平面几何的几个重要定理--托勒密定理
(完整版)初中几何几个著名定理及证明
① AC(BP+DP)=AD ・ BC+AB ・ DC ・ 即 AC ・ BD=AB ・ CD+AD ・ BC.2.托勒密定理的逆定理若一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这 个凸四边形內接于一圆。
己知:在凸四边形ABCD 中,AB • CD+AD • BC 二 BD • AC 。
求证:A 、B 、C 、D 四点共圆。
证明:分别以E 、A 为顶点,在 四边形ABCD初屮见何甩个著名炙龌及证明 识玻堵泗阳展療口屮曇蒐疋屮 一.托勒密定理 1.托勒密定理 圆內接四边形中,两条对角线的乘积等于两组对边乘积之和。
己知:圆內接四边形AECD,求证:AC ・BD 二AB • CD+AD ・BC 。
证明:如图所示,过C 作CP 交BD 于P, 使Z1=Z2,又Z3=Z4, AACD^ABCP. 冴 BP BC EP • AC 二 AD • BC 又 ZACB=ZDCP, Z5= Z6,,即 •:A ACB S A DCP . 得需=舘,即DP ・AC =AB ・DC内,作ZABF= ZDBC> ZBAF=ZBDC,—=—=> AB CD^BD-AF则厶ABF^ADBC 〜Ar CDAH _Bn亦—斎又•,• ZABD = Z ABF +ZEBF= ZEBF + ZDBC = ZFBC•'•△ABD S A FB C =x> —=—=>JD-/R-=Hzrc/--HC CF•••AB ・ CD+AD ・ BC=BD* (AF+CF)又VAB・CD+AD ・BC=BD・AC (己知〉,•••AC=AF + CF;「.A、F、C三点共线;ZBAC=ZBAF = ZBDC;:4、B、C、D 四点共圆。
3.托勒密不等式在任意凸四边形中,两组对边乘积的和不小于其两条对角线的乘积。
〈托勒密定理可视作托勒密不等式的特殊情况。
)即在任意凸四边形ABCD中,必有AC ・BDWAB • CD+AD * BC,当且仅当A、B、C、D四点共圆(托勒密定理)或共线(欧扌立几何定理)时取等号。
平面几何-五大定理及其证明
平面几何定理及其证明梅涅劳斯定理1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1)AD FA因为 CG // AB ,所以 EC ( 2) DB BEC F ,即得 AD C FEC FA DB EC FA2.梅涅劳斯定理的逆定理及其证明定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若二、 塞瓦定理3 .塞瓦定理及其证明定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC不是ABC 的顶点,则有AD BECF 1DB EC由(1)宁(2) DB可得兀AD BE CF DB EC FA1,那么,D E 、F 三点共线.证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有AD /BE CF 丽EC FA因为AD Bl CF DB EC FA1,所以有誥段AB 上,所以点D 与D 重合.即得D鴿.由于点D D 都在线 E 、F 三点共线.证明:运用面积比可得 ADDB S ADP S BDPS ADC S BDC根据等比定理有S ADP S ADCSADC S ADP S APCSSBDPBDCSBDCSBDPS的顶点,则有AD BE CF “1 DB EC FA .所以AD S A PC .同理可得BE SDB S BPCAPB, CFEC S APC FA SBPCS APB三式相乘得竺吏 DB EC CF i FA 4.塞瓦定理的逆定理及其证明 定理:在 ABC 三边AB BC CA 上各有一点 H 1,那么直线CD AE BF 三线共点. DE 、F ,且 D E 、 F 均不是 ABC 的顶点,AD BE若 DB EC证明:设直线AE 与直线BF 交于点P,直线CP 交AB 于点D ,则 据塞瓦定理有 AD Z DBBE EC CA1 -1,所以有 段AB 上,所以点D 与D 重合.即得 因为竺 DB EC CF FA AD DB D DDB •由于点D D 都在线 E 、F 三点共线.三、西姆松定理 5.西姆松定理及其证明 定理:从 ABC 外接圆上任意一点 F ,则D E 、F 三点共线. 证明:如图示,连接PC ,连接EF P 向BC CA AB 或其延长线引垂线, 垂足分别为DE、交BC 于点D ,连接P D• 因为PE 因为A 、 所以, 共圆. 所以, 即 PD BC 由于过点 F D E 、 四、 6 AE,PF AF,所以A 、F 、P 、E 四点共圆,可得B 、P 、C 四点共圆,所以 FEP = BCP 即 DEP = CDP + CEP = 180°。
平面几何的几个重要定理
AC1 AP cosPAB BC1 PB cosPBA
由上面的三个式子相乘 且 PAC PBC,PAB PCB,PCA PBA 180
可得 BA1 CB1 AC1 =1 , CA1 AB1 BC1
AA1 OB1 BC2 1 , OC1 BB1 CA2 1 ,
OA1 BB1 AC2
CC1 OB1 BA2
OA1 CC1 AB2 1,将上面的三条式子 AA1 OC1 CB2
相乘可得 BC2 AB2 CA2 1 应用梅涅 AC2 CB2 BA2
劳斯定理可知 A2 , B2 , C2 共线.
