华师大版数学九年级下册27.2.1 点和圆的位置关系
华师大版数学九年级下册同步课件:27. 点与圆的位置关系
(3)三角形的外心是三角形三条边的垂直平分线的交点, 它到三角形三个顶点的距离相等.
例题讲授
例1 如图,在△ABC中,∠C=90°,AB=5cm,
BC=4cm,以点A为圆心、3cm为半径画圆,并判断:
随堂演练
1.圆心为O的两个同心圆,半径分别为1和2,若OP= 3 ,则点P
在(D )
A.大圆内 B.小圆内
C.小圆外 D.大圆内,小圆外
o
2.三角形的外心具有的性质是( B )
A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形的外. D.外心在三角形内.
3.等腰三角形底边上的高与一腰的垂直平分线的交点是( C )
线段AB的垂直平分线l1上,又在线段BC的垂直 平分线l2上,即点P为l1与l2的交点,而l1⊥l,
C l2⊥l这与我们以前学过的“过一点有且只有一 条直线与已知直线垂直”相矛盾,所以过同一
条直线上的三点不能作圆.
定理:不在同一直线上的三个点确定一个圆.
位置关系
有且只有
已知:不在同一直线上的三点A、B、C. 求作: ⊙O,使它经过点A、B、C.
A.重心 B.垂心 C.外心 D.无法确定.
4.已知AB=4 cm,则过点A,B且半径为3 cm的圆有( B )
A.1个
B.2个
C.3个 D.4个
5.如图,在△ABC中,点O在边AB上,且点O为△ABC的外心,求 ∠ACB的度数. 解:∵点O为△ABC的外心, ∴OA=OB=OC, ∴∠OAC=∠OCA,∠OCB=∠OBC. ∵∠OAC+∠OCA+∠OCB+∠OBC=180°, ∴∠OCA+∠OCB=90°, 即∠ACB=90°.
九年级数学下册(华师大版)课件 27.2.1 点与圆的位置关
5.如图,平面直角坐标系中一条圆弧经过网格点A,B,C.其中B点坐 标为(4,4),则该圆弧所在圆的圆心坐标为( C ) A.(2,1) B.(2,2) C.(2,0) D.(2,-1)
6.如图,将△ABC 放在每个小正方形的边长为 1 的网格中,点 A,B,
C 均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形
的最小圆面的半径是( D )
A. 5
7.若一个三角形的外心在它的一边上,则这个三角形一定是( B ) A.等腰三角形 B.直角三角形 C.等边三角形 D.钝角三角形 8.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半 径为2.下列说法中不正确的是( A ) A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内 C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
以点C为圆心,以为半径画圆,则A,B,D三点与圆C的位置关系叙述
不正确的是( C ) A.点B在⊙C外
B.点A在⊙C内
C.点D在⊙C外
D.点D在⊙C上
3.有一个矩形ABCD其长为4 cm,宽为3 cm,以D点为圆心作圆,使A, B,C三点其中有两点在圆内,一点在圆外,则⊙O的半径r的取值范围 为( C) A.3<r<4 B.3<r<5 C.4<r<5 D.4≤r≤5 知识点❷:三角形的外接圆 4.下列命题正确的是( D ) A.三点确定一个圆 B.圆有且只有一个内接三角形 C.三角形的外心是三角形三个角的平分线的交点 D.三角形的外心是三角形任意两边的垂直平分线的交点
12.(练习1变式)如图,小明家的房前有一块矩形的空地,空地上有三棵 树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上. (1)请你帮小明把花坛的位置画出来.(尺规作图,不写作法,保留作图 痕迹) (2)若在△ABC中,AB=8 m,AC=6 m,∠BAC=90°,试求小明家圆 形花坛的面积.
秋九年级数学下册第27章圆27.2与圆有关的位置关系27.2.1点和圆的位置关系课件新版华东师大版
5.如图所示,AC,BE 是⊙O 的直径,弦 AD 与 BE 交于点 F,下列三角形 中,外心不是点 O 的是( B )
A.△ABE B.△ACF C.△ABD D.△ADE
6.设 AB=4 cm,作出满足下列要求的图形: (1)到点 A 的距离等于 3 cm 的所有点组成的图形,到点 B 的距离等于 2 cm 的所有点组成的图形; (2)到点 A 的距离等于 3 cm,且到点 B 的距离等于 2 cm 的所有点组成的图 形; (3)到点 A 的距离小于 3 cm,且到点 B 的距离小于 2 cm 的所有点组成的图 形; (4)到点 A 的距离大于 3 cm,且到点 B 的距离小于 2 cm 的所有点组成的图 形.
学习指南
★教学目标★ 理解并掌握点和圆的三种位置关系及数量关系,探求过点画圆的过程,掌 握过不在同一直线上的三点画圆的方法.
★情景问题引入★
我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.下图是射击靶的示 意图,它是由许多同心圆(圆心相同、半径不等的圆)构成的,你知道击中靶上不 同位置的成绩是如何计算的吗?
∵CA=10 cm>25 5 cm,∴点 A 在⊙C 外;
∵CB=5 cm<52 5 cm,∴点 B 在⊙C 内; ∵CD=25 5 cm,∴点 D 在⊙C 上.
【点悟】 要判定一个点与圆的位置关系,只需比较该点到圆心的距离 d 与半 径 r 的大小.当 d>r 时,点在圆外;当 d=r 时,点在圆上;当 d<r 时,点在圆内.
在 Rt△ODB 中,OB2=BD2+OD2, ∴x2=32+(4-x)2,解得 x=285, ∴△ABC 的外接圆半径为285. 【点悟】 构造直角三角形,设出未知数,利用勾股定理建立关于未知数的 方程,是解决几何问题中求线段长度的常用方法.
新华师版初中数学九年级下册精品课件27.2.1 点与圆的位置关系
27.2 与圆有关的位置关系
第1课时 点与圆的位置 关系
1 课堂讲解 点和圆的位置关系
确定圆的条件
2 课时流程 三角形的外接圆
逐点 导讲练
课堂 小结
作业 提升
我国射击运动员在里约奥运会上获得金牌,为我国赢得 荣誉,如图是射击靶的示意图,它是由许多同心圆(圆 心相同,半径不相同)构成的,你知道击中靶上不同位 置的成绩是如何计算的吗? 提示:解决这个问题要研究点和圆的位置关系.
作这两条弦的垂直平分线即可确定圆轮所在圆的圆心.
解:如图②所示:
(1)在圆轮所在的圆弧上任取三点A,
B,C,并连结AB,BC;
(2)分别作AB,BC的垂直平分线DE,
FG,DE,FG相交于点O;
(3)以O为圆心,OA为半径作⊙O,
⊙O就是圆轮所在的圆.
(来自《 》)
总结
知2-讲
经过不在同一条直线上的三点A,B,C作圆,圆心O 是线段AB,BC的垂直平分线的交点,再以OA(或OB, OC)为半径作圆即可,这样的圆只能作一个.
