新能源汽车技术概论课件第8章 新能源汽车制动能量回收系统
电动汽车制动能量回收系统课件

随着电池技术和电机控制技术的不断进步,制动能量回收系统的效率和性能将得到进一步提升。未来,制动能量 回收系统将与自动驾驶技术相结合,实现更加智能化的能量管理。同时,随着充电设施的日益完善和电池成本的 降低,制动能量回收系统将在更多类型的电动汽车上得到应用。
02
制动能量回收技术详解
再生制动技术
充电设施建设: 随着我国电动汽车数量的不断增加,充电设施的建设也得到了快速发 展,为制动能量回收系统的应用提供了有力保障。
国内外应用现状
• 技术研发: 我国在电动汽车及制动能量回收技术方面进行 了大量研发工作,取得了一系列重要成果。
国内外应用现状
01
国外应用现状
02
03
04
先进技术: 国外在电动汽车及 制动能量回收技术方面起步较 早,拥有较为先进的技术水平
优势
制动能量回收系统不仅可以提高电动汽车的能效和续航里程,还可以延长电池寿命,提高车辆的安全 性和稳定性。此外,制动能量回收系统的使用还可以减少对传统能源的依赖,降低能源成本。
系统的历史与发展趋势
历史
制动能量回收系统的概念最早可以追溯到20世纪90年代,但直到近年来随着电动汽车技术的快速发展,该技术才 得到广泛应用。
案例分析:系统性能评估与改进
系产工艺,降低制动能量回 收系统的成本,使其更具有市场竞争力。
技术创新: 针对现有技术的不足,研发更高效、稳定的 制动能量回收技术。
兼容性改进: 提高制动能量回收系统与其他电动汽车系 统的兼容性,方便用户使用和维护。
05
未来展望与挑战
技术发展趋势
高效能量回收技术
随着材料科学和电力电子技术的 进步,制动能量回收系统的效率 将得到进一步提升,回收的能量 将更多用于延长电动汽车的续航
2024版新能源汽车概论(全套51PPT课件)

2024/1/28
重度混合动力系统
重度混合动力系统采用了大功率电动机和大容量电池组,使得车辆能够在纯电动模式下行驶 较长的距离。该系统节油效果显著,但成本也最高。
13
优缺点分析及适用场景
2024/1/28
燃油经济性高
通过电动机的辅助驱动和能量回收, 混合动力汽车能够显著提高燃油经 济性,减少燃油消耗。
28
中游零部件制造和整车组装能力提升
零部件制造技术
提升电机、电池、电控等核心零部件的制造技术 水平,降低成本、提高性能。
整车组装工艺
优化整车组装工艺流程,提高生产效率和产品质 量。
智能制造应用
引入智能制造技术,实现生产过程的自动化、信 息化和智能化。
2024/1/28
29
下游市场拓展和消费者需求挖掘
系统使两种动力源协同工作,以提高燃油经济性和减少尾气排放。
02
混合动力系统组成
混合动力系统主要由内燃机、电动机、电池组、控制系统等部分组成。
内燃机作为主要动力源,电动机辅助驱动,电池组负责储存和释放电能。
2024/1/28
03
工作原理
在行驶过程中,混合动力汽车根据驾驶需求和车辆状态,自动切换不同
的工作模式,如纯电动模式、混合驱动模式、发动机直驱模式等,以实
电池管理系统
介绍电池管理系统的功能、架构和 关键技术,包括电池的荷电状态估 计、健康状态监测、热管理等。
8
电机驱动系统原理及选型
电机类型
介绍适用于电动汽车的各类电机,如 永磁同步电机、异步电机、开关磁阻 电机等,并分析各类电机的特点和应 用场景。
电机驱动原理
电机驱动系统选型
分析电机驱动系统的选型依据,如电 机的功率、转速范围、效率等,以及 驱动器的类型、控制策略等。
电动汽车能量管理及回收系统43页PPT

