伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第5~9章【圣才出品】

合集下载

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解
伍德里奇《计量经济学导论》(第5 版)笔记和课后习题详解
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版
计量经济 学
时间
习题
序列
经典
变量
笔记
教材
笔记 复习
模型
导论
笔记
第章
习题
分析
数据
回归
内容摘要
本书是伍德里奇《计量经济学导论》(第5版)教材的配套电子书,主要包括以下内容:(1)整理名校笔记, 浓缩内容精华。每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经 济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。(2)解析课后习 题,提供详尽答案。本书参考国外教材的英文答案和相关资料对每章的课后习题进行了详细的分析和解答。(3) 补充相关要点,强化专业知识。一般来说,国外英文教材的中译本不太符合中国学生的思维习惯,有些语言的表 述不清或条理性不强而给学习带来了不便,因此,对每章复习笔记的一些重要知识点和一些习题的解答,我们在 不违背原书原意的基础上结合其他相关经典教材进行了必要的整理和分析。本书特别适用于参加研究生入学考试 指定考研考博参考书目为伍德里奇所著的《计量经济学导论》的考生,也可供各大院校学习计量经济学的师生参 考。

2.1复习笔记 2.2课后习题详解
3.1复习笔记 3.2课后习题详解
4.1复习笔记 4.2课后习题详解
5.1复习笔记 5.2课后习题详解
6.1复习笔记 6.2课后习题详解
7.1复习笔记 7.2课后习题详解

伍德里奇-计量经济学(第4版)答案

伍德里奇-计量经济学(第4版)答案

伍德里奇-计量经济学(第4版)答案计量经济学答案第二章2.4 (1)在实验的准备过程中,我们要随机安排小时数,这样小时数(hours )可以独立于其它影响SAT 成绩的因素。

然后,我们收集实验中每个学生SAT 成绩的相关信息,产生一个数据集{}n i hours sat i i ,...2,1:),(=,n 是实验中学生的数量。

从式(2.7)中,我们应尽量获得较多可行的i hours 变量。

(2)因素:与生俱来的能力(天赋)、家庭收入、考试当天的健康状况①如果我们认为天赋高的学生不需要准备SAT 考试,那天赋(ability )与小时数(hours )之间是负相关。

②家庭收入与小时数之间可能是正相关,因为收入水平高的家庭更容易支付起备考课程的费用。

③排除慢性健康问题,考试当天的健康问题与SAT 备考课程上的小时数(hours )大致不相关。

(3)如果备考课程有效,1β应该是正的:其他因素不变情况下,增加备考课程时间会提高SAT 成绩。

(4)0β在这个例子中有一个很有用的解释:因为E (u )=0,0β是那些在备考课程上花费小时数为0的学生的SAT平均成绩。

2.7(1)是的。

如果住房离垃圾焚化炉很近会压低房屋的价格,如果住房离垃圾焚化炉距离远则房屋的价格会高。

(2)如果城市选择将垃圾焚化炉放置在距离昂贵的街区较远的地方,那么log(dist)与房屋价格就是正相关的。

也就是说方程中u包含的因素(例如焚化炉的地理位置等)和距离(dist)相关,则E(u︱log(dist))≠0。

这就违背SLR4(零条件均值假设),而且最小二乘法估计可能有偏。

(3)房屋面积,浴室的数量,地段大小,屋龄,社区的质量(包括学校的质量)等因素,正如第(2)问所提到的,这些因素都与距离焚化炉的远近(dist,log(dist))相关2.11(1)当cigs(孕妇每天抽烟根数)=0时,预计婴儿出生体重=110.77盎司;当cigs(孕妇每天抽烟根数)=20时,预计婴儿出生体重(bwght)=109.49盎司。

伍德里奇《计量经济学导论》笔记和课后习题详解(异方差性)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(异方差性)【圣才出品】

(4)在丌包括截距癿情况下将 1 对 r1u, r2u, , rqu 做回归。异斱差-稳健癿 LM 统计
χ 量就是 n-SSR1,其中 SSR1 是最后这个回归通常癿残差平斱和。在 H0 下 LM 渐近服从
2 q
分布。
4 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台

变量乊类癿情况出现则具有这种影响。
2.异斱差性对拟合优度癿影响
对拟合优度指标 R2 和 R2 癿解释丌受异斱差性癿影响。通常癿 R2 和调整 R2 都是估计总

R2
癿丌同斱法,而总体
R2 无非就是1 σu2
/
σ
2 y
,其中
σu2
是总体误差斱差,
σ
2 y
则是
y
癿总体斱差。关键是,由亍总体 R2 中这两个斱差都是无条件斱差,所以总体 R2 丌受
十万种考研考证电子书、题库视频学习平台
令 uˆi 表示原来 y 对 x 做回归所得到癿 OLS 残差。那么,对亍仸何形式癿异斱差(包括
同斱差),Var βˆ j 癿一个确当估计量都是
n
xi x 2 uˆi2
i 1
SSTx2
可以证明,将斱程乘以样本容量
n
后,会依概率收敛亍
在没有同斱差假定癿情况下,估计量癿斱差是有偏癿。由亍 OLS 标准误直接以这些斱
差为基础,所以它们都丌能用来构造置信区间和 t 统计量。
4.对统计检验癿影响
1 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台

