初二数学人教版因式分解_讲义
人教版初二数学讲义《因式分解的概念和基本方法》
定 义示例剖析定义:把一个多项式化成几个整式的积的形式,这种式子变形叫做因式分解,又叫分解因式. ()21a a a a +=+;()2324222x x x x +=+()()232236332131a b a b ab ab a a ab a ++=++=+实质:是一种恒等变形,是一种化和为积的变形.因式分解与整式乘法是相反方向的变形.()ma mb mc m a b c −−−−→++++←−−−−因式分解整式乘法多项式−−−−→←−−−−因式分解整式乘法整式乘积 模块一 因式分解的概念知识导航知识互联网6因式分解的概念 和基本方法分解因式的注意事项:1、结果一定是乘积的形式;2、每一个因式都是整式;3、相同的因式的积要写成幂的形式.4、没有大括号和中括号;5、每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;6、单项式因式写在多项式因式的前面;7、每个因式第一项系数一般不为负;8、若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止.如:111x x x ⎛⎫+=+ ⎪⎝⎭不是因式分解21(1)(1)x x x -=+-是因式分解()()22x y x y x y +-=-不是因式分解()23232x x x x +-=+-不是因式分解【例1】 ⑴下列各式从左边到右边的变形中,是因式分解的是( )A. 223()33ab a b a b ab +=+B. 2222421x x x x ⎛⎫+=+ ⎪⎝⎭C. 224(2)(2)a b a b a b -=+-D. 23633(2)x xy x x x y -+=-⑵一次课堂练习,小胖同学做了如下4道分解因式题,你认为他做得不够完整的一题是( ) A. ()321x x x x -=- B. ()2222x xy y x y -+=- C. ()22x y xy xy x y -=- D. ()()22x y x y x y -=+-【解析】 ⑴C. 其中A 是整式乘法不是因式分解;B 中的因式不是整式;D 不是恒等变形.⑵A. ()()()32111x x x x x x x -=-=-+【点评】 因式分解实质是一种恒等变形,是一种化和为积....的变形.因式分解与整式乘法是相反方向的变形.因式分解的结果:每个因式都必须是整式..,分解到不能再分解为止.【例2】 ⑴一个多项式分解因式的结果是33(2)(2)b b +-,那么这个多项式是( ) A .64b - B .64b - C .64b + D .64b --⑵如果多项式235x mx --分解因式为()()57x x -+,则m 的值为( )A 、2-B 、2C 、12D 、12- ⑶若多项式2x ax b ++可因式分解为()()12x x +-,求a b +的值 .【解析】 ⑴ B.⑵ A ⑶ 3-.由题意()()22122x ax b x x x x ++=+-=--,故12a b =-=-,,3a b +=-. 夯实基础定 义示例剖析如果多项式的各项有公因式,一般要将公因式提到括号外面进行因式分解。
人教版八年级数学上因式分解讲座
人教版八年级数学上因式分解讲座一、学习目标1.了解因式分解的意义及其与整式乘法的区别与联系,养成逆向思维的能力.2.理解因式分解的常用方法,能灵活地应用因式分解的常用方法进行因式分解.3.能用因式分解的知识解决相关的数学及实际问题.二、基础知识 基本技能1.因式分解(1)因式分解的定义:把一个多项式化为几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式.(2)因式分解的注意事项①因式分解的实质是多项式的恒等变形,与整式乘法的过程恰好相反,整式乘法是“积化和差”,而因式分解是“和差化积”,利用这种关系可以检验因式分解结果是否正确.②分解因式的对象必须是多项式,如把5a 2bc 分解成5a ·abc 就不是分解因式,因为5a 2bc 不是多项式;再如把1x 2-1分解为⎝ ⎛⎭⎪⎫1x +1⎝ ⎛⎭⎪⎫1x -1也不是分解因式,因为1x2-1不是整式. ③分解因式的结果必须是积的形式,如x 2+x -1=x (x +1)-1就不是分解因式,因为结果x (x +1)-1不是积的形式.④分解因式结果中每个因式都必须是整式,如x 2-x =x 2⎝⎛⎭⎪⎫1-1x 就不是分解因式,因为x 2⎝⎛⎭⎪⎫1-1x 不是整式的乘积形式. ⑤分解因式的结果中各因式中的各项系数的最大公约数是 1.如4x 2-6x =x (4x -6).结果中的因式4x -6中4和6的公约数不为1,正确的分解结果应是4x 2-6x =2x (2x -3).【例1-1】在下列四个式子中,从等号左边到右边的变形是因式分解的是( ).A .x 2y +x =x 2⎝⎛⎭⎫y +1x B .x 2-4-3x =(x +2)(x -2)-3xC .ab 2-2ab =ab (b -2)D .(x -3)(x +3)=x 2-9解析:选项A 右边的其中一个因式不是整式,不符合;选项B 的结果不是整式的乘积,只分解了一部分;选项D 是整式乘法;选项C 符合因式分解的意义,故选C .解题技巧:分解因式与整式乘法是两种相反方向的变形过程,即它们互为逆过程,互为逆关系,例如:n(a+b+c)na+nb+nc,因式分解是把多项式化为积的形式,注意一要是整式,二要是多项式.【例1-2】下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?(1)12a2b=3a·4ab;(2)(x+3)(x-3)=x2-9;(3)4x2-8x-1=4x(x-2)-1;(4)2ax-2ay=2a(x-y);(5)a2-4ab+b2=(a-2b)2.解:(1)不是分解因式.因为等号左边必须是一个多项式,而12a2b是单项式.(2)不是分解因式.因为等号左边(x+3)(x-3)是积的形式,右边x2-9是一个多项式,不符合分解因式的定义.(3)不是分解因式.因为等号左边虽然是一个多项式,但是等号右边的4x(x -2)-1不是整式积的形式.(4)是分解因式.因为等号左边2ax-2ay是一个多项式,且等号右边2a(x -y)是整式积的形式.(5)不是分解因式.因为分解因式是多项式的恒等变形,左右两边必须相等,而此题左边=a2-4ab+b2;右边=(a-2b)2=a2-4ab+4b2.因为左、右两边不相等,即不是恒等变形,当然不是分解因式.:判断一个式子由左到右的变形是不是分解因式,关键看它是不是把多项式变形为几个整式积的形式,也就是说,变形后第一必须是整式;第二必须是乘积的形式.2.因式分解的基本方法——提公因式法(1)公因式的意义多项式中的每一项都含有一个相同因式,这个相同因式叫做这个多项式各项的公因式.如多项式ab+ac+ad中,各项都含有因式a,故a是这个多项式的公因式.(2)公因式的确定准确地确定公因式,是运用提公因式法因式分解的关键.确定一个多项式各项的公因式,其方法如下:①确定公因式系数,即数字因数.