导引:要判断点和圆的位置关系,实质上是要比较点到圆心的 距离与半径的大小,而半径为已知量,即需求出相关点 到圆心的距离.
(来自《 》)
知2-讲
解:如图,连结OR,OP,OQ.
∵PD=4 cm,OD=3 cm,且OD⊥l,
∴OP= PD2 OD2 42 32 =5 (cm)=r,
∴点P在⊙O上;
知识点 1 点和圆的位置关系
知1-导
问题1:观察图中点A,点B,点C与圆的位置关系? 答:点A在圆内,点B在圆上,点C在圆外
(来自《 》)
知1-导
问题2:设⊙O半径为r,说出来点A,点B,点C与圆心O的距 离与半径的关系。 答:OA < r,OB = r,OC > r 问题3:反过来,已知点到圆心的距离和圆的半径,能否判断 点和圆的位置关系? 答:设⊙O的半径为r,点P到圆心的距离OP = d,则有:
九年级数学下册第27章圆27、2与圆有关的位置关系27、2、1点与圆的位置关系教学课件新版华东师大版
随堂练习
7.如图,在△ABC中,∠ACB=90°,AB=10,BC=8, CD⊥AB于点D,O为AB的中点.
(1)以点C为圆心,6为半径作圆C,试判断点A,D,
B与⊙C的位置关系; (2)⊙C的半径为多少时,点O在⊙C上?
随堂练习
解 在△ABC中, ∠ACB=90°,
AB=10,BC=8,CD⊥AB,
课程讲授
1 点和圆的位置关系
练一练:已知⊙O的直径为6 cm,点A不在⊙O内,则
OA的长( B )
A.大于3 cm B.不小于3 cm C.大于6 cm D.不小于6 cm
课程讲授
2 确定圆的条件
问题1:如何过一个点A作一个圆?过可以作多少个圆?
v
A
确定想要作的圆的半径, 我们可以过点A作无数个圆.
课程讲授
3 三角形的外接圆与外心
A
B
O
C
归纳:不在同一直线上的三个点确定一个 圆.
课程讲授
3 三角形的外接圆与外心
A
定义:经过三角形的三个顶来自点可以作一个圆,这个圆叫做
B
O
三角形的外接圆.
C
三角形外接圆的圆心叫做三角形的外心,
它是三角形三条边垂直平分线的交点..
课程讲授
3 三角形的外接圆与外心
练一练:下列说法正确的是( C )
反过来说:如果OA<r,点A在圆__内__
OB=r,点B在圆_上___ B
OC>r,点C在圆__外___
课程讲授
1 点和圆的位置关系
点和圆的位置关系: 设⊙O的半径为r,点P到圆心的距离OP=d,则有:
(1)点P在⊙O内 ___d_<_r____ (2)点P在⊙O上 ___d_=_r____ (3)点P在⊙O外 ___d_>_r____
华师大版初中数学九年级下册《27.2.1 点与圆的位置关系》同步练习卷(含答案解析
华师大新版九年级下学期《27.2.1 点与圆的位置关系》同步练习卷一.选择题(共16小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定2.下列说法:①过三点可以作圆;②同弧所对的圆周角度数相等;③一条对角线平分一组对角的平行四边形是菱形;④三角形的外心到三角形的三个顶点的距离相等.其中正确的有()A.1 个B.2 个C.3 个D.4 个3.在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是()A.10B.5C.4D.34.如图,已知⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,则∠C为()A.60°B.30°C.45°D.90°5.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是()A.3<r<4B.3<r<5C.3≤r≤5D.r>46.如图,△ABC为⊙O的内接等边三角形,BC=12,点D为上一动点,BE⊥OD于E,当点D由点B沿运动到点C时,线段AE的最大值是()A.2+2B.2﹣2C.6D.+27.如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外,⊙O内,⊙O上,则原点O的位置应该在()A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点8.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP 的周长的最小值为()A.5B.5+5C.10D.159.如图,△ABC外接圆的半径长为3,若∠OAC=∠ABC,则AC的长为()A.4B.2C.3D.310.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P 经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)11.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,)B.(,0)C.(0,2)D.(2,0)12.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能13.下列四边形:①平行四边形;②矩形;③菱形;④正方形,其中四个顶点一定能在同一个圆上的有()A.①②③④B.②③④C.②④D.③④14.如图,△ABC内接于⊙O,AD是△ABC边BC上的高,D为垂足.若BD=1,AD=3,BC=7,则⊙O的半径是()A.B.C.D.15.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC 的长为()A.B.C.D.16.如图,AE是△ABC的外接圆⊙O的直径,AD是△ABC的高,若AB=8,AC=10,AD=8,则AE的值为()A.10B.10C.12D.12二.填空题(共2小题)17.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件.18.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE于F,连接DF.若OE=2,DF=1,则△ABC的周长为.三.解答题(共22小题)19.如图,四边形ABCD中,∠A=90°,AB=5,BC=8,CD=6,AD=5,试判断点A、B、C、D是否在同一个圆上,并证明你的结论.20.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.21.如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD 为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.23.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段.(2)①在损矩形ABCD内是否存在点O,使得A、B、C、D四个点都在以O为圆心的同一圆上?如果有,请指出点O的具体位置;②如图,直接写出符合损矩形ABCD的两个结论(不能再添加任何线段或点).24.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.25.如图,直线l1、l2相交于点A,点B、点C分别在直线l1、l2上,AB=k•AC,连接BC,点D是线段AC上任意一点(不与A、C重合),作∠BDE=∠BAC=α,与∠ECF的一边交于点E,且∠ECF=∠ABC.(1)如图1,若k=1,且∠α=90°时,猜想线段BD与DE的数量关系,并加以证明;(2)如图2,若k≠1,且∠α≠90°时,猜想线段BD与DE的数量关系,并加以证明.26.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.27.如图,△ABC为⊙O的内接三角形.点D为劣弧上一点,连接AD、CD、CO、BO,延长CO交AB于点F,CD=BC.(1)求证:∠DAC=∠ACO+∠ABO;(2)点E在OC上,连接EB,若∠DAB=∠OBA+∠EBA,求证:EF=EB.28.已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,BC=6,AC=8,OE⊥AE,垂足为E,交⊙O于点P,连结BP交AC于D.(1)求PE的长;(2)求△BOP的面积.29.