在出现异斱差性癿情况下,在高斯-马尔可夫假定下用来检验假设癿统计量都丌再成立。 (1)在出现异斱差性时,通常普通最小二乘法癿 t 统计量就丌具有 t 分布,使用大样 本容量也丌能解决这个问题。 (2)F 统计量也丌再是 F 分布。 (3)LM 统计量也丌服从渐近 χ2 分布。

伍德里奇《计量经济学导论》笔记和课后习题详解(时间序列回归中的序列相关和异方差)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(时间序列回归中的序列相关和异方差)【圣才出品】

第12章 时间序列回归中的序列相关和异方差12.1 复习笔记一、含序列相关误差时OLS 的性质 1.无偏性和一致性在时间序列回归的前3个高斯-马尔可夫假定(TS.1~TS.3)之下,OLS 估计量是无偏的。

特别地,只要解释变量是严格外生的,无论误差中的序列相关程度如何,ˆj β都是无偏的。

这类似于误差中的异方差不会造成ˆjβ产生偏误。

把严格外生性假定放松到()0t t E u X =,并证明了当数据是弱相关的时候,ˆjβ仍然是一致的(但不一定无偏)。

这一结论不以对误差中序列相关的假定为转移。

2.效率和推断高斯-马尔可夫定理要求误差的同方差性和序列无关性,所以,在出现序列相关时,OLS 便不再是BLUE 的了。

通常的OLS 标准误和检验统计量也不再确当,而且连渐近确当都谈不上。

在序列相关的时候,通常的方差估计量都是()1ˆVar β的有偏估计。

因为ˆj β的标准误是ˆjβ的标准差的估计值,所以在出现序列相关的时候,使用通常的OLS 标准误就不再确当。

因此,检验单个假设的t 统计量也不再确当。

因为较小的标准误意味着较大的t 统计量,所以当ρ>0时,通常的统计量常常过大。

用于检验多重假设的通常的F 统计量和LM 统计量也不再可靠。

3.拟合优度t时间序列回归模型中的误差若存在序列相关,通常的拟合优度指标R 2和调整R 2便会失效,但只要数据是平稳和弱相关的,拟合优度指标依然有效。

在横截面背景中将总体R 2定义为221/u y σσ-。

在使用平稳而又弱相关数据的时间序列回归背景中,这个定义依然确当:误差和因变量的方差都不随时间而变化。

根据大数定律,R 2和调整R 2都是总体R 2的一致估计。

拟合优度指标仍是总体参数的一致估计量。

若{y t }是一个I (1)过程,则因为Var (y t )随着t 而递增,所以就无法通过重新定义R 2为221/uy σσ-来证明;此时的拟合优度便没有什么意义。

4.出现滞后因变量时的序列相关回归中出现滞后因变量时,误差有序列相关的危险。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】
二、经验经济分析的步骤 经验分析就是利用数据来检验某个理论或估计某种关系。 1.对所关心问题的详细阐述 在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。经 济模型总是由描述各种关系的数理方程构成。 2.经济模型变成计量模型 先了解一下计量模型和经济模型有何关系。与经济分析不同,在进行计量经济分析之前, 必须明确函数的形式。 通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。
Байду номын сангаас
2.假设让你进行一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
4 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台

(i)如果你能设定你想做的任何实验,你想做些什么?请具体说明。 (ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。你能得到他们 四年级班级规模和四年级末的标准化考试分数。你为什么预计班级规模与考试成绩存在负相 关关系? (iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。 答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如 能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。因此可以看到班级 规模(在伦理考量和资源约束条件下的主体)的显著差异。 (ii)负相关关系意味着更大的班级规模与更差的考试成绩是有直接联系的,因此可以 发现班级规模越大,导致考试成绩越差。 通过数据可知,两者之间的负相关关系还有其他的原因。例如,富裕家庭的孩子在学校 可能更多的加入小班,而且他们的成绩优于平均水平。 另外一个可能性是:学校的原则是将成绩较好的学生分配到小班。或者部分父母可能坚 持让自己的孩子进入更小的班级,而同样这些父母也更多的参与子女的教育。 (iii)鉴于潜在的其他混杂因素(如 ii 所列举),负相关关系并不一定意味着较小的班 级规模会导致更好的成绩。控制混杂因素的方法是必要的,而这正是多重回归分析的主题。

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

伍德⾥奇《计量经济学导论》笔记和课后习题详解(⼀个经验项⽬的实施)【圣才出品】第19章⼀个经验项⽬的实施19.1 复习笔记⼀、问题的提出提出⼀个⾮常明确的问题,其重要性不容忽视。

如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚⾄收集错误时期的数据。

1.查找数据的⽅法《经济⽂献杂志》有⼀套细致的分类体系,其中每篇论⽂都有⼀组标识码,从⽽将其归于经济学的某⼀⼦领域之中。

因特⽹(Internet)服务使得搜寻各种主题的已发表论⽂更为⽅便。

《社会科学引⽤索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论⽂时⾮常有⽤,包括那些时常被其他著作引⽤的热门论⽂。

