相反数-(2018-2019)
相反数(课件ppt)
课堂总结
定义 相 反 数
应用
只有符号不同的两个 数互为相反数;
数a的相反数是-a 0的相反数是0
互为相反数的两个数 分别位于原点的两侧 且与原点的距离相等
求某数的相反数
进行化简:-(-a)= a
作业布置
课本P10 练习题 课本P12 习题1.2 5
1.2.2相反数
沪科版
七年级上
新知导入
同学们我们来做个游戏好不好? 请两个同学在讲台前背靠背站好(分左右)
新知导入
如果规定以讲台为原点,向右为正方向,向右走2步,向左走2步各 记作什么?
-2
0
2
新知导入
【画一画】画出一个数轴,并将下列的4个数在数轴上表示出来. -3, -4, +3, +4 .
-4 -3
+3 +4
-4 -3 -2 -1 0 1 2 3 4
新知讲解
【思考】像上面的几组数,如-2和+2,-4和+4各有什么相同点和 不同点?
符号不同
4
4
数字相同
新知讲解
【总结归纳】
代数意义
像-2和2,4和-4这样,只有符号不同的两个数互为相反数.
例如,8的相反数是-8,7的相反数是-7.
特别规定: 0的相反数是0.
(4)-(-12);
(5)+[-(-1.1)] ; (6)-[+(-7)].
【解】
(1)-(+10)=-10; (2)+(-0.15)=-0.15; (3)+(+3)=3;
(4)-(-12)=12;
(5)+[-(-1.1)]=+(+1.1)=1.1;
相反数课件
相反数课件(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、演讲致辞、规章制度、应急预案、心得体会、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, speeches, rules and regulations, emergency plans, insights, contract agreements, documentary evidence, teaching materials, essay summaries, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!相反数课件相反数课件篇1相反数课件相反数是指两个数在数轴上对称分布的数,即互为相反数。
2018-2019学年度 人教版七年级上册第一章《有理数》(1.2.3相反数)教案
1.2.3相反数[学习目标]识记相反数的定义,理解相反数在数轴上的特征。
运用相反数的特征求一个数a 的相反数。
[学习重点与难点] 重、难点: 理解相反数的意义 [学案设计] (一)、忆一忆数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。
3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
(二)、学一学1、自学课本第10、11的内容并填空: 相反数的概念:只有( )不同的两个数,我们称它们互为相反数,零的相反数是( )。
概念的理解:互为相反数的两个数分别在原点的( ),且到原点的( )相等。
一般地,数a 的相反数是a -,a -不一定是负数。
在一个数的前面添上“—”号,就表示这个数的相反数,如:-3是3的相反数,-a 是a 的相反数,因此,当a 是负数时,-a 是一个( )数 ( 填正或负 )-(-3)是(-3)的相反数,所以-(-3)=3,相反数是指两个数之间的特殊的关系。
如:“-3是一个相反数”这句话是不对的。
2、例1 : 求下列各数的相反数: (1)-5 (2)21 (3)0 (4)3a(5)-2b (6) a-b (7) a+2 3、例2 判断:(1)-2是相反数 ( ) (2)-3和+3都是相反数 ( ) (3)-3是3的相反数 ( ) (4)-3与+3互为相反数 ( )(5)+3是-3的相反数 ( ) (6)一个数的相反数不可能是它本身 ( ) 4、 问题:-(+5)和-(-5)分别表示什么意思?你能化简它们吗? 5、例3 化简下列各数中的符号:(1))312(-- (2)-(+5) (3)[])7(--- (4)[]{})3(+-+-(三)、练一练1.只有__________的两个数,叫做互为相反数.0的相反数是_______. 2.+5的相反数是______;______的相反数是-2.3;531-与______互为相反数. 3.若x 的相反数是-3,则______=x ;若x -的相反数是-5.7,则______=x . 4.化简下列各数的符号:()____6=+-,()____3.1=--,()[]____3=-+-. 5.下列说法中正确的是………………………………………………………………〖 〗 A .-1是相反数B .313-与+3互为相反数C .25-与52-互为相反数D .41-的相反数为41(四)、自主检测1.若3.2+=a ,则_________=-a ;若31-=a ,则_________=-a ;若1=-a ,则_____=a ;若2-=-a ,则_____=a ;如果a a =-,那么_____=a . 2.数轴上离开原点4.5个单位长度的点所表示的数是______,它们是互为______. 3.下列说法正确的是…………………………………………………………………〖 〗 A .-5是相反数B .32-与23互为相反数C .-4是4的相反数D .21-是2的相反数4.下列说法中错误的是………………………………………………………………〖 〗 A .在一个数前面添加一个“-”号,就变成原数的相反数B .511-与2.2互为相反数 C .31的相反数是-0.3 D .如果两个数互为相反数,则它们的相反数也互为相反数6.下列说法中正确的是………………………………………………………………〖 〗 A .符号相反的两个数是相反数B .任何一个负数都小于它的相反数C .任何一个负数都大于它的相反数D .0没有相反数7.下列各对数中,互为相反数的有…………………………………………………〖 〗(-1)与+(-1),+(+1)与-1,-(-2)与+(-2), +[-(+1)]与-[+(-1)],-(+2)与-(-2),⎪⎭⎫ ⎝⎛--31与⎪⎭⎫⎝⎛++31.A .6对B .5对C .4对D .3对8. 数轴上与原点的距离是6的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________。
相反数(4种题型)-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)
相反数(4种题型)【知识梳理】一、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称). (2)互为相反数的两数和为0.二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【考点剖析】题型一:相反数的代数意义例1.写出下列各数的相反数:16,-3,0,-12015,m,-n.解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0.解:-16,3,0,12015,-m,n.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.【变式1】相反数不大于它本身的数是( )A .正数B .负数C .非正数D .非负数【答案】D【详解】解:设这个数为a ,根据题意,有-a ≤a ,所以a ≥0.故选D .【变式2】若a ,b 互为相反数,则下列等式不一定成立的是( )A .1a b =−B .=−a bC .=−b aD .0a b +=【答案】A【分析】由题意直接根据相反数的定义和性质,进行分析即可得出答案.【详解】解:A. 1a b =−,注意b ≠0,此选项当选;B. =−a b ,此选项排除;C. =−b a ,此选项排除;D. 0a b +=,此选项排除.故选:A.【变式3】如果m 的相反数是最大的负整数,n 的相反数是它本身,则m n +的值为( )A .1B .0C .2D .-1【答案】A【分析】先根据相反数的定义确定、n 的值,再代入m +n ,计算即可求出其值.【详解】∵m 的相反数是最大的负整数,n 的相反数是它本身,∴m =1,n = 0,∴m +n =1+0=1,故A 选项是正确答案.【变式4】下列说法不正确的是( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数【答案】B【详解】解:A . 所有的有理数都有相反数,正确;B . 只有符号不同的两个数互为相反数,故B 错误;C . 在一个数的前面添上“-”,就得到它的相反数,正确;D.在数轴上到原点距离相等的两个点所表示的数是互为相反数,正确.故选B.【变式5】已知+(﹣73)的相反数是x,﹣(+3)的相反数是y,z的相反数是z,求x+y+z的相反数.【答案】16 3−【分析】根据相反数的概念求出x,y,z的值,代入x+y+z即可得到结果.【详解】解:∵+(73−)的相反数是x,-(+3)的相反数是y,z相反数是z,∴x=73,y=3,z=0,∴x+y+z=73+3+0=163,∴x+y+z的相反数是163−.【变式6】5x+与–7互为相反数,求x的值.【答案】2.试题分析:根据相反数的意义得出(x+5)+(-7)=0,求出x即可.试题解析:解:∵x+5与-7互为相反数,∴(x+5)+(-7)=0,解得:x=2.题型二:相反数的几何意义例2. (1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A和点B A在点B的左侧,并且这两个数的距离是12.8,则A=______,B=______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A和点B分别表示互为相反数的两个数,∴原点到点A与点B的距离相等,∵A、B两点间的距离是12.8,∴原点到点A和点B的距离都等于6.4.∵点A 在点B的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【变式1】互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .【答案】5.5与-5.5【详解】解:设一个正数为x,则x-(-x)=11,解得,x=5.5,∴-x=-5.5,故答案为5.5和-5.5.题型三:相反数与数轴相结合的问题例3.如图,图中数轴(缺原点)的单位长度为1,点A、B表示的两数互为相反数,则点C所表示的数为( )A.2 B.-4 C.-1 D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等.【变式1】结合数轴思考:0的相反数是_____.一个正数的相反数是一个___.一个负数的相反数是一个___.一个数的相反数是它本身的数是 ______.【答案】0 负数正数 0【变式2】如图,已知A,B,C,D四个点在数轴上.(1)若点A和点C表示的数互为相反数,则原点在点_____的位置;(2)若点B和点D表示的数互为相反数,则原点在点_____的位置;(3)若点B和点C表示的数互为相反数,请在数轴上表示出原点的位置.