当各项系数都是整数时,取各项的最大公约数作为公因式的系数;当各项系数中有分数时,则公因式的系数为分数,分母取各项系数分母的最小公倍数,分子取各项系数分子的最大公约数.②确定公因式的字母及字母指数.公因式的字母应是多项式各项都含有的字母,其指数取最低的.如:多项式4x4+6x2+12x3y中,系数的最大公约数是2,相同字母为x,它的最低指数是2,所以这个多项式的公因式应为2x2.③注意:公因式可能是单项式,也可能是多项式.当公因式是多项式时,要把这个多项式看作一个整体,这时要注意符号的变化,经常用的变形有:(b+a)n=(a+b)n(n为正整数),(b-a)n=(a-b)n(n为偶数),(b-a)n=-(a-b)n(n为奇数).【例2-1】指出下列各多项式中各项的公因式:(1)4x2y3z+12x3y4;(2)47(x+1)2y3-12(x+1)3y4;(3)12x n y2n+16x n-1y n+1(n为大于1的整数).(3)提公因式法①如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而把多项式化成两个整式乘积的形式,这种分解因式的方法叫提公因式法.我们在学习乘法分配律时知道,m(a+b+c)=ma+mb+mc,现在把它反过来就有ma+mb+mc=m(a+b+c),这正是提公因式法,可见提公因式法在实质上是逆用乘法分配律.②提公因式法的步骤运用提公因式法分解因式一般分为三步:第一步,确定公因式;方法:系数取最大公约数,相同因式取最低次幂。
因式分解讲义(适合0基础的)
因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。
要灵活运用“补、凑、拆、分”等技巧。
4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。
人教版八年级上册 14.3 因式分解 讲义(二)
因式分解基本方法二这节课我们学什么1. 十字相乘法(二次系数为1或不为1);2. 分组分解法(一三、二二型分组、五项、六项、七项);知识点梳理1、2()()()x a x b x a b x ab ++=+++ 反过来可得:2()()()x a b x ab x a x b +++=++十字相乘法可以看做多项式与多项式相乘的逆运算,借助十字交叉线来分解因式.2、 将多项式进行分解后运用提取公因式法,十字相乘法和公式法进行分解,其中对于综合型题目需要能分组的分组,不能分组的化简后分组因式分解典型例题分析1、 十字相乘法(二次项系数为1);例1、分解因式26x x +-【答案:(3)(2)x x +-】例2、分解因式22496x xy y --【答案:(12)(8)x y x y -+】 例3、分解因式2()3()54x y x y +-+-【答案:(9)(6)x y x y +-++】 例4、已知多项式256(8)()x mx x x n +-=+-,求m n +的值【答案:8】例5、分解因式(1)(2)(7)(8)8x x x x +++++ 【答案:22(910)(912)x x x x ++++】2、 十字相乘法(二次项系数不为1);例6、分解因式222x xy y +-【答案:(2)()x y x y -+】例7、已知多项式22(35)()310x y x ny x mxy y ++=++,求m n 、的值【答案: 11m = 2n =】例8、已知x ay +是22253x xy y +-的一个因式,求a 的值 【答案:12-或 3】 例9、分解因式2(1)(2)(3)(6)3x x x x x ++++- 【答案:22(46)(86)x x x x ++++】3、 分组分解法(一三、二二型分组、五项、六项、七项);例10、分解因式225526m m n n mn -++-+【答案:(3)(2)m n m n ----】例11、分解因式(1)(1)(1)xy x y xy ++++【答案: (1)(1)xy x xy y ++++】例12、分解因式22242(1)2(1)(1)y x y x y +-++-【答案: (1)(1)(1)(1)x x xy y x x xy y ++-+----】例13、分解因式2422(1)1a a a a ++-+【答案: 22(1)a a ++】例14、分解因式444222222222a b c a b b c c a ++---【答案: ()()()()a c b a c b a c b a c b +++--+--】例15、分解因式2231092x xy y x y --++- 【答案: (52)(21)x y x y +++-】例16、分解因式44(5)(3)32x x ++-【答案:22(5)(3)(5)(3)22(5)(3)x x x x x x ⎡⎡⎤⎡+++++-+++⎣⎢⎢⎥⎣⎣⎦】 例17、分解因式662264121x y x y ++-【答案:22442222(41)(16441)x y x y x y x y +-+-+++ 】 例18、分解因式42424(41)(3110x x x x x -++++)【答案: 2222(1)(1)(1)(1)x x x x x x -+++-+】 例19、分解因式432673676x x x x +--+【答案: (21)(2)(31)(3)x x x x +--+】例20、分解因式2(1)(2)(2)xy x y x y xy -++-+-【答案: 22(1)(1)x y --】例21、分解因式2(3)(1)(5)x x x +-+【答案:(3)(1)1(5)x x x x +-++()】 例22、已知多项式2225101023x xy y x y -++--的值为0,求5x y -的值【答案: 3-或1】课后练习练1. 分解因式33()(2)8a b b a -+--+ . 【答案:6()(2)a b b a ---】练2. 2323(1)x x x x +++-分解因式为 .【答案:2234(1)(1)x x x x x x ++++++】练3. 分解因式22222()4()x xy y xy x y ++-+ . 【答案:222()x xy y -+】练4. 分解因式22496x x y y --- . 【答案:(31)(31)x y x y +---】练5. 分解因式32332a a a +++【答案:2(2)(1)a a a +++】练6. 因式分解2(1)(2)(3)(6)3x x x x x ++++-【答案:22(86)(46)x x x x ++++】练7. 拆项后分解因式2222(48)3(48)2x x x x x x ++++++【答案:2(2)(4)(58)x x x x ++++】练8. 计算333(1)(2)(32)x x x -+-+-【答案:3(32)(1)(2)x x x ---】练9. 分解因式212a a +-【答案:(4)(3)a a +- 】练10. 分解因式223223223()()()x y z x y z ++--+【答案:22223()()()()x y y z x z x z +++-】课后小测验1. 因式分解2253x x +-【答案: (21)(3)x x -+】2. 分解因式21832x x -+【答案:(16)(2)x x --】3. 证明2241293035x x y y -+++永远比0大 【答案:22(23)(35)11x y ++++≥】4. 分解因式2232a ab b --【答案:(3)()a b a b +-】5. 因式分解212a a +-【答案:(4)(3)a a +-】本章小结。