1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
第8章 新能源汽车制动能量回收系统

• 按FTP75市区循环运行的车辆的车速及其加/减速度。
• 这一实例的参数为L=2.7m,La =0.4L,Lb=0.6L和hg=0.55m。从图 中可以看出:
• 1)前轮消耗约65%的总制动功率和能量,因此,若仅在一个轴 上实施再生制动,则在前轮上的再生制动比后轮上的再生制动将更 为有效。
• 2)在车速小于50km/h的范围内,制动力几乎为一恒值,且当车速 大于40km/h时,其值减小。
• 图所示为利用液压储能原理设计的一种制动能量再生回收系统。系 统由发动机、液压泵、液压储能器、联动变速箱、驱动桥、液控离 合器和液压控制系统组成。
• 3.电化学储能
• 其工作原理是:首先将车辆在制动或减速过程中的动能,通过 发电机转化为电能并以化学能的形式存储在储能器中;当车辆需要 起动或加速时,再将存储器中的化学能通过电动机转化为车辆行驶 的动能。
• dηp = 0
dim
• 得到最大回馈效率再生制动时的电动机电枢电流为
(8-7)
• im =
rm2 TL2+Ke2ΩrmTL−imTL Keim
(8-8)
• 3.恒定力矩制动方式
• 在制动力矩(电枢电流)不变的情况下,回馈到电池的电流将随 电动机反电动势的降低而减小,其初始值(也是最大值)不应超过 电池允许充电电流,否则在制动过程中能最不能得到有效的回收。
• 8.2.2 电动汽车的制动模式
• 1.急刹车 • 急刹车对应于制动减速度大于2m/s2 的过程。
• 2.中轻度刹车 • 中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程
与停止过程。 • 3.汽车下长坡时的刹车 • 汽车下长坡一般发生在盘山公路下缓坡时。在制动力要求不大时, 可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。 限制因素主要为电池的电荷状态和接受能力。
小组:电动汽车制动能量的回收系统

电动汽车制动能量的回收系统前言制动能量回收是指汽车减速或制动时,将其中一部分机械能(动能) 转化为其他形式的能量,并加以再利用的技术。
根据不同的储能方式,制动能量回收主要有液压储能式、飞轮储能式和电储能式等3种类型,电动汽车制动能量回收属于电储能式。
基本原理是:通过具有可逆作用的发电机/电动机来实现电能和汽车动能的转化。
在汽车制动或减速时,发电机/ 电动机以发电机形式工作,汽车行驶的动能带动发电机将汽车动能转化为电能并储存在储能器(蓄电池或超级电容器) 中;在汽车起动或加速时,发电机/电动机以电动机形式工作,将储存在储能器中的电能转化为机械能给汽车。
汽车能量回收系统的主要目的,就是使汽车行驶时的节能效果最佳,即尽可能多地回收汽车制动前的能量(动能或势能),在汽车起步或加速时,尽可能多地将系统储存的能量释放出来,使发动机的燃料消耗最小。
从而改善汽车的能量利用效率, 提高汽车续驶里程。
有关研究表明,如果有效地回收制动能量,电动汽车大约可降低15 %的能量消耗,其续驶里程将提高10%~30%。
能量存储装置电化学电池:电化学电池是汽车储能的传统选择,主要包括铅酸电池(Lead—acid)、镍金属电池(Cd—Ni和MH—Ni)、锂电池(Li—ion 和Li—polymer)等。
铅酸电池可靠性高、原料易得、成本低、适用温度和电流范围大,一直在汽车储能中使用最广泛但铅酸电池作为制动能量储能系统,而存在的缺点主要是充电速度慢、循环使用寿命过低等。
镍金属电池有Cd—Ni和MH—Ni电池,但由于镉对环境有污染,很多国家限制发展和使用Cd—Ni电池。
MH—Ni电池是一种绿色镍金属电池,具有很高的能量存储能力;但它的单元电池额定电压较低,仅为1.2 V左右(铅酸电池2V),这就导致构成相同额定电压的镍金属电池单元数目比铅酸电池要多2/3,增加了电池系统的复杂性,另外,镍金属电池还存在记忆效应和充电发热等方面的问题。
锂电池是上世纪末发展起来的高容量可充电电池,能够比MH—Ni电池存储更多的能量:比能量大,循环寿命长,自放电率小,无记忆效应和无环境污染,是当今各国能量存储技术研究的热点。
电动汽车再生制动系统介绍ppt课件