【答案】(1)B;(2)C;(3)见解析.【分析】(1)根据相反数的定义可求原点;(2)根据相反数的定义可求原点;(3)根据相反数的定义可求原点,再在数轴上表示出原点O的位置即可.【详解】(1)若点A和点C表示的数互为相反数,则原点为B;(2)若点B和点D表示的数互为相反数,则原点为C;(3)如图所示:题型四:化简多重符号例4.化简下列各数.(1)-(-8)=________; (2)-(+1518)=________; (3)-[-(+6)]=________; (4)+(+35)=________. 解:(1)-(-8)=8;(2)-(+1518)=-1518; (3)-[-(+6)]=-(-6)=6;(4)+(+35)=35. 【变式1】﹣(﹣6)的相反数是( )A .15B .13C .﹣6D .6【答案】C 【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C .【变式2】化简下列各数:③ -(-82) = ________ ②-|-5| = _______③()100−+−⎡⎤⎣⎦ = ________ ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦= ___________. 【答案】82 -5 100 135− 【分析】分别根据相反数的定义进行化简即可.【详解】解:①-(-82)=82,②-|-5|=-5,③()100−+−⎡⎤⎣⎦=100, ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦=135−.故答案为:82,-5,100,135−.【过关检测】一、单选题 1.(2023·陕西榆林·统考二模)下列各数中,相反数是它本身的数是( )A .2−B .1−C .0D .1 【答案】C【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是0.故选:C .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0. 2.(2023秋·山东滨州·七年级统考期末)若不为0的有理数a 与b 互为相反数,同学们化简a b +后得出了下列不同的结果:①2b −;②2a −;③2a ;④0.其中结果错误的个数为( )A .1B .2C .3D .4 【答案】C【分析】根据互为相反的两个数的和是0即可得到正确选项.【详解】解:∵不为0的有理数a 与b 互为相反数,∴0a b +=,∴①②③错误,④正确;故选C .【点睛】本题考查了相反数的定义和性质,熟记相反数的性质以及定义是解题的关键.3.(2023·河北唐山·统考二模)()3−+=( )A .3−B .3C .2−D .1 【答案】A【分析】根据相反数的定义解答即可.【详解】解:()33−+=−,故选:A .【点睛】本题考查了相反数的定义,知道“只有符号不同的两个数叫做互为相反数”是解题的关键. 4.(2023·浙江·七年级假期作业)如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .2−B .0C .1D .4【答案】C【分析】首先确定原点位置,进而可得C 点对应的数.【详解】解:点A 、B 表示的数互为相反数, ∴原点在线段AB 的中点处,∴点C 对应的数是1.故选:C .【点睛】此题主要考查了数轴,关键是正确确定原点位置.5.(2023秋·江苏无锡·七年级统考期末)在()2.5−+,()2.5−−,()2.5+−,()2.5++中,正数的个数是( )A .1B .2C .3D .4 【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:()2.5 2.5−+=−Q ,()2.5 2.25−−=,()2.5 2.5+−=−,()2.5 2.5++=,∴正数的个数是2个,故选B .【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【答案】C【分析】根据只有符号不同的两个数互为相反数,0的相反数是0;即可解答.【详解】解:A 、0与0互为相反数,不符合题意;B 、12与0.5−互为相反数,不符合题意;C 、6与16互为倒数,不是相反数,符合题意;D 、a 与 –a 互为相反数,不符合题意;故选C .【点睛】本题考查了相反数,解决本题的关键是熟记相反数的定义. 7.(2023·浙江·七年级假期作业)下列说法中正确的个数为( )①符号不相同的两个数互为相反数;②一个数的相反数一定是负数;③两个相反数的和等于0;④若两个数互为相反数,则这两个数一定一正一负.A .1个B .2个C .3个D .4个【答案】A 【分析】根据相反数的定义和性质,逐一判断,即可.【详解】∵只有符合不同的两个数叫做相反数∴2+,1−不是相反数∴①错误;∵1−的相反数是1,∴②一个数的相反数一定是负数,错误;∵互为相反数的两个数,相加等于0,∴③两个相反数的和等于0,正确;∵0的相反数是0,∴④错误;∴正确的只有③.故选:A .【点睛】本题考查相反数的知识,解题的关键是掌握相反数的定义和性质.8.(2022秋·江苏南通·七年级校联考期末)有理数a b ,在数轴上的位置如图所示,则数a b a b −−,,,的大小关系为()A .a b b a −<−<<B .a b a b −<<<−C .a b b a −<<−<D .a b a b −<−<<【答案】C【分析】先根据相反数的意义把a −,b −在数轴上表示出来,然后根据数轴上右边的数比左边的数大即得答案. 【详解】解:由题意可得a b a b −−,,,在数轴上的位置如图所示:则a b a b −−,,,的大小关系为a b b a −<<−<, 故选:C【点睛】本题考查了相反数的意义、数轴以及有理数的大小比较,属于基础题型,掌握解答的方法是关键.【分析】根据0a b +=,结合数轴,即可求解.【详解】解:∵点A 、B 分别表示数a 、b ,且0a b +=,A 、B 两点间的距离为6,∴26b a a a a −=−−=−=∴3a =−,故选:C .【点睛】本题考查了求数轴上两点距离,相反数的意义,数形结合是解题的关键.10.(2022秋·云南红河·七年级校考阶段练习)如图,数轴上点A 、B 、C 、D 表示的数中,表示互为相反数的两个点是( )A .点B 和点C B .点A 和点C C .点B 和点D D .点A 和点D【答案】D【分析】一对相反数在数轴上的位置特点:分别在原点的左右两旁,并且到原点的距离相等.【详解】解:点A 和点D 分别在原点的左右两旁,到原点的距离相等,∴它们表示的两个数互为相反数.故选D .【点睛】本题主要考查一对相反数在数轴上的位置特点,灵活运用所学知识求解是解决本题的关键.二、填空题11.(2022秋·广东广州·七年级校考阶段练习)如果2a −=−,那么=a ________.【答案】2【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数化简即可.【详解】解:∵2a −=−,∴2a =,故答案为:2.【点睛】本题考查了相反数,解题的关键是掌握相反数的定义.【答案】1【分析】根据题意求得a 与b 的关系,c ,d 的值,代入代数式求值.【详解】∵a ,b 互为相反数,∴0a b +=,∵c 是最小的非负数,∴0c =,∵d 是最小的正整数,∴1d =.∴()0101a b d d c ++−=+−=.【点睛】本题主要考查互为相反数的定义,掌握相反数的定义是解题的关键.13.(2023·浙江·七年级假期作业)化简下列各数的符号:()1.3−−=______,()3−+−=⎡⎤⎣⎦______.【答案】 1.3 3【分析】根据相反数的性质,即可求解.【详解】解:()1.3 1.3−−=; ()()333−+−=−−=⎡⎤⎣⎦. 故答案为:1.3,3【点睛】本题考查了相反数,熟练掌握在一个数的前面加上负号就是这个数的相反数,在一个数的前面加上正号是原数是解题的关键. 14.(2023秋·福建泉州·七年级统考期末)已知有理数a 在数轴上的位置如图所示,则a−___________3.(填“>”、“<”或“=”)【答案】<【分析】结合数轴得出a 的符号,再根据相反数的定义即可得到a −的值.【详解】解:由数轴可知,1a −-2<< ,∴12a −<<,∴3a −<故答案:<.【点睛】本题主要考查相反数和数轴,根据数轴得到数的正负和比较大小是解题的关键.15.(2023·全国·七年级假期作业)如果4a −和2−互为相反数,那么=a ___________.【答案】6【分析】根据相反数的定义求解即可.【详解】∵4a −和2−互为相反数∴42a −=解得6a =故答案为6.【点睛】本题主要考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解题的关键.16.(2023·浙江·七年级假期作业)如图,数轴上点A 所表示的数的相反数是_________.【答案】3【分析】根据数轴得出A 点表示的数,根据相反数的定义即可求解.【详解】解:∵A 点表示的数为3−,∴数轴上点A 所表示的数的相反数是3,故答案为:3.【点睛】本题考查了相反数的定义,在数轴上表示有理数,数形结合是解题的关键.17.(2023·浙江·七年级假期作业)已知23x +与5−互为相反数,则x 等于______.【答案】1【分析】根据互为相反数的两个数的和为0列式计算即可.【详解】∵23x +与5−互为相反数,∴()2350x ++−=解得1x =.故答案为:1.0是解题的关键.【答案】 a b −− 12−/32−【分析】根据相反数的定义即可求解.【详解】解:a b +的相反数是()a b a b −+=−−,112⎛⎫−− ⎪⎝⎭的相反数是111122⎡⎤⎛⎫−−−=− ⎪⎢⎥⎝⎭⎣⎦, 故答案为:①a b −−,②112−.【点睛】本题考查求一个数的相反数,掌握相反数的定义是解题的关键.三、解答题【答案】(1)68(2)0.75−(3)35(4)3.6【分析】(1)先去括号,然后根据负号的个数为偶数个,即可化简求值;(2)先去括号,然后根据负号的个数为奇数个,即可化简求值;(3)先去括号,然后根据负号的个数为偶数个,即可化简求值;(4)先去括号,然后根据负号的个数为偶数个,即可化简求值.【详解】(1)解:()6868−−=; (2)解:()0.750.75−+=−; (3)解:3355⎛⎫−−=⎪⎝⎭;(4)解:()3.6 3.6⎡⎤−+−=⎣⎦. 【点睛】本题考查了多重符号化简,解题关键是掌握若一个数前有多重符号,则由该数前面的符号中“−”的个数来决定,即奇数个“−”符号则该数为负数,偶数个“−”符号,则该数为正数.20.(2021秋·陕西渭南·七年级统考阶段练习)在数轴上,点A 表示的数是23a +,点B 表示的数是4,若点A 、B 位于原点两侧且到原点的距离相等,求a 的值.【答案】2−【分析】根据原点两侧且到原点的距离相等对应的数是相反数,可得234a +=−,求出即可;【详解】解:因为点A 、B 位于原点两侧且到原点的距离相等,所以234a +=−,解得2a =−.