⽹络搜索引擎“⾕歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。

2.构思题⽬时⾸先应明确的⼏个问题(1)要使⼀个问题引起⼈们的兴趣,并不需要它具有⼴泛的政策含义;相反地,它可以只有局部意义。

(2)利⽤美国经济的标准宏观经济总量数据来进⾏真正原创性的研究⾮常困难,尤其对于⼀篇要在半个或⼀个学期之内完成的论⽂来说更是如此。

然⽽,这并不意味着应该回避对宏观或经验⾦融模型的估计,因为仅增加⼀些更新的数据便对争论具有建设性。

⼆、数据的收集1.确定适当的数据集⾸先必须确定⽤以回答所提问题的数据类型。

最常见的类型是横截⾯、时间序列、混合横截⾯和⾯板数据集。

有些问题可以⽤任何⼀种数据结构进⾏分析。

确定收集何种数据通常取决于分析的性质。

关键是要考虑能够获得⼀个⾜够丰富的数据集,以进⾏在其他条件不变下的分析。

同⼀横截⾯单位两个或多个不同时期的数据,能够控制那些不随时间⽽改变的⾮观测效应,⽽这些效应通常使得单个横截⾯上的回归失效。

2.输⼊并储存数据⼀旦你确定了数据类型并找到了数据来源,就必须把数据转变为可⽤格式。

通常,数据应该具备表格形式,每次观测占⼀⾏;⽽数据集的每⼀列则代表不同的变量。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第9章 模型设定和数据问题的深入探讨【圣才出

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第9章 模型设定和数据问题的深入探讨【圣才出

(c)
来检验模型
y 0 1x1 2 x2 u
(d)
或者把这两个模型反过来。然而,它们是非嵌套模型,所以不能仅使用标准的 F 检验。
(1)综合模型的 F 检验
构造一个综合模型,将每个模型都作为一个特殊情形而包含其中,然后检验导致每个模
型的约束。在目前的例子中,综合模型为:
y 0 1x1 2 x2 3 log x1 4 log x2 u
y 0 1x1 2 x2 3 x3 u
但有 x3 的一个代理变量,并称之为 x3
x3 0 3 x3 v3
其中,v3 是因 x3 与 x3 并非完全相关所导致的误差。参数 3 度量了 x3 与 x3 之间的关系。 x3 和 x3 正相关,所以 δ3 0 。如果 δ3 0 ,则 x3 不是 x3 合适的代理变量。截距 δ0 ,是容许 x3
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 9 章 模型设定和数据问题的深入探讨
9.1 复习笔记
一、函数形式设误 1.函数形式设误的概念 遗漏一个关键变量能导致误差与某些解释变量之间的相关,从而通常导致所有的 OLS 估计量都是偏误和不一致的。在遗漏的变量是模型中一个解释变量的函数的特殊情形下,模 型就存在函数形式误设的问题。遗漏自变量的函数并不是模型出现函数形式误设的唯一方 式。
②用戴维森—麦金农检验拒绝了式(d),这并不意味着式(c)就是正确的模型。模型 (d)可能会因多种误设的函数形式而被拒绝。
③在比较因变量不同那么就不能得到上面的综合嵌套模型。
二、对无法观测解释变量使用代理变量 1.代理变量 代理变量就是某种与我们在分析中试图控制而又无法观测的变量相关的东西。例如,人 的能力无法观测,可以使用 IQ 得分作为能力的一个代理变量。 (1)遗漏变量问题的植入解 假设在有 3 个自变量的模型中,其中有两个自变量是可以观测的,解释变量 x3 观测不 到:

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】

第19章一个经验项目的实施19.1 复习笔记一、问题的提出提出一个非常明确的问题,其重要性不容忽视。

如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚至收集错误时期的数据。

1.查找数据的方法《经济文献杂志》有一套细致的分类体系,其中每篇论文都有一组标识码,从而将其归于经济学的某一子领域之中。

因特网(Internet)服务使得搜寻各种主题的已发表论文更为方便。

《社会科学引用索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论文时非常有用,包括那些时常被其他著作引用的热门论文。

网络搜索引擎“谷歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。

2.构思题目时首先应明确的几个问题(1)要使一个问题引起人们的兴趣,并不需要它具有广泛的政策含义;相反地,它可以只有局部意义。

(2)利用美国经济的标准宏观经济总量数据来进行真正原创性的研究非常困难,尤其对于一篇要在半个或一个学期之内完成的论文来说更是如此。

然而,这并不意味着应该回避对宏观或经验金融模型的估计,因为仅增加一些更新的数据便对争论具有建设性。

二、数据的收集1.确定适当的数据集首先必须确定用以回答所提问题的数据类型。

最常见的类型是横截面、时间序列、混合横截面和面板数据集。

有些问题可以用任何一种数据结构进行分析。

确定收集何种数据通常取决于分析的性质。

关键是要考虑能够获得一个足够丰富的数据集,以进行在其他条件不变下的分析。

同一横截面单位两个或多个不同时期的数据,能够控制那些不随时间而改变的非观测效应,而这些效应通常使得单个横截面上的回归失效。

2.输入并储存数据一旦你确定了数据类型并找到了数据来源,就必须把数据转变为可用格式。

通常,数据应该具备表格形式,每次观测占一行;而数据集的每一列则代表不同的变量。

(1)不同类型数据的输入要求①对时间序列数据集来说,只有一种合理的方式来进行数据的输入和存储:即以时间为序,最早的时期列为第一次观测,最近的时期列为最后一次观测。

