绝对值(基础)知识讲解及巩固练习
初一数学绝对值知识点与经典例题
绝对值的性质及化简【绝对值必考题型】例1:已知|x -2|+|y -3|=0,求x+y 的值。
【例题精讲】(一)绝对值的非负性问题1. 非负性:若有几个非负数的和为0,那么这几个非负数均为0.2. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c = 【例题】若3150x y z +++++=,则x y z --= 。
总结:若干非负数之和为0, 。
【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【巩固】先化简,再求值:ab b a ab ab b a2)23(223222+⎥⎦⎤⎢⎣⎡---.其中a 、b 满足0)42(132=-+++a b a .(二)绝对值的性质【例1】若a <0,则4a+7|a|等于( )A .11aB .-11aC .-3aD .3a【例2】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例3】已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例4】若1-=xx ,则x 是()A .正数B .负数C .非负数D .非正数【例5】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例6】已知a .b 互为相反数,且|a-b|=6,则|b-1|的值为( )A .2B .2或3C .4D .2或4【例7】a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A .6B .-4C .-2a+2b+6D .2a-2b-6【例8】若|x+y|=y-x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x=0,y≥0或y=0,x≤0【例9】已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A .是正数B .是负数C .是零D .不能确定符号【例12】若x <-2,则|1-|1+x||=______若|a|=-a ,则|a-1|-|a-2|= ________【例15】已知数,,a b c则下列各式:①()0b a c ++->;②0)(>+--c b a ;③1=++ccb b a a ;④0>-a bc ; ⑤b c a b c b a 2-=-++--.其中正确的有 .(请填写番号)【巩固】已知a b c ,,是非零整数,且0a b c ++=,求a b c abc+++的值 ca 0b(三)绝对值相关化简问题(零点分段法)零点分段法的一般步骤:找零点→分区间→定符号→去绝对值符号.(1)求出2x +和4x -的零点值 (2)化简代数式24x x ++-【巩固】化简1. 12x x +++2. 12m m m +-+-的值3. 523x x ++-.4. (1)12-x ;变式5.已知23++-x x 的最小值是a ,23+--x x 的最大值为b ,求b a +的值。
绝对值知识讲解
绝对值知识讲解-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII绝对值知识讲解一、知识框架图二、基础知识1、绝对值的概念(1)定义:一个数的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作a ,读作a 的绝对值。
(2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离。
离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
(4)绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对于任意有理数a ,总有a ≥0.2、绝对值的求法 绝对值是一种运算,这个运算符号是“”。
求一个数的绝对值,就是想办法去掉这个绝对值符号,对于任意有理数a ,有:a (a >0)(1) 0(a=0)a (a <0)a (a ≥0)(2)a -(a <0) a (a >0)(3)a -(a ≤0)这就说,去掉绝对值符号不是随便就能完成的,要看绝对值里面的数是什么性质的数。
若绝对值里面的数是非负数,那么这个数的绝对值就是它本身,此时绝对值“”符号就相当于“( )”的作用,如125--=)(125--=415=-。
由于这里2-1是正数,故去掉绝对值符号后12-=(2-1);若绝对值里面的数是负数,那么这个负数的绝对值就是这个负数的相反数这时去掉绝对值时,就要把绝对值里面的数添上括号,再在括号前面加上负号“-”。
3、利用绝对值比较两个数的大小两个负数,绝对值大的反而小。
比较两个负数的大小,可按照下列步骤进行:(1)先求出两个负数的绝对值;(2)比较这两个绝对值的大小;(3)写出正确的判断结果。
三、例题讲解例1求下列各数的绝对值(1)21;(2)31-;(3)434-;(4)331 分析:运用绝对值的意义来求解。
解:(1)21=21;(2)31-=3131=--)(;(3)434434434=--=-)(;(4)3313=31 点评:解答本题首先要弄清楚绝对值的意义,准确列出代数式,再运用绝对值的意义求出结果,切不可写作31-=31-=31. 例2计算:(1)2.1--;(2))(3---;(3)023+---. 分析:本题关键是确定绝对值里面的数的性质,再按照绝对值的意义去掉绝对值负号。
绝对值知识点及练习
绝对值知识点及练习1、定义:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|,读作“绝对值a”。
(2)代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.实数a的绝对值是:|a|①a为正数时,|a|=a(不变)②a为0时,|a|=0③a为负数时,|a|= -a(为a的绝对值)任何数的绝对值都大于或等于0,因为距离没有负的。
2、实数的绝对值具有以下性质:(1)|a|大于等于0(实数的绝对值是非负实数);(2)|-a|=|a|(互为相反数的两实数绝对值相等);(3)-|a|小于等于a小于等于|a|;(4)|a|>b可以推出a<-b或a>b,a<-b或a>b可以推出|a|>b;(5)|a·b|=|a|·|b|;(6)|a|/|b|=|a/b|(b≠0);(7)|a+b|小于等于|a|+|b|,当且仅当a、b同号时,等式成立;(8)|a-b|大于等于||a|-|b||,当且仅当a、b同号时,等式成立;(9)a属于R时,|a|的平方等于|a|的平方。
特别提醒:(1)绝对值具有非负性,即|a|≥0;(2)绝对值相等的两个数,它们相等或互为相反数;(3)0是绝对值最小的有理数。
3、利用绝对值比较大小(1)利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.比较的具体步骤:①先求两个负数的绝对值;②比较绝对值的大小;③根据“两个负数,绝对值大的反而小”作出判断.(2)几个有理数的大小比较①同号两数,可以根据它们的绝对值来比较:a.两个正数,绝对值大的数较大;b.两个负数,绝对值大的反而小.②多个有理数的大小比较,需要先将它们按照正数、0、负数分类比较,然后利用各数的绝对值或借助于数轴来进一步比较.4、利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题,主要有以下两类:(1)判断物体或产品质量的好坏可以用绝对值判断物体或产品偏离标准的程度,绝对值越小,越接近标准,质量就越好.方法:①求每个数的绝对值;②比较所求绝对值的大小;③根据“绝对值越小,越接近标准”作出判断.(2)利用绝对值求距离路程问题中,当出现用“+”、“-”号表示的带方向的路程,求最后的总路程时,实际上就是求绝对值的和.方法:①求每个数的绝对值;②求所有数的绝对值的和;③写出答案.5、去绝对值符号的几种常用方法:(1)利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或(2)利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
绝对值基本知识及习题
绝对值基本知识及习题(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除解读绝对值(所有例题请不要回答,答案见文末,请做课后的学力训练)≮知识纵横≯绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础。
绝对是又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等式(组)等问题中有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面入手。
1.去绝对值的符号法则:⎪⎩⎪⎨⎧<=>=0)(a a -)0a (0)0(a a a 2.绝对值的基本性质①非负性:|a|≥0;②|ab|=|a||b|;③ba b a=(b ≠0); ④|a|2=|a|2=a 2;⑤|a+b|≤|a|+|b|;⑥||a|-|b||≤|a-b|≤|a|+|b|3.绝对值的几何意义从数轴上看,|a|表示数a 的点到远点的距离(长度,非负);|a-b|表示数a 、数b 的两点间的距离。