如图,在钝角△ABC中,∠C=45°,AE⊥BC,垂足为E点,且AB与AC的长度为方程x2﹣9x+18=0的两个根,⊙O是△ABC的外接圆.求:(1)⊙O的半径;(2)BE的长.30.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB.求证:AC=2DE.31.如图:△ABC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.32.如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、F,连接DE,CD,DE与BC相交于点G.(1)求证:DE是△ABC的外接圆的直径;(2)设OG=3,CD=2,求⊙O的半径.33.如图,⊙O是△ABC的外接圆,AC是直径,过O作OD∥BC交AB于点D.延长DO交⊙O于点E,作EF⊥AC于点F.连接DF并延长交直线BC于点G,连接EG.(1)求证:FC=GC;(2)求证:四边形EDBG是矩形.34.如图,⊙O为△ABC的外接圆,∠BAC=60°,H为边AC,AB上的高BD,CE 的交点,在BD上取点M,使BM=CH.(1)求证:∠BOC=∠BHC;(2)求证:△BOM≌△COH;(3)求的值.35.如图,△ABC内接于半圆O,AB为⊙O直径,点D是的中点,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:AP=DP.(2)若⊙O的半径为5,AD=6,求DP的长.36.已知,△ABC内接于⊙O,∠BAC=60°,AE⊥BC,CF⊥AB.AE,CF相交于点H,点D为弧BC的中点,连接HD,AD.求证:△AHD为等腰三角形.37.如图,AB是⊙O的直径,C为⊙O上的一点,CD⊥AB于点D,E为上一点,=,AE与CD相交于点F,与CB相交于点G.(1)求证:AE=2CD,(2)求证:点F是△ACG的外心.38.如图,已知锐角△ABC的外心为O,线段OA和BC的中点分别为点M、N,若∠OBN=2∠OMN,的度数为90°,求∠OMN的大小.39.如图.⊙O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交⊙O于点D,连接BD,CD.求证:BD=CD=DI.40.如图,在⊙O中,两条弦AC,BD垂直相交于点E,等腰△CFG内接于⊙O,FH为⊙O直径,且AB=6,CD=8.(1)求⊙O的半径;(2)若CF=CG=9,求图中四边形CFGH的面积.华师大新版九年级下学期《27.2.1 点与圆的位置关系》同步练习卷参考答案与试题解析一.选择题(共16小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】先根据勾股定理求出OP的长,再与⊙O的半径为5相比较即可.【解答】解:∵圆心P的坐标为(﹣3,4),∴OP==5.∵⊙O的半径为5,∴点P在⊙O上.故选:B.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.2.下列说法:①过三点可以作圆;②同弧所对的圆周角度数相等;③一条对角线平分一组对角的平行四边形是菱形;④三角形的外心到三角形的三个顶点的距离相等.其中正确的有()A.1 个B.2 个C.3 个D.4 个【分析】根据确定圆的条件,圆周角定理,菱形的判定,三角形外心的性质即可一一判断;【解答】解:①过三点可以作圆;错误,应该是过不在同一直线上的三点可以作圆;②同弧所对的圆周角度数相等;正确;③一条对角线平分一组对角的平行四边形是菱形;正确;④三角形的外心到三角形的三个顶点的距离相等.正确;故选:C.【点评】本题考查圆、圆周角定理、菱形的判定、三角形的外接圆的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是()A.10B.5C.4D.3【分析】首先根据勾股定理,得其斜边是10,再根据直角三角形的外接圆的半径是斜边的一半,得其半径是5.【解答】解:∵∠C=90°,AC=6,BC=8,∴BA===10,∴其外接圆的半径为5.故选:B.【点评】本题考查三角形的外接圆与外心、勾股定理等知识,解题的关键是记住直角三角形的斜边就是外接圆的直径.4.如图,已知⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,则∠C为()A.60°B.30°C.45°D.90°【分析】连接AO与BO,根据等边三角形的性质求出∠AOB的度数,再根据圆周角定理求出∠C的度数.【解答】解:连接AO和BO,∵⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,∴△AOB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=×60°=30°,故选:B.【点评】本题主要考查了三角形的外接圆与外心的知识,解题的关键是正确作出辅助线,此题难度一般.5.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是()A.3<r<4B.3<r<5C.3≤r≤5D.r>4【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故选:B.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.6.如图,△ABC为⊙O的内接等边三角形,BC=12,点D为上一动点,BE⊥OD于E,当点D由点B沿运动到点C时,线段AE的最大值是()A.2+2B.2﹣2C.6D.+2【分析】E在以M为圆心,BM为半径的圆上,由△ABC是等边三角形可得AH=BH=6,BH=6,BO=MH=4,BM=2,根据勾股定理可得AM的长即可求AE的最大值.【解答】解:如图连接BO,取BO中点M,连接ME∵DE⊥BE,M是BO中点∴ME=BO∴E在以M为圆心,BM为半径的圆上∴当A,M,E共线且E在AM的延长线上时,AE的值最大延长BO交AC于H∵△ABC为⊙O的内接等边三角形∴HB⊥AC,且△ABC是等边三角形,BC=12∴CH=AH=6∴AH=6,AO=4,OM=2,MH=4∴AM==2∴AE的最大值为2+2故选:A.【点评】本题考查了三角形外接圆和外心,等边三角形的性质,关键是找到E 的运动轨迹.7.如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外,⊙O内,⊙O上,则原点O的位置应该在()A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点【分析】画出图象,利用图象法即可解决问题;【解答】解:如图,观察图象可知,原点O的位置应该在点B与点C之间靠近B点,故选:C.【点评】本题考查点与圆的位置关系,解题的关键是理解题意,学会利用图象法解决问题.8.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP 的周长的最小值为()A.5B.5+5C.10D.15【分析】连接:OC,PC.先证明EF为OC的垂直平分线,从而可得到PC=OP,然后依据三角形的三边关系可知当点A、P、C在一条直线上时,AP+OP有最小值,然后由OA为定值可知当AP+OP最小时,△APO的周长最小.【解答】解:连接:OC,PC.∵AC=BC,AO=OB,OC=OC,∴△AOC≌△BOC,∴OC⊥AB.∵点E,F分别是边AC,BC的中点,∴EF∥AB.∴OC⊥EF,且CG=OG.∴GP为CO的垂直平分线,∴CP=OP.∴AP+OP=AP+CP.∴当点A、P、C在一条直线上时(点P与点E重合时),AP+OP有最小值.又∵OA为定值,∴当AP+OP最小时,△APO的周长有最小值.∴△APO的周长最小值=AO+AC=AO+OA=5+5.故选:B.【点评】本题主要考查的是三角形的外接圆与外心、找出△APO周长取得最小值的条件是解题的关键.9.如图,△ABC外接圆的半径长为3,若∠OAC=∠ABC,则AC的长为()A.4B.2C.3D.3【分析】延长AO交圆于H,连接CH、OC,根据圆周角定理、结合题意得到∠OAC=∠CHO,得到∠OAC=45°,CO⊥AN,根据余弦的概念计算即可.