八年级初二数学下学期勾股定理单元专题强化试卷学能测试试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学下学期勾股定理单元专题强化试卷学能测试试题
一、选择题
1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
A .600m
B .500m
C .400m
D .300m
2.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .
A .25
B .20
C .24
D .105 3.如图,将一个等腰直角三角形按图示方式依次翻折,若D
E a =,则下列说法正确的是
( ) ①DC '平分BDE ∠;②BC 长为
()
22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.
A .①②③
B .②④
C .②③④
D .③④
4.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )
A .2cm
B .3cm
C .4cm
D .5cm
5.如图,在数轴上点A 所表示的数为a ,则a 的值为( )
A .15--
B .15-
C .5-
D .15-+
6.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )
A .直角三角形
B .等边三角形
C .等腰三角形
D .以上都不对
7.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( )
A .4
B .3
C .2
D .1
8.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )
A .217
B .25
C .42
D .7
9.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )
A .10
B .53
C .213
D .1510.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的
体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )
A .3尺
B .4.2尺
C .5尺
D .4尺
二、填空题
11.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.
12.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.
13.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___
14.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.
15.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交
BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.
16.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.
17.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)
①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°
18.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.
19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.
20.如图,直线423
y x =
+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.
三、解答题
21.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.
22.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .
(1)判断AE 与BD 的数量关系和位置关系;并说明理由.
(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.
23.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .
(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;
②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;
(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.
24.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .
25.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .
(1)如图1,当,D E 两点重合时,求证:BD DF =;
(2)延长BD 与EF 交于点G .
①如图2,求证:60BGE ∠=︒;
②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为
______________.
26.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.
(1)若∠A =35°,则∠CBD 的度数为________;
(2)若AC =8,BC =6,求AD 的长;
(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)
27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .
(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).
①试证明ABD ∆是直角三角形;
②求线段CD 的长.(用含n 的代数式表示)
(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.
28.(已知:如图1,矩形OACB 的顶点A ,B 的坐标分别是(6,0)、(0,10),点D 是y 轴上一点且坐标为(0,2),点P 从点A 出发以每秒1个单位长度的速度沿线段AC ﹣CB 方向运动,到达点B 时运动停止.
(1)设点P 运动时间为t ,△BPD 的面积为S ,求S 与t 之间的函数关系式;
(2)当点P 运动到线段CB 上时(如图2),将矩形OACB 沿OP 折叠,顶点B 恰好落在边AC 上点B ′位置,求此时点P 坐标;
(3)在点P 运动过程中,是否存在△BPD 为等腰三角形的情况?若存在,求出点P 坐标;若不存在,请说明理由.
29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .
(1)请直接写出CM 和EM 的数量关系和位置关系.
(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.
30.阅读下列材料,并解答其后的问题:
我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的
解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的
边分别为a、b、c,△ABC的面积为S=()()()()
a b c a b c a c b b c a
+++-+-+-
.
(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b =5,c=7,则△ABC的面积为;
(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.
【详解】
解:如右图所示,
∵BC∥AD,
∴∠DAE=∠ACB,
又∵BC⊥AB,DE⊥AC,
∴∠ABC=∠DEA=90°,
又∵AB=DE=400m,
∴△ABC≌△DEA,
∴EA=BC=300m,
在Rt△ABC中,22
AB BC
+=500m,
∴CE=AC-AE=200,
从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,
∴最近的路程是500m.
故选B .
【点睛】
本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.
2.A
解析:A
【分析】
分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.
【详解】
把左侧面展开到水平面上,连结AB ,如图1
()2210205925537AB =++==
把右侧面展开到正面上,连结AB ,如图2
()()22
2010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3
()()22
10205725529AB =++==925725625>>∴53752925>>
∴需要爬行的最短距离为25cm
故选:A .
【点睛】
本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
3.B
解析:B
【分析】
根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC 和DE 的关系.
