初二数学人教版因式分解_讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学因式分解辅导教案
因式分解的常用方法
第一部分:方法介绍
多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.
一、提公因式法.:ma+mb+mc=m(a+b+c)
二、运用公式法.
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
(1 ) (a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);
(2 ) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;
(3 ) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);
(4 ) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).
下面再补充两个常用的公式:
(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
例.已知
是
的三边,且
,则
的形状是()
A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形
解:
三、分组分解法.
(一)分组后能直接提公因式
例1、分解因式:
分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=
=
每组之间还有公因式!
=
例2、分解因式:
解法一:第一、二项为一组;解法二:第一、四项为一组;
第三、四项为一组。第二、三项为一组。
解:原式=
原式=
=
=
=
=
练习:分解因式1、
2、
(二)分组后能直接运用公式
例3、分解因式:
分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=
=
=
例4、分解因式:
解:原式=
=
=
练习:分解因式3、
4、
综合练习:(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
四、十字相乘法.
(一)二次项系数为1的二次三项式
直接利用公式——
进行分解。
特点:(1)二次项系数是1;
(2)常数项是两个数的乘积;
(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?
例.已知0<
≤5,且
为整数,若
能用十字相乘法分解因式,求符合条件的
.
解析:凡是能十字相乘的二次三项式ax2+bx+c,都要求
>0而且是一个完全平方数。
于是
为完全平方数,
例5、分解因式:
分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即
2+3=5。 1 2
解:
1 3
=
1×2+1×3=5
用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例6、分解因式:
解:原式=
1 -1
=
1 -6
(-1)+(-6)= -7
练习5、分解因式(1)
(2)
(3)
练习6、分解因式(1)
(2)
(3)
(二)二次项系数不为1的二次三项式——
条件:(1)
(2)
(3)
分解结果:
=
例7、分解因式:
分析: 1 -2
3 -5
(-6)+(-5)= -11
解:
=
练习7、分解因式:(1)
(2)
(3)
(4)
(三)二次项系数为1的齐次多项式
例8、分解因式:
分析:将
看成常数,把原多项式看成关于
的二次三项式,利用十字相乘法进行分解。
1 8b
1 -16b
8b+(-16b)= -8b
解:
=
=
练习8、分解因式(1)
(2)
(3)
(四)二次项系数不为1的齐次多项式
例9、
例10、
1 -2y 把
看作一个整体 1 -1
2 -3y 1 -2