【解答】解:延长AO交圆于H,连接CH、OC,由圆周角定理得,∠AHC=∠ABC,∠ACH=90°,∵∠OAC=∠ABC,∴∠OAC=∠CHO,∴CA=CH,又AO=OH,∴∠OAC=45°,CO⊥AN,故选:D.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、解直角三角形的知识是解题的关键.10.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P 经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)【分析】根据题意可知点P的横坐标为4,设点P的坐标为(4,y),根据PA=PC 列出关于y的方程,解方程得到答案.【解答】解:∵⊙P经过点A、B、C,∴点P在线段AB的垂直平分线上,∴点P的横坐标为4,设点P的坐标为(4,y),作PE⊥OB于E,PF⊥OC与F,由题意得,=,解得,y=,故选:C.【点评】本题考查的是确定圆的条件,解题的关键是理解经过不在同一直线上的三点作圆,圆心是过任意两点的线段的垂直平分线的交点.11.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,)B.(,0)C.(0,2)D.(2,0)【分析】直接根据相交弦定理得出OC2=OA•OB,即可求出OC的长,即可得出C 点坐标.【解答】解:如图,连结AC,CB.依相交弦定理的推论可得:OC2=OA•OB,即OC2=1×3=3,解得:OC=或﹣(负数舍去),故C点的坐标为(0,).故选:A.【点评】本题考查了确定圆的条件,坐标与图形性质,注意辅助线的作法.12.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【点评】本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.13.下列四边形:①平行四边形;②矩形;③菱形;④正方形,其中四个顶点一定能在同一个圆上的有()A.①②③④B.②③④C.②④D.③④【分析】根据四个点共圆的条件:对角互补,进行判断.【解答】解:平行四边形、菱形的对角不一定互补,不一定能够四个点共圆;矩形、正方形的对角互补,四点一定共圆.故选:C.【点评】掌握四点共圆的条件以及特殊四边形的性质.14.如图,△ABC内接于⊙O,AD是△ABC边BC上的高,D为垂足.若BD=1,AD=3,BC=7,则⊙O的半径是()A.B.C.D.【分析】过点A作直径AH,连接CH,根据勾股定理分别求出AB、AC,证明△ABD∽△AHC,根据相似三角形的性质列出比例式,计算即可.【解答】解:过点A作直径AH,连接CH,∵BD=1,BC=7,∴CD=6.∵AD⊥BC,∴AB==,AC==3,∵AH为⊙O的直径,∴∠ACH=90°,∴∠ADB=∠ACH,由圆周角定理得,∠B=∠H,∴△ABD∽△AHC,∴=,即=,解得,AH=5,∴⊙O的半径=,故选:C.【点评】本题考查的是三角形的外接圆与外心,掌握相似三角形的判定和性质、圆周角定理是解题的关键.15.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC 的长为()A.B.C.D.【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.【解答】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故选:D.【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.16.如图,AE是△ABC的外接圆⊙O的直径,AD是△ABC的高,若AB=8,AC=10,AD=8,则AE的值为()A.10B.10C.12D.12【分析】根据圆周角定理得到∠ABE=90°,证明△ABE∽△ADC,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵AE是△ABC的外接圆⊙O的直径,∴∠ABE=90°,∵AD是△ABC的高,∴∠ADC=90°,∴∠ABE=∠ADC,又∠E=∠C,∴△ABE∽△ADC,∴=,∴AE==10,故选:B.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.二.填空题(共2小题)17.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件5m+2n≠9.【分析】能确定一个圆就是不在同一直线上,首先确定直线AB的解析式,然后点C不满足求得的直线即可.【解答】解:设直线AB的解析式为y=kx+b,∵A(1,2),B(3,﹣3),∴解得:k=﹣,b=,∴直线AB的解析式为y=﹣+,∵点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,∴点C不在直线AB上,∴5m+2n≠9,故答案为:5m+2n≠9.【点评】本题考查了确定圆的条件及坐标与图形的性质,能够了解确定一个圆时三点不共线是解答本题的关键.18.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE于F,连接DF.若OE=2,DF=1,则△ABC的周长为6+2.【分析】由BC、OE互相平分可证明四边形BECO为平行四边形,由OC=OB可得BECO为菱形,可得∠BOD=60°,∠BAE=∠EAC=30°,CF⊥AE于F,可证△AGC 为等边三角形,F为中点,则由中位线性质可得BG=2DF.在Rt△BHC中利用勾股定理可求GH,进而得到AB、AC,得到△ABC的周长.【解答】解:延长CF交AB于点G,过C作CH⊥AB于H,连BO.∵BC、OE互相平分∴四边形BECO为平行四边形∵OB=OC∴四边形BECO为菱形∴=∵OE=2∴Rt△BOD中,tan∠BOD=∴∠BOD=60°∴∠BAE=∠EAC=30°∵CF⊥AE∴F为GC中点,△AGC为等边三角形∴BG=2DF=2在Rt△BCH中BH2+HC2=BC2∴(2+GH)2+()2=62解得GH=(舍去)或GH=,∴AG=AC=﹣1+,∴△ABC的周长为6+2.故答案为:6+2.【点评】本题是圆的综合题,考查了圆的有关计算、菱形判定和性质、中位线性质以及勾股定理,解答关键是时数形结合.三.解答题(共22小题)19.如图,四边形ABCD中,∠A=90°,AB=5,BC=8,CD=6,AD=5,试判断点A、B、C、D是否在同一个圆上,并证明你的结论.【分析】连接BD,在△ABD中,利用勾股定理求得BD的长,然后利用勾股定理的逆定理证明△BCD是直角三角形即可证得.【解答】解:A、B、C、D在同一个圆上.证明:连接BD.在直角△ABD中,BD==10,在△BCD中,∵82+62=100,即BC2+CD2=BD2,∴△BCD是直角三角形.∴B、C、D在以BD为直径的圆上.又∵△ABD是直角三角形,则A、B、D在以BD为直径的圆上.∴点A、B、C、D在以BD为直径的圆上.【点评】本题考查了直角三角形的性质,直角三角形的三个顶点在以斜边为直径的圆上.20.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.【分析】(1)根据题中给出的定义,由于∠DAB和∠DCB不是直角,因此AC就是损矩形的直径.(2)根据直角三角形斜边上中线的特点可知:此点应是AC的中点,那么可作AC的垂直平分线与AC的交点就是四边形外接圆的圆心.(3)本题可用面积法来求解,具体思路是用四边形ABCD面积的不同表示方法来求解,四边形ABCD的面积=三角形ABD的面积+三角形BCD的面积=三角形ABC的面积+三角形ADC的面积;三角形ABD的面积已知了AB的长,那么可过D作AB边的高,那么这个高就应该是BD•sin45°,以此可得出三角形ABD 的面积;三角形BDC的面积也可用同样的方法求解,只不过AB的长,换成了BC;再看三角形ABC的面积,已知了AB的长,可用含BC的式子表示出ABC的面积;而三角形ACD的面积,可用正方形面积的四分之一来表示;而正方形的边长可在直角三角形ABC中,用勾股定理求出.因此可得出关于BC 的方程,求解即可得出BC的值.【解答】解:(1)只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.