【详解】
解:根据折叠的性质知,△C ED CED '≅∆,且都是等腰直角三角形,
∴90BDE ∠<︒,45C DE ∠'=︒,
∴12
C DE BDE ∠'≠∠ ∴DC '不能平分BDE ∠①错误;
45DC E DCE ∴∠'=∠=︒,C E CE DE AD a '====,
2CD DC a ='=,
2AC a a ∴=,2(22)BC a ==,
∴②正确;
2ABC DBC ∠=∠,
22.5DBC ∴∠=︒,
45DCB ∠=︒,
112.5BDC ∴∠=︒,
BCD ∴∆不是等腰三角形,
故③错误;
CED ∴∆的周长(2CE DE CD a a a BC =++=+==,
故④正确.
故选:B .
【点睛】
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.
4.B
解析:B
【分析】
根据翻折的性质可知:AC =AE =6,CD =DE ,设CD =DE =x ,在Rt △DEB 中利用勾股定理解决.
【详解】
解:在Rt △ABC 中,
∵AC =6,BC =8,
∴AB =10,
△ADE 是由△ACD 翻折,
∴AC =AE =6,EB =AB−AE =10−6=4,
设CD =DE =x ,
在Rt △DEB 中,
∵222DE EB DB +=,
∴()2
2248x x +=-,
∴x =3,
∴CD =3.
故答案为:B .
【点睛】
本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题. 5.A
解析:A
【分析】
首先根据勾股定理得出圆弧的半径,然后得出点A 的坐标.
【详解】
∴由图可知:点A 所表示的数为: 1-故选:A
【点睛】
本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.
6.C
解析:C
【分析】
利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.
【详解】
解:由已知可得CD=BD=5,
22251213+=
即222BD AD AB +=,
ABD ∴是直角三角形,90ADB ∠=︒,
90ADC ∴∠=︒
222AD CD AC ∴+=
13AC ∴=
13AB AC ∴==
故ABC 是等腰三角形.
故选C
【点睛】
本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.
7.A
解析:A
【分析】
根据直角三角形的两直角边长分别为5和3,可计算出正方形的边长,从而得出正方形的面积.
【详解】
解:3和5为两条直角边长时,
小正方形的边长=5-3=2,
∴小正方形的面积22=4;
综上所述:小正方形的面积为4;
故答案选A .
本题考查了勾股定理及其应用,正确表示出直角三角形的面积是解题的关键.
8.A
解析:A
【解析】
试题解析:作AD ⊥l 3于D ,作CE ⊥l 3于E ,
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∠DAB+∠ABD=90°
∴∠BAD=∠CBE ,
{BAD CBE
AB BC ADB BEC
∠=∠=∠=∠,
∴△ABD ≌△BCE
∴BE=AD=3
在Rt △BCE 中,根据勾股定理,得25+9=34,
在Rt △ABC 中,根据勾股定理,得342=217.
故选A .
考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.
9.C
解析:C
【分析】
设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244AB
x y 【详解】
解:设EC=x ,DC=y ,∠ACB=90°,
∵D 、E 分别是BC 、AC 的中点,
∴AC=2EC=2x ,BC=2DC=2y ,
∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16
在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,
∴2255164965x y ,即2213x y +=,
在直角△ABC 中,2244413213AB x y .
【点睛】
本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE 和直角△ADC 求得22x y +的值是解题的关键.
10.B
解析:B
【分析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10)x -尺,利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,
根据勾股定理得:2224(10)x x +=-.
解得: 4.2x =,
∴折断处离地面的高度为4.2尺,
故选:B .
【点睛】
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
二、填空题
11 【分析】 根据等边三角形性质得出AB 1=CB 1=12
,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=
ABC 113ABB BCB S S ==
B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,
B 3B 4=B 4B 5=,推出B n ﹣1B n =2
n . 【详解】
解:∵△ABC 是等边三角形,
∴BA =AC ,
∵BB 1是△ABC 的高,
∴AB 1=CB 1=12
,∠AB 1B =∠BB 1C =90°,
由勾股定理得:BB 1=;
∴△ABC 的面积是
12×1=;
∴1112ABB BCB S
S ==⨯,
12
=×1×B 1B 2,
B 1B 2,
由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,
2313112422
B B =⨯⨯⨯,
B 2B 3,
B 3B 4=16,
B 4B 5=
32
, …,
B n ﹣1B n =2n .