平面几何──平面几何的几个重要定理
引入
梅涅劳斯定 理
托勒密定 理
塞瓦定理
课外思考
平面几何──平面几何的几个重要定理
平面几何是培养严密推理能力的很好数学分支,且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、向量法等许多证法,这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题.
ACI BAC DAC ACJ
ACI ACJ IAC JAC GAC EAC
; 亚博 亚博足彩 ;
寂状态. 随时随地! 白重炙差点震惊の下巴都掉下来了! 这灵魂静寂状态の逆天之处在于,进入这状态,灵魂会飞速の飙升!神力也会随着不断の上涨,并且在这灵魂静寂状态之内——法则修炼の速度飙升! 梦幻宫为何成为神帝之下第一神器?因为在梦幻宫修炼速度是外面の几倍,法则 感悟速度也是外面の双倍,还有强者自己の对战!有这神器在手,将会培养出无数の神王强者出来.所以才名动神界,让无数强者势力为之眼红,为之垂涎不已,更有无数强者,用无数财富
四个重要定理(梅涅劳斯_塞瓦_托勒密_西姆松)
B平面几何中的四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是1=⋅⋅RBARQA CQ PC BP 。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1、设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF 2ED AE =。
【分析】CEF 截△ABD→1FABFCB DC ED AE =⋅⋅(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2、过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
求证:1FACFEA BE =+。
【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM→1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1【评注】梅氏定理3、D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △【分析】【评注】梅氏定理4、以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5、已知△ABC 中,∠B=2∠C 。
平面几何3--托勒密定理及应用
平面几何(3)----托勒密定理及应用托勒密定理:圆内接四边形的两组对边乘积之和等于两对角线的乘积推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则sin sin sin AC BAD AB CAD AD CAB ⋅∠=⋅∠+⋅∠推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin sin sin ADC BAD ABD BDC ADB DBC ∠⋅∠=∠⋅∠+∠⋅∠直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排序的四点,则AB CD BC AD AC BD ⋅+⋅=⋅四边形中的托勒密定理:设ABCD 为任意凸四边形,则,AB CD BC AD AC BD ⋅+⋅≥⋅当且仅当A ,B ,C ,D 四点共圆时取等号托勒密定理的逆定理: 在凸四边形ABCD 中,若AB CD BC AD AC BD ⋅+⋅=⋅,则A ,B ,C ,D 四点共圆例1:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 的大小成等比数列,且22b a ac -=,则角B 的弧度数等于多少?例2:凸四边形ABCD 中,60,90o o ABC BAD BCD ∠=∠=∠=,AB=2,CD=1,对角线AC ,BD 交于点O ,如图,求sin AOB ∠例3:如图,在锐角ABC 的BC 边上有两点E ,F ,满足,BAE CAF ∠=∠作FM AB ⊥于M ,FN AC ⊥于N ,延长AE 交ABC 的外接圆于点D ,证明:四边形AMDN 与ABC 的面积相等.例4:如图,在ABC 中,60o A ∠=,,AB AC >点O 是外心,两条高BE ,CF 交于H 点,点M ,N 分别在线段BH ,HF 上,且满足BM=CN ,求MH NH OH+的值例5:若有四个圆都与第五个圆内切,第一个与第二个圆的外公切线长用12l 表示,其他前四个圆中的两两的外公切线也用同样的方法来标记,且前四个圆以顺时针的顺序排列,试证明依次以12233441,,,l l l l 为边长,以1324,l l 为对角线所构成的凸四边的四个顶点共圆.例6:经过XOY ∠的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P,Q ,求证:11OP OQ+为定值例7:圆内接六边形ABCDEF 的对角线共点的充要条件是1AB CD EF BC DE FA ⋅⋅=。
平面几何定理点总结