因此AC是该损矩形的直径;(2)作图如图:∵点P为AC中点,∴PA=PC=AC.∵∠ABC=∠ADC=90°,∴BP=DP=AC,∴PA=PB=PC=PD,∴点A、B、C、D在以P为圆心,AC为半径的同一个圆上;(3)∵菱形ACEF,∴∠ADC=90°,AE=2AD,CF=2CD,∴四边形ABCD为损矩形,∴由(2)可知,点A、B、C、D在同一个圆上.∵BD平分∠ABC,∴∠ABD=∠CBD=45°,∴,∴AD=CD,∴四边形ACEF为正方形.∵BD平分∠ABC,BD=,∴点D到AB、BC的距离h为4,=AB×h=2AB=6,∴S△ABDS△ABC=AB×BC=BC,S△BDC=BC×h=2BC,S△ACD=S正方形ACEF=AC2=(BC2+9),=S△ABC+S△ADC=S△ABD+S△BCD∵S四边形ABCD∴BC+(BC2+9)=6+2BC∴BC=5或BC=﹣3(舍去),∴BC=5.【点评】本题主要考查了菱形的性质,正方形的判定,圆的内接四边形等知识点.(3)中如果无法直接求出线段的长,可通过特殊的三角形用面积法来求解.21.如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD 为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.【分析】(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得∠MAD=∠MBD,进而得到OA=ON,那么就求得了点N的坐标;(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解.【解答】解:(1)从图中我们可以发现四边形ADMB就是一个损矩形.∵点M是正方形对角线的交点,∴∠BMD=90°,∵∠BAD=90°,∴四边形ADMB就是一个损矩形.(2)取BD中点H,连接MH,AH.∵四边形OABC,BDEF是正方形,∴△ABD,△BDM都是直角三角形,∴HA=BD,HM=BD,∴HA=HB=HM=HD=BD,∴损矩形ABMD一定有外接圆.(3)∵损矩形ABMD一定有外接圆⊙H,∴∠MAD=∠MBD,∵四边形BDEF是正方形,∴∠MBD=45°,∴∠MAD=45°,∴∠OAN=45°,∵OA=1,∴ON=1,∴N点的坐标为(0,﹣1).(4)延长AB交MG于点P,过点M作MQ⊥x轴于点Q,设点MG=x,则四边形APMQ为正方形,∴PM=AQ=x﹣1,∴OG=MQ=x﹣1,∵△MBP≌△MDQ,∴DQ=BP=CG=x﹣2,∴MN2=2x2,ND2=(2x﹣2)2+12,MD2=(x﹣1)2+(x﹣2)2,∵四边形DMGN为损矩形,∴2x2=(2x﹣2)2+12+(x﹣1)2+(x﹣2)2,∴2x2﹣7x+5=0,∴x=2.5或x=1(舍去),∴OD=3,∴D点坐标为(3,0).【点评】解决本题的关键是理解损矩形的只有一组对角是直角的性质,综合考查了四点共圆的判定及勾股定理的应用.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【分析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.【解答】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)【点评】本题主要考查等弧对等弦,及确定一个圆的条件.23.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC.(2)①在损矩形ABCD内是否存在点O,使得A、B、C、D四个点都在以O为圆心的同一圆上?如果有,请指出点O的具体位置;②如图,直接写出符合损矩形ABCD的两个结论(不能再添加任何线段或点).【分析】△ADC和△ABC都是直角三角形,且有共同的斜边,直角三角形的三个顶点在以斜边为直径的圆上.因而ABCD四个顶点共圆.【解答】解:(1)线段AC;(2)①在损矩形ABCD内存在点O,使得A、B、C、D四个点都在以O为圆心的同一个圆上,O是线段AC的中点.②ABCD是圆内接四边形;∠ADB=∠ACB.【点评】本题主要考查了直角三角形的性质,三个顶点在以斜边为直径的圆上.24.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.【分析】要求证:点E是过A,B,D三点的圆的圆心,只要证明AE=BE=DE即可,可以根据等角对等边可以证得.【解答】证明:∵点D在∠BAC的平分线上,∴∠1=∠2.(1分)又∵DE∥AC,∴∠2=∠3,∴∠1=∠3.(2分)∴AE=DE.(3分)又∵BD⊥AD于点D,∴∠ADB=90°.(4分)∴∠EBD+∠1=∠EDB+∠3=90°.(5分)∴∠EBD=∠EDB.(6分)∴BE=DE.(7分)∴AE=BE=DE.(8分)∵过A,B,D三点确定一圆,又∠ADB=90°,∴AB是A,B,D所在的圆的直径.(9分)∴点E是A,B,D所在的圆的圆心.(10分)【点评】本题主要考查了等腰三角形的判定方法,等角对等边.25.如图,直线l1、l2相交于点A,点B、点C分别在直线l1、l2上,AB=k•AC,连接BC,点D是线段AC上任意一点(不与A、C重合),作∠BDE=∠BAC=α,与∠ECF的一边交于点E,且∠ECF=∠ABC.(1)如图1,若k=1,且∠α=90°时,猜想线段BD与DE的数量关系,并加以证明;(2)如图2,若k≠1,且∠α≠90°时,猜想线段BD与DE的数量关系,并加以证明.【分析】(1)连接BE.若k=1,且∠α=90°时,要求线段BD与DE的数量关系,可以通过证明△BED∽△BCA得出;(2)连接BE.若k≠1,且∠α≠90°时,要求线段BD与DE的数量关系,可以通过证明△BED∽△BCA得出.【解答】证明:(1)连接BE.∵∠ECF=∠ABC,∠ECF+∠BCE+∠BCA=∠ABC+∠BAC+∠BCA=180°,∴∠BCE=∠BAC;∵∠BDE=∠BAC=α=90°,∴B、E、D、C四点共圆,。
九年级数学下册第27章圆27.2直线与圆的位置关系1点与圆的位置关系教案新版华东师大版2021072
word2 与圆有关的位置关系1.点与圆的位置关系1.能从点和圆的位置关系,判断点和圆心的距离与半径的大小关系.(重点)2.学会用已知点到圆心的距离与半径的大小关系,判断点与圆的位置关系.(重点)3.认识三角形的外接圆,三角形的外心的概念,会画三角形的外接圆.(难点)一、情境导入同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;如图是一位运动员射击6发子弹在靶上留下的痕迹.你知道这个运动员的成绩吗?请同学们算一算.(击中最里面的圆的成绩为10环,依次为9、8、…、1环)二、合作探究探究点一:点和圆的位置关系【类型一】判断点和圆的位置关系如图,已知矩形ABCD的边AB=3cm,AD=4cm.(1)以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以点A为圆心作⊙A,使B、C、D三点中至少有一点在圆内且至少有一点在圆外,则⊙A的半径r的取值X围是什么?解析:(1)根据勾股定理求出AC的长,进而得出点B、C、D与⊙A的位置关系;(2)利用(1)中所求,即可得出半径r的取值X围.解:(1)∵AB=3cm<4cm,∴点B在⊙A 内;∵AD=4cm,∴点D在⊙A上;∵AC=32+42=5cm>4cm,∴点C在⊙A外.(2)由题意得,点B一定在圆内,点C 一定在圆外.∴3cm<r<5cm.方法总结:判断点与圆的位置关系,只需比较点到圆心的距离d与圆的半径rd <r,则点在圆内;若d=r,则点在圆上;若d>r,则点在圆外.【类型二】点和圆的位置关系的应用如图,点O处有一灯塔,警示⊙O内部为危险区,一渔船误入危险区点P处,该渔船应该按什么方向航行才能尽快离开危险区?试说明理由.解析:⊙O的内部为危险区域,因而渔船应沿半径向远离圆心的方向行驶.解:渔船应沿着灯塔O过点P的射线OP方向航行才能尽快离开危险区.理由如下:设射线OP交⊙O与点A,过点P任意作一条弦CD,连接OD,在△ODP中,OD-OP<PD,又∵OD=OA,∴OA-OP<PD,∴PA<PD,即渔船沿射线OP方向航行才能尽快离开危险区.