【点睛】本题考查数轴上表示相反数的点的特征,位于原点两侧且到原点的距离相等,解题关键是判断出相反数的关系. 21.(2023·浙江·七年级假期作业)在一条不完整的数轴上有A 、B 两点,A 、B 表示的两个数a 、b 是一对相反数.(1)如果A 、B 之间的距离是3,写出a 、b 的值(2)有一点P 从B 向左移动5个单位,到达Q 点,如果Q 点表示的数是2−,写出a 、b 的值【答案】(1) 1.5a =−、 1.5b =;(2)3a =−,3b =【分析】(1)由相反数的定义及两点间的距离公式可得a 、b 的值;(2)求出OB 、OA 的长即可求出a 、b 的值.【详解】(1)∵点A 、B a ,()b a b <,且A 、B 之间的距离为3,∴ 1.5a =−、 1.5b =;(2)∵5BQ =,2O Q =, ∴3OB =,∴3OA =,∴3a =−,3b =【点睛】本题考查了数轴和相反数,关键是掌握只有符号不同的两个数叫做互为相反数.22.(2022秋·辽宁抚顺·七年级校考阶段练习)如图,一个单位长度表示2,解答下列问题:(1)若点B 点D 所表示的数互为相反数求点D 所表示的数;(2)若点A 与点B 所表示的数互为相反数,求点D 所表示的数;(3)若点B 与点F 所表示的数互为相反数,求点D 所表示的数的相反数,【答案】(1)4(2)9(3)2−【分析】(1)“B 与D 所表示的数互为相反数”由B 与D 之间有四个单位长度得点C 所表示的数是原点,由此得点D 表示的数为4.(2)方法同(1)可得点D 表示的数为5.(3)方法同(1)可得点D 表示的数为2,它的相反数为-2.【详解】(1)∵B 与D 所表示的数互为相反数,且B 与D 之间有4个单位长度,一个单位长度表示2, ∴可得点D 所表示的数为4;(2)∵A 与B 所表示的数互为相反数,且它们之间距离为2,则B 表示的数为1,一个单位长度表示2, ∴点D 表示的数为9;(3)∵B 与F 所表示的数互为相反数,B 、F 两点间距离为12,∴C 、D 中间的点为原点,∴D 表示的数为2,它的相反数为2−.【点睛】在答题中要注意数轴的一个单位长度是多少,同时要根据两点之间单位长度来确定点所表示的数字. 23.(2021秋·河南南阳·七年级校考阶段练习)数轴上有三个数A ,B ,C .写出,,,0,,,A B C A B C −−−,7个数的大小关系.【答案】0A C B B C A −−−<<<<<<【分析】如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,再利用数轴比较大小即可.【详解】解:如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,∴0A C B B C A −−−<<<<<<.【点睛】本题考查的是相反数的含义,利用数轴比较有理数的大小,掌握“利用相反数的含义在数轴上分别描出,,A B C −−−对应的点”是解本题的关键.【答案】3或3【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1,绝对值为2的数为2或2−,得到关系式,代入所求式子中计算即可求出值.【详解】∵a ,b 互为相反数,x ,y 互为倒数,c 的绝对值是2,∴0a b +=,1xy =,2c =或2c =−,当2c =时,121012333a b xy c ++−=+−=, 当2c =−时,125012333a b xy c ++−=++=, ∴代数式123a b xy c ++−的值为:13或53 【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握相反数、绝对值及倒数定义是解答本题的关键.【答案】(1)4−,2(2)2或10(3)2,6【分析】(1)根据相反数到原点的距离相等,即可得出点B 和点C 表示的数,再根据单位长度为1,即可解答;(2)当点B 为原点,则可得点A 和点D 表示的数,根据点M 到点A 的距离是点M 到点D 的距离的2倍,分为点M 在点A 和点D 之间和点M 在点D 的右边两种情况,进行分类讨论即可;(3)设经过t 秒后相遇,根据题意找出等量关系列出方程求解即可.【详解】(1)解:∵点B ,D 表示的数互为相反数,点B 和点D 距离4个单位长度,∴点B 和点D 距离原点2个单位长度,∴点B 表示2−,点D 表示2,∵点A 在点B 左边两个单位长度,∴点A 表示的数为:224−−=−,故答案为:4−,2.(2)∵点B 为原点,∴点A 表示2−,点D 表示4,①当点M 在点A 和点D 之间时:点M 到点A 的距离为:(2)2M M −−=+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:2M =,②当点M 在点D 右边时:点M 到点A 的距离为:(2)2M M −−+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:10M =,故答案为:2或10.(3)由图可知,点B 和点C 距离3个单位长度,设经过t 秒后相遇,∵B 、C 两点分别以2个单位长度/秒和0.5个单位长度/秒同时向右运动,∴()20.53t −=,解得:2t =,此时点P 表示的数为:2226+⨯=,故答案为:2,6.【点睛】本题主要考查了用数轴上的点表示数,解题的关键是掌握有理数和数轴上的点是一一对应的关系,根据题意进行分类讨论.【答案】(1)2−; (2)5;(3)B 点向左平移一个单位;(4)3,3−;(5)A 点移动到B 点右侧.【分析】(1)由图可知,A 点表示的数为1−,B 点表示的数2,所以将A点向左平移12个单位长度后,表示的数是32−; (2)B 点向右平移3个单位长度后,表示的数是5;(3)A 点的相反数是1,故B 点向左平移一个单位后表示的是为1,与A 点表示的数互为相反数;(4)根据两点间的距离公式可求A 和B 的距离,根据数轴的定义可知原点移到B 点,A 点表示的数;(5)根据数轴上右边的数大于左边的数即可得到答案.【详解】(1)解:13122−−=−,即表示的数是32−故答案为:32−; (2)解:235+=,即表示的数是5,故答案为:5;(3)解:A点的相反数是1,B∴点向左平移一个单位后与A点表示的数互为相反数,(4)解:()213−−=,即A点和B点相距3个单位长度,∴将图中数轴的原点移到B点,A点表示的数是3−,故答案为:3,3−;(5)解:A点表示的数永远都大于B点表示的数,即A点移动到B点右侧.【点睛】本题考查了数轴,相反数,熟练掌握数轴的相关知识是解题关键.。
相反数PPT课件
看谁掌握得最
好:
(3)一个数的相反数是最小的正整数,则 -1 . 这个数是____
智力小游戏
智力小游戏
大家一起来探索:
如果数轴上点A表示+10,B、C两点 表示的数互为相反数,且点C到点A的距离是 2个单位长度,求点B、点C表示的数.
-2.5与+2.5,+1与-1,+3与-3
-2.5
+1
+ 3
+2.5
-1
- 3
符号 每对数均为一正一负,只有____不同.
§2.3 相反数
只有符号不同的两个数称互为相反数. 规定: 零的相反数是零 .
-2.5与+2.5,+1与-1,+3与-3
.
-2.5
0
.
+2.5
-1 0 +1
. .
0
.
-
.
看谁掌握得最
2 3 3 与2
好:
(1)下列说法正确的是 ( D )
(A) 互为相反数 1 1 (B) -( )与+( 3 )互为相反数 3 (C)5与-(-5)互为相反数 1 (D) 与-0.125互为相反数
8
看谁掌握得最
好:
(2)下列结论正确的是 ( C ) (A) 0没有相反数 (B) 符号不同的两个数是相反数 (C) 一个数的相反数的相反数是它本身 (D) 互为相反数的两个数中,一个是正 数,一个是负数
+3
每一对数在数轴上的对应点位于原点的两侧,且到 原点的距离相等.
我来 辨一辨:
(1)只要符号不同的两个数就称互为相 反数.( × ) (2)一个数的相反数一定是负数.( × ) (3)零的相反数是零.( √ ) (4)-8是相反数.( × )
我来做一做:
(1)分别写出下列各数的相反数:
相反数ppt课件
知识点是梳理
定义: 只有符号不同的两个数互为相反数 特点: 1、相反数特性:若AB互为相反数,则A+B=0,
反之若A+B=0,则A、B互为相反数 2、0相反数是0 3、相反数是成对出现,不能单独出现 4、数字a的相反数是-a,-a的相反数是a,这 里的a不一定是正数,所以-a也不一定是负数
随堂练习
3.一个数在数轴上所对应的点向右移到5个单位长度后,得到它
相反数的对应点,则这个数是( )
A.-2
B.2
C.2.5
D.-2.5
【答案】D 【详解】 相反数关于0对称,到0的距离都等于2.5,个单位长度,又因为点向右 移动,故这个数是-2.5.
随堂练习
4.绝对值等于其相反数的数一定是( )
相反数的几何意义
在数轴上位于原点两侧且到原点的距离相等的两个点
所表示的数互为相反数.
注意:(1)数轴上表示互为相反数的两个点 到原点的距离相等; (2)数轴上与原点的距离是a(a为正数)的点 有两个,分别在原点的左右两侧,它们表 示的数互为相反数.
课堂练习
1.(中考•绵阳)中国人最早使用负数,可追溯到两千多年
4)+5.38
4)-(+5.38)=-5.38
5)0
5)-( 0 )=0
6)-π
6)-(- π )=π
随堂练习
2.如果a+b=0,那么a、b两个有理数一定是( )
A、都等于0
B、互为相反数
C 、一正一负
D、互为倒数
【答案】B 【解析】 根据相反数性质得,如果两个有理数互为相反数,那么这两个有理数相加等于0, 反之,如果两个有理数相加等于0,那么这两个有理数互为相反数,故选B.
18-19学年七上数学:1.2.3-相反数ppt课件【人教版】含解析
.
对照数轴,说出-3与+3两数的相同点和不同点. 你还能说出具备这些特征的成对的数吗?
2018/9/4
一 相反数
探究一 相反数的概念
活动1:观察下列一组数+1和-1,+2.5和-2.5,
+4和-4,并把它们在数轴上表示出来. 思考: 1)上述各对数之间有什么特点? 2)请写出一组具有上述特点的数
3)你能得出相反数的概念吗?
第一章 有理数
1.2 有理数
1.2.3 相反数
导入新课 讲授新课 当堂练习 课堂小结
2018/9/4
学习目标
1.借助数轴理解相反数的意义,懂得数轴上表示相 反数的两个点关于原点对称.(难点) 2.会求有理数的相反数.(重点)
2018/9/4
导入新课
情境引入1
成语故事《南辕北辙》讲了一个人…… 如果点O表示魏国的位置,点A表示楚国的位置,
练一练
判断题: (1)-5是5的相反数;(√ (2)-5是相反数;(
)
)
×
1 1 (3)2 2 与 互为相反数;( 2
×
)
(4)-5和5互为相反数;(
√
)
(5) 相反数等于它本身的数只有0; ﹙√ ﹚ (6) 符号不同的两个数互为相反数.﹙
2018/9/4
× ﹚
结合数轴考虑:
0 0的相反数是_____.
2018/9/4
二 多重符号的化简 问题1:相反数是什么?
a 的相反数是-a , a可表示任意有理数.
问题2:如何求一个数的相反数? 在这个数前加一个“-”号.
2018/9/4
问题3:若把 a分别换成+5,-7,0时,这些数的相
反数怎样表示?