4. 零点分段法零点分段法的基本步骤是:求零点、分区间、定性质、去符号,即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,崽崽各区间内化简求值即可。
请读者通过例4的解决,仔细体会上述解题步骤。
≮例题求解≯【例1】(1)已知,,1y 5==x 那么=+-y x y -x 。
(2)非零整数m,n 满足,05m =-+n 所有这样的整数组(m,n)共有 组。
(首届江苏省数学文化节基础闯关题) 思路点拨 (1)既可以对x,y 的取值进行分类求解,又可以利用绝对值的几何意义解;(2)从把5拆分成两个正整数的和入手。
【例2】如果a 、b 、c 是非零有理数,且a+b+c=0,那么abcabc c c b b a +++a 的所有可能的值为( )。
A .0B .±1C .±2D .0或-2(山东省竞赛题)思路点拨 根据a 、b 的符号所有可能情况,脱去绝对值符号,这是解本例的关键。
初一数学绝对值知识点与经典例题
标准实用文案大全绝对值的性质及化简【绝对值的几何意义】一个数a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作a. (距离具有非负性)【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5?符号是负号,绝对值是5.【求字母a的绝对值】①(0)0(0)(0)aaaaaa??????????②(0)(0)aaaaa???????③(0)(0)aaaaa???????利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|≥0如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0abc???,则0a?,0b?,0c?【绝对值的其它重要性质】(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即aa?,且aa??;(2)若ab?,则ab?或ab??;(3)abab??;aabb?(0)b?;(4)222||||aaa??;(5)||a|-|b|| ≤ |a±b| ≤ |a|+|b|a的几何意义:在数轴上,表示这个数的点离开原点的距离.ab?的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.【去绝对值符号】基本步骤,找零点,分区间,定正负,去符号。
【绝对值不等式】(1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数式类型来解;(2)证明绝对值不等式主要有两种方法:标准实用文案大全A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法;B)利用不等式:|a|-|b|≦|a+b|≦|a|+|b|,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来。
绝对值知识点经典例题练习
绝对值【知识要点】一、绝对值的概念1.定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.数a 的绝对值记作:a ; 读作:a 的绝对值.2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.绝对值的几何意义:a 的几何意义:在数轴上,表示a 的点离原点的距离.离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.4.绝对值的性质:(1)绝对值是非负数,即0≥a ;(2)互为相反数的数绝对值相等,即a a -=;(3)反之,若两个数绝对值相等,那么这两个数相等或互为相反数, 即若b a =,则b a =或b a -=;(4)若0=+y x ,则0=x ,0=y .二、绝对值的求法绝对值是一种运算,这个运算符号是“”,求一个数的绝对值就是想办法去掉绝对值符号,对于任意有理数a ,有 (1)(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)⎩⎨⎧<-≥=)0()0(a a a a a (3)⎩⎨⎧≤->=)0()0 (a a a a a 【典型例题】例1. 求下列各数的绝对值.(1)8- (2)3.0- (3)313- (4)0例2.(1)一个数的绝对值是3,则这个数是(2)一个数的绝对值是0,则这个数是(3)有没有一个数的绝对值是-4? 思考:①a 与0的大小关系②有没有绝对值最小的数?例3.(1)5=a ,则=a ;(2)若2m -=,求m 的值;(3)若a b =,则a b 与的关系是什么?例4.(1)写出绝对值不大于3的所有整数 .(2)写出绝对值小于5.2而又大于2.1的所有整数 .例5. 化简:(1)()=---3 ;(2) ()=-+--32 ;(3)=-14.3π ;例6. 化简:(1)若2>a ,则=-2a ;(2)若x<0,则x = ;(3)若1≤a ,则1-a = .【初试锋芒】1.31-的绝对值是 ; 的绝对值是31. 2. 一个正数的绝对值为8,这个数是 ;一个负数的绝对值为8,这个数是 .3. 的绝对值是它本身; 的绝对值是它的相反数.4. 若0>a ,则=a ;若0<a ,则=a ;若0=a ,则=a .6.试写出:绝对值小于5的所有负整数 *7.对任意有理数a ,式子1a -,1a +,1a -+,1a +中,取值不能为0的是 *8.绝对值小于2011的所有整数之和是9.已知一组数;4,-3,21-,+5.1,214-,0,-2.2.在这组数中: (1)绝对值最大的数为 ;绝对值最小的数为 .(2)相反数最大的数为 ;相反数最小的数为 .10.下列等式中,成立的是( ) A. 33±=+ B. ()33--=- C. 33±=± D. 3131=--11.下列计算中,错误的是( ) A. 1257=-+- B. 04.03.034.0=--- C. 535154=-- D. 311312213=--- 12.如果两个数的绝对值相等,那么这两个数必满足( )A. 相等B. 都是0C. 互为相反数D. 相等或互为相反数13.下列各式中,不正确的是( ) A. 01.001.0->- B. 001.001.0->- C. ⎪⎭⎫ ⎝⎛--<--3131 D. 2.32.3->-- 14.下列判断正确的是( )A. 若b a =,则b a =B. 若b a =,则b a =C. 若b a <,则b a <D. 若b a >,则b a >* 15.指出下列各式中的a 是什么数.(1)a a = (2) a a -= (3)a a =-* 16.若,053=-++y x 求y x ,的值.* 17. 当31<≤-x 时,求31-++x x 的值.* 18.有理数a ,b ,c 在数轴上位置如下图所示,化简:|b-1|-|a-c|-|1-c|.【大显身手】1.求出下列各数的绝对值.(1)15.0 (2)3- (3)313- (4)0 (5)π-2.写出绝对值小于3.5的所有整数3.下列各组数中,互为相反数的是( ) A.21-与21 B.32-与32- C.23-与32 D.1-与()1-- 4.下列各式:①33+=-; ②5.15.1-=-; ③11-=-a a ; ④1=a ,则1=a ; ⑤⎪⎭⎫ ⎝⎛--=-2323 其中正确的个数有( ) A. 1 B. 2 C. 3 D. 45.下列说法正确的是( )A. 如果两个数的绝对值相等,则这两个数必相等B. 如果两个数不相等,那么它们的绝对值肯定不相等C. 在()()2,2,2,2-------中有两个负数D. 若()[]7,7--=-+-=b a ,则b a ,互为相反数6. 某司机在东西走向的路上(取东向为正)开车接送乘客,早晨从A 地出发,到晚上送 走最后一名乘客为止,他一天行驶路程记录如下(单位:km ):1416203015510+--+--+,,,,,,(1)若该车每千米耗油0.03L ,则这辆车今天共耗油多少升?(2) 根据记录情况,你能否知道该车送完最后一名乘客时,它在A 地的什么方向? 距A 地多远?。
绝对值(巩固篇)(专项练习)七年级数学上册基础知识专项讲练(北师大版)