方法总结:在圆内的一点P应沿着圆心O与该点的连线的方向(即射线OP)运动,才能最快离开圆的区域.探究点二:确定圆的条件经过不在同一直线上的三个点作一个圆已知:不在同一直线上的三个已知点A、B、C(如图),求作:⊙O,使它经过点A、B、C.解析:根据线段垂直平分线上的点到线段两端点的距离相等,作出边AB、BC 的垂直平分线相交于点O,以点O为圆心,以OC为半径,作出圆即可.解:(1)连接AB、BC;(2)分别作出线段AB、BC的垂直平分线DE、GF,两垂直平分线相交于点O,则点O就是所求作的⊙O的圆心;(3)以点O为圆心,OC长为半径作圆,则⊙O就是所求作的圆.方法总结:线段垂直平分线的作法,需熟练掌握.探究点三:三角形的外接圆与外心 【类型一】与圆的内接三角形有关的角的计算如图,△ABC 内接于⊙O ,∠OAB =20°,则∠C 的度数是________.解析:由OA =OB ,知∠OAB =∠OBA =20°,所以∠AOB =140°,根据圆周角定理,得∠C =12∠AOB =70°.方法总结:在圆中求圆周角的度数,可以根据圆周角定理找相等的角实现互换,也可以寻找同弧所对的圆周角与圆心角的关系.【类型二】与圆的内接三角形有关的线段的计算如图,在△ABC 中,O 是它的外心,BC =24cm ,O 到BC 的距离是5cm ,求△ABC 的外接圆的半径.解析:根据外心的性质可知OD 垂直平分BC ,可知△BOD 为直角三角形,BD =21BC =12,OD =5,由勾股定理可求半径OB .解:如图,连接OB ,过点O 作OD ⊥BC ,则OD =5cm ,BD =12BC △OBD 中,OB =OD 2+BD 2=52+122△ABC 的外接圆的半径为13cm.方法总结:由外心的定义可知外接圆的半径等于OB ,过点O 作OD ⊥BC ,易得BD =12cm.由此可求它的外接圆的半径.三、板书设计教学过程中,强调三角形的外接圆的圆心到三角形三个顶点的距离相等,它是三角形三边垂直平分线的交点.在圆中充分利用这一点可解决相关的计算问题.。
九年级数学下册第27章圆27.2与圆有关的位置关系27.2.1点与圆的位置关系导学课件新版华东师大版
27.2.1 点与圆的位置关系
例 3 [高频考题] 下列结论正确的是( C ) ①三角形有且只有一个外接圆;②圆有且只有一个内接三角形;
③三角形的外心是各边垂直平分线的交点;④三角形的外心到三角
形三边的距离相等.
A. ①②③④
B. ②③④
C. ①③
D. ①②④
27.2.1 点与圆的位置关系
[解析] ①正确;圆有无数个内接三角形,所以②错误;由三角形外接 圆的作法可知外心是三角形三边垂直平分线的交点,③正确;等边三角形的 外心到三角形三边的距离相等,其他三角形的外心到三角形三边的距离不相 等,④错误.
27.2.1 点与圆的位置关系
[拓展] 三角形的外心在三角形的内部⇔三角形为锐角三角形; 三角形的外心在三角形的一边上⇔三角形为直角三角形; 三角形的外心在三角形的外部⇔三角形为钝角三角形.
27.2.1 点与圆的位置关系
反思
学习本节后在反思环节,有几名同学的发言如下,你觉得他 们说的正确吗?
甲:直角三角形的外心是斜边的中点; 乙:锐角三角形的外心在三角形的内部; 丙:钝角三角形的外心在三角形的外部 ; 丁:过三点可以确定一个圆.
小结 知识点一 点与圆的位置关系
点在圆外,则这个点到圆心的距离__大__于__半径; 点在圆上,则这个点到圆心的距离__等_于___半径; 点在圆内,则这个点到圆心的距离__小__于__半径.
27.2.1 点与圆的位置关系
[明确] (1)列表表示点与圆的位置关系:
点与圆的位 置关系
图形
数量(点到圆心的距离 d 与圆的半径 r)的大小关系
27.2.1 点与圆的位置关系
解: (1)如图,⊙O 即为所求.
(2)∵∠BAC=90°,AB=8 米,AC=6 米, ∴BC=10 米,且 BC 为⊙O 的直径, ∴△ABC 外接圆的半径为 5 米,
最新华师版九年级数学下册 27.2.1 点与圆的位置关系
2.2 圆心角、圆周角2.2.1 圆心角1.设⊙O 的半径为r ,P 到圆心的距离为d 不大于r ,则点P 在( )A. 在⊙O 内B. 在⊙O 外C. 不在⊙O 内D.不在⊙O 外2.设⊙O 的半径为5,圆心的坐标为(0,0),点 P 的坐标为(4,-3),则点P 在( )。
A. 在⊙O 内B. 在⊙O 外C. 在⊙O 上D.在⊙O 内或外3.如图点A 、D 、G 、B 在半圆上,四边形ABOC,DEOF,HMNO 均为矩形,设BC=a,EF=b,NH=c,则下列说法正确的是( )A. a >b >cB. a =b =cC. c >a >bD. b >c >a4.在⊿ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )A.C 在⊙A 上B.C 在⊙A 外C.C 在⊙A 内D.C 在⊙A 位置不能确定。
5.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( )A.16cm 或6cm,B.3cm 或8cmC.3cmD.8cm6.已知矩形ABCD 的边AB =15,BC =20,以点B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是A .r >15B .15<r <20C .15<r <25D .20<r <257.如图,在Rt ABC △中,90ACB =∠,6AC =,10AB =,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上C.点P 在⊙O 外 D.无法确定8.⊙O 直径为8cm ,有M 、N 、P 三点,OM=4cm ,ON=8cm ,OP=2cm ,则M 点在 ,N 点在圆 ,P 点在圆 。
9.以矩形ABCD 的顶点A 为圆心画⊙A ,使得B 、C 、D 中至少有一点在⊙A 内,且至少有一点在⊙A 外,若BC=12,CD=5.求⊙A 的半径r 的取值范围。
最新华东师大版九年级数学下册27.2.1.点和圆的位置关系公开课优质教案(2)
28.2.1点与圆的位置关系序号课时1课时课型新授授课时间课题28.2.1点与圆的位置关系教学目标知识与能力了解点与圆的三种位置关系,能够用数量关系来判断点与圆的位置关系。
过程与方法掌握不在一条直线上的三点确定一个圆,能画出三角形的外接圆,求出特殊三角形的外接圆的半径。
情感态度与价值观渗透方程思想,分类讨论思想。
教学重点用数量关系判断点和圆的位置关系,用尺规作三角形的外接圆,求直角三角形、等边三角形和等腰三角形的半径。
教学难点运用方程思想求等腰三角形的外接圆半径。
教学方法探究、合作、交流、讨论法辅助手段学案讲义,配套练习册教学环节教学内容与设计学生活动备课札记教学流程与互动(一)情境导入同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;右图是一位运动员射击10发子弹在靶上留下的痕迹。
你知道这个运动员的成绩吗?请同学们算一算。
(击中最里面的圆的成绩为10环,依次为9、8、…、1环)这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?这就是本节课研究的课题。
(二)实践与探索1:点与圆的位置关系我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,学生先自己探索再组内讨论解决,师指导学生自己自学课本,掌握此知识点,并理解记忆针对本节课的内容,巩固练习,达到让学生举一反三的目的。
再次质疑,扫清障碍若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个点到圆心的距离小于半径。
如图28.2.1,设⊙O 的半径为r ,A 点在圆内,B 点在圆上,C点在圆外,那OA <r , OB =r , OC >r .反过来也成立,即若点A 在⊙O 内 OA r < 若点A 在⊙O 上 OA r = 若点A 在⊙O 外 OA r > 思考与练习1、⊙O 的半径5r cm =,圆心O 到直线的AB 距离3d OD cm ==。
[初中++数学] 点与圆的位置关系++课件+华东师大版数学九年级下册
(3)点P在圆外.