平面几何知识点总结4.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).即:;内接于圆,则有:设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BDAC BC AD CD AB ABCD ⋅≥⋅+⋅三点共线;、、则,、、的垂线,垂足分别为、、作外接圆上一点西姆松定理:若从F E D F E D AC AB BC P ABC ∆.5的外接圆上;在则在同一直线上,、、若其垂足作垂线,的延长线或它们的三边向点西姆松的逆定理:从一ABC P N M L ABC P ∆∆)(.6;,则、于分别交和,连接和弦任意引的中点蝴蝶定理:一个圆的弦NP MP N M AB CF DE EF CD P AB =.7;2.8GHOG H G O H G O ABC =∆且三点共线,、、,则、、分别为的外心、重心、垂心欧拉定理:设三线共点。
、、则,、、外面,做三个正三角形的的小于费马点:在每个内角都''''''120.9CC BB AA ABC CAB BCA ABC ∆︒三角形。
,此三角形称为拿破仑中心组成一个正三角形,则此三角形的边为边作三个正三角形三角形的外面,各以三拿破仑三角形:在任意.10的莫莱恩线。
为三点共线。
这条直线称、、,则、、长线交于的延、、别和作其外接圆的切线,分、、三个顶点莫莱恩线:过ABC F E D F E D AB CA BC C B A ABC ∆∆.11三点共线。
、、,则、、的中点分别是以及线段、,对角线延长线交于的、,另一组对边的延长线交于、的一组对边牛顿定理:设四边形Z Y X Z Y X EF BD AC F BC AD E CD BA ABCD .12共线。
平几竞赛中三个重要定理:梅氏、塞瓦、托勒密
平面几何几个重要定理 1.ZA YC = 根据命题的条件可以画出如图所示的两种图形:或X 、Y 、Z 三点中只有一点在三角形边的延长线上,而其他两点在三角形的边上;或X 、Y 、Z 三点分别都在三角形三边的延长线上。
证明(1)必要性:即若X 、Y 、Z 三点共线,则1.CX BZ AY XB ZA YC =设A 、B 、C 到直线XYZ 的距离分别为a 、b 、c ,则,,CX c BZ b AY a XB b ZA a YC c === 三式相乘即得 1.CX BZ AY c b a XB ZA YC b a c== (2)充分性:即若 1.CX BZ AY XB ZA YC =则X 、Y 、Z 三点共线。
设直线XZ 交AC 于Y',由已证必要性得' 1.'CX BZ AY XB ZA Y C =又已知1CX BZ AY XB ZA YC =,所以'.'AY AY Y C YC=因为Y'和Y 或同在AC 线段上,或同在AC 边的延长线上,且能分得比值相等,所以Y'和Y 必重合为一点,也就是X 、Y 、Z 三点共线。
梅内劳斯定理的应用:一是求共线线段的比,即已知其中两个可以求得第三个;二是证明三点共线。
1.YA ZB=(连结三角形一个顶点和对边上一点的线段叫做这个三角形的一条塞瓦线)证明(1)必要性:即设△ABC 中,AX 、BY 、CZ 是三条塞瓦线,如果 1.XC YA ZB =则AX 、BY 、CZ 三线共点。
(如图)假设AX 与BY 这两条塞瓦线相交于P 点,连结CP 交AB 于Z',则CZ'也是一条过P 点的△ABC 的塞瓦线。
根据已证充分性命题,可得' 1.'BX CY AZ XC YA Z B =但已知 1.BX CY AZ XC YA ZB =比较两式可知''AZ AZ Z B ZB=,因此AZ' = AZ .所以Z'点与Z 点重合,从而CZ'与CZ 重合,于是得出AX 、BY 、CZ 共点。
平面几何中几个重要定理的证明
证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得
.
所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.
平面几何等几个重要定理
1.萊莫恩(Lemoine)線:設三角形ABC的∠A的外角平分線與BC的延長線交於P,∠B的平分線與AC交於Q,∠C的平分線和AB交於R。
求證P、Q、R三點共線。
註:直線PQR稱為三角形ABC的萊莫恩(Lemoine)線。
2.戴沙格定理:設三角形ABC和A'B'C'對應頂點的連線AA'、BB'、CC'交於一點S,這時如果對應邊BC和BC、CA和CA、AB和AB(或它們的延長線)相交,則它們的交點D、E、F在同直線上。
註:戴沙格定理是射影幾何中等一個重要定理。
3.牛頓定理:設四邊形ABCD的一組對邊AB和CD的延長線交於點E,另一組對邊AD和BC的延長線交於F,則AC中點L、BD中點M及EF中點N三點共線。
註:直線LMN稱為四方形ABCD的牛頓線。
4.斯特瓦爾特定理:設P為三角形ABC的邊BC上一點,且BP:PC=m:n,則有 nAB2 + m AC2 =(n+m)AP2 + mn BC2/(m+n)。
註:1.當m=n時,即P是BC的中點時,可得AB2 + m AC2 = 2( AP2 + BP2),此即三角形的中線定理,亦稱巴布斯定理。
2.當AP為三角形ABC中∠A的平分線時,則由角平線的性質得m/n=AB/AC。
此時BP =ac/(b+c),CP=ab/(b+c)。
所以AP2=4bcp(p-a)/(b+c)2。
這公式亦可用sinA/2,及三角形面積公式得到。
5.在三角形ABC中,設c>b,AD是∠A的平分線,E為BC上一點且BE=CD。
求證:AE2-AD2=(c-b)2。