2020/5/11
.
3
续航历程短是制约电动汽车普及发展的关键因素,再生制 动能量回收技术是提高电动车续航里程的有效手段。再生制动 能量回收即汽车在制动时,通过制动装置将动能化为电能储存 在动力电池、超级电容等储能设备,供驱动时使用,以达到延 长电动汽车续驶里程的目的,同时还可起到减少制动器工作强 度、延长机械制动系统寿命的作用。
因为具备上述优点,再生制动能量回收技术已成为纯电动 汽车和燃料电池汽车等新能源汽车节能减排的主要技术之一。
2020/5/11
.
4
再生制动的发展
2020/5/11
再生制动能量回收系统最开始应用在火车上,后来一 些学者将其应用在汽车上,早起主要是在传统汽车上使用, 利用液压和飞轮的储能机构,能量回收效率低。后来随着 电动汽车技术的发展,电机能源转化效率高,电池储能效 率高,再生制动系统进入了研究的快车道,并成为电动汽 车上一重要的组成部分。 1、早在20世纪70年代,美国威斯康星大学Norman H.Beachley等学者就开始了汽车再生制动系统的研究,当 时主要是对传统汽车采用飞轮和液压储能方式对制动年能 量回收。 2、1979年,丹麦P.Buchwald和G.Christensen等比较详 细的研究了再生制动能量回收理论,同时在福特汽车上研 制出了液压储能的再生制动系统。 3、日本丰田公司于 1997 年推出了具有再生制动功能的 混合动力轿车 Prius,这款轿车制动的惯性能量能够通过 再生制动系统得到回收,回收的能量约能提供汽车5%~23% 的驱动力,从而能够提高.轿车 10%左右的燃油经济性。 5
位不同时,能承担的制动强度可以更大。
3、再生制动可起辅助制动作用。特别是电动汽车恒速
下长坡时,为保持制动强度的恒定性,延长行车制动系工作
电动汽车制动能量回收系统课件

05
电动汽车制动能量回收系统的未来发展
技术创新
01
02
03
高效能量转换技术
研发更高效的能量转换技 术,提高制动能量回收的 效率,减少能源损失。
智能控制策略
采用先进的控制算法和策 略,实现制动能量回收系 统的智能化和自适应调节 。
无线充电技术
探索无线充电技术在电动 汽车制动能量回收系统中 的应用,简化充电流程, 提高便利性。
控制器
80%
控制器功能
控制器负责接收制动踏板信号, 并根据车辆行驶状态和电池充电 状态,控制电机进行能量回收。
100%
控制算法
控制器采用先进的控制算法,如 模糊逻辑控制或PID控制,以实 现精确的制动能量回收控制。
80%
与整车其他系统的集成
控制器需与整车其他系统(如电 池管理系统、整车控制系统等) 进行集成,以确保系统的协调运 行。
制动能量回收系统的原理
当电动汽车进行制动时,车辆的动能会通过车轮和 传动系统传递到发电机/电动机。
发电机/电动机在此时转变为发电机模式,将动能转 化为电能。
电能经过控制器的调节后,被存储在动力电池中。
制动能量回收系统的分类
根据能量回收方式的不同,制动能量回收系统可以分为:液压式 、电机制动式和发电机制动式。
市场拓展
扩大应用领域
将电动汽车制动能量回收系统应用到 更广泛的领域,如公共交通、物流运 输等。
跨界合作与产业链整合
加强与相关产业的合作,整合产业链 资源,共同推动电动汽车制动能量回 收系统的发展。
拓展国际市场
推动电动汽车制动能量回收系统在全 球范围内的普及和应用,开拓国际市 场。
政策支持
制定鼓励政策
探究新能源汽车的制动能量回收技术