故答案为:
32,2
n . 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.
12.75或6或
94
【分析】
当△ABP 为等腰三角形时,分三种情况:①当AB =BP 时;②当AB =AP 时;③当BP =AP 时,分别求出BP 的长度,继而可求得t 值.
【详解】
在Rt △ABC 中,BC 2=AB 2﹣AC 2=7.52﹣4.52=36,
∴BC =6(cm );
①当AB=BP=7.5cm时,如图1,t=7.5
2
=3.75(秒);
②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);
③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,
所以4t2=4.52+(4.5﹣2t)2,
解得:t=9
4
,
综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=9
4
.
故答案为:3.75或6或9
4
.
【点睛】
此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.
13.5或13
【分析】
根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.
【详解】
解:如下图所示,
若A=S P=4.B=S Q=9,C=S K,
根据勾股定理,可得
A+B=C,
∴C=13.
若A=S P=4.C=S Q=9,B=S K,
根据勾股定理,可得
A+B=C,
∴B=9-4=5.
∴S K为5或13.
故答案为:5或13.
【点睛】
本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.
14.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,
CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()2
3S NG NF =-,12310S S S ++=,即可得出答案.
【详解】
∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形
∴CG=NG ,CF=DG=NF
∴()2
222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =
()2
2232S NG NF NG NF NG NF =-=+-
∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =
故2103
S = 故答案为
103
. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质. 15.65
【分析】
由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.
【详解】
解:如图,连接EF ,过点A 作AG BC ⊥于点G ,
AE AD ⊥,
DAE DAC 290∠∠∠∴=+=,
又
BAC DAC 190∠∠∠=+=,
12∠∠∴=,
在ABD 和ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩
,
ABD ∴≌()ACE SAS .
BD CE ∴=,4B ∠∠=
BAC 90∠=,AB AC =,
∴B 345∠∠==
4B 45∠∠∴==,
ECF 3490∠∠∠∴=+=,
222CE CF EF ∴+=,
222BD FC EF ∴+=, AF 平分DAE ∠,
DAF EAF ∠∠∴=,
在DAF 和EAF 中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩
,
DAF ∴≌()EAF SAS .
DF EF ∴=.
222BD FC DF ∴+=.
22222DF BD FC 68100∴=+=+=,
∴DF 10=
BC BD DF FC 610824∴=++=++=,
AB AC =,AG BC ⊥,
1BG AG BC 122
∴===, DG BG BD 1266∴=-=-=,
∴AD =
故答案为【点睛】
考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
16.【解析】
【详解】
∵(x-6)2=9,
∴x-6=±3,
解得:x 1=9,x 2=3,
∵x ,y 为一个直角三角形的两边的长,y=3,
∴当x=3时,x 、y =;
当x=9时,x 、y =;
当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.
故答案为:
【点睛】
本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.
17.①②③
【解析】
【详解】
解:∵△ABC 是等边三角形,
60ABC ∴∠=,
∵△BQC ≌△BPA ,
∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,
60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,
∴△BPQ 是等边三角形,①正确.
∴PQ =BP =4,
2222224325,525PQ QC PC +=+===,
222PQ QC PC ∴+=,
90PQC ∴∠=,即△PQC 是直角三角形,②正确.
∵△BPQ 是等边三角形,
60PBQ BQP ∴∠=∠=,
∵△BQC ≌△BPA ,
∴∠APB =∠B QC ,
6090150BPA BQC ∴∠=∠=+=,③正确.
36015060150APC QPC QPC ∴∠=---∠=-∠,
90PQC PQ QC ∠=≠,,
45QPC ∴∠≠,
即135APC ∠≠,④错误.
故答案为①②③.
18.25
【分析】
如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.
【详解】
如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .
∵P (1,2),G (7.﹣2),
∴OA =1,PA =GM =2,OM =7,AM =6,
∵PA ∥GM ,
∴∠PAN =∠GMN ,
∵∠ANP =∠MNG ,
∴△ANP ≌△MNG (AAS ),
∴AN =MN =3,PN =NG ,
∵∠PAH =45°,
∴PH =AH =2,
∴HN =1,
∴2222215PN PH NH =+=+=
∴PG =2PN =5.