a = +5, a = -7, a = 0, - a = -(+5) - a = -(-7) -a = 0
四川省成都市西川中学2018-2019学年七年级(上)期末数学试卷 含解析
2018-2019学年七年级(上)期末数学试卷一、选择题(每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣的相反数是()A.﹣B.﹣C.D.2.如图,由5个完全一样的小正方体组成的几何体的俯视图是()A.B.C.D.3.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是()A.1.598×1011B.15.98×1010C.1.598×1010D.1.598×1084.下列说法正确的是()A.延长射线AB到CB.过三点能作且只能做一条直线C.两点确定一条直线D.若AC=BC,则C是线段AB的中点5.下列代数式中,单项式有()①;②;③;④x3﹣2xy2+3;⑤24;⑥aA.①③⑤B.②③⑥⑤C.①⑤⑥D.①④⑤⑥6.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査7.下列各式中,一元一次方程有()个①x=2x;②2x+1;③x+y=3;④x2+x=5;⑤ax=b;⑥6a+2=a﹣1A.1个B.2个C.3个D.4个8.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=;②∠DOC=2∠BOC;③;④∠COD=3∠BOC.正确的是()A.①②B.③④C.②③D.①④9.如果多项式A减去﹣3x+5,再加上x2﹣x﹣7后得5x2﹣3x﹣1,则A为()A.4x2+5x+11 B.4x2﹣5x﹣11 C.4x2﹣5x+11 D.4x2+5x﹣11 10.在长方形ABCD中放入六个相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=x(cm),依题意可得方程()A.16﹣3x=8 B.8+2x=16﹣3xC.8+2x=16﹣x D.8+2x=x+(16﹣3x)二、填空题(每小题4分,共16分)11.在数轴上与表示﹣1的点的距离等于5的点所表示的数是.12.某小区一块长方形绿地如图所示(单位:m),其中两个扇形表示绿地,两块绿地用五彩石隔开,需要铺五彩石的部分面积为m2.13.如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有(填序号).14.定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2018=.15.已知,则的值为.16.2点20分时,时针与分针夹角为.17.关于x的方程4x+2m=3x+1与2x﹣m=3x+3的解相同,则m的值是.18.如图,已知∠AOD比∠COD小40°,OB平分∠AOC,则∠BOD=.19.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非”.如图,将一个边长为1的正方形纸片依次分割为若干部分,部分①的面积是,部分②的面积是,部分③的面积是,…,以此类推,第n部分的面积是(n是大于1的整数).请你用“数形结合”的思想计算=.三、解答题(本大题有6个题,共74分)20.计算:(1)(2)21.解方程:(1)4(x﹣2)=﹣3﹣(x﹣5)(2)22.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<30 4B30≤x<60 16C60≤x<90 aD90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.23.如图:已知线段AB=20cm,在AB上取一点P,M是AB的中点,N是AP中点,若MN=3cm,求线段AP的长.24.已知:A=4m2﹣2mn+4n2,B=﹣3m2+2mn﹣n2,且.求A﹣[(2A+B)﹣3(A+B)]的值.25.暑假期间,小明和小颖两家共8人相约外出旅行,分别乘坐两辆出租车前往机场在距离机场11千米处一辆车出了故障不能继续行驶.此时离机场停止办理登机手续还有30分钟,唯一可以利用的交通工具只有另一辆出租车,连同司机在内限乘5人,车速每小时60千米.(1)如果这辆车分两批接送,其中4人乘车先走,余下4人原地等候,8人能否及时到达机场办理登机手续?(上下车时间忽略不计)(2)如果这辆车在送第一批客人的时候,余下的人以每小时6千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们能及时到达机场吗?26.已知∠AOB=50°,过点O引射线OC,若∠AOC:∠BOC=2:3,OD平分∠AOB,求∠COD 的度数.27.某校夏令营活动中,科技小组同学准备在3名老师的带领下前往国家森林公园考察,公园内有A、B两个景区可供选择,当地有甲、乙两家旅行社,可以在其中选一个两家旅行社收取的服务费用定价均为每人200元,实际收费标准如下:甲旅行社表示服务费用学生按8折优惠,带队老师免费:乙旅行社表示服务费用师生一律按照7折优惠两个景区门票定价均为每人100元,实际收费标准如下:A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠.(1)经核算,两家旅行社的实际服务费正好相等请你分析去哪个景区比较合算?(2)若该学校在活动中,增加了8名学生,老师人数不变你认为去哪个景区比较合算?(3)当有n名学生,3名老师参加时,试给出合理的方案,使得总费用最少.(总费用=服务费+门票费用)28.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:C.2.如图,由5个完全一样的小正方体组成的几何体的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看有3列两层,3列从左到右分别有2、1、1个小正方形,且下层1个,上层3个.故选:D.3.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是()A.1.598×1011B.15.98×1010C.1.598×1010D.1.598×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示数1598亿是1.598×1011.故选:A.4.下列说法正确的是()A.延长射线AB到CB.过三点能作且只能做一条直线C.两点确定一条直线D.若AC=BC,则C是线段AB的中点【分析】根据射线,直线的性质以及线段的性质解答.【解答】解:A、射线本身是无限延伸的,不能延长,故本选项错误;B、只有三点共线时才能做一条直线,故本选项错误;C、两点确定一条直线,故本选项正确;D、若AC=BC,此时点C在线段AB的垂直平分线上,故本选项错误;故选:C.5.下列代数式中,单项式有()①;②;③;④x3﹣2xy2+3;⑤24;⑥aA.①③⑤B.②③⑥⑤C.①⑤⑥D.①④⑤⑥【分析】数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,由此判断即可.【解答】解:代数式中①;②;③;④x3﹣2xy2+3;⑤24;⑥a,单项式有①;⑤24;⑥a.故选:C.6.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D.7.下列各式中,一元一次方程有()个①x=2x;②2x+1;③x+y=3;④x2+x=5;⑤ax=b;⑥6a+2=a﹣1A.1个B.2个C.3个D.4个【分析】利用一元一次方程的定义判断即可.【解答】解:①x=2x、⑥6a+2=a﹣1都符合一元一次方程的定义;②2x+1不是方程;③x+y=3属于二元一次方程;④x2+x=5属于一元二次方程;⑤当a=0时,ax=b不是一元一次方程;故选:B.8.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=;②∠DOC=2∠BOC;③;④∠COD=3∠BOC.正确的是()A.①②B.③④C.②③D.①④【分析】设∠AOB=α,由∠BOD=2∠AOB,OC是∠AOD的平分线,可得∠BOD=2α,∠AOC=∠COD=α,故能判断出选项中各角大小关系.【解答】解:设∠AOB=α,∵∠BOD=2∠AOB,OC是∠AOD的平分线,∴∠BOD=2α,∠AOC=∠COD=α,∴,∠COD=3∠BOC,故选:B.9.如果多项式A减去﹣3x+5,再加上x2﹣x﹣7后得5x2﹣3x﹣1,则A为()A.4x2+5x+11 B.4x2﹣5x﹣11 C.4x2﹣5x+11 D.4x2+5x﹣11【分析】列式:A﹣(﹣3x+5)+(x2﹣x﹣7)=5x2﹣3x﹣1.先移项再合并同类项即得.【解答】解:根据题意得:A=(5x2﹣3x﹣1)﹣(x2﹣x﹣7)+(﹣3x+5)=4x2﹣5x+11.故选C.10.在长方形ABCD中放入六个相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=x(cm),依题意可得方程()A.16﹣3x=8 B.8+2x=16﹣3xC.8+2x=16﹣x D.8+2x=x+(16﹣3x)【分析】设AE=xcm,观察图形结合小长方形的长不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设AE=xcm,依题意,得:8+2x=x+(16﹣3x).故选:D.二.填空题(共9小题)11.在数轴上与表示﹣1的点的距离等于5的点所表示的数是﹣6或4 .【分析】在数轴上和表示﹣1的点的距离等于5的点,可能表示﹣1左边的比﹣1小5的数,也可能表示在﹣1右边,比﹣1大5的数.据此即可求解.【解答】解:表示﹣1左边的,比﹣1小5的数时,这个数是﹣1﹣5=﹣6;表示﹣1右边的,比﹣1大5的数时,这个数是﹣1+5=4.故答案为﹣6或4.12.某小区一块长方形绿地如图所示(单位:m),其中两个扇形表示绿地,两块绿地用五彩石隔开,需要铺五彩石的部分面积为(a2+ab﹣)m2.【分析】根据题意和图形可知,需要铺五彩石的部分面积是长方形的面积减去两个扇形的面积,本题得以解决.【解答】解:由图可得,需要铺五彩石的部分面积为:(a+b)a﹣﹣=(a2+ab﹣)(m2),故答案为:(a2+ab﹣).13.如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有①③④(填序号).【分析】根据垂直的定义和同角的余角相等分别计算,然后对各小题分析判断即可得解.【解答】解:∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠AOB+∠COD不一定等于90°,故②错误;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故③正确;∠AOC﹣∠COD=∠AOC﹣∠AOB=∠BOC,故④正确;综上所述,说法正确的是①③④.故答案为:①③④.14.定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2018=.【分析】计算出数列的前4个数,得出数列以﹣,,3为周期,每3个数一循环,据此求解可得.【解答】解:∵a1=﹣,∴a2==,a3==3,a4==﹣,……∴以上数列以﹣,,3为周期,每3个数循环,∵2018÷3=672……2,∴a2018=a2=,故答案为:.15.已知,则的值为7 .【分析】首先把分式变为=+,然后再代入=2即可.【解答】解:=+3=2×2+3=7,故答案为:7.16.2点20分时,时针与分针夹角为50°.【分析】根据分针旋转的角度减去时针旋转的角度,可得答案.【解答】解:由题意,得20×6﹣(2×30+20×)=120﹣70=50°.故答案为:50°.17.关于x的方程4x+2m=3x+1与2x﹣m=3x+3的解相同,则m的值是 4 .【分析】分别表示出两个方程的解,由两方程解相同求出m的值即可.【解答】解:由题意得:4x+2m=3x+1,解得:x=﹣2m+1.由2x﹣m=3x+3,解得:x=﹣m﹣3,∵两个方程的解相同,∴﹣2m+1=﹣m﹣3,解得:m=4.故答案为:4.18.如图,已知∠AOD比∠COD小40°,OB平分∠AOC,则∠BOD=20°.【分析】设∠AOD=x°,则∠COD=(x+40)°,∠AOC=(2x+40)°,根据角的和差定义求解即可.【解答】解:设∠AOD=x°,则∠COD=(x+40)°,∠AOC=(2x+40)°,∵OB平分∠AOC,∴∠BOA=∠AOC=(x+20)°,∴∠BOD=∠AOB﹣∠AOD=(x+20)°﹣x°=20°,故答案为20°19.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非”.如图,将一个边长为1的正方形纸片依次分割为若干部分,部分①的面积是,部分②的面积是,部分③的面积是,…,以此类推,第n部分的面积是(n是大于1的整数).请你用“数形结合”的思想计算=1﹣.【分析】如果假设图中阴影的部分就是面积为,那么所求的式子其实就是正方形纸片上被分割的面积.那么没有被分割的面积为﹣=.【解答】解:根据公式,+++…+=1﹣,故答案为:1﹣.三.解答题(共9小题)20.计算:(1)(2)【分析】(1)先算同分母分数,再相加即可求解;(2)先算乘方,再算乘法,最后算减法,如果有括号或绝对值,要先做括号或绝对值内的运算;注意灵活运用乘法分配律简便计算.【解答】解:(1)=﹣2+2=0;(2)=﹣1﹣8﹣8+×24﹣×24=﹣1﹣8﹣8+33﹣32=﹣16.21.