专题2.12 绝对值(巩固篇)(专项练习)一、单选题【知识点一】绝对值的意义 1.﹣|﹣2020|=( ) A .2020B .﹣2020C .12020D .12020-2.若有理数a ,b ,c 满足2a b -=,6b c -=,则a c -=( ) A .6B .8C .4D .4或83.若22a a -=,则a 的取值范围是( ). A .0a >B .0a ≥C .0a ≤D .0a <【知识点二】求一个数的绝对值 4.若a ≠0,则||1a a+的值为( ) A .2B .0C .±1D .0或25.在0,23-,32-,0.05这四个数中,绝对值最大的数是( )A .0B .23-C .32-D .0.056.绝对值等于6的数是( ) A .6-B .6C .6±D .0【知识点三】化简绝对值7.如图,数轴上的三点A ,B ,C 分别表示有理数a ,b ,c ,则化简|a -b |-|c -a |+|b -c |的结果是( )A .2a -2cB .0C .2a -2bD .2b -2c8.若有理数a 、b 满足等式│b -a │-│a +b │=2b ,则有理数数a 、b 在数轴上的位置可能是( )A .B .C .D .9.1232021x x x x -+-+-+⋅⋅⋅+-的最小值是( ) A .1B .1010C .1021110D .2020【知识点四】绝对值非负性的应用 10.在有理数中,有( ) A .最大的数B .最小的数C .绝对值最小的数D .绝对值最大的数11.对于代数式75x ++,下列说法正确的是( ) A .当x=–5时,有最小值是7 B .当x=0时,有最大值是7 C .当x=–5时,有最大值是7D .当x=0时,有最小值是712.若33a a -=-,则a 的范围为( ) A .3a ≤B .3a >C .3a <D .3a ≥【知识点五】绝对值方程13.已知数轴上a 与b 相差6个单位长度,若2a -=,则b 的值为( ) A .4 B .-4或8 C .-8D .4或-814.在数轴上,点A 、B 在原点O 的两侧,分别表示数a 、2,将点A 向右平移3个单位长度,得到点C ,若点C 与点O 的距离是点B 与点O 的距离的2倍,则a 的值为( )A .1-B .7-C .1或 7-D .7或 1-15.在数轴上,点A 、B 在原点O 的两侧,分别表示数a 、2,将点A 向右平移3个单位长度,得到点C .若CO =2BO ,则a 的值为( )A .1B .-7C .1或-7D .-1或-7【知识点六】绝对值的其他应用16.设x 为一个有理数,则x x -必定是( ) A .负数B .正数C .非负数D .零17.若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是( )A .b a b a -<<<-B .b b a a <-<<-C .a b b a <-<<-D .a b b a <<-<-18.若x 为任意有理数,│x│表示在数轴上x 到原点的距离,│x -a│表示在数轴上x 到a 的距离,│x -3│+│x+1│的最小值为( )A .1B .2C .3D .4【知识点七】有理数大小比较19.实数a ,b ,c 在数轴上的对应点的位置如图所示,则不正确的结论是( )A .3a >B .0b a -<C .0ab <D .a c >-20.下列各数中最小非负数是( ) A .-2B .-1C .0D .121.下列比较大小正确的是( ) A .5(5)--<+- B .1334->-C .22()33--=-- D .10(5)3--<【知识点八】有理数大小比较的实际应用22.小红和她的同学共买了6袋标准质量为450g 的食品,她们对这6袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记不足标准质量的克数)如下: 第一袋第二袋第三袋第四袋 第五袋 第六袋25- 10+ 20- 30+15+ 40-食品质量最接近标准质量的是第几袋,最重的是第几袋. ( ) A .二,四B .六,四C .一,六D .二,六23.2013年10月某日我国部分城市的最低气温如下表(单位℃),由此可见其中最冷的城市是 ( ) 城市温州上海北京哈尔滨广州最低气温20 10 -8 -15 25 A .广州B .哈尔滨C .北京D .上海24.()min ,a b 表示a ,b 两数中的最小者,()max ,a b 表示a ,b 两数中的较大者,如()min 3,53-=-,()max 3,55-=,则132max max ,1,min ,343⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是( )A .13-B .1-C .34-D .23-二、填空题【知识点一】绝对值的意义25.|﹣2|的相反数是_____;﹣12的绝对值是_____.26.有理数a ,b 在数轴上的位置如图所示,试比较a ,b ,a -,b -四个数的大小关系:______<______<______<______.27.如果5x =-,则x =_________. 【知识点二】求一个数的绝对值28.若|a |=3,|b |=4,且a ,b 异号,则|a +b |=______.29.已知a =2,b =4,且a ,b 异号,则a +b =_____________;30.化简:﹣|35-|=__________.【知识点三】化简绝对值31.|x ﹣5|+|2﹣x |的最小值为_____. 32.若3x >,则11x x ---=______.33.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,2OA OC OB ==,且24a b c ++=-,则a b b c -+-=______.【知识点四】绝对值非负性的应用34.已知a ,b 满足|a ﹣1|+|b+3|=0,则a+b=___________. 35.如果x 为有理数,式子202063x ++的最小值等于________. 36.若|x ﹣2|+|y +3|+|z ﹣5|=0,则x=_____,y=_____,z=_____. 【知识点五】绝对值方程37.若|x -2|=2x -6,则x=____; 38.若|-x | = |12-|,则x =_______. 39.在数轴上,点A 表示的数是3x +,点B 表示的数是3x -,且,A B 两点的距离为8,则x =_________.【知识点六】绝对值的其他应用40.-++x 4x 2的最小值为_________;此时x 取值范围是_________. 41.绝对值小于2的整数有_______个,它们是______________. 42.已知5a =,24b =,若0ab <,则23a b -的值为________. 【知识点七】有理数大小比较43.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.44.比较大小:34-______4(用“>”“=”或“<”表示).45.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |; (2)a +b +c ______0: (3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a .【知识点八】有理数大小比较的实际应用46.已知|a|=3,|b|=5,|c|=2,且b <a <c ,则a =______,b =_______.47.测得某乒乓球厂生产的五个乒乓球的质量误差(单位:g )如下表.若检验时通常把比标准质量大的克数记为正,比标准质量小的克数记为负,则最接近标准质量的球是_______号.48.在数轴上,与表示1-的点距离为3的点所表示的数是___________. 三、解答题49.把数()4--,132-,0.5-+在数轴上表示出来,然后用“<”把它们连接起来;50.已知a 与﹣3互为相反数,b 与12-互为倒数.(1)a = ,b = ;(2)若|m ﹣a |+|n +b |=0,求m 和n 的值.51.若|3|6x +=,|4|2y -=,且||||0x y -≥,求||x y -的值.52.阅读下列材料,回答问题:“数形结合”的思想是数学中一种重要的思想.例如:在我们学习数轴的时候,数轴上任意两点,A 表示的数为a ,B 表示的数为b ,则A ,B 两点的距离可用式子a b -(表示,例如:5和2-的距离可用()52--或25--表示.(1)【知识应用】我们解方程52x -=时,可用把5x -看作一个点x 到5的距离,则该方程可看作在数轴上找一点P (P 表示的数为x )与5的距离为2,所以该方程的解为7x =或3x =所以,方程52x +=的解为___(直接写答案,不离过程).(2)【知识拓展】我们在解方527x x -++=,可以设A 表示数5,B 表示数2-,P 表示数x ,该方程可以看作在数轴上找一点P 使得7PA PB +=,因为7AB =,所以由可知,P 在线段AB 上都可,所以该方程有无数解,x 的取值范围是25x -≤≤.类似的,方程4610x x ++-=的___(填“唯一”或“不唯一”),x 的取值是___,(“唯一”填x 的值,“不唯一”填x 的取值范围);(3)【拓展应用】解方程4614x x ++-=参考答案1.B 【分析】根据绝对值的定义解答即可. 解:﹣|﹣2020|=﹣2020, 故选:B .【点拨】本题主要考查了绝对值,正确掌握绝对值的性质是解题关键. 2.D 【分析】根据绝对值的意义,分类讨论,进而根据a b b c a c -+-=-,求得a c -即可. 解:2a b -=,6b c -=,2a b ∴-=±,6b c -=±,a b b c a c -+-=-,当2,6a b b c -=-=时, 628a c a b b c -=-+-=+=,当2,6a b b c -=--=-时, 268a c a b b c -=-+-=--=-,当2,6a b b c -=--=时, 264a c a b b c -=-+-=-+=,当2,6a b b c -=-=-时, 264a c a b b c -=-+-=-=-, 4a c ∴-=±或8a c -=±,4a c ∴-=或8.故选D .【点拨】本题考查了绝对值的意义,求一个数的绝对值,理解绝对值的意义分类讨论是解题的关键.3.B 【分析】根据绝对值的代数意义或绝对值的非负性解题. 解:【方法1】正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值是0,由此可知,当22a a -=时,20a -≤,即0a ≥.选B .【方法2】任何数的绝对值都是非负数,即20a -≥. ℃22a a -=, ℃20a ≥,即0a ≥. 故选B .【点拨】绝对值的非负性是指在a 中,无论a 是正数、负数或者0,a 都是非负数(正数或0).这样的非负数我们在后面的学习中会陆续接触到.绝对值的非负性主要应用在解决“若几个非负数的和为零,则这几个非负数都是0”等问题上.4.D 【分析】对a 的大小进行分类讨论去绝对值即可. 