人教版教材《因式分解》ppt1
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
十字相乘法(借助十字交叉线分解因式的方法)
例一:
步骤:
x2 6x 7 (x 7)(x 1) ①竖分二次项与常数项
x
7 7
或
x 1 1
②交叉相乘,和相加 ③检验确定,横写因式 顺口溜:竖分常数交叉验,
6
-5
2
-1
-1-10=-11
1
1
-5+6=1
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x-6)(x-1) 2、 -y 2-4y+12 答案- (y+6)(y-2) 3、 15x2+7xy-4y 2 答案 (3x-y)(5x+4y) 4、 x 2-(a+1) x+a 答案 (x-1)(x-a)
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练一练: 将下列各式分解因式
1x2 5x 6 3x2 7x 12
2x2 x 6 4x2 3x 10
x2
小结:用十字相乘法把形如
px q 二次三项式分解因式
q ab, p a b
当q>0时,q分解的因数a、b( 同号 )
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
你能对下列式子进行分解因式吗?
x y2 8x y 48
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版 八年级数学 因式分解讲义 (含解析)
第9讲因式分解知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习因式分解。
在初中重大比赛和考试中直接考因式分解的题很少,但要用到因式分解的题却很多,很多人解题拿不下就是因为因式分解不过关。
中学代数主要做好3件事情:恒等变形与计算、分类讨论、数形结合,因式分解是恒等变形的基础,是个极为重要的工具,因此本节课要好好学习并掌握。
知识梳理讲解用时:20分钟课前回顾整式的乘法回顾:(1)单项式×单项式(2)单项式×多项式a(b+c)=ab+ac(3)多项式×多项式(a+b)·(c+d)=ac+bc+ad+bd乘法公式回顾:1、平方差公式:(a+b)·(a-b)=a²-b²2、完全平方公式:(a±b)²=a²±2ab+b²幂的计算回顾:(m,n都是整数)(m,n都是整数)()n n nab a b=⋅(n是整数)m n m na a a-÷=(m、n都是整数且a≠0)nmnm aaa+=⋅mnnm aa=)(上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.先来做一个简单的复习吧三、十字相乘法:要点:一拆(拆常数项),二乘(十字相乘),三验(验证十字相乘后的和是否等于一次项)举例:x²+x-6x -2x 3 (-2x)+3x=x对于一般地:四、分组分解法:分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式.例如:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(a+b)(x+y)因式分解过程的一般步骤和注意点:1、一般步骤:先提公因式,再运用公式法或者十字相乘法,后分组分解,最后是重新整理再分解.2、注意点:在分解因式的时候要注意各个因式是否还能继续分解,直到每一个因式都不能继续分解为止.课堂精讲精练【例题1】分解因式:2(n﹣2)+m(2﹣n)= .【答案】(2﹣m)(n﹣2)【解析】直接提取公因式(n﹣2)进而分解因式即可.解:原式=2(n﹣2)﹣m(n﹣2)=(2﹣m)(n﹣2).故答案为:(2﹣m)(n﹣2).讲解用时:2分钟解题思路:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.教学建议:关键是看出题目中的公因式,注意互为相反数的式子提一个负号即可. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】因式分解:3x2﹣18x= .【答案】3x(x﹣6)【解析】直接找出公因式进而提取得出答案.解:3x2﹣18x=3x(x﹣6).故答案为:3x(x﹣6).讲解用时:2分钟解题思路:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.教学建议:先找数字的最大公约数,再找含相同字母的最低次幂.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习1.2】分解因式8x2y﹣2y= .【答案】2y(2x+1)(2x﹣1)【解析】首先提取公因式2y,再利用平方差公式分解因式得出答案.解:8x2y﹣2y=2y(4x2﹣1)=2y(2x+1)(2x﹣1).故答案为:2y(2x+1)(2x﹣1).讲解用时:2分钟解题思路:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.教学建议:先找数字的最大公约数,再找含相同字母的最低次幂.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】因式分解:m²-n²= .9x2﹣4= .【答案】(m+n)(m-n) (3x﹣2)(3x+2)【解析】直接利用平方差公式分解因式得出即可.解:m²-n²=(m+n)(m-n).9x2﹣4=(3x﹣2)(3x+2).故答案为:(3x﹣2)(3x+2).讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,熟练应乘法公式是解题关键.教学建议:注意看到平方数,并且是异号的情况想到用公式法中的平方差公式计算.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】分解因式:x2﹣9y2【答案】(x+3y)(x﹣3y)【解析】直接利用平方差公式分解因式即可.解:原式=(x+3y)(x﹣3y).故答案为:(x+3y)(x﹣3y).讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,正确应用公式是解题关键.教学建议:注意看到平方数,并且是异号的情况想到用公式法中的平方差公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习2.2】因式分解:9﹣p2= .【答案】(3﹣p)(3+p)【解析】直接利用平方差公式分解因式得出答案.解:9﹣p2=(3﹣p)(3+p).故答案为:(3﹣p)(3+p).讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.