(3)因为点P在圆外,所以线段OP的长度大于☉O的半
径,即OP>2 cm.
确定圆的条件及方法
要将如图所示的圆轮残片复制完成,怎样确定这个圆轮
残片的圆心和半径?(写出找圆心和半径的步骤)
[分析] 需要确定的是圆心和半径,根
据圆的确定条件可在这个圆轮残片
解:如答案图,连结OB、OC,
连结OA交BC于点D.由圆、
等腰三角形及圆内接三角
形的性质可得OA垂直平分
BC,且OA平分∠BAC.
∵∠BAC=120°,
∴∠BAO=60°,
(答案图)
∴△OAB为等边三角形,∴OA=AB.
1
9
在Rt△ABD中,BD= BC= ,
2
2
则OA=AB=
=
3
60°
过点O作OD⊥AB于点D,可在Rt△AOD中求出AO的长,
由此求出该三角形外接圆的面积.
解:如答案图,在等边△ABC中,O为△ABC外接圆的圆心,连
结AO,过点O作OD⊥AB于点D.由于△ABC为等边三角形,
易得OA平分∠BAC,
1
1
∴∠DAO=2∠BAC=2×60°=30°.
∵OD⊥AB,☉O为△ABC的外接圆.
1
1
∴AD=2AB=2a.
1
2
3
在Rt△AOD中,AO=
=
=
a
,
(答案图)
∠ 30° 3
2
3
3
1
即☉O的半径为 a.∴☉O的面积为π = πa2.
3
3
3
[技巧归纳] 解决圆内接等边三角形问题时,通常过圆心
华师版九年级数学下册_27.2.1 点与圆的位置关系
以点A 以外的任 过一点A 意一点为圆心,
作圆 以该点与点A 的 距离为半径作圆
无数个
知2-讲
图示
感悟新知
条件
作法
作圆的个数
连结AB,作线段AB 的垂直平分线l,以 过两点A, 其垂直平分线上任意 B 作圆 一点为圆心,以该点 与点A(或点B)的距离
为半径作圆
无数个
知2-讲
图示
感悟新知
条件
作法
作圆的个数
感悟新知
知1-练
例 1 如图27.2-1,已知⊙ O 的半径r=5 cm,圆心O 到直线 l 的距离d=OD=3 cm,在直线l 上有P,Q,R 三点, 且有PD=4 cm,QD=5 cm,RD=3 cm,那么P,Q,R 三点与⊙ O 的位置关系各是怎样的?
感悟新知
知1-练
解题秘方:比较点到圆心的距离与半径的大小确定点的位 置情况.
连结AB,BC,分别作 过不在同 线段AB,BC 的垂直 一条直线 平分线DE 和FG,DE 上的三点 和FG 相交于点O,以 A,B,C O 为圆心,以OA(或
作圆 OB,OC)为半径作圆, ⊙ O 就是所求作的圆
一个
知2-讲
图示
感悟新知
2. 确定一个圆的条件 (1)已知圆心、半径,可以确定一个圆. (2)不在同一条直线上的三个点确定一个圆.
感悟新知
知识点 3 三角形的外接圆
知3-讲
1. 三角形的外接圆 经过三角形三个顶点的圆就是这个三 角形的外接圆,三角形外接圆的圆心叫做这个三角形的 外心. 这个三角形叫做这个圆的内接三角形.
感悟新知
知3-讲
2. 三角形的外心 (1)定义:三角形的外接圆的圆心是三角形三条边的垂 直平分线的交点,叫做这个三角形的外心. (2)性质:三角形的外心到三角形三个顶点的距离相等, 等于其外接圆的半径.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理: 过不在同一直线上的三个点确定一个圆
注意:同一直线上的三个点不能作圆
►给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。—— A·L·柯西 ►数学是一种精神,一种理性的精神。正是这种精神,激发、促进、鼓舞并驱使 人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类 的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解 和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。— —克莱因《西方文化中的数学》 ►无限!再也没有其他问题如此深刻地打动过人类的心灵。——希尔伯特 ►整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——G·D·伯 克霍夫 ►数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的 真理是密切相连的。——史密斯
A
A
A
●O
●O
●O
B
┐
CB
C
B
C
锐角三角形的外心位于三角形内,
直角三角形的外心位于直角三角形斜边的中点,
钝角三角形的外心位于三角形外.
新课讲解
要点归纳
经过三角形的三个顶点的圆叫做三角形的外接 圆;外接圆的圆心叫三角形的外心;三角形的外心 到三角形的三个顶点的距离相等.
新课讲解
例2 如图,将△AOB置于平面直角坐标系中,O为 原点,∠ABO=60°,若△AOB的外接圆与y轴交于 点D(0,3). (1)求∠DAO的度数; (2)求点A的坐标和△AOB外接圆的面积.
· ·
新课讲解
问题2如何过两点A、B作一个圆?过两点可以作多少 个圆?
作线段AB的垂直平分线,以其
上任意一点为圆心,以这点和
·
点A或B的距离为半径画圆即可;
可作无数个圆.
A ·· B ·
新课讲解
问题3:过不在同一直线上的三点能不能确定一个圆?
经过A,B两点的圆的圆心在线段
AB的垂直平分线上.