解:当0a >时,||11112+=+=+=a aa a; 当0a <时,||11110+=+=-+=a aa a; 故选:D .【点拨】本题考查求一个数的绝对值,℃当a 是正数时,||a a =;℃当a 是负数时,||a a =-. 5.C 【分析】先把四个数的绝对值求出,然后利用有理数比较大小的方法进行比较即可,正数>0>负数;解:℃0的绝对值是0,23-的绝对值是23,32-的绝对值是32,0.05的绝对值是0.05,℃32>23>0.05>0,℃ 32-的绝对值最大,故选:C .【点拨】本题考查了绝对值的性质,以及有理数大小的比较,正确掌握绝对值的含义和有理数大小的比较是解题的关键;6.C【分析】根据绝对值的性质得,|6|=6,|-6|=6,依此求得绝对值等于6的数. 解:绝对值等于6的数是6或-6. 故选:C .【点拨】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.7.B 【分析】根据数轴,得到信息为a <b <0<c ,化简绝对值即可. 解:℃a <b <0<c ,℃a -b <0,b -c <0,c -a >0, ℃|a -b |-|c -a |+|b -c | =b -a -c +a +c -b =0, 故选B .【点拨】本题考查了数轴,有理数的大小比较,绝对值的化简,正确读取数轴信息,准确进行绝对值的化简是解题的关键.8.D 【分析】根据数值上表示的数和绝对值的意义逐一判断分析各项即可. 解:A.℃a <0,b >0, a <b ,℃()()22b a a b b a a b b a a b a b -+=--+=---=-≠-, ℃选项不符合题意; B. ℃a >0,b >0, a <b ,℃()()22b a a b b a a b b a a b a b -+=--+=---=-≠-, ℃本选项不符合题意; C. ℃a >0,b >0, a >b ,℃()()22b a a b b a a b b a a b b b -+=---+=-+--=-≠-,℃本选项不符合题意;D. ℃a <0,b <0, a >b , ℃()()2b a a b b a a b b a a b b -+=-++=-++=-,℃本选项符合题意;故选:D .【点拨】本题考查数轴,绝对值的意义,解题的关键是正确化简绝对值:正数和0的绝对值等于它本身,负数的绝对值等于它的相反数.9.C【分析】x 为数轴上的一点,|x -1|+|x -2|+|x -3|+…|x -2021|表示:点x 到数轴上的2021个点(1、2、3、…2021)的距离之和,进而分析得出最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|求出即可.解:在数轴上,要使点x 到两定点的距离和最小,则x 在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x ≤2021时,|x -1|+|x -2021|有最小值2020;当2≤x ≤2020时,|x -2|+|x -2020|有最小值2018;…当x =1011时,|x -1011|有最小值0.综上,当x =1011时,|x -1|+|x -2|+|x -3|+…|x -2021|能够取到最小值,最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|=1010+1009+…+0+1+2+…+1010=1011×1010=1021110.故选:C .【点拨】本题考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x =1011时,|x -1|+|x -2|+|x -3|+…|x -2021|能够取到最小值是解题关键.10.C【分析】根据有理数和绝对值的意义求解 .解:根据有理数的意义,没有最大的有理数,也没有最小的有理数,所以A 、B 都是错误的;根据绝对值的意义可知,对于一个数a ,|a|≥0,所以没有绝对值最大的数,绝对值最小的数为0,所以D 错误,C 正确.故选C .【点拨】本题考查有理数、绝对值的应用,熟练掌握有理数、绝对值的应用与性质是解题关键.11.A【分析】 根据绝对值的非负性可直接进行求解.解:50x +≥,∴757x ++≥,∴当5x =-时,75x ++有最小值7;故选A .【点拨】本题主要考查绝对值的非负性,熟练掌握绝对值的非负性是解题的关键. 12.D【分析】根据绝对值的几何意义,表示数轴上点到原点的距离,即任意实数的绝对值都是一个非负数.解:因为30a -≥,33a a -=-,所以30-≥a ,解得: 3a ≥,故选D.【点拨】本题主要考查绝对值的几何意义,解决本题的关键是要理解绝对值的几何意义. 13.D【分析】先根据数轴的定义可得一个关于a 、b 的绝对值方程,再解绝对值方程即可得.解:数轴上a 与b 相差6个单位长度,6a b ∴-=,又2a -=,即2a =-,26b ∴--=,解得4b =或8b =-,故选:D .【点拨】本题考查了数轴、绝对值方程,熟练掌握数轴的定义是解题关键.14.B【分析】先根据数轴的定义判断出0a <,再得出点C 表示的数,然后根据“点C 与点O 的距离是点B 与点O 的距离的2倍”建立绝对值方程,解方程即可得.解:点A 、B 在原点O 的两侧,分别表示数a 、2,0a ∴<,将点A 向右平移3个单位长度得到点C ,∴点C 表示的数为3a +,点C 与点O 的距离是点B 与点O 的距离的2倍,322a ∴+=⨯,解得7a =-或10a =>(舍去),即a 的值为7-,故选:B .【点拨】本题考查了数轴、绝对值方程,熟练掌握数轴的定义是解题关键.15.B【分析】先由已知条件得CO 的长,再根据绝对值的含义得关于a 的方程,解得a 即可.解:℃B 表示数是:2,℃CO=2BO=4,℃将点A 向右平移3个单位长度,℃点C 表示数是:3a +,℃34a +=,℃34a +=±,℃1a =或7-,℃点A 、B 在原点O 的两侧,℃7a =-,故选:B .【点拨】本题考查了数轴上的点所表示的数及绝对值方程,根据题意正确列式,是解题的关键.16.C【分析】分三种情况:x =0,x >0,x <0进行分析即可.解:当x =0时,|x |-x =0,当x >0时,|x |-x =0,当x <0时,|x |-x =-2x >0,则|x |-x ≥0,故选:C .【点拨】此题主要考查了绝对值,关键是掌握绝对值的性质:℃当a 是正有理数时,a 的绝对值是它本身a ;℃当a 是负有理数时,a 的绝对值是它的相反数-a ;℃当a 是零时,a 的绝对值是零.17.C【分析】根据0a <,0b >,且a b >,可得0a ->,0b -<,a b ->,据此判断出b ,a -,b -的大小关系即可.解:℃0a <,0b >,且a b >,℃0a ->,0b -<,a b ->,℃a b <-,℃a b b a <-<<-.故选:C .【考点】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数,绝对值大的其值反而小.18.D【分析】根据||x a -表示数轴上x 与a 两数对应的点之间的距离,可知当x 处于3和1-中间时,|3||1|x x -++取得最小值,即为数轴上3和1-之间的距离.解:||x a -表示数轴上x 与a 两数对应的点之间的距离,|3||1|x x ∴-++表示数轴上数x 与3和数x 与1-对应的点之间的距离之和,∴当13x -≤≤时,代数式|3||1|x x -++有最小值,最小值为|3(1)|4--=,故选:D .【点拨】本题考查了数轴上的两点之间的距离,明确||x a -表示数轴上x 与a 两数对应的点之间的距离是解题的关键.19.C【分析】利用绝对值以及数轴的性质以及实数的运算进行判断即可;解:由数轴可知-4<a <-3,-1<b <0,4<c <5;A 、℃-4<a <-3,℃ 3a > ,故此选项不符合题意;B 、℃b <c ,℃b -c <0,故此选项不符合题意;C 、℃a <0,b <0,℃ab >0,故此选项符合题意;D 、℃-4<a <-3,4<c <5,℃-5<-c <-4,℃ a >-c ,故此选项不符合题意;故选:C .【点拨】本题考查了绝对值以及数轴的性质以及实数的运算,正确掌握数轴的性质是解题的关键.20.C【分析】根据非负数的意义和有理数的大小比较求解.解:℃-2、-1是负数,0、1是非负数,且0<1,℃题中最小非负数是0,故选C .【点拨】本题考查非负数的应用和有理数的大小比较,熟练掌握非负数的意义是解题关键.21.B【分析】先化简符号,再根据有理数的大小比较法则比较即可.解:A、℃-|-5|=-5,+(-5)=-5,℃5=(5)--+-,故本选项不符合题意;B、℃114||=3312-=<339||4412-==,℃1334->-,故本选项符合题意;C、℃2233--=-,22()33--=℃22()33--≠--,故本选项不符合题意;D、℃15(5)=5=1033-->,故本选项不符合题意;故选:B.【点拨】本题考查了绝对值、相反数和有理数的大小比较,能正确化简符号是解此题的关键.22.A【分析】求出各袋高于或低于标准质量的绝对值,根据绝对值的大小做出判断,绝对值最小的最接近标准,超出标准最多的就是最重的.解:℃|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,℃第2袋最接近标准质量.℃-40<-25<-20<+10<+15<+30℃第四袋最重,故选:A.【点拨】考查正数、负数的意义以及有理数大小比较,理解绝对值的意义是正确判断的前提.23.B【分析】根据有理数比较大小的法则进行比较即可.