教学建议:注意看到平方数,并且是符号异号的情况想到用公式法中的平方差公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】分解因式:x2﹣x+1= .【答案】(x﹣1)2【解析】直接利用完全平方公式a2﹣2ab+b2=(a﹣b)2把多项式分解即可.解:原式=(x﹣1)2.故答案为:(x﹣1)2.讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,关键是掌握完全平方公式a2﹣2ab+b2=(a﹣b)2.教学建议:注意看到有3项,2项是平方和的形式且符号同号,另1项是乘积的2倍的形式想到用公式法中的完全平方公式计算.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】因式分解:﹣x2﹣y2+2xy= .【答案】﹣(x﹣y)2【解析】直接利用完全平方公式分解因式得出答案.解:原式=﹣(x2+y2﹣2xy)=﹣(x﹣y)2.故答案为:﹣(x﹣y)2.讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.教学建议:注意看到有3项,2项是平方和的形式且符号同号,另1项是乘积的2倍的形式想到用公式法中的完全平方公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习3.2】分解因式:m2+2mn+n2= .【答案】(m+n)2【解析】直接利用完全平方公式分解因式得出答案.解:m2+2mn+n2=(m+n)2.故答案为:(m+n)2.讲解用时:1分钟解题思路:此题主要考查了公式法分解因式,正确应用公式是解题关键.教学建议:直接套用完全平方公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】因式分解:x2﹣4x+3= .【答案】(x﹣1)(x﹣3)【解析】把3写成﹣1×(﹣3),又﹣1﹣3=﹣4,所以利用十字相乘法分解因式即可.解:x2﹣4x+3=(x﹣1)(x﹣3).故答案为:(x﹣1)(x﹣3).讲解用时:2分钟解题思路:本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.教学建议:学会画十字相乘法图示.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【答案】(1)(m+2n)(2m+n);(2)42cm.【解析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10厘米2,得出等式求出m+n,进一步得到图中所有裁剪线(虚线部分)长之和即可.解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.讲解用时:4分钟解题思路:此题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题关键.教学建议:观察图形,学会十字相乘法分解因式.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题5】分解因式:m2﹣25+9n2+6mn.【答案】(m+3n+5)(m+3n﹣5)【解析】首先分组,进而利用完全平方公式以及平方差公式分解因式得出答案.解:原式=(m2+6mn+9n2)﹣25=(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).讲解用时:3分钟解题思路:此题主要考查了分组分解法分解因式,正确分组是解题关键.教学建议:学会运用分组分解法来解题.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习5.1】因式分解:a2﹣2ab+b2﹣1.【答案】(a﹣b+1)(a﹣b﹣1)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2﹣2ab+b2可组成完全平方公式,可把前三项分为一组.解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).讲解用时:3分钟解题思路:本题主要考查了非负数的性质和分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组.教学建议:学会运用分组分解法来解题.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题6】因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.【答案】(1)a(x+4y)(x﹣4y)(2)﹣2a(a﹣3)2 (3)(x﹣2)2;(4)(a﹣b+1)(a﹣b﹣1).【解析】(1)先提取公因式,然后利用平方差公式(2)先提取公因式,然后利用完全平方公式(3)先展开,然后利用完全平方公式(4)先分组,然后再利用完全平方公式和平方差公式.解:(1)原式=a(x2﹣16y2)=a(x+4y)(x﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)讲解用时:3分钟解题思路:本题考查因式分解,解题的关键是熟练运用提取公因式法与公式法,本题属于基础题型.教学建议:熟练掌握因式分解的几种方法并熟练运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc【答案】(1)4x(2x﹣y);(2)3x2(x+y)2;(3)(a﹣b)(a+c).【解析】(1)提取公因式4x即可得;(2)先提取公因式3x2,再利用公式法分解可得;(3)利用分组分解法,将a2﹣ab、ac﹣bc分别作为一组提取公因式后,再分解可得.解:(1)原式=4x(2x﹣y);(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2;(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).讲解用时:3分钟解题思路:本题主要考查因式分解,解题的关键是熟练掌握提公因式法、公式法和分组分解法因式分解.教学建议:熟练掌握因式分解的几种方法并熟练运用.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知xy=﹣3,满足x+y=2,求代数式x2y+xy2的值.【答案】﹣6【解析】将原式提取公因式xy,进而将已知代入求出即可.解:∵xy=﹣3,x+y=2,∴x2y+xy2=xy(x+y)=﹣3×2=﹣6.讲解用时:3分钟解题思路:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.教学建议:先因式分解,再求代数式的值.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习7.1】已知ab=﹣2,a﹣b=3,求a3b﹣2a2b2+ab3的值.