伍德里奇《计量经济学导论》笔记和课后习题详解(时间序列高深专题)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(时间序列高深专题)【圣才出品】

第18章时间序列高深专题18.1 复习笔记一、无限分布滞后模型1.无限分布滞后模型令{(y t,z t):t=…,-2,-1,0,1,2,…}代表一个双变量时间序列过程。

将y t 与z的当期和所有过去值相联系的一个无限分布滞后模型(IDL)为:y t=α+δ0z t+δ1z t-1+δ2z t-2+…+u t其中,z的滞后可以一直追溯到无限过去。

与有限分布滞后模型不同的是,IDL模型不要求在某个特定时刻截断滞后。

随着j趋于无穷大,滞后系数δj必须趋于0。

z t-1对y t的影响必须随着j无限递增而最终变得很小。

在大多数实际应用中,它也有相应的经济含义:遥远过去的z对y的解释能力不如新近过去的z。

不能估计无限分布滞后的原因:只能观察到数据的有限历史。

(1)无限分布滞后模型的短期倾向y t=α+δ0z t+δ1z t-1+δ2z t-2+…+u t的短期倾向就是δ0。

假设s<0时,z s=0;s>0时z s=1,z1=0。

也就是说,z在t=0时期暂时性地增加一个单位,然后又回到它的初始值0。

对所有h≥0,都有y h=α+δh+u h,所以有E(y h)=α+δh。

给定z在0时期的一个单位的暂时变化,δh就是E(y h)的改变值。

z的一个暂时变化对y的期望值没有长期影响:随着h→∞,E(y h)=α+δh→α。

滞后分布显示了给定z 暂时增加一个单位,未来的y 所服从的期望路径。

(2)无限分布滞后模型的长期倾向长期倾向等于所有滞后系数之和:LRP =δ0+δ1+δ2+δ3+…给定z 一个单位的永久性增加,LRP 度量了y 的期望值的长期变化。

(3)严格外生性假定假定任何时期z 的变化都不会对u t 的期望值有影响。

这就是严格外生性假定的无限分布滞后型。

规范的表述是它使得u t 的期望值不依赖于任何时期的z 。

更弱一点的假定是:在该假定下,误差与现在和过去的z 都不相关,但它有可能与将来的z 相关;这就容许z t 所服从的政策规则能够取决于过去的y 。

伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】

β1 就是斜率参数。
②给定零条件均值假定 E(u|x)=0,把斱程中的 y 看成两个部分是比较有用的。一
部分是表示 E(y|x)的 β0+β1一个
部分是被称为非系统部分的 u,即丌能由 x 觋释的那一部分。
二、普通最小二乘法的推导
1.最小二乘估计值
表 2-1 简单回归的术语
3.零条件均值假定 (1)零条件均值 u 的平均值不 x 值无关。可以把它写作:E(u|x)=E(u)。当斱程成立时,就说 u 的均值独立亍 x。 (2)零条件均值假定的意义 ①零条件均值假定给出 β1 的另一种非常有用的觋释。以 x 为条件叏期望值,幵利用 E
1 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 2 章 简单回归模型
2.1 复习笔记
一、简单回归模型的定义 1.双发量线性回归模型 一个简单的斱程是:y=β0+β1x+u。 假定斱程在所关注的总体中成立,它便定义了一个简单线性回归模型。因为它把两个发 量 x 和 y 联系起来,所以又把它称为两发量戒者双发量线性回归模型。 2.回归术语
E x y β0 β1x 0
得到
1 n
n i1
yi βˆ0 βˆ1xi
0

2 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

1
n
n i 1
xi
yi βˆ0 βˆ1xi
0
这两个斱程可用来觋出 βˆ0 和 βˆ1 , y βˆ0 βˆ1x ,则 βˆ0 y βˆ1x 。
量了 yi 的样本发异,SSR 度量了 ui 的样本发异。y 的总发异总能表示成觋释了的发异和未
觋释的发异 SSR 乊和。因此,SST=SSE+SSR。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解(2-8章)

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解(2-8章)

GPA GPA Ai
ˆ 5.8125 / 56.875 0.1022 。 根据公式 2.19 可得: 1
ˆ 3.2125 0.1022 25.875 0.5681 。 根据公式 2.17 可知: 0
????2222211112222221111varvarvar?nnnniiiiiiiiiinnniiiiiixxuxxuxxx??????????????????????????????????????????????????????????????????根据公式257????2211?varniixx????????????对任何数据样本??2211nniiiixxx??????除非0x?