解:℃由图可知,20,10,25均为正数,-8,-15为负数,℃只要比较出-8与-15的大小即可.℃|-8|=8,|-15|=15,8<15,℃-8>-15,℃最冷的城市是哈尔滨.故选:B .【点拨】本题考查了有理数的大小比较,熟知负数比较大小的法则是解题的关键. 24.A【分析】根据“()min ,a b 表示a ,b 两数中的最小者,()max ,a b 表示a ,b 两数中的较大者”,先确定1max ,13⎛⎫-- ⎪⎝⎭和32min ,43⎛⎫-- ⎪⎝⎭,得到13max ,34⎛⎫-- ⎪⎝⎭,再根据法则即可解答. 解:℃113->-,3243-<- ℃1max ,13⎛⎫-- ⎪⎝⎭=13-,323min ,434⎛⎫--=- ⎪⎝⎭, ℃132131max max ,1,min ,max ,343343⎡⎤⎛⎫⎛⎫⎛⎫----=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 故选:A .【点拨】本题主要考查了新定义中的有理数的大小比较,解题的关键是理解题中给出的运算法则.25. -212【分析】根据相反数和绝对值的定义解答即可.解:℃|﹣2|=2,2的相反数是-2,℃|﹣2|的相反数是-|-2|=-2;℃|﹣12|=12,故答案为:﹣2;12.【点拨】本题考查了绝对值的化简,相反数的定义,熟练掌握绝对值的意义,相反数的求法是解题的关键.26. a b b - a -【分析】根据数轴得出0a b <<,a b <,再根据实数的大小比较法则比较即可.解:从数轴可知:0a b <<,a b <,所以a b b a <<-<-,故答案为:a ,b ,b -,a -.【点拨】本题考查了数轴,相反数和实数的大小比较等知识点,能根据数轴得出0a b <<和a b <是解此题的关键.27.±5.【分析】根据绝对值的意义,可求出x 的值. 解:由绝对值的意义:正数的绝对值是它本身,负数的绝对值是它的相反数. ℃5x =-=5,℃x=±5故答案是:±5.【点拨】本题考查了绝对值的意义,准确理解绝对值的意义是解题关键.28.1【分析】根据题意可得:a =±3,b =±4,根据a 、b 异号可得:当a =3时,b =-4,a +b =-1;当a =-3时,b =4,则a +b =1.解:℃|a |=3,|b |=4,℃a =±3,b =±4,℃a 、b 异号,℃当a =3时,b =-4,3411a b +=-=-=;当a =-3时,b =4,3411a b +=-+==.故答案为1【点拨】本题考查了绝对值,熟练掌握绝对值等于同一个正数的数有两个,它们互为相反数,正数的绝对值等于它本身,负数的绝对值等于它的相反数,是解此类问题的关键.29.2±【分析】根据绝对值的性质求出a ,b ,代入求解即可;解:℃a =2,b =4,℃2a =±,4b =±,℃a ,b 异号,℃2a =,4b =-或2a =-,4b =,℃()242a b +=+-=-或242a b +=-+=;故答案是:2±. 【点拨】本题主要考查了绝对值的性质应用,准确计算是解题的关键.30.35- 【分析】 根据绝对值的代数意义进行化简即可.解:℃|35|=35 ℃﹣|35|=-35, 故答案为:-35. 【点拨】本题考查了绝对值,解决本题的关键是熟记绝对值的性质.31.3【分析】根据绝对值的性质,分x ≤2、2<x ≤5和x >5三种情况分别进行去绝对值化简,然后根据x 的取值即可得到结果.解:当x ≤2时,原式=5-x +2-x =7-2x ,此时,|x ﹣5|+|2﹣x |≥3;当2<x ≤5时,原式=5-x +x -2=3,此时,|x ﹣5|+|2﹣x |=3;当x >5时,原式=x -5+x -2=2x -7.此时,|x ﹣5|+|2﹣x |>3.综上所述,|x ﹣5|+|2﹣x |的最小值为3.【点拨】本题主要考查绝对值的化简,熟练掌握绝对值的性质是解题关键.32.0【分析】直接利用绝对值的性质结合x -1,1-x 的符号化简得出答案.解:℃3x >,℃10>x -,10<x -, ℃()1111110x x x x x x ---=---=--+=.故答案为:0【点拨】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.33.8【分析】根据2OA OC OB ==得2c a b =-=-,代入24a b c ++=-即可求出a 和c 的值,再根据绝对值的性质化简a b b c -+-,即可求出结果.解:℃2OA OC OB ==,℃2c a b =-=-,℃24a b c ++=-,℃4a c c -+=-,即4a =-,℃4c =, ℃()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点拨】本题考查数轴的性质和绝对值的性质,解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.34.-2【分析】利用非负数的性质求出a 与b 的值,即可确定出a+b 的值.解:℃||+|b+3|=0,℃a -1=0,b+3=0℃a=1,b=-3,℃a+b=1-3=-2,故答案为:-2.【点拨】此题考查了非负数的性质,任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.35.2020【分析】根据绝对值的非负性解得即可解:℃x 为有理数,℃根据绝对值的非负性:3x +≥0,℃63x +≥0,℃202063x ++≥2020,℃202063x ++的最小值为2020,故答案为:2020.【点拨】本题考查了绝对值的非负性,解题的关键是掌握:任何一个数的绝对值都是非负数.36. 2 ﹣3 5【分析】直接利用绝对值的性质分析得出答案.解:℃|x ﹣2|+|y+3|+|z ﹣5|=0,℃x ﹣2=0,y+3=0,z ﹣5=0,解得:x=2,y=﹣3,z=5.故答案为2,﹣3,5.【点拨】此题主要考查了非负数的性质,正确掌握绝对值的性质是解题关键.37.4【分析】分x≤2和x>2两种情况求解方程即可.解:当x≤2,即x -2≤0时,方程|x -2|=2x -6变形为:-(x -2)=2x -6去括号整理得,-3x=-8解得,83x =(不符合题意,舍去) 当x>2,即x -2>0时,方程|x -2|=2x -6变形为:x -2=2x -6移项合并得,x=4.故答案为:4. 【点拨】此题主要考查了绝对值方程的解法,正确去绝对值符号是解答此题的关键.38.1 2± 【分析】利用绝对值的性质即可求解.解:℃|-x | = |12-|, ℃1 2x =, ℃1 2x =±. 故答案为:1 2±. 【点拨】本题考查了绝对值,解决本题的关键是熟记负数的绝对值是它的相反数,正数的绝对值是它本身,0的绝对值是0.39.4±【分析】根据数轴上两点间的距离与绝对值的关系,列出式子,再化简绝对值,解出x 值即可.解:℃点A 表示的数是3x +,点B 表示的数是3x -,AB 两点的距离为8, ℃()338AB x x =+--=28x =4x =±.故答案为:4±.【点拨】本题考查了数轴两点间的距离,掌握绝对值的几何意义是本题的解题关键. 40. 6 24x -≤≤【分析】根据x 的不同取值去绝对值计算即可;解:当4x >时,x 4x 2x 4x 22x 2-++=-++=-,℃4x >,℃226x ->;当24x -≤≤时,x 4x 24x x 26-++=-++=;当2x <-时,x 4x 24x x 22x 2-++=---=-+,℃2x <-,℃226x -+>; 综上所述:-++x 4x 2的最小值为6,此时取值范围为24x -≤≤.故答案是:6;24x -≤≤.【点拨】本题主要考查了绝对值的应用,准确计算是解题的关键.41. 3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.解:绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点拨】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.42.16或-16.【分析】根据题意,利用绝对值的代数意义及乘方的意义求出a 与b 的值,代入原式计算即可求出值.解:℃|a|=5,b 2=4,℃a=5或-5,b=2或-2根据ab <0,则有a=5时b=-2;a=-5时b=2,℃当a=5,b=-2时,23a b -=10+6=16;当a=-5,b=2时,23a b -=-10-6=-16.故答案为:16或-16.【点拨】此题考查了有理数的减法,以及绝对值,熟练掌握运算法则是解本题的关键.43.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答解:依题意:[1.7]=1,(-1.7)=-1℃[]()1.7 1.711=0+-=-故答案为:0【点拨】此题主要考查有理数大小的比较,读懂题意,即可解答.44.>【分析】 根据两个负数相比较,绝对值大的反而小可得答案.解:|−34|=34=912,|−43|=43=1612, ℃912<1612, ℃−34>−43. 故答案为:>.【点拨】此题主要考查了有理数的比较大小,关键是掌握有理数大小比较的法则:℃正数都大于0; ℃负数都小于0; ℃正数大于一切负数; ℃两个负数,绝对值大的其值反而小.45. < < > > >【分析】首先根据数轴可得b <a <0<c ,然后再结合绝对值的性质和有理数的加减法法法则进行计算即可.