故答案为5
【点睛】
本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
19.22-【分析】
根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.
【详解】
解:如图所示,在AB 上取AM=AC=2,
∵90ACB ∠=,2AC BC ==,
∴∠CAB=45°,
又∵45EAD ∠=,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB ,
∴在△EAC 与△DAB 中
AE=AD ,∠EAF =∠DAB ,AC =AM ,
∴△EAC ≌△DAM (SAS )
∴CE=MD ,
∴当MD ⊥BC 时,CE 的值最小,
∵AC=BC=2, 由勾股定理可得2222AB AC BC =
+=,
∴222=-BM ,
∵∠B=45°,
∴△BDM 为等腰直角三角形,
∴DM=BD ,
由勾股定理可得222+BD DM =BM
∴DM=BD=22-
∴CE=DM=22-
故答案为:22-
【点睛】
本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.
20.(0,
34). 【分析】
由423
y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到
53122
OA '=
-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423
y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32
-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=
32,
∴52AB =
==, ∴53122
OA '=-=, 设点C 的坐标为(0,m )
由翻折得ABC A BC '≌,
∴2A C AC m '==-,
在Rt A OC '中, 222A C OC A O ''=+,
∴222(2)1m m -=+,解得m=
34, ∴点C 的坐标为(0,
34). 故答案为:(0,
34
). 【点睛】
此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题
21.BF 的长为【分析】
先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .
【详解】
解:连接BF .
∵CA=CB ,E 为AB 中点
∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°
在Rt △FEB 与Rt △FEA 中,
BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩
∴Rt △FEB ≌Rt △FEA
又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°
∴∠FBE=∠FAE=12
∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°
又∵BD ⊥AD ,∠D=90°
∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =
+==【点睛】
本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.
22.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析
【分析】
(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.
【详解】
解:(1)AE=BD ,AE ⊥BD ,
理由如下:∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠EAC=∠DBC=45°,
∴∠EAC+∠CAB=90°,
∴AE ⊥BD ;
(2)∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6;
(3)如图3,若点D 在AB 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6;
如图4,若点D 在BA 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6.
【点睛】
本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.
23.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析
【分析】
(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明
△ACD ≌△BCF ;
②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;
(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.
【详解】
解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°
∵∠ACD=90°
∴∠ACD=∠BCF
又∵AC=BC
∴△ACD ≌△BCF
②证明:连接EF ,
由①知△ACD ≌△BCF
∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD ,BF=AD
∴∠EBF=90°
∴EF 2=BE 2+BF 2,
∴EF 2=BE 2+AD 2
又∵∠ACB=∠DCF=90°,∠CDE=45°
∴∠FCE=∠DCE=45°
又∵CD=CF,CE=CE
∴△DCE≌△FCE
∴EF=DE
∴DE2= AD2+BE2
⑵DE2=EB2+AD2+EB·AD
理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,
∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD
∵AC=BC,∠ACB=60°
∴∠CAB=∠CBA =60°
∴∠ABE=120°,∠EBF=60°,∠BFG=30°
∴BG=1
2
BF,
3
∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,
∴∠ECF=∠FCB+∠BCE=30°
∵CD=CF,CE=CE
∴△ECF≌△ECD
∴EF=ED
在Rt△EFG中,EF2=FG2+EG2
又∵EG=EB+BG
∴EG=EB+1
2 BF,
∴EF2=(EB+1
2
BF)2+(
3
2
BF)2
∴DE2=(EB+1
2
AD)2+
3
)2
∴DE2=EB2+AD2+EB·AD
【点睛】
本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.
24.作图见解析,32 5
【分析】
作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.
【详解】
如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.