7.利用 Kiel and McClain(1995)有关 1988 年马萨诸塞州安德沃市的房屋出售数据,如下方程给出了房屋 价格( price )和距离一个新修垃圾焚化炉的距离( dist )之间的关系:
log price 9.40 0.312log dist n 135 , R 2 0.162
因此 GPA 0.5681 0.1022 ACT 。 此处截距没有一个很好的解释, 因为对样本而言,ACT 并不接近 0。 如果 ACT 分数提高 5 分,预期 GPA 会提高 0.1022× 5=0.511。 (Ⅱ)每次观测的拟合值和残差表如表 2-3 所示: 表 2-3
i
GPA
GPA


ˆ u
1 2 3 4 5 6 7 8

2.8 3.4 3.0 3.5 3.6 3.0 2.7 3.7
2.7143 3.0209 3.2253 3.3275 3.5319 3.1231 3.1231 3.6341

伍德里奇《计量经济学导论》笔记和课后习题详解(多元回归分析:深入专题)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(多元回归分析:深入专题)【圣才出品】

第6章 多元回归分析:深入专题6.1 复习笔记一、数据的测度单位对OLS 统计量的影响 1.数据的测度单位对OLS 统计量无实质性影响当对变量重新测度时,系数、标准误、置信区间、t 统计量和F 统计量改变的方式,都不影响所有被测度的影响和检验结果。

怎样度量数据通常只起到非实质性的作用,比如说,减少所估计系数中小数点后零的个数等。

通过对度量单位明智的选择,可以在不做任何本质改变的情况下,改进所估计方程的形象。

对任何一个x i ,当它在回归中以log (x i )出现时,改变其度量单位也只能影响到截距。

这与对百分比变化和(特别是)弹性的了解相对应:它们不会随着y 或x i 度量单位的变化而变化。

2.β系数 原始方程:01122ˆˆˆˆˆi i i k iki y ββx βx βx u =+++++ 减去平均方程,就可以得到:()()()111222ˆˆˆˆi i i k ik ki y y βx x βx x βx x u -=-+-++-+ 令ˆy σ为因变量的样本标准差,1ˆσ为x 1的样本标准差,2ˆσ为x 2的样本标准差,等等。

然后经过简单的运算就可以得到方程:()()()()()()11111ˆˆˆˆˆˆˆˆˆˆˆ//////i y y i k y k ik k y i y y y σσσβx x σσσβx x σuσ⎡⎤⎡⎤-=-++-+⎣⎦⎣⎦每个变量都用其z 得分而被标准化,这就得到一些新的斜率参数。

截距项则完全消失:11ˆˆy k kz b z b z =+++误差 新的系数是:()ˆˆˆˆ/,1,,jj y b j k ==σσβ传统上称这些ˆjb 为标准化系数或β系数。

以标准差为单位,由于它使得回归元的度量单位无关紧要,所以这个方程把所有解释变量都放到相同的地位上。

在一个标准的OLS 方程中,不可能只看不同系数的大小,也不可能断定具有最大系数的解释变量就“最重要”。

通过改变x i 的度量单位,可以任意改变系数的大小。

《计量经济学导论》伍德里奇-第四版-笔记和习题答案(2-8章)

《计量经济学导论》伍德里奇-第四版-笔记和习题答案(2-8章)


inc e inc incE e inc 0 。


inc e inc

inc

2
Var e inc inc e2 。
(Ⅲ)低收入家庭支出的灵活性较低,因为低收入家庭必须首先支付衣食住行等必需品。而高收入家庭具有 较高的灵活性,部分选择更多的消费,而另一部分家庭选择更多的储蓄。这种较高的灵活性暗示高收入家庭中储 蓄的变动幅度更大。
(Ⅲ)在(Ⅱ)的方程中,如果备考课程有效,那么 1 的符号应该是什么? (Ⅳ)在(Ⅱ)的方程中, 0 该如何解释? 答: (Ⅰ)构建实验时,首先随机分配准备课程的小时数,以保证准备课程的时间与其他影响 SAT 的因素是
houri :i 1 , , n , n 表示试验中所包括的学 独立的。然后收集实验中每个学生 SAT 的数据,建立样本 sati ,
因此 GPA 0.5681 0.1022 ACT 。 此处截距没有一个很好的解释, 因为对样本而言,ACT 并不接近 0。 如果 ACT 分数提高 5 分,预期 GPA 会提高 0.1022× 5=0.511。 (Ⅱ)每次观测的拟合值和残差表如表 2-3 所示: 表 2-3
i
GPA
GPA^^源自 7.利用 Kiel and McClain(1995)有关 1988 年马萨诸塞州安德沃市的房屋出售数据,如下方程给出了房屋 价格( price )和距离一个新修垃圾焚化炉的距离( dist )之间的关系:
log price 9.40 0.312log dist n 135 , R 2 0.162
y 0 0 1 x u 0
令新的误差项为 e u 0 ,因此 E e 0 。 新的截距项为 0 0 ,斜率不变为 1 。 2.下表包含了 8 个学生的 ACT 分数和 GPA(平均成绩) 。平均成绩以四分制计算,且保留一位小数。 GPA ACT student 1 2 3 4 5 6 7 8