解:(1)℃根据数轴可得b <a <0<c ,℃|a |<|b |故答案为:<;(2)℃a <0<c ,|a |>|c |,℃a +c <0,℃a +b +c <0;故答案为:<;(3)℃a -b >0,℃a -b +c >0;故答案为:>;(4)℃a >b ,℃a +c >b ;故答案为:>;(5)℃c >b ,℃c -b >0,℃c -b >a .故答案为:>;【点拨】此题主要考查了有理数的比较大小,关键是掌握绝对值的定义和有理数的加减法法法则.46. -3 -5【分析】根据绝对值的含义求得a 、b 、c 的值,再根据b <a <c 求得a 、b 的值.解:℃|a|=3,|b|=5,|c|=2,℃3,5,2a b c =±=±=±,又℃b <a <c ,℃a=-3,b=-5.故答案是:-3,-5.【点拨】考查了绝对值的含义和有理数的大小比较,解题关键是根据绝对值的含义求得a 、b 、c 的值.47.1【分析】将五个球的误差绝对值按从小到大的顺序排列,找出误差绝对值最小的球即是所求. 解:℃|-0.02|<0.1<0.2<|-0.23|<|-0.3|,℃1号球为最接近标准质量的球.故选A .【点拨】本题考查了正数和负数以及绝对值,找出误差绝对值最小的球是解题的关键.48.-4或2【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.解:当点在-1的左侧时,在数轴上与表示-1的点的距离为3个单位长度的点所表示的数是-4;当点在-1的右侧时,在数轴上与表示-1的点的距离为3个单位长度的点所表示的数是2.故答案为-4或2.【点拨】本题考查了数轴上两点间的距离,数轴上两点间的距离=右边点表示的数-左边点表示的数.注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法. 49.数轴见分析,()130.542-<-+<-- 【分析】首先将各数化简在数轴上表示出来,然后再根据在数轴上右边的点表示的数大于左边的点表示的数用“<”号把它们连接起来即可.解:()44--=,0.50.5-+=-, 数轴上表示如下:℃()130.542-<-+<--. 【点拨】此题主要考查了有理数的大小比较以及数轴上表示有理数,关键是掌握在数轴上右边的点表示的数大于左边的点表示的数.50.(1)3,-2;(2)m =3,n =2.【分析】解:(1)℃3与﹣3互为相反数,a 与﹣6互为相反数,℃a =3,℃﹣×(﹣2)=1互为倒数℃b =﹣2;(2)由题意得,|m ﹣5|+|n ﹣2|=0,℃m ﹣8=0,n ﹣2=2,℃m =3,n =2.故答案为:5,﹣2.51.1,11,15【分析】由绝对值的性质对x 、y 的取值分类讨论再计算即可.解:由|3|6x +=可知若x +3>0,则有x +3=6,解得x =3,||x =3若x +3<0,则有-3-x =6,解得x =-9,||x =9由|4|2y -=可知若y -4>0,则有y -4=2,解得y =6,||y =6若y -4<0,则有4-y =2,解得y =2,||y =2℃||||0x y -≥℃当||x =3时,||y =2满足条件则|||32|1x y -=-=当||x =9时,||y =6满足条件则|||96||15|15x y -=--=-=当||x =9时,||y =2满足条件则|||92||11|11x y -=--=-=综上所述||x y -的值为1,11,15【点拨】本题考查了绝对值方程,解决可化为一元一次方程的绝对值方程,其最基本的套路是:将方程中的绝对值符号去掉,转化为括号即可,括号里面的代数式,由绝对值里面代数式的符号确定:如果原代数式为正,去掉绝对值后,其结果为本身;如果原代数式为负,去掉绝对值后,其结果为相反数.52.(1)3x =-或7x =-(2)不唯一;46x -≤≤(3)6x =-或8x =【分析】(1)将方程的解看作在数轴上找一点P 与5-的距离为2,进而可得方程的解;(2)类比题干中的求解方法,进行求解即可;(3)由题意知,设P 点表示的数为x ,分类讨论:℃若P 点在A ,B 之间,表示出,PA PB的值,然后列方程求解;℃若P 点在A 点的左边,表示出,PA PB 的值,然后列方程求解;℃若点P 在B 点的右边,表示出,PA PB 的值,然后列方程求解.(1)解:方程||52x +=的解,可以看作在数轴上找一点P 与5-的距离为2℃3x =-或7x =-故答案为:3x =-或7x =-.(2)解:由题意知,设A 表示数4-,B 表示数6,P 表示数x ,℃该方程可以看作在数轴上找一点P 使得10PA PB +=,℃10AB =,℃P 在线段AB 上都可,℃该方程有无数解,x 的取值范围是46x -≤≤故答案为:不唯一;46x -≤≤.(3)解:由题意知,设P 点表示的数为x ,分类讨论:℃若P 点在A ,B 之间则4610PA PB x x +=++-=(不合题意,舍去)℃若P 点在A 点的左边则462214PA PB x x x +=--+-=-+=℃6x =-℃若点P 在B 点的右边462214PA PB x x x +=++-=-=℃8x =综上所述:原方程的解为6x =-或8x =.【点拨】本题考查了绝对值的意义,数轴上点的距离.解题的关键在于明确绝对值的意义.。
绝对值(基础)知识讲解
绝对值(基础)【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】 解法一:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0. 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.已知一个数的绝对值等于2009,则这个数是________.【答案】2009或-2009【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法都要注意若一个数的绝对值是正数,则此数有两个,且互为相反数. 举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【高清课堂:绝对值比大小 356845 典型例题3】【变式2】如果|x |=2,那么x =_____ _ ; 如果|-x |=2,那么x =______. 如果|x -2|=1,那么x = ; 如果|x |>3,那么x 的范围是 .【答案】2-2+或;2-2+或;1或3;x>3或x<-3【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 .【答案】6或-6类型二、比较大小3.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ;(4)1--______0.1--【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【点评】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 356845 典型例题2】【变式1】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】(山东临沂)下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C 类型三、绝对值非负性的应用4. 已知|2-m |+|n -3|=0,试求m -2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和。
七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习
七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习一、知识点概要1、 取绝对值的符号法则: (0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2、 绝对值的基本性质:①非负性 ②ab a b =• ③(0)a a b b b=≠ ④222a a a == ⑤a b a b +≤+ ⑥a b a b a b -≤-≤+3、 绝对值的几何意义: 从数轴上看,a 表示数学a 的点到原点的距离;a-二、分类经典例题解析 (一) 去绝对值符号化简例1:已知m m =-,化简12m m ---所得的结果是()A 、1-B 、1C 、23m -D 、32m - 例2:已知0a b c <<<,化简式子2a b a b c a b c -++--+- 例3:已知a b c abc x a b c abc=+++,且a 、b 、c 都不等于0,求x 的所有可能的值。
(变式训练)(1)、如果a 、b 、c 是非零有理数,且0a b c ++=,那么a b c abc a b c abc+++的所有可能的值为( )A 、0B 、1或—1C 、2或—2D 、0或—2(2)、有理数a 、b 、c 均不为零,且0a b c ++=,设a b c x b c c a a b =+++++,试求代数式19992002x x -+的值。
例4:化简:① 21x - ② 13x x -+-(分析:零点讨论法)(二) 利用绝对值的几何意义解题例1、如图,已知数轴上点A 、B 、C 所对应的数a 、b 、c 都不为零,且C 是AB 的中点,如果2220a b a c b c a b c +--+--+-=,试确定原点O 的大致位置。