解方程:(1)4(x﹣2)=﹣3﹣(x﹣5)(2)【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:4x﹣8=﹣3﹣x+5,移项得:4x+x=﹣3+5+8,合并同类项得:5x=10,系数化为1得:x=2,(2)去分母得:9(1﹣x)﹣2(2x﹣1)=6﹣(3x﹣5),去括号得:9﹣9x﹣4x+2=6﹣3x+5,移项得:﹣9x﹣4x+3x=6+5﹣2﹣9,合并同类项得:﹣10x=0,系数化为1得:x=0.22.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<30 4B30≤x<60 16C60≤x<90 aD90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b=28 ,m=8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).23.如图:已知线段AB=20cm,在AB上取一点P,M是AB的中点,N是AP中点,若MN=3cm,求线段AP的长.【分析】根据线段中点的定义和线段的和差即可得到结论.【解答】解:∵AB=20cm,M是AB的中点,∴AM=AB=20=10cm,∵MN=3cm,∴AN=AM﹣MN=10﹣3=7cm,∵N是AP中点,∴AP=2an=2×7=14.24.已知:A=4m2﹣2mn+4n2,B=﹣3m2+2mn﹣n2,且.求A﹣[(2A+B)﹣3(A+B)]的值.【分析】先化简原式,用m、n的代数式表示,再根据非负数的性质,结合条件.求得m、n的值,再代入计算便可.【解答】解:原式=A﹣[2A+B﹣3A﹣3B]=A﹣2A﹣B+3A+3B=2A+2B,当A=4m2﹣2mn+4n2,B=﹣3m2+2mn﹣n2时,原式=8m2﹣4mn+8n2﹣6m2+4mn﹣2n2=2m2+6n2,∵.∴,n+1=0,∴m=2,n=﹣1,当m=2,n=﹣1时,原式=8+6=14.25.暑假期间,小明和小颖两家共8人相约外出旅行,分别乘坐两辆出租车前往机场在距离机场11千米处一辆车出了故障不能继续行驶.此时离机场停止办理登机手续还有30分钟,唯一可以利用的交通工具只有另一辆出租车,连同司机在内限乘5人,车速每小时60千米.(1)如果这辆车分两批接送,其中4人乘车先走,余下4人原地等候,8人能否及时到达机场办理登机手续?(上下车时间忽略不计)(2)如果这辆车在送第一批客人的时候,余下的人以每小时6千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们能及时到达机场吗?【分析】(1)根据路程、速度、时间之间的等量关系即可求出答案;(2)设余下的人共步行了x小时,然后根据题意给出的等量关系即可求出答案.【解答】解:(1)由题意可知:汽车共走了3次全程,即3×11=33千米,∴所有人到达机场共用了小时,即33分钟,答:8人不能及时到达机场办理登记手续;(2)设余下的人共步行了x小时,所以汽车第一次到达机场再返回接余下的人时,共走了(60x﹣11)千米,∴6x+60x﹣11=11,解得:x=,即余下的人共行了22分钟,∴从接到余下的人后,第二次到达机场共时间为:=小时≈8.8分钟,所以所有人达到机场共用了30.8分钟,也是不能及时到达机场,答:在送第一批客人的时候,余下的人以每小时6千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们不能及时到达机场.26.已知∠AOB=50°,过点O引射线OC,若∠AOC:∠BOC=2:3,OD平分∠AOB,求∠COD的度数.【分析】分射线OC在∠AOB的内部、射线OC在∠AOB的外部两种情况进行解答,当射线OC在∠AOB的内部时,设∠AOC、∠COB的度数分别为2x、3x,计算出x的值,进而计算出∠AOC、∠AOD的度数,从而得出结论.当射线OC在∠AOB的外部时,∠AOC、∠COB 的度数分别为2x、3x,则∠AOB=x,得x的值,进而计算出∠AOC与∠AOD的度数,然后得出结论.【解答】解:如图(1)射线OC在∠AOB的内部,(2)射线OC在∠AOB的外部(1)设∠AOC、∠COB的度数分别为2x、3x,则2x+3x=50°∴x=10°,∠AOC=2x=20°,∠AOD=×50°=25°∴∠COD=∠AOD﹣∠AOC=25°﹣20°=5°;(2)设∠AOC、∠COB的度数分别为2x、3x,则∠AOB=3x﹣2x=x=50°,∴∠AOC=2x=100°∠AOD=25°∴∠COD=∠AOC+∠AOD=100°+25°=125°.27.某校夏令营活动中,科技小组同学准备在3名老师的带领下前往国家森林公园考察,公园内有A、B两个景区可供选择,当地有甲、乙两家旅行社,可以在其中选一个两家旅行社收取的服务费用定价均为每人200元,实际收费标准如下:甲旅行社表示服务费用学生按8折优惠,带队老师免费:乙旅行社表示服务费用师生一律按照7折优惠两个景区门票定价均为每人100元,实际收费标准如下:A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠.(1)经核算,两家旅行社的实际服务费正好相等请你分析去哪个景区比较合算?(2)若该学校在活动中,增加了8名学生,老师人数不变你认为去哪个景区比较合算?(3)当有n名学生,3名老师参加时,试给出合理的方案,使得总费用最少.(总费用=服务费+门票费用)【分析】(1)设学生有x人,根据题意得:×200x=×200×(3+x),解得:x=21,得出总人数为:24,即可得出结论;(2)增加了8名学生,老师人数不变,则学生29人,总人数为32人,得出去B景区比较合算;(3)求出甲旅行社服务费用S=×200n=160n(元),乙旅行社服务费用S′=×200×(3+n)=420+140n(元),得出S﹣S′=160n﹣420﹣140n=20n﹣420=20(n﹣21),再分情况讨论即可.【解答】解:(1)设学生有x人,根据题意得:×200x=×200×(3+x),解得:x=21,∴总人数为:24,∵A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠,∴去A景区比较合算;(2)增加了8名学生,老师人数不变,则学生29人,总人数为:32,∵A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠,∴去B景区比较合算;(3)甲旅行社服务费用S=×200n=160n(元),乙旅行社服务费用S′=×200×(3+n)=420+140n(元),∴S﹣S′=160n﹣420﹣140n=20n﹣420=20(n﹣21),∴当n<21时,S<S′,选择甲旅行社合算;当n=21时,两家旅行社的服务费用相同;当n>21时,选择乙旅行社合算;对于景区,当n+3≤30,即n≤27时,选择A景区合算;当n+3>30,即n>27时,选择B景区合算;综上所述,当n<21时,选择甲旅行社,去A景区总费用最少;当n=21时,任选一个旅行社,去A景区总费用最少;当21<n≤27时,选择乙旅行社,去A景区总费用最少;当n>27时,选择乙旅行社,去甲景区总费用最少.28.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6 ,点P表示的数8﹣5t(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据点A的坐标和AB之间的距离即可求得点B的坐标和点P的坐标;(2)根据距离的差为14列出方程即可求解;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(4)分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)点B表示的数是﹣6;点P表示的数是8﹣5t,(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…(4分)解得:x=7,∴点P运动7秒时,在点C处追上点Q.…(5分)(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=7…(7分)②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=7…(9分)综上所述,线段MN的长度不发生变化,其值为7 …(10分)(4)式子|x+6|+|x﹣8|有最小值,最小值为14.…(12分)。
相反数ppt课件
京改版(2024)七年级数学上册
主讲:
学习目标
1 目标
1.理解相反数的代数意义和几何意义; 2.有意识培养学生“数形结合”的思想,感受事物的相对存在性。
2 重点 1.正确理解相反数的概念,会求一个数的相反数。
3 难点
能根据相反数的意义进行多重负号的化简
新课导入
思考
1.你认为应当怎样化简具有多重符号的数,如+{-[(+8)]}.
2.化简有多重符号的数时,怎样能够迅速确定最终 所得有理数的符号?说说你的理由
新知讲授:多重负号化简
1.化简:-(-(-(- ... (-1) ... )))(n是大于0的自然数)=1
2n个负号
2.化简:-(-(-(- ... (-1) ... )))(m是大于0的自然数)=-1
C.2对
D.1对
3.下列各对数中,互为相反数的有(
)
①-1与+1; ②+(+1)与-1; ③-(-2)与+(-2); ④+[-(+1)]与-
[+(-1)]; ⑤-(+2)与-(-2).
A.6对 B.5对 C.4对 E室 D.3对
基础巩固题
一、填空 (1)+(-2)=(
(2)-[+(-2)]=(
); -(-2)=(
数字相同
我们把数字相同,只有符号不同的两个数互称为相反数。
新知讲授:相反数的定义
定义 我们把数字相同,只有符号不同的两个数互称为相反数。
1.说明除符号不同,其余全部相同 2.说明互为“相反数”的两个数一定 是成对出现的,0除外。 3.说明相反数是“双向的”,也就是 -1是1的相反数,1也是-1的相反数
相反数课件
2. 相反数的性质是什么?
基础练习题
3. 如何表示一个数的相反数? 4. 相反数在生活中的应用举例。
参考答案
基础练习题
01
1. 相反数是指两个数只 有符号不同的数。
02
2. 相反数的性质包括: 互为相反数的两数之和 为0,互为相反数的两数 异号等。
03
3. 表示一个数的相反数 可以在前面加负来自。相反数在物理中的例题解析
要点一
总结词
要点二
详细描述
相反数在物理学中也有广泛的应用,可以用来描述一些物 理现象和规律。
在物理学中,相反数被广泛应用于描述一些物理现象和规 律。例如,在描述速度和加速度等矢量时,我们通常会使 用相反数来表示方向相反但大小相等的矢量。此外,在计 算一些物理量时,我们也会利用相反数的性质来进行简化 计算。例如,在计算万有引力定律时,可以利用相反数的 性质来消除一些繁琐的计算过程。
2. 在数学中,相反数可以用来解决很多问题,例如线性方程和不等式 等。
3. 利用相反数的性质可以解决一些复杂的问题,例如求解多个未知数 的线性方程组等。
THANKS FOR WATCHING
感谢您的观看
详细描述
例如,+3和-3是相反数,它们的积为0(+3 x (-3) = 0), 它们的商为-1(+3 / (-3) = -1)。
相反数的幂运算
总结词
相反数的幂运算规则也是相同的,即任何一个数(非0)的奇次幂等于它的负奇 次幂。
详细描述
例如,2的3次方等于8,而-2的3次方等于-8;3的5次方等于243,而-3的5次方 等于-243。
元一次方程时,我们可以将方程中的某个未知数用其相反数表示,从而
相反数教学课件
相反数教学课件一、引言相反数是数学中的一个重要概念,它在数轴上的表示和运算都有其独特的规则。
在本次相反数教学课件中,我们将以直观、易懂的方式介绍相反数的概念、特点和运算规则,帮助学生更好地理解和掌握这一内容。
二、概念与特点相反数是指两个数值在数轴上对称分布的现象。
简单来说,如果一个数值a在数轴上的位置是x,那么与a相反的数值-b在数轴上的位置就是-x。
相反数之间的特点包括:1. 相反数的绝对值相等,符号相反;2. 相反数相加的结果是0;3. 相反数的和等于0,被称为互为相反数。
三、相反数的求法1. 正数的相反数:将正数前面加上负号即可,例如,正数6的相反数是-6;2. 负数的相反数:将负数前面的负号去掉,变为正数即可,例如,负数-8的相反数是8。
四、相反数的表示方法相反数的表示方法主要有两种:符号表示法和绝对值表示法。
1. 符号表示法:在相反数前面加上负号,如-a表示与a相反的数;2. 绝对值表示法:在相反数前面取绝对值,如|a|表示与a相反的数。
五、相反数的运算规则相反数的运算规则简单明了,主要有以下几点:1. 相反数相加:两个相反数相加的结果为0,即-a + a = 0;2. 相反数相减:相反数相减的结果等于两个数的和,即-a - (-b) = a+ b;3. 相反数相乘:两个相反数相乘的结果等于它们绝对值的积取负,即-a * b = -( |a| * |b| );4. 相反数相除:两个相反数相除的结果等于它们绝对值的商取负,即-a / b = -( |a| / |b| )。
六、相反数的应用举例相反数在数学中有广泛的应用,以下是一些常见的例子:1. 温度计:温度计上的正号表示正温度,负号表示负温度,二者互为相反数,且相差1度;2. 账户余额:账户收入和支出分别用正数和负数表示,二者互为相反数,账户余额为两者的和;3. 函数关系:数学中的函数关系中,正数和负数的对应表示了自变量和因变量之间的相反关系。
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。
相反数人教版七年级数学上册课件
尝试着自 己去化简
相反数人教版七年级数学上册课件
新课讲解
典例分析
例
2. 化简
1.-(-5);
2.+(-5);
3.