【答案】﹣18【解析】本题要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.解:a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,故答案为:﹣18.讲解用时:3分钟解题思路:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.教学建议:先因式分解,再求代数式的值.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】分解因式:2m2﹣m= .【答案】m(2m﹣1)【解析】直接把公因式m提出来即可.解:2m2﹣m=m(2m﹣1).故答案为:m(2m﹣1).讲解用时:1分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【答案】(1)(m+2n)(m﹣2n);(2)2(a﹣1)2【解析】根据因式分解法即可求出答案.解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)=2(a﹣1)2讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.【答案】(1)(x﹣y)(3a+5b);(2)x2(x﹣y)(x+y)(x2+y2)【解析】根据因式分解法即可求出答案.解:(1)原式=(x﹣y)(3a+5b)(2)=x2(x4﹣y4)=x2(x2﹣y2)(x2+y2)=x2(x﹣y)(x+y)(x2+y2)讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018【作业4】已知a+b=2,ab=2,求a2b+ab2的值.【答案】4【解析】首先提公因式ab,进而分解因式得出答案.解:∵a+b=2,ab=2,∴a2b+ab2=ab(a+b)=2×2=4.讲解用时:2分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业5】我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2a2+3ab+b2,并利用你所画的图形面积对2a2+3ab+b2进行因式分解.【答案】(1)2a2+2ab=2a(a+b);(2)2a2+3ab+b2=(2a+b)(a+b).【解析】(1)根据正方形面积求出即可;(2)画出图形,即可得出答案,根据图形和矩形面积公式求出即可.解:(1)2a2+2ab=2a(a+b),故答案为:2a2+2ab=2a(a+b),(2)如图所示:2a2+3ab+b2=(2a+b)(a+b).讲解用时:4分钟难度:4 适应场景:练习题例题来源:无年份:2018。
(完整)初二数学人教版因式分解-讲义
八年级数学因式分解辅导学案因式分解的常用方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1 ) (a+b)(a-b) = a 2-b 2 ---------a2-b 2=(a+b)(a-b);(2 ) (a±b)2= a 2±2ab+b 2——— a 2±2ab+b 2=(a ±b)2;例.已知a b c ,,是ABC 的三边,且222a bcab bc ca ,则ABC 的形状是()A.直角三角形B 等腰三角形C 等边三角形D 等腰直角三角形解:222222222222a b c ab bc ca abc ab bcca222()()()0ab bc ca a bc选C练习 (1))(3)(2x yb y xa (2)1222baba(3)(x -1)(x +4)-36(4)(m 2+n 2)2-4m 2n2(5)-2a 3+12a 2-18a ;(6)9a 2(x -y)+4b 2(y -x);(7) (x +y)2+2(x +y)+1.三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bnbm an am 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
初二数学因式分解(课件)
---------------------------------------------------------------最新资料推荐------------------------------------------------------初二数学因式分解(课件)初二数学因式分解(课件) 初二数学:因式分解(一)因式分解提公因式法(一)、内容提要多项式因式分解是代数式中的重要内容,它与第一章整式和后一章分式联系极为密切。
因式分解是在学习有理数和整式四则运算的基础上进行的,它为今后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础。
因式分解的概念是把一个多项式化成 n 个整式的积的形式,它是整式乘法运算的逆过程,而提公因式法是因式分解的最基本的也是最常见的方法。
它的理论依据就是乘法的分配律。
运用这个方法,首先要对欲分解的多项式进行考察,提出字母系数的公因数以及公有字母或公共因式中的最高公因式。
[知识要点] :1.了解因式分解的意义和要求 2.理解公因式的概念3.掌握提公因式的概念,并且能够运用提公因式法分解因式(二)、例题分析例 1.下列从左到右的变形,属于因式分解的有() 2 1. (x+1) (x-2) =x-x-2 2. ax-ay-a=a(x-y) -a 23232 3. 6xy=2x 3y 4. x-4=(x+2) (x-2) 322 5.9a-6a+3a=3a(3a-2a) A、 0 个 B、 1 个 C、 2 个 D、 3 个分1 / 3析:从左到右,式 1 是整式乘法;式 2 右端不是积的形式;式3 中左右两边的均是单项式,原来就是乘积形式,我们说的因式分解,指的是将多项式分解成 n 个整式的乘积形式;式 5 的右边括号内漏掉了1 这项;只有式 4 是正确的。
(答案)解:B 23322 例 2.把-3ab+6abc+3ab 分解因式分析:如果多项式的第一项的系数是负的,一般要提出- 号,使括号内的第一项的 2 系数是正的。
人教版八年级上册数学公开课《因式分解课件PPT》
小结:
1、什么叫因式分解? 2、确定公因式的方法:
(1)定系数 (2)定字母 (3)定指数 3、提公因式法分解因式的步骤(分两步):
第一步,找出公因式;
第二步,提取公因式;
4、提公因式法分解因式应注意的问题: (1)公因式要提尽; (2)某项提出莫漏1; (3)首项有负常提负,提出负号时要注意变
号
综合闯关:
1、计算(-2)101+(-2)100
2已知,2x+y=4,xy=3,求代数式2x 2y+xy 2的值
因式分解
x2-1
(x+1)(x-1)
整式乘法
因式分解与整式乘法是相反方向的变 形
在下列等式中,从左到右的变形是因式分
解的有(
)
(1 )am+bm+cm=m(a+b)+c
( 2 ) 24x 2y=3x8xy
( 3 ) 2x2 – 1=(x-1)(x+1)
( 4 ) (2x+1) 2=4x 2+4x+1
诊断:小明解得有误吗?