例2:如图,在数轴上有六个点,且AB=BC=CD=DE=EF ,则与点C 所表示的数最接近的整数是( )A 、—1B 、0C 、1D 、2例3:非零整数m 、n ,满足50m n +-=,所有这样的整数组(m ,n )共有: 组 变式训练:若a 、b 、c 为整数,且19991a bc a -+-=,求c a a b b c -+-+-的值b ac B 11-5F E D C B A例4:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB|=|a-b|. ①数轴上表示2和5两点之间的距离是_ _.②数轴上表示-2和-5的两点A 和B 之间的距离是_ _.③数轴上表示1和-3的两点A 和B 之间的距离是_ _.④数轴上表示X 和-1的两点A 和B 之间的距离是(x+1),如果|AB|=2,那么 X 为 ⑤当代数式|x+1|+|x-2|取最小值时,相应的x 的取值范围是_ .最小值为 探究性学习:(一)、某公共汽车运营线路AB 段上有A 、D 、C 、B 四个汽车站,如图现在要在AB 段上修建一个加油站M ,为了使加油站选址合理,要求A 、B 、C 、D 四个汽车站到加油站M 的路程总和最小,试分析加油站M 在何处选址最好?(二)、如果某公共汽车运营线路上有A 、B 、C 、D 、E 五个汽车站(从左至右依次排列),上述问题中加油站建在何处最好?(三)、如果某公共汽车运营线路上有A 、B 、C 、D 、E---- ;共n 个汽车站(从左至右依次排列),上述问题中加油站建在何处最好?D CB A(四)、根据以上结论,求12......616617x x x x -+-++-+-的最小值。
2023年中考数学《有理数之绝对值》重点知识总及专项练习题(含答案解析)
2023年中考数学《有理数之绝对值》重点知识总及专项练习题(含答案解析)一、重点知识总结1. 绝对值的定义:数轴上表示数a 的点到原点的距离用数a 的绝对值来表示。
即|a |。
离远点越远的数绝对值越大,离原点越近的数绝对值越小。
2. 求绝对值:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0。
即⎪⎩⎪⎨⎧==−===0000a a a a a a a a a ,则若,则<若,则>若或⎪⎩⎪⎨⎧≤−=≥=00a a a a a a ,则若,则若 3. 绝对值与相反数:互为相反数的两个数绝对值相等。
即a 与b 互为相反数,则b a =。
绝对值相等的两个数要么相等,要么互为相反数。
即b a =,则b a =或b a −=。
绝对值等于一个正数的数有两个,他们互为相反数。
()0>a a x =,则a x ±=。
二、专项练习题1、(2022•黔西南州)﹣3的绝对值是( )A .±3B .3C .﹣3D .﹣31 【分析】根据绝对值的性质:|a |=即可得出答案.【解答】解:﹣3的绝对值:|﹣3|=3,故选:B .2、(2022•黄石)21−的绝对值是( )A .21−B .2﹣1C .1+2D .±(2﹣1) 【分析】直接利用绝对值的定义分别分析得出答案.【解答】解:1﹣的绝对值是﹣1;故选:B .3、(2022•百色)﹣2023的绝对值等于( )A .﹣2023B .2023C .±2023D .2022 【分析】利用绝对值的意义求解.【解答】解:因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B .4、(2022•广东)|﹣2|=( )A .21B .2C .﹣2D .﹣21 【分析】根据绝对值是数轴上的点到原点的距离,可得答案.【解答】解:|﹣2|=2,故选:B .5、(2022•荆门)如果|x |=2,那么x =( )A .2B .﹣2C .2或﹣2D .2或﹣21 【分析】利用绝对值的意义,直接可得结论.【解答】解:∵|±2|=2,∴x =±2.故选:C .6、(2022•聊城)实数a 的绝对值是45,a 的值是( )A .45B .﹣45C .±54D .±45 【分析】根据绝对值的意义直接进行解答【解答】解:∵|a |=,∴a =±.故选:D .。
绝对值知识讲解及经典例题
第三讲绝对值【例2】若|a+1|=3,则a-3的值为().A.-1 B.-7 C.-7或-1 D.2或-4【解析】(方法1)因为|a+1|=3,由绝对值的几何意义可得,数轴上表示数(a+1)的点与原点的距离是3.故a+1=±3.所以a=3-1=2或a=-3-1=-4.所以a-3=2-3=-1或-4-3=-7.故选C.(方法2)由|a+1|=3,得|a-3+4|=3.所以a-3+4=±3.将a-3看作一个整体,得a-3=-3+4=-1或a-3=-3-4=-7.故选C.【答案】C.【例3】若|a|=2,|b|=6,a>0>b,则a+b=________.【解析】由|a|=2,a>0可得a=2.由|b|=6,b<0可得b=-6.所以a+b=2+(-6)=-4.【答案】-4.知识点2 有理数比较大小(1)利用有理数的性质比较大小①法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.②比较两个负数大小的步骤:a.分别求出这两个负数的绝对值;b.比较这两个绝对值的大小;c.根据“两个负数,绝对值大的反而小”作出正确判断.(2)利用数轴比较大小数轴上不同的两个点表示的数,左边的点表示的数总比右边的点表示的数小.【注意】比较两个数大小时,在比较两个数的绝对值的大小后,不要忘记比较问题中原数的大小.【例5】在,0,-2,,2这五个数中,最小的数为().A.0 B.C.-2 D.【解析】(方法一)正数大于负数;两个负数比较大小,绝对值大的反而小.由此可得-2最小.(方法二)把这几个数在数轴上表示出来,然后根据最左边的点所对应的数最小得出结论.【答案】C.【例6】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:2,-0.5,0,1.5,-2.5.【解析】先把数2,-0.5,0,1.5,-2.5分别在数轴上表示出来,然后根据数轴上左边的点表示的数小于右边的点表示的数得出结论.【答案】由数轴可得,-2.5<-0.5<0<1.5<2 .【例7】已知a>0,b>0,且|a|>|b|,则a,-a,b,-b的大小关系是_______(用“<”号连接).【解析】由a>0,b>0,且|a|>|b|,可以得到a>b>0.由此再得到-a<-b<0,所以a,-a,b,-b的大小关系是-a<-b<b<a.【答案】-a<-b<b<a.2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.3.-32的绝对值是_____. 4.绝对值最小的数是_____.5.绝对值等于5的数是_____,它们互为_____.6.若b <0且a =|b |,则a 与b 的关系是______.7.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).8.如果|a |>a ,那么a 是_____.9.绝对值大于2.5小于7.2的所有负整数为_____.10.将下列各数由小到大排列顺序是_____.-32,51 ,|-21|,0,|-5.1| 11.如果-|a |=|a |,那么a =_____.12.已知|a |+|b |+|c |=0,则a =_____,b =_____,c =_____.13.比较大小(填写“>”或“<”号)(1)-53_____|-21|(2)|-51|_____0(3)|-56|_____|-34| 14.计算 (1)|-2|×(-2)=_____ (2)|-21|×5.2=_____ (3)|-21|-21=_____ (4)-3-|-5.3|=_____ 15.任何一个有理数的绝对值一定( )A.大于0B.小于0C.不大于0D.不小于016.若a >0,b <0,且|a |<|b |,则a +b 一定是( )A.正数B.负数C.非负数D.非正数17.下列说法正确的是( )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数18.下列结论正确的是( )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b |19.某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?1.在数轴上看,零一切负数,零一切正数;两个数,右边的数左边的数,原点左侧的点所代表的数越向左越,即离原点越远,表示的数越,所以两个负数比较大小,绝对值大的反而。
绝对值基础知识讲解
5.倒数比较法:如果两个数都大于0,那么倒数大的反而小.
【典型例题】
类型一、绝对值的概念
1.求下列各数的绝对值.
,-0.3,0,
【思路点拨】 ,-0.3,0, 在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.
2.已知一个数的绝对值等于2009,则这个数是________.
【答案】2009或-2009
【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.
【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法都要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.
【答案与解析】因Βιβλιοθήκη |2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0
所以|2-m|=0,|n-3|=0
即2-m=0,n-3=0
所以m=2,n=3
故m-2n=2-2×3=-4.
【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.