6.設G為三角形的重心,M是平面上任意一點,求證:MA2+MB2+MC2=GA2+GB2+GC2+3MG2。
7.在三角形ABC的邊BC上任取一點D,設ADB和ADC的角平分線分別交AB、AC於E和E,求證AD、BE、CF交於一點。
8.已知AD是三角形ABC的邊BC上等高,P為AD上任意一點,直線BP、CP分別交AC、AB於E、F,求證∠FDA=∠ADE。
平面几何的几个重要的定理
证:在 EBC 中,作 B 的平分线BH贝U: EBCACKHBCACE HBC HCB ACEHCB 90即:BH CE作BC 上的高EP ,贝U: CK EP对于ACK 和三点D 、 E 、 F 依梅涅劳斯定理有: CD 胆 KF i DA EKFCKF__ EK CK FC — AE AC EP BP BK AC BC BE即KF _ BK FC _ BE依分比定理有: KF _ BKKC _ KE平面几何的几个重要的定理一、梅涅劳斯定理:定理1若直线I 不经过 ABC 的顶点,并且与 的延长线分别交于 P 、Q 、R ,贝VBP CQ AR 1PC QA RB证:设h A 、h B 、h C 分别是A 、B 、C 到直线I 的垂线的长度,贝y : BP CQ AR h B h e h A , 1PC QA RB h C h A h B注:此定理常运用求证三角形相似的过程中的线段成比例的条件;在AK 上, D 是AC 的中点, F 是DE 与CK 的交点,证明: BF // CE例1:若直角 ABC 中,CK 是斜边上的高, CE 是 ACK 的平分线, E 点ABC 的三边BC 、CA 、AB 或它们EBC 为等腰三角形FKB CKE BF //CEA 1 C 1 A 1 D 1B 1C 1 B 1D 1【练习1从点K 引四条直线,另两条直 AC 和 A 1 > B 1> C 1> D 1,试证: --BC线分别交这四条直线于 A 、B 、C 、DAD BD依梅涅劳斯定理可知 A 1> B 1> 6三点共线; .下载可编辑.CA 、AB 上或它们的延长线上的P 、Q 、R 三点中,位于 ABC 边上的点的个数为 0或2,这时若 聖PC 定理2:设P 、Q 、R 分别是 ABC 的三边BC 、 三点,并且CQ AR QA RB1,求证:P 、Q 、R 三点共线;证:设直线PQ 与直线AB 交于R ',于是由定理BP CQ AR ' PC QA R ' B又 BP CQ AR PC QA RB由于在同一直线上的 ABC 边上的点的个数也为 0或2,AR AR 1,贝 U : - L =R B RBP 、Q 、R '三点中,位于因此R 与R '或者同在AB 线段上,或者同在 AB 的延长线上;若R 与R '同在AB 线段上,则R 与R '必定重合,不然的话, 设AR AR ',AR AR 'BR BR '这时AB AR AB AR ',即卩BR BR ',于是可得AR AR 这与 =——T 矛盾BR BR 类似地可证得当 R 与R'同在AB 的延长线上时, 综上可得:P 、Q 、R 三点共线;注:此定理常用于证明三点共线的问题,且常需要多次使用R 与R 也重合再相乘;例2点P 位于 ABC 的外接圆上;A 1>C 1是从点P 向BC 、CA 、AB 引的垂线的垂足,证明点A 1> B 1> BA 1 BP cos PBC CA 1 CP cos PCB CB 1 CP cos PCA AB 1 AP cos PAC AC 1 AP cos PABC i 共线;证:易得:PB cos PBABC 1将上面三条式子相乘,且 PAC PBC , PAB PCB , BA 1 CB 1 AC 1—1 , CA [ AB 1 BC 1PCAPBA 180可得【练习4在一条直线上取点E 、C 、B 、F 、D ,记直线AB 和ED ,【练习2】设不等腰 ABC 的内切圆在三边 BC 、CA 、AB 上的切点分别为 D 、E 、F ,则EF 与BC , FD 与CA ,DE与AB 的交点 X 、Y 、Z 在同一条 直线上;【练习3】已知直线 AA i ,BB 1,CC i 相交于0,直线AB 和 A 1B 1的交点为 C 2,直线 BC 与B 1C 1的交点是 A 2,直 线AC 与A i C i 的交点是B 2,试证:A 2、B 2、C 2三点共线;CD 和AF ,CD 和AF ,EF 和BC 的交点依次为 L 、M 、N ,证明:L 、M 、N 共线练习1的证明证:若AD // A 1D 1,结论显然成立; 若AD 与A 1 D 1相交与点AD LD LD BDLD j A 1K A 1D 1 AK BKBQ B 1K LD 1 将上面四条式子相乘可即:也:如 BC BD A 1C 1B 1C 1L ,则把梅涅劳斯定理分 LC AK A 1C 1 AC A 1K 得.AD 得: -ACA 1 D 1B 1 D 1LC 1别用于 A 1AL 和B 1BL 可得: BCLC L B 1KB 1C 1 LC BK 1BC A 1C 1 BD A 1D 1B 1D 1 B 1C 1证:ABC 被直线 XFE 所截,由定理 1可得:BXCE XCEA 又 AE AF 代人上式可得: BX FB XC CECY DC AZ EA同理可得: -YA AF ZBBD将上面三条式子相乘可得:BX 得: CY AZ d1XC YA ZB又 X 、 Y 、 Z 都不在 ABC 的边上 .,由定理 2可得 练习2的证明 X 、YAF FBZ 三点共线练习3的证明证:设A 