伍德里奇《计量经济学导论》笔记和课后习题详解(高深的面板数据方法)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(高深的面板数据方法)【圣才出品】

二、随机敁应模型
1.随机敁应模型
仍同一个非观测敁应模型开始,
yit β0 β1xit1 β2 xit2
βk xitk αi uit
(1)
明确引入一个截距项,假定非观测敁应 αi 有零均值,且不每一个解释变量都无关:Cov
(xitj,αi)=0,t=1,2,…,T;j=1,2,…,k,则斱程(1)就成为一个随机敁应模型。
2 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

板数据集来说丌是徆现实。 ②它所给出的 βj 估计值不用除均值数据所做回弻得到的估计值恰好一样,而且标准误
和其他主要统计量也一样。因此,固定敁应估计量可以由虚拟变量回弻得到。 ③可以直接算出恰弼的自由度。 ④仍虚拟变量回弻算出的 R2 通常都比较高。 ⑤仍虚拟变量回弻得到的 R2,可按通常斱法用亍计算 F 检验。 3.是固定敁应(FE)还是一阶差分(FD) 估计非观测敁应模型的两种斱法:一种是叏数据的差分,一种是除时间均值。 两种斱法的选择: (1)弼 T=2 时,FE 和 FD 的估计值及其全部检验统计量完全一样,敀可随便选用一
一个重要的理论事实是,FD 估计量中的偏误丌叏决亍 T,而 FE 估计量中的偏误则以速 度 1/T 趋亍零。弼 FE 和 FD 给出明显丌同的结果时,通常在两者乊间作出叏舍就徆困难。
3 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

同时报告两组结果幵试图判断差异的原因所在。 4.非平衡面板数据的固定敁应法 在一些面板数据集中,样本缺少了某些横截面单位的某些年仹数据,称数据集为非平衡
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 14 章 高定敁应估计法

伍德里奇《计量经济学导论》笔记和课后习题详解(OLS用于时间序列数据的其他问题)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(OLS用于时间序列数据的其他问题)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 11 章 OLS 用于时间序列数据的其他问题
11.1 复习笔记
一、平稳和弱相关时间序列
1.平稳和非平稳时间序列
平稳时间序列过程,就是概率分布在如下意丿上跨时期稳定癿时间序列过程:如果从这
个序列中仸叏一个随机发量集,幵把这个序列向前移劢 h 个时期,那举其联合概率分布仍
AR(1)过程弱相关癿一个关键假定是稳定性条件 ρ1 1。一旦条件满趍,称{yt}是
一个稳定癿 AR(1)过程。
二、OLS 癿渐近性质 1.假定 TS.1'(线性不弱相关) 除了增加假定{(xt,yt):t=1,2,…}是平稳和弱相关癿芝外,假定 TS.1'和假定 TS.1 完全相同。具体而言,大数定律和中心极限定理可适用亍样本均值。 线性亍参数癿要求意味着可以把模型写成: yt=β0+β1xt1+…+βkxtk+ut 2.假定 TS.2'(无完全共线性)
3,…,x1 不 xt 都有相同癿分布。序列{xt:t=1,2,…}是同分布癿。
丌平稳癿随机过程称为非平稳过程。因为平稳性是潜在随机过程而非其某单个实现癿性
质,所以很难判断所搜集到癿数据是否由一个平稳过程生成。但是,要指出某些序列丌是平
稳癿却很容易。
(2)协斱差平稳过程
对亍一个具有有限二阶矩 E xt2 癿随机过程{xt:t=1,2,…},若:(i)E(xt)
2 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台

σ 其中,(et:t=0,1,…)是均值为 0 和斱差为
2 e
癿独立同分布序列。过程{xt}被
称为一阶移劢平均过程[moving average process of order one,MA(1)]:xt 是 et 和

伍德里奇 计量经济学导论

伍德里奇 计量经济学导论

伍德里奇计量经济学导论摘要:一、伍德里奇《计量经济学导论》概述二、伍德里奇对计量经济学的定义与应用三、伍德里奇《计量经济学导论》的主要内容四、伍德里奇《计量经济学导论》的课后习题及其答案五、伍德里奇《计量经济学导论》的参考价值正文:一、伍德里奇《计量经济学导论》概述伍德里奇所著的《计量经济学导论》是一本广泛应用于经济学领域的经典教材,受到了全球范围内众多学者和学生的欢迎。

本书旨在介绍计量经济学的基本概念、方法和应用,帮助读者理解和掌握计量经济学的基本理论和实证分析技巧。

二、伍德里奇对计量经济学的定义与应用在《计量经济学导论》中,伍德里奇对计量经济学进行了明确的定义,认为计量经济学是一门在经济理论基础上,运用数学和统计学方法,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。

计量经济学的应用范围广泛,包括政策分析、市场预测、数据分析等诸多领域。

三、伍德里奇《计量经济学导论》的主要内容伍德里奇的《计量经济学导论》共分为六章,涵盖了计量经济学的基本概念、数据处理、回归分析、多元回归分析、假设检验和模型优化等核心内容。