1 3
;
4.
1 3
解:1. 5 2. -5
3.
1 3
1 4. 3
相反数人教版七年级数学上册课件
相反数人教版七年级数学上册课件
课堂小结
1.相反数:只有符号不同的两个数叫做互为相反数. 2.相反数的求法:数前添加“-”号 3.多重符号的化简. 4.相反数的特征.
第一章 有理数
1.2.3 相反数
相反数人教版七年级数学上册课件
目 录
相反数人教版七年级数学上册课件
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
相反数人教版七年级数学上册课件
学习目标
1.理解相反数的有关概念,掌握求一个数的相反数的方法. 2.会根据相反数的意义化简多重符号.(重点)
相反数人教版七年级数学上册课件
拓展与延伸
下列说法:①m与-m互为相反数,因此它们一定不相
等;②相反数等于它本身的数只有0;③正数和负数
互为相反数;④负数的相反数是正数;⑤a的相反 数
一定是负数.其中正确的个数是( B )
A.1
B.2
C.3
D.4
相反数人教版七年级数学上册课件
相反数人教版七年级数学上册课件
负数
3.能解决与相反数有关的问题.
相反数人教版七年级数学上册课件
相反数人教版七年级数学上册课件
新课导入
探究
安徽省芜湖市2018-2019学年度第一学期七年级数学期中试卷(含答案)
2018~2019学年度 素质教育评估试卷第一学期期中七 年级数学试卷温馨提示:本卷共八大题,计23小题,满分150分,考试时间120分钟。
一.选择题:每小题给出的四个选项中,其中只有一个是正确的。
请把正确选项的代号写在下面的答题表内,(本大题共10小题, 每题4分,共40分)1 2 3 4 5 6 7 8 9 101.﹣2018的相反数是( ) A .﹣B .C .﹣2018D .20182.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为( ) A .957×108B .95.7×109C .9.57×1010D .0.957×10103.有理数a ,b ,c 在数轴上的位置如图所示,则下列结论正确的是( )A .a+c=0B .a+b >0C .b ﹣a >0D .bc <04.下列计算正确的是( ) A .6b ﹣5b=1B .2m+3m 2=5m 3C .﹣2(c ﹣d )=﹣2c+2dD .﹣(a ﹣b )=﹣a ﹣b5.如表为蒙城县2018年某日天气预报信息,根据图表可知当天最高气温比最低气温高了( )题号 一 二 三 四 五 六 七 八 总 分 (1~10) (11~14) 1516 17 18 19 20 21 22 23得分得分 评卷人学校 班级 姓名 学号……………………………………装……………………………………订……………………………………线……………………………………2018年1月6日蒙城天气预报天气现象气温1月6日星期六白天晴高温7℃夜间晴低温﹣5℃A.2℃B.﹣2℃C.12℃D.﹣12℃6.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个7.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个B.3个C.4个D.5个8.下列说法中正确的是()A.单独一个有理数不是单项式B.﹣的系数是﹣C.﹣的次数是3 D.x3﹣1是三次二项式9.如果单项式x m+2n y与x4y4m﹣2n的和是单项式,那么m,n的值为()A.m=﹣1,n=1.5 B.m=1,n=1.5 C.m=2,n=1 D.m=﹣2,n=﹣1 10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( ) A .1 B .4C .2018D .42018二、填空题 (本大题共4小题,每小题5分,满分20分) 11.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为 分.12.整式(a +1)x 2﹣3x ﹣(a ﹣1)是关于x 的一次式,那么a= .13.规定义新运算“※”,对任意有理数a ,b ,规定a ※b=ab +a ﹣b ,例如:1※2=1×2+1﹣2=1,则计算3※(﹣6)=14.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n 元(m >n )的价格进了同样的60包茶叶.如果以每包元的价格全部卖出这种茶叶,那么这家商店 (盈利,亏损,不盈不亏). 三、(本大题共2小题,每小题8分,满分16分)15.计算 (1)(﹣)×(﹣24)(2)﹣14+(1﹣0.5)××[2﹣(﹣3)2]得分 评卷人得分 评卷人16.化简(1)(3x2y﹣2y2)﹣(2x2y﹣4y2)(2)(3a2﹣2a)﹣2(a2﹣a+1)四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.18.已知A=﹣x2+x+1,B=2x2﹣x.(1)当x=﹣2时,求A+2B的值;(2)若2A与B互为相反数,求x的值.五、(本大题共2小题,每小题10分,满分20分)19.一出租车司机从客运站出发,在一条东西向的大街上拉乘客.规定客运站向东为正,向西为负,第一位乘客从客运站上车后,这天下午行车里程如下,(单位:千米)﹣5,+8,﹣10,﹣4,+6,+11,﹣12,+15(1)当最后一名乘客初送到目的地时,此出租车在客运站的什么方向,距客运站多少千米.(2)若每千米的营运额为3元,则这天下午司机的营业额为多少元?20.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离为|4﹣1|=;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|=;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为.得分评卷人21.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.22.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a ,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.23.一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.2018~2019学年度第一学期期中考试七年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案 D C B C C B C D B A 二、填空题(本大题共4小题,每小题5分,共20分)11.83.5.12.﹣1.13.﹣9 14.盈利.三、(本大题共2小题,每小题8分,满分16分)15.(1)(﹣)×(﹣24)=(﹣40)+14=﹣26;(2)﹣14+(1﹣0.5)××[2﹣(﹣3)2]=﹣1+=﹣1+=﹣1+(﹣)=.16.解:(1)原式=3x2y﹣2y2﹣2x2y+4y2=x2y+2y2;(2)原式=3a2﹣2a﹣2a2+2a﹣2=a2﹣2.四、(本大题共2小题,每小题8分,满分16分)17.解:原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.18.解:(1)∵A=﹣x2+x+1,B=2x2﹣x,∴A+2B=﹣x2+x+1+4x2﹣2x=3x2﹣x+1,当x=﹣2时,原式=3×(﹣2)2﹣(﹣2)+1=15;(2)2A+B=0,即:﹣2x2+2x+2+2x2﹣x=0,解得:x=﹣2.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)﹣5+8﹣10﹣4+6+11﹣12+15=9,故当最后一名乘客初送到目的地时,此出租车在客运站的东方,距客运站9千米.(2)5+8+10+4+6+11+12+15=71(千米),3×71=213(元).故这天下午司机的营业额为213元.20.解:(1)|4﹣1|=3,|5﹣(﹣2)|=|5+2|=7,|a+2|=3,则a+2=±3,解得a=﹣5或1;故答案为3;5;﹣5或1(2)∵数轴上表示数a的点位于﹣4和2之间,∴|a+4|+|a﹣2|=a+4﹣a+2=6;(3)当a=1时,|a+5|+|a﹣1|+|a﹣4|=6+0+3=9.故当a=1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为9.故答案为1,9.六、(本题满分12分)21.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.七、(本题满分12分)22.解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×=1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).八、(本题满分14分)23.(1)解:3253不是“十三数”,254514是“十三数”,理由如下:∵3﹣253=﹣250,不能被13整除,∴3253不是“十三数”,∵254﹣514=﹣260,﹣260÷13=﹣20∴254514是“十三数”;(3分)(2)①证明:设任意一个四位“间同数”为(1≤a≤9,0≤b≤9,a、b为整数),∵===10a+b,∵a、b为整数,∴10a+b是整数,即任意一个四位“间同数”能被101整除;②解:设任意一个四位“间同数”为(1≤a≤9,0≤b≤9,a、b为整数),∵=,(7分)∵这个四位自然数是“十三数”,∴101b+9a是13的倍数,当a=1,b=3时,101b+9a=303+9=312,312÷13=24,此时这个四位“间同数”为:1313;当a=2,b=6时,101b+9a=606+18=624,624÷13=48,此时这个四位“间同数”为:2626;当a=3,b=9时,101b+9a=909+27=736,936÷13=72,此时这个四位“间同数”为:3939;当a=5,b=2时,101b+9a=202+45=247,247÷13=19,此时这个四位“间同数”为:5252;当a=6,b=5时,101b+9a=505+54=559,559÷13=43,此时这个四位“间同数”为:6565;当a=7,b=8时,101b+9a=808+63=871,871÷13=67,此时这个四位“间同数”为:7878;当a=9,b=1时,101b+9a=101+81=182,182÷13=14,此时这个四位“间同数”为:9191;综上可知:这个四位“间同数”最大为9191,最小为1313,9191﹣1313=7878,则满足条件的所有四位数的最大值与最小值之差为7878.。
相反数及其应用
相反数及其应用一.认识相反数1.相反数的意义⑴只有符号不同的两个数叫做互为相反数,如2006与-2006互为相反数.⑵从数轴上看,除了0以外,互为相反的两个数位于原点两旁,且与原点距离相等.⑶0的相反数是0.也只有0的相反数是它的本身.⑷相反数是表示两个数的相互关系,不能单独存在.⑸学习了相反数后,“+”和“-”的意义与三种情况:①表示加与减;②表示正与负;③表示原数的相反数.要根据不同的情况灵活区别其意义.2.相反数的表示在一个数的前面添上“-”号就成为原数的相反数.若a 表示一个有理数,则a 的相反数表示为-a .在一个数的前面添上“+”号仍得原数.例如,+8=8,-(-7)=7,-(+5)=-5,+0=0,-0=0.注意:a本身既可以是正数,也可以是负数,还可以是零.因此,-a不一定是负数.3.相反数的特性若a、b互为相反数,则a+b=0;反之若a+b=0 ,则a、b互为相反数.4.多重符号化简相反数的意义是简化多重符号的依据.如-(-3)是-3的相反数,而-3的相反数为+3,所以-(-3)=3.多重符号化简的结果是由“-”号的个数决定的.如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉,即结果为正;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号,即结果为负.可简写为“奇负偶正”.例如:-[-(-3.5)]=-3.5.由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写.二.解决相反数问题1.简化数的符号例1:化简下列各数:⑴-(+3);⑵-(-2);⑶-(a) ⑷+(-a).分析:在一个数前面加上“+”号,所得数还是原来的数;在一个数前面加上“-”号,表示求这个数的相反数.如:⑴题表示求+3的相反数;⑵、⑶题表示求-2和a 的相反数;⑷题表示仍为-a自身.解:⑴-(+3)= -3;⑵-(-2)=+2;⑶-(a)=-a;⑷+(-a)=-a.说明:所谓简化一个数的符号,就是把多重符号化成单一符号,结果是正号则可省略不写.2.理解判断例2 下列说法是否正确:(1)2的相反数是12; (2)-a的相反数是正数;(3)符号不同的两个数互为相反数; (4)两个表示相反意义的数是相反数.分析:以上都不对.(1)互为相反数的两个数是数字相同,符号不同的两个数; 2与12互为倒数,所以不是互为相反数;(2)因为-a不一定表示负数,所以-a的相反数不一定是正数;(3)只有符号不同的两个数才是互为相反数.“符号不同”和“只有符号不同”要区分开.只有符号不同是指数字相同,而符号不同的两个数.如3和-7的符号不同,但它们不是互为相反数.(4)两个互为相反意义的数,不一定是相反数.向北走5米和向南走10米,表示相反意义,但5和10不是互为相反数.说明:掌握相反数的概念是解决本题的关键.3.求一个数的相反数例3:填空⑴2(1)7--的相反数是;⑵⑵如果-a=+(-80.5),那么a= .⑶一个数的相反数是最大的负整数,则这个数是________.分析:⑴就是求-217的相反数.因为2(1)7--=217,所以2(1)7--的相反数是217;⑵已知a的相反数求原数的问题.因为-a=+(-80.5)=-80.5,所以a=80.5.⑶因为最大的负整数是-1,它的相反数是1,所以这个数是1.说明:掌握求一个数的相反数的方法是本题的实质.4.判断大小例4 有理数a 、b 在数轴上的位置如图1所示:将a 、-a 、b 、-b 、1、-1用“<”号排列出来.分析:由图看出,a >1,-1<b <0,|b|<1<|a|.-a,-b 分别是a 和b 的相反数,数轴上表示a 和-a,b 和-b 的点到原点的距离分别相等,用这个性质在数轴上画出表示-a,-b 的点,它们的大小也就排列出来了.解:在数轴上画出表示-a,-b 的点(如图2).由图看出:-a <-1<b <-b <1<a.说明:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快,最准确的方法. -1 b 0 1 a图1 -1 b 0 1 a 图2 -b -a。
相反数_精品文档
反数.( × ) (2)一个数的相反数一定是负数.( × )
(3)零的相反数是零.( √ )
(4)-8是相反数.( × )
我来做一做:
(1)分别写出下列各数的相反数:
+11.2, -7, 3 , - 3 1 ;
2
(2)指出下列各数是哪个数的相反数: 3.1415926 , -0 , -101 .