(1)把12x 2y+18xy 2分解因式 解:原式=3xy(4x+6y)
(2)把3x 2-6xy+x分解因式 解:原式=x(3x-6x)
(3)把-x 2+xy-xz分解因式 解:原式=-x(x+y-z)
注意:1.公因式要提尽 2.某项提出莫漏1 3.首项有负常提负
1、3mx-6my 2、x2y+xy2
14.3 因式分解
整式的乘法 用前面所学知识填空:
x(x+1)= x2 + x ; (x+1)(x-1)= x2-1.
人教版-八年级(初二)数学上册-整式的乘法与因式分解章节讲义-十字相乘、选主元、双十字相乘法(二)讲义
板块一:选主元【例1】 分解因式:1a b c ab ac bc abc +++++++【例2】 分解因式:2222223a b ab a c ac abc b c bc -+--++【例3】 分解因式:22(1)(1)(221)y y x x y y +++++【例4】 分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++【例5】 分解因式:322222422x x z x y xyz xy y z --++-板块二:双十字相乘双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。
由于这种方法两次使用了十字相乘法,故称之为双十字相乘法.【例6】 分解因式:222332x xy y x y +-+++【例7】 分解因式:22344883x xy y x y +-+--【例8】 分解因式:2265622320x xy y x y --++-例题精讲十字相乘、选主元、双十字相乘(二)【例9】 分解因式:22276212x xy y x y -++--【例10】 分解因式:22121021152x xy y x y -++-+【例11】 分解因式:22243x y x y ----【例12】 分解因式:22534x y x y -+++【例13】 分解因式:2222()3103x a b x a ab b ++-+-【例14】 分解因式:22265622320x xy y xz yz z -----【例15】 已知:a 、b 、c 为三角形的三条边,且222433720a ac c ab bc b ++--+=,求证:2b a c =+【例16】 分解因式:222695156x xy y xz yz z -+-++1.分解因式:(6114)(31)2a a b b b +++--2.分解因式:2222a b ab bc ac --++3.分解因式:2262288x xy y x y +-+--4.分解因式:223224x xy y x y ++++课后练习。
人教版八年级数学上册 14.3 因式分解大归类讲义
因式分解大归类知识点:因式分解:【定义】 把一个单项式或多项式化成几个整式的 乘积 的形式,这种式子变形叫做这个单项式或多项式因式分解,也叫做把个单项式或多项式分解因式。
整式乘法与因式分解的对比如:x x x x +=+2)1(, 称这种式子变形为整式的 乘法 。
反过来,)1(2+=+x x x x ,像这种式子的变形过程,称为多项式的因式分解。
一、提公因式法例1:把c ab b a 323128+分解因式 (温馨提示:方法是先“找”,再“提”)“找”238b a 与c ab 312的公因式:(1)先看系数:8和12的最大公约数是 ;(2)再找字母部分:3a 和a 的公因式是 (指数最小的就是它们的公因式),2b 和3b 的公因式是 ,所以,238b a 与c ab 312的公因式就是 。
解,原式=bc ab a ab 3424222⋅+⋅例2:把()()c b a c b a +-+236分解因式 (分析:“找”公因式,是 )针对性练习:1、找下列各式的公因式(1)n m 2与3mn 公因式是 (2)102x 与x 15的公因式是(3) 23x 与212xy 的公因式是 (4)bc a ab c ab 223201612+-的公因式是2、把下列各式分解因式(1)abc a -2 (2)a a +2 (3)a a 2552+-(4)mn n m 282+ (5)10+2x x 15 (6)2293xy x -(7)22912y x xyz - (8)bc a ab c ab 223201612+-(9)()()c b c b a +-+32 (10)()()2222b a q b a p +-+(11)()()712742+-+x x a(12)()()q p q q p p +-+46 (13)(x -2)2-x +2二、利用“平方差公式”进行因式分解整式乘法的平方差公式:=-+))((b a b a , ,这个变形过程是 因式分解 。
人教版初二数学上册 因式分解 讲义
因式分解知识点一、因式分解的概念把一个多项式化为若干个整式的积的形式,这种变形叫做因式分解因式分解:多项式 = 整式1 × 整式2 × 整式3 × ……例1、下列变形属于因式分解的有______________________①ab+ac=a(b+c) ②x 2+2x+1=(x+1)2 ③a 2-b 2=(a+b)(a-b) ④(a+b)(a-b)=a 2-b 2⑤x 2+6x-9=(x-3)(x+3)+6x ⑥6ab=2a.3b ⑦)1(12x x x x +=+ ⑧))(24())(42(m n a b n m b a --=--1、下列变形属于因式分解的有______________________①x 2-2=(x+1)(x-1)-1 ②4x 2-9y 2=(2x+3y)(2x-3y) ③2a(b+c)=2ab+2ac ④16x 2y 3=2xy.8xy 2 ⑤x 2+4x+4=(x+2)2 ⑥x 2-6x+9=(x+3)22、下列变形属于因式分解的有______________________①xy 