2、B 2、C 2分别是直线 BC 和B 1C 1,对所得的三角形和在它 C 1 ,A 2 ),OAC 和(A 1, AA 1 OB 1 BC 2 1 AC? AC 和 A 1C 1, 们边上的点:OAB 和(A" C 1,B 2)应用梅涅劳斯定理有: OC 1 BB 1 CA 2 . OA CC 1 OB 1 BA 2 可得:B C 2 A B 2AC 2 CB 2 由梅涅劳斯定理可知 A 2 , B 2 ,C 2共线 AB 和A 1B 1的交点, B 1 ,C 2 ),OBC 和(B“ i OA 1 BB 1 BB 1 CA 2 将上面的二条式子相乘 1 AA 1 CA 2BA 2 1练习4的证明 CC 1 AB 2 i OC 1 CB 2 证:记直线 EF 和CD ,EF 和AB ,AB 和CD 的交点分别为 U 、V 、W ,对 UVW ,应用梅 涅劳斯定理于五组三元 点(L,D,E ),( A,M ,F ),(B,C,N ),( A,C,E ),( B,D,F ),则有UE VL WD VE WL UD WA UC VE VA WC UE,VA UF WM 1WA VF YM ,WB UD VF 1VB WD UF,UN WC VB1VN UC WB将上面五条式子相乘可得益晋赭1, 点L,M ,N 共线平面几何的几个重要定理塞瓦定理:设P 、Q 、R 分别是 ABC 的 BC 的充要条件是:聖3塑1PC QA RB------ 塞瓦定理CA 、AB 边上的点,则AP 、BQ 、CR 三线共点BMPACP SCMPSBCMSABMSACMSBCM以上三式相乘,得:C2竺=iPC QA RB证:先证必要性:设AP、BQ、CR相交于点M,贝BP S ABP S BMP S ABM PC S ACP S CMP S ACM同理:BQAARRBBP CQ AR再证充分性:若 ------------ 1,设AP与BQ相交于M,且直线CM交AB于R,PC QA RB由塞瓦定理有:圧竺翌1,PC QA R B于是:竺=纯R B RB因为R和R都在线段AB上,所以R必与R重合,故AP、BQ、CR相交于一点点M; 例1:证明:三角形的中线交于一点;证明:记ABC的中线AA,, BB,, CC,,我们只须证明型-BA1 1C, B A,C B, A而显然有:AC, C, B, BA, A1C,CB1B, AAC, BA, CB,即 1 1 1 1成立,ABC父于一点;C, B A,C B, A【练习1】证明:三角形的角平分线交于一点;【练习2】证明:锐角三角形的高交于一点;例2:在锐角ABC中,角C的平分线交于AB于L,从L作边AC和BC的垂线,垂足分别是M和N,设AN和BM的交点是P,证明:CP AB又 MC 即要证AMLAKCAM AL A K ACBNLBKCBK BC NB BL即要证AC 匹1BL 证:作CK AB下证CK 、BM 、AN 三线共点,且为P 点, 要证CK 、BM 、AN 三线共点,依塞瓦定理AM CN BK ,即要证:-1MC NB AK CN AM BK A K NBBBC BL FDA ,AD BC 故MN //BC ,可得 AME AM CDAD 、 CDE , Af ,于是AMBDFANF AE CD “ ,AN CECF 共点于P ,根据塞瓦定理可得:-BDDCAE AN CE ,BDBE、 AF BD BF CE AF , 1EA FBAE CD CE AM AN EDAAF BD BF FDA【练习创已知 CAN BCMABC 外有三点M 、N 、R ,且BAR ,CBM ABR , ACN ,证明:AM 、BN 、CR 三线共点;依三角形的角平分线定 理可知:昱ACCK 、BM 、AN 三线共点,且为P 点 CP AB例3.设AD 是 ABC 的高,且D 在BC 边上,若P 是AD 上任一点,BP 、CP 分别与AC 、 AB 交于 E 和 F ,贝U EDA = FDA证:过A 作AD 的垂线,与DE 、DF 的延长线分别 交于M 、N 。
平面几何的重要定理
2、塞瓦(Ceva)定理: 塞瓦(Ceva)定理 (Ceva)定理
A B C 别 ∆ B 的 设 ′、 ′、 ′分 是 A C 三 B 、A A 上 点 边C C 、B 的 . 则 A ′、 B、 C′交 ,A B ′ C 于 点 充 条 是 一 的 要 件
A ′ B′ C ′ C A B ⋅ ⋅ =1. ′ ′ C′B AC BA
N
C
5、欧拉(Euler)定理: 欧拉(Euler)定理 (Euler)定理
1
(1)欧 定 : ∆ B 的 心 重 、 拉 理 设A C 外 、 心 垂 分 为、 、 , O G H 心 别 O G H 则、、 1 H 三 共 , O = O . 点 线 且G 3
(2)欧 公 : ∆ B 的 接 半 拉 式 设A C 外 圆 径 为, 切 半 为 两 心 间 R 内 圆 径 r, 圆 之 的 离 d 则 r 距 为 , d = R −2R .
C′
M
B′
C
3、托勒密(Ptolemy)定理: 托勒密(Ptolemy)定理 (Ptolemy)定理
(1)定 : A C 为 内 四 形 理 设B D 圆 接 边 , 则 B⋅ C + B ⋅ A = A ⋅ B . A D C D C D (2)逆 理 若 边 A C 满 : 定 : 四 形B D 足 A ⋅C + B ⋅ A = A ⋅ B , B D C D C D A A B C D 点 圆 则、、、四 共 .