连接AN,
在Rt△ABC中,AC=4,AB=8,
∴2222
AB AC=84=45
++
∵11
AB AC=BC AH 22
⋅⋅
∴
85 45
∵CA⊥AB,A'M⊥AB,
∴CA∥A'M
∴∠C=∠A'NH,
由对称的性质可得AH=A'H,∠AHC=∠A'HN=90°,AN=A'N 在△ACH和△A'NH中,
∵∠C=∠A'NH,∠AHC=∠A'HN,AH=A'H,
∴△ACH≌△A'NH(AAS)
∴A'N=AC=4=AN ,
设NM=x ,
在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x
在Rt △AA'M 中,,A 'M=A 'N+NM=4+x
∴AM 2=AA '2-A 'M 2=()224-+⎝⎭
x
∴()2
224=16-+-⎝⎭x x 解得125
x = 此时AN MN +的最小值=A'M=A'N+NM=4+
125=325 【点睛】
本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.
25.(1)见解析;(2)①见解析;②2.
【分析】
(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F 的度数,于是可得∠CBD 与∠F 的关系,进而可得结论;
(2)①过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则易得△AHE 是等边三角形,根据等边三角形的性质和已知条件可得EH=CF ,∠BHE =∠ECF =120°,BH =EC ,于是可根据SAS 证明△BHE ≌△ECF ,可得∠EBH =∠FEC ,易证△BAE ≌△BCD ,可得∠ABE =∠CBD ,从而有∠FEC =∠CBD ,然后根据三角形的内角和定理可得∠BGE =∠BCD ,进而可得结论; ②易得∠BEG =90°,于是可知△BEF 是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE 和BF 的长,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM 、MC 、CF 、FN 、CN 、GN 的长,进而可得△GCN 也是等腰直角三角形,于是有∠BCG =90°,故所求的△BCG 的面积=
12
BC CG ⋅,而BC 和CG 可得,问题即得解决. 【详解】 解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,
当D 、E 两点重合时,则AD=CD ,∴1302
DBC ABC ∠=
∠=︒, ∵CF CD =,∴∠F =∠CDF ,
∵∠F +∠CDF =∠ACB =60°,∴∠F =30°,
∴∠CBD =∠F ,∴BD DF =;
(2)①∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB=AC ,
过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,
∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,
∵AE CD =,CD=CF ,∴EH=CF ,
又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),
∴∠EBH =∠FEC ,EB=EF ,
∵BA=BC ,∠A =∠ACB =60°,AE=CD ,
∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,
∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;
②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,
∵EB=EF ,∴∠F =∠EBF =45°,
∵∠EBG =30°,BG =4,∴EG =2,BE 3
∴BF 226BE =232GF =,
过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形, ∴6BM ME MF ===
∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =266262CF ==
∴262312CN FN ===, ∴)
2323131GN GF FN CN =-=-==, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB , ∴62CG CF ==
∴△BCG 的面积=
116262222BC CG ⋅==. 故答案为:2.
【点睛】
本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.
26.(1)∠CBD=20°;(2)AD=
1
6
4
;(3) △BCD的周长为m+2
【分析】
(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;
(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;
(3)根据三角形ACB的面积可得1
1 2
AC CB m
=+,
进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.
【详解】
(1)
∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴∠1=∠A=35°,
∵∠C=90°,
∴∠ABC=180°-90°-35°=55°,
∴∠2=55°-35°=20°,
即∠CBD=20°;
(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴AD=DB,
设CD=x,则AD=BD=8-x,
在Rt△CDB中,CD2+CB2=BD2,
x 2+62=(8-x )2,
解得:x=
74, AD=8-74=164; (3)∵△ABC 的面积为m+1, ∴
12
AC •BC=m+1, ∴AC •BC=2m+2, ∵在Rt △CAB 中,CA 2+CB 2=BA 2,
∴CA 2+CB 2+2AC •BC=BA 2+2AC •BC ,
∴(CA+BC )2=m 2+4m+4=(m+2)2,
∴CA+CB=m+2,
∵AD=DB ,
∴CD+DB+BC=m+2.
即△BCD 的周长为m+2.
【点睛】
此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.
27.(1)①详见解析;(2)222
CD n =+-(1n >);(2)
AD BD -=,理由详见解析.