2+xz=x(y 2+z) ②6xy+2y 2=2y(3x+y) ③)1(12a a a a -=- ④x 2-8x+16=(x-4)2 ⑤a 2-4a+4=a(a-4)+4 ⑥(a+1)(a-1)=(1+a)(-1+a)知识点二、提公因式法提公因式法其实就是运用乘法分配律a(b+c)=ab+ac来变形例1、分解因式:ab+ac 例2、分解因式:4a2+10ab 例3、分解因式:2ab2-6a2b2+4a3b21、分解因式①xy-x2②mx-my ③2m+2 ④a2x+ax2+a⑤12m2n+18mn ⑥8a3b2-12ab3c ⑦3a2b2-15a3b3-12a2b2c ⑧3xy2-6x2y+9xy例4、分解因式:6p(p+q)-4q(p+q) 例5、分解因式:2(a-3)2-a+3 例6、分解因式:2(a-b)2+3(b-a)①2b(x-3)+3a(x-3) ②m 2(x-2)+m(x-2) ③x(x-y)-y(x-y)④2x(x-2)-2+x⑤6(x-5)+2y(5-x) ⑥-6(x-y)2-3y(y-x)2知识点三、公式法1、完全平方公式a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、平方差公式a 2-b 2=(a+b)(a-b)例1、分解因式422b ab a ++例2、分解因式229124y xy x ++ 例3、分解因式-x 2+9y 2①x 2+2xy+y 2 ②a 2-4a+4 ③-x 2+2xy-y 2④1+4a+4a 2⑤412++x x ⑥2292416y xy x +-例3、(a+b)2+2(a+b)y+y 2例4、(a 2b-c)2-4(a 2b-c)+42、分解因式①x 2+2x(4a-b)+(4a-b)2②-9a 2+6a(a-b)-(a-b)2 ③16-8(x-y)+(x-y)2例5、分解因式:a2-4 例6、分解因式:9x2-16y2例7、分解因式:-x2+9y3、分解因式①a2-25 ②x2-y2③9-x2④49x2-y2z2⑤16m4n2-25p2⑥x2-6 ⑦3-4y2⑧-x2+1 ⑨-x2+4y2⑩2241ba+ -例7、分解因式:(3a+2b)2-(a-b)24、分解因式①(x-1)2-9 ②4(x-2)2-1 ③(x+2y)2-(2x-y)2。
初中数学经典课件:因式分解(人教版)
a b2 a2 2ab b2 a b2 a2 2ab b2
a b2 a2 2ab b2
计 算
x 44 x _x_2__8_x__1_6__
: 7 b2 _b_2__1_4b___49__
m 99 m __m_2__1_8_m__8_1_
这两个数的积的两倍,等于这两个 数的和(或差)的平方。
牛刀小试(对下列各式因式分解): ① a2+6a+9 = _______(a_+__3_)2______ ② n2–10n+25 = _____(n__–_5_)2______ ③ 4t2–8t+4 = _______4_(_t–_1_)_2_____ ④ 4x2–12xy+9y2 = ___(2_x_–_3_y_)_2____
② – 4x2 + y2 = y2 – 4x2 = (y+2x)(y–2x) = – ( 4x2 – y2 ) = – (2x+y)(2x–y)
③ x4 – 1 = (x2)2 – 12 = (x2+1) (x22+–11))(x–1)
因式分解一定要分解彻底 !
④ x2 – x6
④ x2 – x6
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd
所以,需要将二次项系数与常数项分别拆成两 个数的积,而这四个数中,两个数的积与另外两 个数的积之和刚好等于一次项系数,那么因式分 解就成功了。
6 x2 + 7 x + 2
2
1
3
2 ∴6x2+7x+2=(2x+1)(3x+2)
课件《因式分解》精品PPT课件_人教版2
十字相乘法②随堂练习: 1)4a2–9a+2 a 24a 1
2)7a2–19a–6 7a 2a 3 3)2(x2+y2)+5xy 2x y x 2y
例 .将 2(6x2 +x) 2-11(6x2 +x) +5 分解因式 解:2(6x2 +x)2-11(6x2 +x) +5 = [(6x2 +x) -5][2(6x2 +x)-1] = (6x2 +x-5) (12x2 +2x-1 ) = (6x -5)(x +1) (12x2 +2x-1 )
x2 13x 42 x 6 x 7
对二次三项式x2+px+q用x2+(a+b)x+ab=(x+a)(x+b)进行因式分解, 应重点掌握以下问题:
1.适用范围:只有当q=ab,且p=a+b时 才能用十字相乘法进
我
行分解。
2.掌握方法:拆分常数项,验证一次项.
3.符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
3.(x-2)(x+1)= x2-x-2
4.(x-2)(x-1)= x2-3x+2 5.(x+2)(x+3)= x2+5x+6 6.(x+2)(x-3)= x2-x-6 7.(x-2)(x+3)= x2+x-6 8.(x-2)(x-3)= x2-5x+6
(x+a)(x+b) =x2+(a+b)x+ab
2
-1
例1:2x2-7x+3
解:原式=(2x-1)(x-3) 1
-3
总结:
2 × (-3)+(-1) × 1=-7
人教版八年级上册数学优秀《因式分解课件》.ppt
4a2(x 7) 3(x 7), 其中a 5, x 3.
2021-1-1
x
12
思考 15.4.2 公式法(1)
你能将多项式x2-16 与多项式m 2-4n2分解 因式吗?这两个多项式有什么共同的特点吗?
(a+b)(a-b) = a2-b2
a2-b2 =(a+b)(a-b)
(5)(a b)2 12(a b) 36 .