类型四、绝对值的实际应用
绝对值(基础)知识讲解
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
绝对值(基础)
【学习目标】
1.掌握一个数的绝对值的求法和性质;
绝对值知识讲解
绝对值知识讲解一、知识框架图二、基础知识1、绝对值的概念(1)定义:一个数的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作a ,读作a 的绝对值。
(2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离。
离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
(4)绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对于任意有理数a ,总有a ≥0.2、绝对值的求法 绝对值是一种运算,这个运算符号是“”。
求一个数的绝对值,就是想办法去掉这个绝对值符号,对于任意有理数a ,有:a (a >0)(1) 0(a=0)a -(a <0)a (a ≥0)(2)a -(a <0)a (a >0)(3)a -(a ≤0)这就说,去掉绝对值符号不是随便就能完成的,要看绝对值里面的数是什么性质的数。
若绝对值里面的数是非负数,那么这个数的绝对值就是它本身,此时绝对值“”符号就相当于“( )”的作用,如125--=)(125--=415=-。
由于这里2-1是正数,故去掉绝对值符号后12-=(2-1);若绝对值里面的数是负数,那么这个负数的绝对值就是这个负数的相反数这时去掉绝对值时,就要把绝对值里面的数添上括号,再在括号前面加上负号“-”。
3、利用绝对值比较两个数的大小两个负数,绝对值大的反而小。
比较两个负数的大小,可按照下列步骤进行:绝对值 绝对值的概念 绝对值的求法 比较两个数的大小(1)先求出两个负数的绝对值;(2)比较这两个绝对值的大小;(3)写出正确的判断结果。
三、例题讲解例1求下列各数的绝对值(1)21;(2)31-;(3)434-;(4)331 分析:运用绝对值的意义来求解。
解:(1)21=21;(2)31-=3131=--)(; (3)434434434=--=-)(;(4)3313=31 点评:解答本题首先要弄清楚绝对值的意义,准确列出代数式,再运用绝对值的意义求出结果,切不可写作31-=31-=31. 例2计算:(1)2.1--;(2))(3---;(3)023+---. 分析:本题关键是确定绝对值里面的数的性质,再按照绝对值的意义去掉绝对值负号。
绝对值的概念(意义)与计算经典练习题
祖π数学
新人教 七年级上册
之精讲精练 1
【知识点1】绝对值的意义
知识要点:一般地,数轴上表示数a 的点与原点的距离叫做数a 的 ,记作 ,读作a 的绝对值.
【典型例题】
1.∣-3.14∣是数轴上表示 的点到原点的距离.绝对值等于5.4的数是 , 一个数的绝对值越小,这个数表示的点到原点的距离 .
2.3.2 的相反数的绝对值是 ,绝对值最小的有理数是 .
3.在数轴上,绝对值为14,且在原点左边的点表示的数为 .
4.|2 017|的意义是 .
5. 绝对值大于1而小于5的整数有 个,分别是 ;绝对值等于10的所有数的和为 ,绝对值等于2017的所有数的和为 .
6.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是 .
【知识点2】绝对值的计算
知识要点:一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 .
【典型例题】
1.-5的绝对值是( )
A .5
B .-5 C.15
D .±5 2.计算:|-17
|=( ) A .-17 B.17
C .-7
D .7 3.计算:-|-7|=( )
A .7
B .-7 C.17 D .-17
4.下列说法中,错误的是( )
A .-12的绝对值是12
B .绝对值等于12的数只有12
C .+12的绝对值等于12
D .+12、-12的绝对值相等
5.一个数的绝对值等于它本身,这个数是( )
A .0
B .0和1
C .正数
D .非负数
6.计算:|-3.7|= ,-(-3.7)= ,-|-3.7|= ,-|+3.7|= .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、1.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭ 【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】解法一:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0.因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.(2015•毕节市)下列说法正确的是( )A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【答案】D .【解析】A 、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B 、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确.【总结升华】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式2】(2015•镇江)已知一个数的绝对值是4,则这个数是 .【答案】±4.【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 .【答案】6或-6类型二、比较大小3.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ;(4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>, 所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【点评】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.举一反三:【变式1】比大小:653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C 类型三、绝对值非负性的应用4. 已知|2-m |+|n -3|=0,试求m -2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案与解析】因为|2-m |+|n -3|=0且|2-m |≥0,|n -3|≥0所以|2-m |=0,|n -3|=0即2-m =0,n -3=0所以m =2,n =3故m -2n =2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a |+|b |+…+|m |=0时,则a =b =…=m =0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).小虫得到的芝麻数为54×2=108(粒).【巩固练习】一、选择题1.(2015.常州)-3的绝对值是().A. 3 B.-3 C.13D.13-2.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数. 3.下列各式错误的是().A.115533+= B.|8.1|8.1-=C.2233-=-D.1122--=-4)城市温州上海北京哈尔滨广州平均气温 6 0 -9 -15 15A.广州B.哈尔滨C.北京D.上海5.下列各式中正确的是().A .103<-B .1134->-C .-3.7<-5.2D .0>-2 6.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a |>|b |C .-a <-bD .-a <|b |7.若|a | + a =0,则a 是( ).A . 正数B . 负数C .正数或0D .负数或0二、填空题8.(2015•铜仁市)|﹣6.18|= .9. 若m ,n 互为相反数,则| m |________| n |;| m |=| n |,则m ,n 的关系是________.10.已知| x |=2,| y |=5,且x >y ,则x =________,y =________.11.满足3.5≤| x | <6的x 的整数值是___________.12. 式子|2x -1|+2取最小值时,x 等于 .13.数a 在数轴上的位置如图所示.则|a -2|=__________.14. 若a a =,则a 0;若a a =-,则a 0;若1a a=-,则a 0;若a a ≥,则a ; 若11a a -=-,则a 的取值范围是 .15.在数轴上,与-1表示的点距离为2的点对应的数是 .三、解答题16.比较3a-2与2a+1的大小.17.(2014秋•天水期末)如图,数轴上的三点A 、B 、C 分别表示有理数a 、b 、c .则:a ﹣b 0,a+c 0,b ﹣c 0.(用<或>或=号填空)你能把|a ﹣b|﹣|a+c|+|b ﹣c|化简吗?能的话,求出最后结果.17.【解析】解:由数轴得,a ﹣b <0,a+c <0,b ﹣c <0,∴|a ﹣b|﹣|a+c|+|b ﹣c|=﹣(a ﹣b )﹣[﹣(a+c )]+[﹣(b ﹣c )]=﹣a+b+a+c ﹣b+c=2c .18.某工厂生产某种圆形零件,从中抽出5件进行检验,比规定直径长的毫米数记作正数,比规定直径短的毫米数记作负数,检查结果记录如下:零件1 2 3 4 5 误差 -0.2 -0.3 +0.2 -0.1 +0.3根据你所学的知识说明什么样的零件的质量好,什么样的零件的质量差,这5件中质量最好的是哪一件?【答案与解析】一、选择题1.【答案】A2.【答案】B【解析】A 错误,因为两个数的绝对值相等,这两个数可能互为相反数;B 正确;C 错误,因为0的绝对值是0,而0不是正数;D 错误,因为一个数的绝对值是它本身的数除了正数还有0.3.【答案】C【解析】因为一个数的绝对值是非负数,不可能是负数.所以C是错误的.4. 【答案】B【解析】因为-15<-9<0<6<15,所以当天平均气温最低的城市是哈尔滨.5. 【答案】D【解析】0大于负数.6.【答案】B【解析】离原点越远的数的绝对值越大.7. 【答案】D【解析】若a为正数,则不满足|a| + a=0;若a为负数,则满足|a| + a=0;若a为0,也满足|a| + a=0. 所以a≤0,即a为负数或0.二、填空题8. 【答案】6.189. 【答案】=;m=±n【解析】若m,n互为相反数,则它们到原点的距离相等,即绝对值相等;但反过来, m,n绝对值相等,则它们相等或互为相反数.10. 【答案】±2,-5【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x>y,所以x=±2,y=-511. 【答案】±4, ±5【解析】画出数轴,从数轴上可以看出:在原点右侧,有4,5满足到原点的距离大于等于3.5,且小于6;在原点左侧有-4,-5满足到原点的距离大于等于3.5,且小于6.12. 【答案】1 2【解析】绝对值最小的数是0,所以当2x-1=0,即x=12时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值.13. 【答案】a-2【解析】由图可知:a≥2,所以|a-2|=a-2.14. 【答案】≥;≤;<;任意有理数;a≤115. 【答案】-3,1三、解答题16. 【解析】解:(3a-2)-(2a+1)=3a-2-2a-1=a-3当a>3时,3a-2>2a+1;当a=3时,3a-2=2a+1;当a<3时,3a-2<2a+1.17.【解析】解:根据:负数小于正数,两个负数相比较,绝对值大的反而小.所以从小到大的顺序为:-7.3%,-5.3%,-3.4%,-0.9%,2.8%,7.0%.18.【解析】解:零件的直径与规定直径的偏差可以用绝对值表示,绝对值小表示偏差小,绝对值大表示偏差大.哪个零件的直径偏差越小,哪个零件的质量越好,哪个零件的直径偏差越大,哪个零件的质量越差,所以这5件中质量最好的是第4件.。