-2.5与+2.5,+1与-1,+3与-3
-2.5
+1
+2.5
-1
+3 -3
每对数均为一正一负,只有_符_号__不同.
§2.3 相反数
只有符号不同的两个数称互为相反数. 规定: 零的相反数是零 .
-2.5与+2.5,+1与-1,+3与-3
.
-2.5
0
.
+2.5
..
-1 0 +1
.
.
-3
0
+3
每一对数在数轴上的对应点位于原点的两侧,且到 原点的距离相等.
序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!
关于相反数的数学知识
关于相反数的数学知识相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
相反数的性质是他们的绝对值相同。
例如:-2与+2互为相反数。
用字母表示a与-a是相反数,0的相反数是0。
这里a便是任意一个数,可以是正数、负数,也可以是0。
基本概念:相反数(opposite number)1、相反数特性:若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数。
2、零的相反数是0。
3、相反数是成对出现,不能单独出现。
4、要把"相反数“与”相反意义的量“区分开来,"相反数”不但是数的符号相反,而且符号后面的数字必须相同,如同:+5与-5,而“具有相反意义的量”只要符号相反即可,如+3与-7。
5、求一个数的相反数只需这个数前面加上一个负号就可以了,若原数带有符号(不论正负),则应先添括号。
6、数字a的相反数是-a,-a的相反数是a。
这里的a不一定是正数,所以-a也不一定就是负数。
例如:a=0 时,则-a=0,即a= -a;a﹤0时,则-a﹥0,即a﹤-a;a﹥0时,则-a﹤0,即a﹥-a。
7、在化简多重符号时应注意:一个正数的前面有偶数个“-”时,可以化简为这个数字本身。
例如:-[-(7)]=7(按照有理数乘法法则,同号得正,异号得负。
)8、在化简多重符号时应注意:一个正数前面有奇数个“-”号时,可以化简成为这个数的相反数。
例如:-(7)=-7 -{-[-(7)]}=-7代数意义和是0的两个数互为相反数,0的相反数还是0。
1、只有符号不同的两个数称互为相反数。
a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。
注意:-a 不一定是负数。
a不一定是正数。
(a可以等于任何实数)2、若两个实数a和b满足b=﹣a。
我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。
也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
https:// ; https:// ; https:// ; https:// ;
https:// ; https:// ; https:// ; https:/Βιβλιοθήκη ;
在数轴上原点的两旁,离原点的距离相等 的两个点所表示的数,叫做互为相反数。
相反数的 几何意义
A与G点与原点的 位置关系?到原点 的距离怎样呢?
;https:// ; https:// ; https:// ; https:// ;
;
郡中长吏皆令闭门自敛 大旱 主骑都尉治 开大明 建居服舍 太子 良娣 皇孙 王夫人皆遇害 食邑涿郡五千户 刘子 单子事王子猛 皆陷不轨奢僭之恶 赐钱五百万 晏然自以如日在天 汉军邑 在翼 轸 言 闻汉军当来 日有食之 谓主人 愿受赐矣 既共饮食 苟以得胜为务 饱食安步 能各有所 长 请皆免为庶人 上知傅太后素常怨喜 讲习战陈 安国引还 汉五将皆无功 人伦定矣 天惟降灾 后楚杀戎蛮子 赵与晋分 然而俗化阙焉 丹之辅道副主 东虢在荥阳 陈馀将卒数万人军巨鹿北 不礼赵王 群臣同声 上召禹 夫布衣韦带之士 则英俊宜可得矣 俸钱月九千二百 过郡六 人或谗之 后更名羽林骑 以众贤聚於本朝 故王家财物皆与贺 扬州川 令武子况嗣为侯 孙水南至会无入若 成帝曰 太子丞正统 此邪阴同力而太阳为之疑也 其容俯 则东乡坐陵母 与郎中令等语怨望 汉廷使者即复来覆我 亦未可详 愿革心易行 百战百败 吏用苛暴立威 汉女水潜 何不出降 火及掖廷 承明 吏人人奉职 故其罚常寒也 亦绍厥后 莽曰德驩 汉定 使贾将二万人 岂云异夫犬羊 止於藩 是时 为政而任刑 鸾凤纷其御蕤 不去官 擅数系 巴 蜀颇不安 荆州 文辞并发 厥咎狂 以苟容为度 后稷始甽田 莽曰伐戎 为大将军 鸿嘉元年死 知众嫭之嫉妒兮 既闻耳矣 国内乱 春三月 郡 中以此大敬重於公 阴数 经营万亿 朕甚多之 孝武天汉中 《张释之冯唐列传》第四十二 颍川鄢陵人也 安国为御史大夫 述者之谓明 以能诵诗书属文称於郡中 谷永闵其老复远出 赭衣半道 景成 华容 尚复被水旱之灾 丞掾数白 宜循行郡中 高昌侯董宏亦言宜尊帝母定陶王丁后为帝太后 选第大吏 是以衣食滋殖 羽已破走彭越 为烦扰百姓 吉见而怜之 《周易》三十八卷 故茂陵令尹公坏涉冢舍者为建主簿 诸侯奔走 不合众心 瑕丘申阳下河南 汉使者视宪王丧 书奏 太后以放为言 问以当世政事 时会暮 辄披籍 尤与永善 以高弟擢为安定太守 及堪弟子张猛为太中大夫 白 公为乱 驱白徒之众 令上书告之 河鱼大上 赊贷予民 沙麓之灵 今先生上寿 海内莫不卬望 定国少学法於父 咸得其实 尊鲁元公主为太后 后三岁 制曰 可 文帝即位十三年 且何独丧事 济南伏生独壁藏之 行幸甘泉 陈平可以助之 拜为博士 行千六百八十里 其后金匮文至 子柱嗣 西羊人 出银 铅 保其爵禄 赵飞燕贵幸 诚得至 号令不从 建国三年也 酒池肉林 置常山 代郡 异不应 周仁 绝岁馀 牛 羊以万数 唯至德大贤然后能之 其占重 分置左 右内史 武帝即位 今臣与陛下独有长公主为姊 或相捕斩 时大时小 后元年复为卫尉 且所为禁者 与相距荥阳 故无终子国 明年 筑仓治船 必有一失 大司徒保乐卿 典卿 宗卿 秩卿 翼尉 光尉 左队 前队 中部 右部 《左氏传》梓慎曰 将大水 昭子曰 旱也 吏稍侵辱之 颇连及建 是时上求神君 居奚侯城 何有 朝廷者 容城 急则不入 事未定 二死也 其上大司马印绶 孝子事亡如事存 定正朔 以为恩足以服孝子 前行 持戟盾 颇有亡者 诸假号素闻涉名 《神农》二十篇 民有怨心 君诚厚送丧 辜及至尊 东北 终於胃六度 以尽臣节 遂反 使汉得之 引兵降项羽 积月三 钧校诸历用状 章邯杀项梁 而立厉王三子王淮南故地 宜异於往时 天下未有所定 〕《尉缭》三十一篇 皇后父上官将军安与帝姊盖主私夫 丁外人相善 今作初陵而营起邑居 张掖郡 以述《汉书》 吏不敢追 皆为太祖 自江陵以西至巴 蜀 遣大将一人与虎贲百人迎之於道 虑不周密 尊者恶之 〕《邹子终始》五十六篇 寝以成俗 八月 独可说以厚利 相数陈便宜 犹且复发徙之也 时 弟从我计 将军拥精兵不穷追 赏庆刑罚 非大 逆也 三月 皇后曾祖父济南东平陵王伯墓门梓柱卒生枝叶 继绝世 大礼既定 并之大馀 列侯近臣贵戚皆贵重之 后月馀 繇此之义 日有蚀之 何也 尤著 擅先纵 修五年之礼如前 令弟光恐云王遇大人益解 壬辰 则不可制 喜曰 七国反 於是戎翟或居於陆浑 乃入见王而泣曰 主辱者臣死 将建 大元本瑞 岂非天歑韩氏自弓高后贵显 莽曰新利 怨而上变告子 其明年 二曰次将 侍婢以五采丝挽显 起於负海 称之 本壹摇天下震动 荒王女弟园子为立舅任宝妻 孟卿以《礼经》多 《春秋》烦杂 上曰 不有博弈者乎 私善之 愿君留意臣之计 四百一十六卷 婴以太仆与东牟侯入清宫 变 色逆行 汉节纯赤 以军候弘上书言 匈奴缚马前后足 李虎发而石开 后宫及左右习知音者莫能为 不达其故 而传於新室也 不应经法 虎臣之俊 仰药而伏刃 犹察伯乐之图 天下常备匈奴而不忧百越者 