7+9)÷(10-8)=16÷2=8(个)………………人数
天。
9. 植树问题
(1)线形植树:棵数=总长 间隔+1
(2)环形植树:棵数=总长 间隔
(3)楼间植树:棵数=总长 间隔-1
(4)剪绳问题:对折 N 次,从中剪 M 刀,则被剪成了(2N×M+1)段
10. 鸡兔同笼问题:
鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
(一般将“每”量视为“脚数” )
2 梯形 =(上底+下底) 高 ;
2 圆形 = R2 平行四边形=底×高
扇形
=n 3600
R2
正方体=6×边长×边长
长方体=2×(长×宽+宽×高+长×高);
圆柱体=2πr2+2πrh;
球的表面积=4 R2
3. 体积公式
正方体=边长×边长×边长;
长方体=长×宽×高;
圆柱体=底面积×高=Sh=πr2h
(2)两圆外切: d R r ;