具体来说,书中内容包括:1.计量经济学的性质与经济数据:介绍了计量经济学的基本概念,经济数据的来源和特点,以及如何利用经济数据进行计量分析。

2.简单回归模型:阐述了简单回归模型的基本原理,包括线性回归、最小二乘法、参数估计等。

3.多元回归分析:介绍了多元回归分析的基本概念,包括多元线性回归、多元逻辑回归等,以及如何进行多元回归模型的估计和检验。

4.假设检验:介绍了计量经济学中的假设检验原理,包括t 检验、F 检验等。

5.模型优化:探讨了如何优化计量经济模型,提高模型的预测能力和解释能力。

6.横截面数据的回归分析:介绍了横截面数据的回归分析方法,包括生产函数估计、需求函数估计等。

四、伍德里奇《计量经济学导论》的课后习题及其答案伍德里奇的《计量经济学导论》每章都配有丰富的课后习题,帮助读者巩固和拓展所学知识。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解(第4~6章)【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解第4章多元回归分析:推断4.1复习笔记一、OLS 估计量的抽样分布1.假定MLR.6(正态性)总体误差u 独立于解释变量12 k x x x ,,…,,而且服从均值为零和方差为2σ的正态分布:()2Normal 0 u σ~,。

2.经典线性模型就横截面回归中的应用而言,从假定MLR.1~MLR.6这六个假定被称为经典线性模型假定。

将这六个假定下的模型称为经典线性模型(CLM)。

在CLM 假定下,OLS 估计量01ˆˆˆ kβββ,,…,比在高斯—马尔可夫假定下具有更强的效率性质。

可以证明,OLS 估计量是最小方差无偏估计,即在所有的无偏估计中,OLS 具有最小的方差。

总结CLM 总体假定的一种简洁方法是:()201122|Normal k k y x x x x ββββσ++++~…,误差项的正态性导致OLS 估计量的正态抽样分布。

3.用中心极限定理去推导u 的分布的缺陷(1)虽然u 是影响y 而又观测不到的众多因素之和,且各因素可能各有极为不同的总体分布,但中心极限定理(CLT)在这些情形下仍成立。

正态近似的效果取决于u 中有多少因素,以及u 中包含因素分布的差异。

(2)更严重的问题是,正态近似假定所有不可观测因素都以独立而可加的方式影响着Y。

因此如果u 是不可观测因素的一个复杂函数,那么CLT 论证并不真正适用。

4.误差项的正态性导致OLS 估计量的正态抽样分布定理4.1:正态抽样分布在CLM 假定MLR.1~MLR.6下,以自变量的样本值为条件,有:()ˆˆ~Normal Var j j j βββ⎡⎤⎣⎦,因此()()()ˆˆ/sd ~Normal 0 1j j j βββ-,注:除ˆj β服从正态分布外,01ˆˆˆ k βββ,,…,的任何线性组合也都是正态分布,而且ˆjβ的任何一个子集也都具有一个联合正态分布。

二、检验对单个总体参数的假设:t 检验1.总体回归函数总体模型可写作:11o k k y x x uβββ=++⋯++假定它满足CLM 假定,OLS 得到j β的无偏估计量。

伍德里奇计量经济学导论(第四版)课后习题答案和讲解

伍德里奇计量经济学导论(第四版)课后习题答案和讲解
本手册为《伍德里奇计量经济学导论(第四版)》的学生解决方案手册,提供了书中奇数编号的习题答案和计算机练习讲解。内容覆盖了从引言到高级时间序主题的各个章节,具体包括简单回归模型、多元回归分析、异方差性、时间序列数据的回归分析、面板数据方法等关键领域。此外,附录部分还提供了基础数学工具、概率论、数理统计和矩阵代数的概要,以辅助读者更深入地理解计量经济学的原理和应用。本手册旨在帮助学生巩固理论知识,提高实际应用能力,是学习和研究计量经济学的宝贵资料。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.推导 OLS 的不一致性 误差项和 x1,x2,…,xk 中的任何一个相关,通常也会导致所有的 OLS 估计量都失去 其一致性。 总结为:如果误差与任何一个自变量相关,那么 OLS 就是有偏而又不一致的估计。它 就意味着,随着样本容量的增加,偏误将继续存在。
βˆ1 的不一致性为:
plimβˆ1 β Cov x1,u /Var x1
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 5 章 多元回归分析:OLS 的渐近性
5.1 复习笔记
一、一致性
1.定理 5.1:OLS 的一致性
在假定 MLR.1~MLR.4 下,对所有的 j=0,1,2,…,k,OLS 估计量 βˆ j 都是 βj 的一
致估计。
其次,零条件均值假定意味着已经正确地设定了总体回归函数(PRF)。也就是说,在 假定 MLR.4 下,可以得到解释变量对 y 的平均值或期望值的偏效应。如果只使用假定 MLR.4',那么,β0+β1x1+β2x2+…+βkxk 就不一定代表了总体回归函数,也就面临着 xj 的某些非线性函数可能与误差项相关的可能性。
三、OLSHale Waihona Puke 的渐近有效性4 / 162
圣才电子书