F
经过B,C两点的圆的圆心在线段
3.⊙O的半径r为5㎝,O为原点,点P的坐标为(3,4),
则点P与⊙O的位置关系为
(B )
A.在⊙O内
B.在⊙O上
C.在⊙O外
D.在⊙O上或⊙O外
随堂即练
4.判断:
(1)经过三点一定可以作圆
(× )
(2)三角形的外心就是这个三角形两边垂直平分线的
交点
(√)
(3)三角形的外心到三边的距离相等
( ×)
1
2cm · O
随堂即练
10.如图,已知 Rt△ABC 中 ,C 90
若 AC=12cm,BC=5cm,求的外接圆半径.
解:设Rt△ABC 的外接圆的外心为
O,连结OC,则OA=OB=OC.
∴O是斜边AB 的中点.
B
∵∠C=900,AC=12cm,
C
O
A
BC=5cm. ∴AB=13cm,OA=6.5cm. 故Rt△ABC 的外接圆半径为6.5cm.
方法总结:图形中求三角形外接圆的面积时,关键是 确定外接圆的直径(或半径)长度.
新课讲解
例2 如图,在△ABC中,O是它的外心, BC=24cm,O到BC的距离是5cm,求△ABC 的外接圆的半径.
D
解析:由外心的定义可知外接圆的半径等于OB, 过点O作OD⊥BC,易得BD=12cm.由此可求它 的外接圆的半径.
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆
(√ )
(2)任意一个圆有且只有一个内接三角形
( ×)
(3)经过三点一定可以确定一个圆
( ×)
(4)三角形的外心到三角形各顶点的距离相等 ( √ )
新课讲解
画一画:分别画一个锐角三角形、直角三角形和钝 角三角形,再画出它们的外接圆,观察并叙述各三 角形与它的外心的位置关系.
F 垂直平分线MN;
2、连接AC,作线段AC的垂直平
B
EO
MC
分线EF,交MN于点O; 3、以O为圆心,OB为半径作圆。
所以⊙O就是所求作的圆.
新课讲解
问题4:现在你知道怎样将一个如图所示的破损的圆盘
复原了吗?
方法: 1、在圆弧上任取三点A、
A B
B、C;
2、作线段AB、BC的垂
直平分线,其交点O即为 圆心;
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°, ∴∠DAO=30°.
新课讲解
(2)求点A的坐标和△AOB外接圆的面积. 解:∵点D的坐标是(0,3),∴OD=3.
在直角△AOD中, OA=OD·tan∠ADO=3 3 , AD=2OD=6, ∴点A的坐标是( 3 3 ,0). ∵∠AOD=90°,∴AD是圆的直径, ∴△AOB外接圆的面积是9π.
OP = 3 ,则点P在
( D)
A.大圆内
B.小圆内
C.小圆外
D.大圆内,小圆外
o
新课讲解
点和圆的位置关系
P
P
d
d Pd
r
r
r
P
r
R
点P在⊙O内
d<r
点P在⊙O外 d>r
数形结合:位置关系
点P在⊙O上 点P在圆环内
d=r r≤d≤R
数量关系
新课讲解
例1 如图,已知矩形ABCD的边AB=3,AD=4. (1)以A为圆心,4为半径作⊙A,则点B、C、D与
C O
3、以点O为圆心,OC长
为半径作圆.
⊙O即为所求.
针对训练
某一个城市在一块空地新建了三个居民小区,它们 分别为A、B、C,且三个小区不在同一直线上,要想 规划一所中学,使这所中学到三个小区的距离相等。 请问同学们这所中学建在哪个位置?你怎么确定这个 位置呢?
●A
C
B●
●
新课讲解
3 三角形的外接圆及外心 试一试:已知△ABC,用直尺与圆规作出过A、B、
HS九(下) 教学课件
第27章 圆
27.2 与圆有关的位置关系
1.点和圆的位置关系
学习目标
1.理解并掌握点和圆的三种位置关系.(重点) 2.理解不在同一直线上的三个点确定一个圆及其运用. (重点) 3.了解三角形的外接圆和三角形外心的概念.
新课引入
你玩过飞镖吗?它的靶子是由一些圆组成的, 你知道击中靶子上不同位置的成绩是如何计算的吗?
C三点的圆.
A
O C
B
新课讲解
1. 外接圆 ⊙O叫做△ABC的_外__接__圆___, △ABC叫做⊙O的_内__接__三__角__形___. B
A
●O C
2.三角形的外心: 定义:三角形外接圆的圆心叫做三角形的外心.
作图:三角形三边中垂线的交点. 性质:到三角形三个顶点的距离相等.
新课讲解
判一判:
新课讲解
解:连结OB,过点O作OD⊥BC. 则OD=5cm,BD 1 BC 12cm.
2
在Rt△OBD中
OB OD2 BD2 13cm. 即△ABC的外接圆的半径为13cm.
随堂即练
1.如图,请找出图中圆的圆心,并写出你找圆心的方法?
A
O C
B
随堂即练
2.正方形ABCD的边长为2cm,以A为圆心2cm为半径作 ⊙A,则点B在⊙A 上 ;点C在⊙A 外 ;点D在⊙A上 .
能力提升
一个8×12米的长方形草地,现要安装自动喷水装置, 这种装置喷水的半径为5米,你准备安装几个? 怎样安 装? 请说明理由.
课堂小结
点与圆的 位置关系
作圆
位置关系数量化
点在圆外
d>r
点在圆上
d=r
P
r R
点在圆内
d<r
过一点可以作无数个圆
过两点可以作无数个圆
点P在圆环内
r≤d≤R
一个三角形 的外接圆是 唯一的.
⊙A的位置关系如何?
解:AD=4=r,故D点在⊙A上 AB=3<r,故B点在⊙A内 AC=5>r,故C点在⊙A外
新课讲解
(2)若以A点为圆心作⊙A,使B、C、D三点中至少 有一点在圆内,且至少有一点在圆外,求⊙A的 半径r的取值范围?(直接写出答案)
3<r<5
A
D
B
C
新课讲解
变式:如图,在直角坐标系中,点A的坐标为(2,1), P是x轴上一点,要使△PAO为等腰三角形,满足条件的 P有几个?求出点P的坐标.
A
BC的垂直平分线上.
B ●
经过A,B,C三点的圆的圆心应该在
o
这两条垂直平分线的交点O的位置.
C
G
新课讲解
归纳总结 位置关系
定理:
F
不在同一直线上的三个点确定
一个圆.
A
有且只有
B
●
o
C
G
随堂即练
已知:不在同一直线上的三点A、B、C. 求作:⊙O,使它经过点A、B、C.
A N
作法:1、连结AB,作线段AB的
三点,那么这条圆弧所在圆的圆心是
(B)
A.点P C.点R
B.点Q D.点M
A
B
C
PQR M
随堂即练
8.小明不慎把家里的圆形玻璃打碎了,其中四块碎片
如图所示,为配到与原来大小一样的圆形玻璃,小明
带到商店去的一块玻璃碎片应该是(D )
A.第①块
B.第④块
C.第③块
D.第②块
随堂即练
9.画出由所有到已知点的距离大于或等于2cm并且小于 或等于3cm的点组成的图形.
P
d
d
Pd
r
r
P
r
点P在⊙O内 点P在⊙O上 点P在⊙O外