【分析】
(1)①根据勾股定理的逆定理进行判断;
②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.
(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.
【详解】
(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++
()()22
222211n n n =++=+ 又∵()2
221AB n =+
∴222AD BD AB +=
∴△ABD 是直角三角形
②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,
∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°
∴∠3=∠4
由①知△ABD 是直角三角形
∴1290∠+∠=︒
又∵290E ∠+∠=︒
∴∠1=∠E
在ACD ∆和BCE ∆中,
A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ACD ≌△BCE
∴CD CE =,AD BE =
∴221DE BD BE BD AD n n =+=+=+-
又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+
=
∴22CD =222222
n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=
,
理由如下:
如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,
∵∠ACD=90°+∠5,∠BCF=90°+∠5
∴∠ACD=∠BCF
∵BD ⊥AD
∴∠ADB=90°
∴∠6+∠7=90°
∵∠ACB=90°
∴∠9=∠8=90°
又∵∠6=∠8
∴∠7=∠9
ACD ∆和BCF ∆中
97AC BC
ACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ACD ≌△BCF
∴CD=CF ,AD=BF
又∵∠DCF=90°
∴由勾股定理得DF ==
又DF=BF-BD=AD-BD
∴AD BD -=
【点睛】
本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.
28.(1)S=24(06)464(616)
t t t <⎧⎨-+<<⎩(2)10,103⎛⎫ ⎪⎝⎭ (3)存在,(6,6)
或(6,10-
,(6,2)
【解析】
【分析】
(1)当P 在AC 段时,△BPD 的底BD 与高为固定值,求出此时面积;当P 在BC 段时,底边BD 为固定值,用t 表示出高,即可列出S 与t 的关系式;
(2)当点B 的对应点B ′恰好落在AC 边上时,设P (m ,10),则PB=PB ′=m ,由勾股定理得m 2=22+(6-m )2,即可求出此时P 坐标;
(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.
【详解】
解:(1)∵A ,B 的坐标分别是(6,0)、(0,10),
∴OA=6,OB=10,
当点P 在线段AC 上时,OD=2,BD=OB-OD=10-2=8,高为6,
∴S=12
×8×6=24; 当点P 在线段BC 上时,BD=8,高为6+10-t=16-t , ∴S=
12×8×(16-t )=-4t+64;
∴S与t之间的函数关系式为:
240t6
S
4t64(6t16)
<≤
⎧
=⎨
-+<<
⎩
()
;
(2)设P(m,10),则PB=PB′=m,如图1,
∵OB′=OB=10,OA=6,
∴AB′=22
OB OA
-
'=8,∴B′C=10-8=2,
∵PC=6-m,
∴m2=22+(6-m)2,
解得m=10 3
则此时点P的坐标是(10
3
,10);
(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图2,
①当BD=BP1=OB-OD=10-2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP122
8627
-=
∴AP1=10−7,
即P1(6,10-27
②当BP2=DP2时,此时P2(6,6);
③当DB=DP3=8时,
在Rt△DEP3中,DE=6,
根据勾股定理得:P322
8627
-=,
∴AP3=AE+EP3=7+2,
即P 3(6,27+2
),
综上,满足题意的P 坐标为(6,6)或(6,10-27),(6,27+2).
【点睛】
本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.
29.(1),CM ME CM EM =⊥;(2)见解析;(3)25CM =.
【解析】
【分析】
(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.
【详解】
解:(1)结论:CM =ME ,CM ⊥EM .
理由:∵AD ∥EF ,AD ∥BC ,
∴BC ∥EF ,
∴∠EFM =∠HBM ,
在△FME 和△BMH 中,
EFM MBH FM BM
FME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△FME ≌△BMH (ASA ),
∴HM =EM ,EF =BH ,
∵CD =BC ,
∴CE =CH ,∵∠HCE =90°,HM =EM ,
∴CM =ME ,CM ⊥EM .
(2)如图2,连接BD ,
∵四边形ABCD 和四边形EDGF 是正方形,
∴45,45FDE CBD ︒︒
∠=∠=
∴点B E D 、、在同一条直线上,
∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点,。