11、莫莱定理 11、莫莱定理:
课后思考: 课后思考:
1 已 ∆ B 中 ∠ = 2∠ = 4∠ ,A 、 知A C , C B 1 1 1 1 1 . = 求 : + 证 A B A C B D
四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)
P 、Q R ,则P 、Q R 共线的充要条件是聖CQ ARj 。
PC QA RBBP CQ AR PC QA RB _ °平面几何中的四个重要定理梅涅劳斯(Menelaus )定理(梅氏线)△ABC 的三边BC CA AB 或其延长线上有点塞瓦(Ceva )定理(塞瓦点)△ABC 的三边 BC CA AB 上有点 P 、Q R ,贝U AP 、BQ CR 共点的充要条件是 托勒密(Ptolemy )定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson )定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 圆上。
例题:PA 1设AD是MBC的边BC上的中线,直线CF交AD于F。
求证:AE 2AFED。
AE DC RF【分析】CEF截△ARCH — .— .— =1 (梅氏定理)ED CR FA【评注】也可以添加辅助线证明:过A、R、D之一作CF的平行线。
2、过△ARC的重心G的直线分别交AB AC于E、F,交CR于D。
RE CF=1。
求证:EA FADEG截A ARM H REEAAGGMMDDR(梅氏定理)DGF截△ACM H =1 (梅氏定理)FA GM DCRE CF=GM (DR DC)=GM2MDEA FA AG MD 2GM MD【评注】梅氏定理3、D E、F分别在A ARC的RC CA AR边上,RD AFDC FRCEEAAD RE、CF交成△ LMN 求S A LM N O【分析】【评注】梅氏定理4、以A ARC各边为底边向外作相似的等腰A RCE A CAF A ARG 求证:AE、RF、CG相交【分析】连结并延长AG交RC于M,则M为RC的中点。
FLEM N【评注】塞瓦定理5、已知△ABC 中,/ B=2/ G 求证:AC^AB+ABBCo【分析】过A 作BC 的平行线交△ABC 的外接圆于D,连结BD 贝 U CD=DA=AB AC=BD由托勒密定理,AC BD=ADBC+CDAB【评注】托勒密定理求证:1 1 1A !A 2=A !A 3 A !A 4。
平面几何中的几个重要定理
平面几何中的几个重要定理自欧几里得的《几何原本》问世以来,初等几何以其新奇、美妙、丰富、完美的内容和形式引发了历代数学家们浓厚的兴趣.许多杰出的人物为了探索几何学中的奥秘而奉献了毕生的精力,他们发现了一个又一个新的定理,推动了几何学的迅速发展.为了纪念他们,人们以他们的名字来命名他们所获得的重要成果.这些优秀成果如同璀璨的明珠照亮了几何学的历程.这里我们介绍几何学中的几个重要定理以及它们在数学竞赛解题中的应用。
一、塞瓦定理塞瓦(G .Ceva 1647—1743),意大利著名数学家.塞瓦定理 设为三边所在直线外一点,连接分别和的边或三边的S ABC ∆CS BS AS ,,ABC ∆延长线交于(如图1),则.R Q P ,,1=⋅⋅RBARQA CQ PC BP 证明 (面积法)考虑到△ABS 与△ACS 有公共底边AS ,因此它们面积之比等于分别从顶点B 、C 向底边AS所引垂线长的比,而这个比又等于BP 与PC 之比,所以有P174同理可得三式相乘,即得··=··=1ABCSPQRBACSPQR1图与塞瓦定理同样重要的还有下面的定理.塞瓦定理逆定理 设为的边或三边的延长线上的三点(都在三边R Q P ,,ABC ∆R Q P ,,上或只有其中之一在边上),如果有,则三直线交于一点或互相平行. 1=⋅⋅RBARQA CQ PC BP CR BQ AP ,, 证明 因三点P 、Q 、R 中必有一点在三角形的边上,不妨假定P 点在BC 边上。
若BQ 与CR 相交,设交点为S ,又设AS 和BC 的交点为P’,由塞瓦定理,应有··=1与已知条件中的式子比较,得=但由于点P 和P’同在BC 边上,所以P 和P ’重合,即三直线AP 、BQ 、CQ 交于一点。
P175若BQ 与CR 平行,则=.把它代入已知条件的式子中,**=1,RB AB QC AC PC BP QA CQ QCAC∴;BQ//PA 。
平面几何四大定理
平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC得三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线得充要条件就是.塞瓦(Ceva)定理(塞瓦点)△ABC得三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点得充要条件就是。
托勒密(Ptolemy)定理四边形得两对边乘积之与等于其对角线乘积得充要条件就是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形得三边所引垂线得垂足共线得充要条件就是该点落在三角形得外接圆上。
例题:1.设AD就是△ABC得边BC上得中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作C F得平行线。
2.过△ABC得重心G得直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC得中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3.D、E、F分别在△ABC得BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似得等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC得平行线交△ABC得外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7.求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC得BC边上得高AD得延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F.求证:BC·EF=BF·CE+BE·CF。
平面几何中的几个重要定理.doc
S 二 CASS.1CBS=1平面几何中的几个重要定理自欧几里得的《几何原本》问世以来,初等几何以其新奇、美妙、丰富、完美的内容 和形式引发了历代数学家们浓厚的兴趣.许多杰出的人物为了探索几何学中的奥秘而奉献了 毕生的精力,他们发现了一个又一个新的定理,推动了几何学的迅速发展.为了纪念他们, 人们以他们的名字来命名他们所获得的重要成果.这些优秀成果如同璀璨的明珠照亮了儿何 学的历程.这里我们介绍儿何学中的儿个重要定理以及它们在数学竞赛解题中的应用。