1.简单回归模型
标准正态分布在式中出现的方式与 tn-k-1 分布不同。这是因为这个分布只是一个近似。
实际上,由于随着自由度的变大,tn-k-1 趋近于标准正态分布,所以如下写法也是合理的:
βˆj βj
/ se
βˆ j
a
~ tnk 1
2.其他大样本检验:拉格朗日乘数统计量
(1)包含 k 个自变量的多元回归模型
①假定 MLR.4'是一个更自然的假定,因为它直接得到普通最小二乘估计值。
②使用假定 MLR.4 的原因
1 / 162
圣才电子书 十万种考研考证电子书、题库视频学习平台

首先,如果 E(u|x1,x2,…,xk)=0 与任何一个 xj 相关,那么,在假定 MLR.4' 下,普通最小二乘估计量都是有偏误(但一致)的。
LM 统计量仅要求估计约束模型。于是,假定进行了如下回归
y= β%0+ β%1x1+ β%kq xkq+u%
式中“~”表示估计值都来自约束模型。u%表示约束模型的残差。如果被排除变量 xk-
q+1 到 xk 在总体中的系数都为零,那么应该与样本中这些变量中的每一个都不相关,至少近
似无关。
进行 u%对 x1,x2,…,xk 的辅助回归,辅助回归是用来计算一个检验统计量,但回归系
(2)σ2 是 σ2=Var(u)的一个一致估计量。
(3)对每个 j,都有:
βˆj βj
/ se
βˆ j
a
~ Normal 0,1
其中, se βˆ j 就是通常的 OLS 标准误。
定理 5.2 的重要之处在于,它去掉了正态性假定 MLR.6。对误差分布唯一的限制是,
它具有有限方差。还对 u 假定了零条件均值(MLR.4)和同方差性(MLR.5)。
因为 Var(x1)>0,所以,若 x1 和 u 正相关,则 βˆ1 的不一致性就为正,而若 x1 和 u 负相关,则 βˆ1 的不一致性就为负。如果 x1 和 u 之间的协方差相对于 x1 的方差很小,那么这
种不一致性就可以被忽略。由于 u 是观测不到的,所以甚至还不能估计出这个协方差有多 大。
二、渐近正态和大样本推断 1.定理 5.2:OLS 的渐近正态性 在高斯-马尔可夫假定 MLR.1~MLR.5 下, (1)
y=β0+β1x1+…+βkxk+u 检验这些变量中最后 q 个变量是否都具有零总体参数。
虚拟假设:H0:βk-q+1=0,…,βk=0,它对模型施加了 q 个排除性约束。 对立假设:这些参数中至少有一个异于零。
3 / 162
圣才电子书 十万种考研考证电子书、题库视频学习平台

数没有直接意义。
样本容量乘以辅助回归式的 R2,渐近服从一个自由度为 q 的 χ2 随机变量的分布。LM
统计量有时也被称为 n-R2 统计量。
(2)q 个排除性约束的拉格朗日乘数统计量
①将 Y 对施加限制后的自变量集进行回归,并保留残差;
②将对所有自变量进行回归,并得到 R2,记为 Ru2 ;
③计算 LM nRu2 ;
2 / 162
圣才电子书 十万种考研考证电子书、题库视频学习平台

n
βˆ j β j
a
~ Normal
0, σ 2
/
a
2 j
σ 2 / a2j 0 是 n βˆ j β j 的渐近方差;斜率系数,
a2
plim
n1
n
rˆij2
i1
rˆ 其中 ij 是 Xj 对其余自变量进行回归所得到的残差。 βˆ j 为渐近正态分布的。
④将
LM

χ
2 q
分布中适当的临界值
c
相比较,如果
LM>c,就拒绝虚拟假设。
(3)与 F 统计量比较
与 F 统计量不同,无约束模型中的自由度在进行 LM 检验时没有什么作用。所有起作用
的因素只是被检验约束的个数(q)、辅助回归 R2 的大小( Ru2 )和样本容量(n)。无约束 模型中的 df 不起什么作用,这是因为 LM 统计量的渐近性质。但必须确定将 Ru2 乘以样本容 量以得到 LM,如果 n 很大, Ru2 看上去较低的值仍可能导致联合显著性。
给定 Var(x1)≠0,因为 Cov(x1,u)=0,可以使用概率极限的性质得到:
p lim βˆ1 β1 Cov x1,u / Var x1 β1
(2)假定 MLR.4'(零均值和零相关)
对所有的 j=1,2,…,k,都有 E(u)=0 和 Cov(x1,u)=0。
假定 MLR.4'与假定 MLR.4 的比较:
(1)证明过程
写下 βˆ1 的公式,然后将 yi=β1+β1X1+ui 代入其中便得到:
n
n
xi1 x1 yi
n1 xi1 x1 ui
βˆ1
i 1 n
β1
i 1 n
xi1 x1 2
n1
xi1 x1 2
i 1
i 1
在分子和分母中应用大数定律,则分别依概率收敛于总体值 Cov(x1,u)和 Var(x1)。
相关文档
最新文档