归纳:
(1) 先提公因式(有的话); (2) 利用公式(可以的话); (3) 2021-1-1 分解因式时要x 分解到不能分解为止23.
2.证明:连续两个奇数的平方差可 以被8整除.
2021-1-1
x
24
今天你有什么收获? 你还有什么疑问吗?
作业:习题15.4,2、3、5.
2021-1-1 =3a(x+y)2 .
x =(a+b-6)2.
21
练习
1.下列多项式是不是完全平方式?为什么?
(1) a2-4a+4;
(2)1+4a2;
(3) 4b2+4b-1 ; 2.分解因式:
(4)a2+ab+b2.
(1) x2+12x+36;
(2) -2xy-x2-y2;
(3) a2+2a+1;
x
10
因式分解:
(1)24x3y-18x2y ;
(2)7ma+14ma2 ;
(3)-16x4+32x3-56x2 ; (4)- 7ab-14abx+49aby ; (5)2a(y-z)-3b(y-z) ; (6)p(a2+b2)-q(a2+b2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学因式分解辅导教案
因式分解的常用方法
第一部分:方法介绍
多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.
一、提公因式法.:ma+mb+mc=m(a+b+c)
二、运用公式法.
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
(1 ) (a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);
(2 ) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;
(3 ) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);
(4 ) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).
下面再补充两个常用的公式:
(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
例.已知
是
的三边,且
,则
的形状是()
A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形
解:
三、分组分解法.
(一)分组后能直接提公因式
例1、分解因式:
分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=
=
每组之间还有公因式!
=
例2、分解因式:
解法一:第一、二项为一组;解法二:第一、四项为一组;
第三、四项为一组。
第二、三项为一组。
解:原式=
原式=
=
=
=
=
练习:分解因式1、
2、
(二)分组后能直接运用公式
例3、分解因式:
分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=
=
=
例4、分解因式:
解:原式=
=
=
练习:分解因式3、
4、
综合练习:(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
四、十字相乘法.
(一)二次项系数为1的二次三项式
直接利用公式——
进行分解。
特点:(1)二次项系数是1;
(2)常数项是两个数的乘积;
(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?
例.已知0<
≤5,且
为整数,若
能用十字相乘法分解因式,求符合条件的
.
解析:凡是能十字相乘的二次三项式ax2+bx+c,都要求
>0而且是一个完全平方数。
于是
为完全平方数,
例5、分解因式:
分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即
2+3=5。
1 2
解:
1 3
=
1×2+1×3=5
用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例6、分解因式:
解:原式=
1 -1
=
1 -6
(-1)+(-6)= -7
练习5、分解因式(1)
(2)
(3)
练习6、分解因式(1)
(2)
(3)
(二)二次项系数不为1的二次三项式——
条件:(1)
(2)
(3)
分解结果:
=
例7、分解因式:
分析: 1 -2
3 -5
(-6)+(-5)= -11
解:
=
练习7、分解因式:(1)
(2)
(3)
(4)
(三)二次项系数为1的齐次多项式
例8、分解因式:
分析:将
看成常数,把原多项式看成关于
的二次三项式,利用十字相乘法进行分解。
1 8b
1 -16b
8b+(-16b)= -8b
解:
=
=
练习8、分解因式(1)
(2)
(3)
(四)二次项系数不为1的齐次多项式
例9、
例10、
1 -2y 把
看作一个整体 1 -1
2 -3y 1 -2
(-3y)+(-4y)= -7y (-1)+(-2)= -3
解:原式=
解:原式=
练习9、分解因式:(1)
(2)
综合练习10、(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
思考:分解因式:
五、换元法。
例13、分解因式(1)
(2)
解:(1)设2005=
,则原式=
=
=
(2)型如
的多项式,分解因式时可以把四个因式两两分组相乘。
原式=
设
,则
∴原式=
=
=
=
练习13、分解因式(1)
(2)
(3)
例14、分解因式(1)
观察:此多项式的特点——是关于
的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。
这种多项式属于“等距离多项式”。
方法:提中间项的字母和它的次数,保留系数,然后再用换元法。
解:原式=
=
设
,则
∴原式=
=
=
=
=
=
=
(2)
解:原式=
=
设
,则
∴原式=
=
=
=
练习14、(1)
(2)
六、添项、拆项、配方法。
例15、分解因式(1)
解法1——拆项。
解法2——添项。
原式=
原式=
=
=
=
=
=
=
=
=
(2)
解:原式=
=
=
=
练习15、分解因式
(1)
(2)
(3)
(4)
(5)
(6)
七、待定系数法。
例16、分解因式
分析:原式的前3项
可以分为
,则原多项式必定可分为
解:设
=
∵
=
∴
=
对比左右两边相同项的系数可得
,解得
∴原式=
例17、(1)当
为何值时,多项式
能分解因式,并分解此多项式。
(2)如果
有两个因式为
和
,求
的值。
(1)分析:前两项可以分解为
,故此多项式分解的形式必为
解:设
=
则
=
比较对应的系数可得:
,解得:
或
∴当
时,原多项式可以分解;
当
时,原式=
;
当
时,原式=
(2)分析:
是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如
的一次二项式。
解:设
=
则
=
∴
解得
,
∴
=21
练习17、(1)
(2)
(3)已知:
能分解成两个一次因式之积,求常数
并且分解因式。
(4)
为何值时,
能分解成两个一次因式的乘积,并分解此多项式。
第二部分:习题大全
经典一:
一、填空题
1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式。
2分解因式: m3-4m= .
3.分解因式: x2-4y2= __ _____.
继续阅读。