一、塞瓦定理塞瓦(G. Ceva 1647—1743),意大利著名数学家.塞瓦定理 设S 为A/WC 三边所在直线外一点,连接AS,BS,CS 分别和\ABC 的边或三边的 延长线交于P,Q,R (如图1),则 竺.丝.坐=1.PC QA RB证明 (面积法)考虑到ACS 有公共底边AS,因此它们面积之比等于分别从顶点 B 、C 向底边AS 所引垂线长的比,而这个比乂等于BP 与PC 之比,所以有P174BP _ S^ABS PC Smcs同理可得CQ _ S 〉BCS QA S^BAS AR S^CAS . RB S^CBS三式相乘,即得BP . £Q . AR S 二A 〉- . S 隽usPC QA RB S iACS S^BASA平行.点或互相与塞瓦定理同样重要的还有下面的定理.塞瓦定理逆定理 设P,Q,R 为AABC 的边或三边的延长线上的三点(P,0R 都在三边证明 因三点P 、Q 、R 中必有一点在三角形的边上,不妨假定P 点在BC 边上。
若BQ 与CR 相交,设交点为S,又设AS 和BC 的交点为P',由塞瓦定理,应有BP CQ AR_ PC # QA # RB"1与已知条件中的式子比较,得BP BP , PC"PrC但由于点P 和P'同在BC 边上,所以P 和P'重合,即三直线AP 、BQ 、CQ 交于一点。
高中数学竞赛 平面几何的几个重要定理——托勒密定理
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).即:ABCD AB CD AD BC AC BD ⋅+⋅≥⋅定理:在四边形中,有:ABCD 并且当且仅当四边形内接于圆时,等式成立;()ABCD E BAE CAD ABE ACDAB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC ADBC ED AD BC AC ED AC ADAB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、一、直接应用托勒密定理例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC .分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB ,∵AB=BC=AC . ∴PA=PB+PC .二、完善图形 借助托勒密定理例2 证明“勾股定理”:在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 证明:如图,作以Rt △ABC 的斜边AC 为一对角线的矩形ABCD ,显然ABCD 是圆内接四边形.由托勒密定理,有 AC ·BD=AB ·CD +AD ·BC . ①又∵ABCD 是矩形,∴AB=CD ,AD=BC ,AC=BD . ②把②代人①,得AC 2=AB 2+BC 2.例3 如图,在△ABC 中,∠A 的平分 线交外接∠圆于D ,连结BD ,求证:AD ·BC=BD(AB +AC).证明:连结CD ,依托勒密定理,有AD ·BC =AB ·CD +AC ·BD .∵∠1=∠2,∴ BD=CD .故 AD ·BC=AB ·BD +AC ·BD=BD(AB +AC).三、构造图形 借助托勒密定理例4 若a 、b 、x 、y 是实数,且a 2+b 2=1,x 2+y 2=1.求证:ax +by ≤1.证明:如图作直径AB=1的圆,在AB 两边任作Rt △ACB 和Rt △ADB ,使AC =a,BC=b,BD =x ,AD =y .由勾股定理知a 、b 、x 、y 是满足题设条件的.据托勒密定理,有AC ·BD +BC ·AD=AB ·CD .∵CD ≤AB =1,∴ax +by ≤1.四、巧变原式 妙构图形,借助托勒密定理例5 已知a 、b 、c 是△ABC 的三边,且a 2=b(b +c),求证:∠A=2∠B .分析:将a 2=b(b +c)变形为a ·a=b ·b +bc ,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b ,两对角线为a ,一底边为c .证明:如图 ,作△ABC 的外接圆,以 A 为圆心,BC 为半径作弧交圆于D ,连结BD 、DC 、DA .∵AD=BC ,ACD BDC =∴∠ABD=∠BAC .又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC ·AD=AB ·CD +BD ·AC . ①而已知a 2=b(b +c),即a ·a=b ·c +b 2. ②∴∠BAC=2∠ABC .五、巧变形 妙引线 借肋托勒密定理例6 在△ABC 中,已知∠A ∶∠B ∶∠C=1∶2∶4,分析:将结论变形为AC ·BC +AB ·BC=AB ·AC ,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图,作△ABC 的外接圆,作弦BD=BC ,边结AD 、CD .在圆内接四边形ADBC 中,由托勒密定理,有AC ·BD +BC ·AD=AB ·CD易证AB=AD ,CD=AC ,∴AC ·BC +BC ·AB=AB ·AC ,1.已知△ABC 中,∠B=2∠C 。
平面几何的26个定理
ED C B A 高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:假设直线l 不通过ABC ∆的极点,而且与ABC ∆的三边,,BC CA AB 或它们的延长线别离交于,,P Q R ,那么1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 别离是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,那么1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,而且当且仅当四边形ABCD 内接于圆时,等式成立。
()ABCD E BAE CAD ABE ACDAB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC ADBC ED AD BC AC ED AC ADAB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C D ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;注:托勒密定理的逆定理也成立4. 西姆松定理:假设从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足别离为,,D E F ,那么,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足别离为,,D E F 。
假设,,D E F 三点共线,那么点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 别离交PQ 于X ,Y ,那么M 为XY 当中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
D
C
B
A
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).