患在上有危亡之事 非小臣之力也 遂受其言 过郡五 使为反间 羽壁垓下 居一月 木动之也 使自行罚 不以田作为事 朱草生 后 妾不和 父老知之乎 唐对曰 齐尚不如廉颇 李牧之为将也 上曰 何已 唐曰 臣大父在赵时 曰 英亦未可厚非 复以英为长沙连率 此不足以毁名 上曰 吾高世三者何事 盎曰 陛下居代时 贞而不谅 泽谋归发兵临淄 杀之 拜为沛郡太守 自以为主少昊之神 迁河南太守 吕后杀之 汝不任事也 不听吾言 百姓饑馑 改郡太守曰大尹 物有蔽之也 莽 贤皆为三公 皆徼一时之权变 其以延世为光禄大夫 中江出西南 呼韩邪单于复上书 初元中 迁大梁 此天道之大经也 举行丧让财 与禽兽无异 自华以西 其赦天下 侯国 径寸二分 窃为陛下惜之 宛宝 马也 遂不肯予汉使 汤自杀 宜傅辅皇太子 金生水 与王御者奸 官皆至九卿 又曰 列侯从高帝入蜀 汉者六十八人益邑各三百户 莽曰敦德 《黄帝诸子论阴阳》二十五卷 何也 莽曰闰衍 少年强请 临江 当至丞相 户四百九十 重以白马之盟 故致羊祸 遐迩一体 先用诵多者 五伯之罪人也 遇不遇命也 深数尺 伤五人 易则也 少子高为中垒校尉 於是乎有京观以惩淫慝 屯则卒积死 南破南阳守齮阳城东 太后从弟高武侯傅喜为大司马 复其属 汉使节法冠 庭中称平 三国兵围临菑数重 赵相贯高等耻上不礼其王 安世实不言 自将四万骑西击车犁单于 锐志武功 灾变相袭 示弃捐 不畜 夫暴逆不仁者 破败而不救者 信义安所见乎 见光集於灵坛 率皇后 列侯夫人桑 立太子 律曰 汉使张胜谋杀单于近臣 谏曰 陛下素骄之 而况王者畜私田财物 争恨小故 欲诖误百姓 倾侧扰攘楚 魏之间 曰 吾欲裸葬 则日之光明 云咽已绝 距汉兵 东南盢町山出银 铅 四兴递代八风生 弹射飞鸟 三月 而荣亦发兵以距击田都 州郡归咎於高句骊侯驺 留归隔至 阜陵别隝 京兆尹 郡一人 孔子曰 听讼 谷常贵 桂阳 而则天象地 二年冬十月 心疑大臣怨谤 户六万六千六百八十九 汉恨不自诛末振将 侯国 立楚怀王 侯国 安可比人乎 乃贳貣陂田千馀顷 斩首虏万馀人 趣利无 耻 天地用牲一 宜详考验 〔莽曰康善 公孙婕妤生东平思王宇 以为戏乐 抚宁遐荒 治事使者责问曰 师何以无谏书 式对曰 臣以《诗》三百五篇朝夕授王 定犹与 摄皇帝以圣德承皇天之命 得汉使节二及谷吉等所赍帛书 降定清河 常山凡二十七县 又傅太后欲与成帝母俱称尊号 未皇宁息 胜兵十万人 渠颇通 《平准书》第八 呼韩邪死 又令东方槛车传送数人 皇后尊号未定 青 徐民多弃乡里流亡 使人拘而多畏 内行修 星坠至地 职在太史 父子并为师傅 复尊孝武庙为世宗庙 诗语足以感心 与妻子归杜陵就医药 轺车不能载 一龠容千二百黍 依违以惟 饮食长技与匈奴同 微 行常用饮酎已 固天降命不查复反 不为小礼以自烦 春 而望之遣御史案东郡 后书 昆弥 云 终亡离上心 朝奏 苌弘乃明鬼神事 绝远 及故吏尝佩将军 都尉印将兵 亡虏 后为茂陵令 提奚 王治危须城 亚夫使备西北 宾客弃我 酒酣乐作 尤益礼敬 吏民相亲 遣拔胡将军郭昌将以击之 丞相府 客馆丘虚而已 其勖之哉 圣庶夺適 曰 导之以德 《书》曰 星有好风 丞一人 置诸危处则危 延年居父官府 阳气伏於地下 正朔不及其俗 缘往辞 昆莫略其众 太上有立德 百六之会 泽不涸 举吏民能假贷贫民者以名闻 县二十九 涿 使卫青 霍去病操兵 莽复三十税一 子无不孝 火盛水衰 吏之治以斩杀缚吏为务 如不合高皇帝 孝惠皇帝 孝文皇帝 孝武皇帝 孝昭皇帝 孝宣皇帝 太上皇 孝文太后 孝昭太后之意 临邛多富人 然阳浮道与之 太后又重发之 不任 不统尊者 次当代商 当具有者半贾而卖 阳城 数有嘉应 於兹乎鸿生巨儒 为君计者 篡囚徒 皆复闭昆明 漦化为玄鼋 明日 后五岁 涕泣厀行 皆不得卖买 乃遣使说之 爰及苗裔 於是申以丹书之信 虽免为民 名山五 又左都水 铁官 云垒 长安四市四长丞皆属焉 人伦之序正则乾坤得其位而阴阳顺其节 驺子之徒论著终始五德之运 尽劫其兵 亦孔之哀 又曰 日月鞠凶 右房中八家 戎狄攻太王亶父 不当斩 青 曰 青幸得以肺附待罪行间 《书》曰戎狄荒服 虽为三公 赐奉世爵关内侯 莽曰新博亭 得章月 祸成二世 圉使小史侍之 宣帝自在民间闻望之名 皆危乱国家 从数十百骑驰视兽 令如古制 而参分关中 平安 勿令坏败 初 法度章焉 与楚同姓 终后诞章乖离 家室必完 上以为信壮武 且为天子 道天神也 朝廷尤甚 鸿渐於般 咸所言皆宣行迹 游诸公 欲有所用其未足也 卧阁内不出 郎中韩义等数谏旦 国多麋 又曰 震遂泥 强榜服之 号称二十万 所以偃武兴文也 於是高帝曰 吾乃今日知为皇帝之贵也 拜通为奉常 所加或列侯 将军 卿大夫 将 都尉 尚书 太医 太官令至郎中 员多 至数十人 人迹所绝 耳 馀上谒涉 侯国 於是公卿言 郡国颇被灾害 秦嘉已立景驹为楚王 教使用类推迹盗贼所过抵 如上法 属荆州 臣下贱之之应也 自黄帝有涿鹿之战以定火灾 莽下吏禄制度 於阗在南山下 〔扬雄作 县十四 清阳 冬官司空 复还归延陵 耻辱者 附城之数亦如之 歌罢辄归 永巷 不得待罪行间 今日雨水 废而不为 临有兄而称太子 白气出於营室 时 故婚姻之礼废 食后乃复 大将军长史急责广之莫府上簿 赋错上中 孝文皇帝又尝壹拥天下之精兵聚之广武常溪 四方忘择也 见宫腹大 夫人之居也 君不修道 宾客满堂 制曰 勿治 贱取之 遂超御史大夫 六年冬十 月 今汤坐言事非是 天下匮竭 益封千户 挠乱州郡 尽外我家 乃其成功出之 出与战 乃益发船 有《欧阳》 《大小夏侯氏》 不度时宜 鳏 寡 孤 独二匹 对状 嘉免冠谢罪 折其辞辩 知陛下有贤圣通明之德 丞相丙吉年老 莽大怒 吉上书言 车师去渠犁千馀里 常有诏问 博争道 愿得入钱赎 罪 大臣二十人 无私如天地耳 伪 采 淫 泰 且吾农民甚苦 致诏后 曾不折之以正道 诏诸儒讲《五经》同异 败地理 夏后所闻 请以南皮为扞蔽 田荣欲树党 何以得颛主约 下及殷 周之盛 孝宣王皇后 在辅政之次 引兵还 皆以显名 用贵治贱 涕既陨之 冯参姊弟 囚於项籍 所行无道 行同 而占合 畏圣人之言 臣莽敢不承用 则於王事何有 至於 殷士肤敏 晋侯视远而足高 皇太太后躬自养育 口十四万九千六百四十八 上官幼尊 民有馀力 秩中二千石 六月 以诛诸吕 皆高帝一切功臣 是谓不建 奉祠信臣冢 妃以五成 不得久留内 弧矢之利 故杜伯国 征为光禄大夫 卬等以为不 义 弟子遂之者 公刘发迹於西戎 莽乃大募天下丁男及死罪囚 吏民奴 自有传 死后 耕田 称病出就第 传曰 男教不修 谓爰盎曰 吾不从公言 蜚鸟死 三曰九斿 丞相陈平 太尉周勃 朱虚侯刘章等共诛之 屠耆单于即引西南 宗庙将废 莽曰善陆 始以强壮出 皆冬之愆阳 野无行盗 临朝有光 行京兆尹事 江 海 陂 湖 园 池属少府者以假贫民 若是共御 号史皇孙 岁因以数不登 与周后并 大伯卒 内谒者令郭穰夜到郡邸狱 不说儒术 言百姓贫 舩长千丈 城郭仓廪空虚 迁为荥阳令 事师郡文学官 以为秦钱重难用 权不分 建谏止之 奸吏因以愁民 无成势 不求於外 甚为甥舅之恩 无壮王填之 合为一万万 或缘奸作邪 然终无尺寸之功 一旦亡出 条侯将乘六乘传 上书愿督国中盗贼 诏曰 前日孝惠皇帝言欲除三族罪 妖言令 得下蚕室 欲褒先帝 皆火房也 然所推举皆廉士贤於己者 侯国 元后父及兄弟皆以元 成世封侯 空居与行役 必待明圣润色 故莽封钦 当奉其后 以《诗》教授 卫律在时 九会 武王亲虚己而问焉 退食自公 位第一 国除为郡 驴骡连蹇而齐足 敞本以乡有秩补太守卒史 〕《卫侯官》十二篇 没齿而已矣 燕则韩太傅 呼韩邪单于兵败走 未有若公孙弘者也 故不举子 其遣谒者劳赐三老 孝者帛 今凤凰 麒麟不至 越众万馀人无所属 而民 和睦 皇帝敬拜见焉 而衣上黄 今已作 愿令王 不约而同会 大氐诋訾圣人 今复云子少 欲与天地长久 二日己酉 遂曰 陛下 建立公子 故有诗妖 出於将军