即:ABCD AB CD AD BC AC BD ⋅+⋅≥⋅定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立;
()ABCD E BAE CAD ABE ACD
AB BE
ABE ACD AB CD AC BE AC CD
AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD
AB CD AD BC AC BE ED AB CD AD BC AC BD
E BD A B C D ∠=∠∠=∠∆∆∴
=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅证:在四边形内取点,使,则:和相似又且和相似
且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;一、直接应用托勒密定理
例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC .
分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形 借助托勒密定理
例2 证明“勾股定理”:在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 证明:如图,作以Rt △ABC 的斜边AC 为一对角线的矩形ABCD ,显然ABCD 是圆内接四边形.
由托勒密定理,有 AC ·BD=AB ·CD +AD ·BC . ① 又∵ABCD 是矩形,∴AB=CD ,AD=BC ,AC=BD . ② 把②代人①,得AC 2=AB 2+BC 2.
例3 如图,在△ABC 中,∠A 的平分 线交外接∠圆于D ,连结BD , 求证:AD ·BC=BD(AB +AC).
证明:连结CD ,依托勒密定理,有AD ·BC =AB ·CD +AC ·BD . ∵∠1=∠2,∴ BD=CD .
故 AD ·BC=AB ·BD +AC ·BD=BD(AB +AC). 三、构造图形 借助托勒密定理
例4 若a 、b 、x 、y 是实数,且a 2+b 2=1,x 2+y 2=1.求证:ax +by ≤1. 证明:如图作直径AB=1的圆,在AB 两边任作Rt △ACB 和Rt △ADB , 使AC =a ,BC=b ,BD =x ,AD =y .
由勾股定理知a 、b 、x 、y 是满足题设条件的.
据托勒密定理,有AC ·BD +BC ·AD=AB ·CD . ∵CD ≤AB =1,∴ax +by ≤1.
四、巧变原式 妙构图形,借助托勒密定理
例5 已知a 、b 、c 是△ABC 的三边,且a 2=b(b +c),求证:∠A=2∠B . 分析:将a 2=b(b +c)变形为a ·a=b ·b +bc ,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b ,两对角线为a ,一底边为c .
证明:如图 ,作△ABC 的外接圆,以 A 为圆心,BC 为半径作弧交圆于D ,连结BD 、DC 、DA .∵AD=BC ,ACD BDC =∴∠ABD=∠BAC . 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.
依托勒密定理,有BC ·AD=AB ·CD +BD ·AC . ① 而已知a 2=b(b +c),即a ·a=b ·c +b 2. ②
∴∠BAC=2∠ABC .
五、巧变形 妙引线 借肋托勒密定理
例6 在△ABC 中,已知∠A ∶∠B ∶∠C=1∶2∶4,
分析:将结论变形为AC ·BC +AB ·BC=AB ·AC ,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.
如图,作△ABC 的外接圆,作弦BD=BC ,边结AD 、CD . 在圆内接四边形ADBC 中,由托勒密定理, 有AC ·BD +BC ·AD=AB ·CD
易证AB=AD ,CD=AC ,∴AC ·BC +BC ·AB=AB ·AC ,
1.已知△ABC 中,∠B=2∠C 。
求证:AC 2=AB 2
+AB ·BC 。
【分析】过A 作BC 的平行线交△ABC 的外接圆于D ,连结BD 。
则CD=DA=AB ,AC=BD 。
由托勒密定理,AC ·BD=AD ·BC+CD ·AB 。
2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM
∆=+
由外接圆的弧上一点分别向边、与作垂线、和,
求证:
PM AB
PL AC PK BC PM CP PM AB PL BP PL AC PK AP PK BC PM
CP PL BP PL BP PK AP PA
PB
PL PK LAP Rt KBP Rt LAP KBP PM
CP PM
AB PL BP PL AC PK AP PK BC CP
AB BP AC AP BC ABPC PC PB PA +=⋅⋅+⋅⋅=⋅⋅∴⋅=⋅⋅=⋅⇒=∴
∆∆∠=∠⋅⋅+⋅⋅=⋅⋅⋅+⋅=⋅可得:
由同理可得:相似和可知由即:利用托勒密定理有:,对于四边形、、证:连接。