探究新能源汽车的制动能量回收技术1 新能源汽车概述新能源汽车是指不采用常规的车用燃料(或采用常规的车用燃料同时增加新型车载动力装置)作为动力来源,综合车辆的动力控制和驱动方面的先进技术,原理先进,具有新技术、新结构的汽车。
目前都是以电能或常规能源与电能并用作为动力来源的。
1.1 电动汽车的历史简介其实要说新能源汽车,电能汽车可一点都不“新”,早在1800年电池就已经问世了,1873年英国人Robert Davidson采用铁锌电池(不可充电)作为动力源成功将一辆三轮马车改造成世界上第一辆电动车,1882年法国人制造可载50人电动汽车,1886年伦敦出现了电动公交车。
我们现在所广泛采用的内燃机汽车是1886年诞生的,所以要说“新”,内燃机汽车更年轻一些。
1900年美国的汽车产量为4195辆,其中电动汽车1575辆、蒸汽汽车1684辆、内燃机汽车936辆,电动汽车要比内燃机汽车产量高。
不过电动车存在蓄电池充电这一瓶颈,相比之下内燃机汽车在续航问题上更具备优势,所以后来者居上,到1920年美国的公路上已经基本上看不到电动汽车的身影了。
而今,由于环境、能源等问题,人们在汽车上重新利用电能,电动汽车反倒成了“新”能源汽车。
1.2 新能源汽车的形式新能源汽车的形式包括混合动力汽车、燃料电池电动汽车、纯电动汽车、增程式电动汽车、氢发动机汽车、其他新能源汽车等。
混合动力汽车(Hybrid Electric Vehicle,HEV)是由两个或两个以上能同时运转的单个动力系统联合组成动力系统的车辆,车辆的动力依据实际的车辆行驶状态由单个动力系统提供或多个动力系统共同提供。
混合动力汽车有多种组成部件、布置方式和控制策略,形式多样。
燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)是纯电动汽车的一种,主要区别在于动力电池的工作原理不同。
燃料电池的电能是通过氢气和氧气在催化剂的作用下经电化学反应产生的。
新能源电动汽车能量管理与回收系统培训讲义

(6)通过总线实现各检测模块和中央处理单元的通讯。在电动汽车上实 现电池管理的难点和关键在于如何根据采集的每块电池的电压、温度和充 放电电流的历史数据,建立确定每块电池剩余能量的较精确的数学模型, 即准确估计电动汽车蓄电池的SOC状态。
第3页
使用电池能量管理系统必备的条件
2.1 电池模块方面的要求 2.1.1 电池模块应具备足够的使用寿命、可靠性和工作的稳定性
大家都知道汽车是一种设计很紧凑的机-电—体化的产品。电动汽 车的紧凑性更加突出、电动汽车给安装电池箱留有的空间有限,有时会造 成接近性很差,加上电池质量很大,拆-卸很不方便,不能随时进行拆卸。 所以要求应用的电池具有极好的使用寿命和可靠性,使其减少维护的频次、 减少拆卸电池的次数给安装电池能量管理系统创造条件。
2.2.1 电池模块用的电池箱
为达到对电池进行能量管理的目的,电池模块必须装在一个箱内,该箱应具备一定条件:
(1)电池箱必须是密封的。除必需的通风孔外均不能与大气相通。密封箱内的要求主要考虑电池 冷却气流的流动问题,不许在某处泄漏,避免冷却气流的流动性差造成电池模块工作温度的不一致, 从而导致性能的一致性进一步的恶化。
1.4 DC—DC、DC—AC转换功能
如果车辆安装辅助电池,电池能量管理系统应能控制动力电池随时给辅助电池模块充电,保证辅 助电池模块的供电功能即DC—DC的转换功能,保证低压系统的正常工作。
当应用异步电机时,电池能量管理系统尚有DC—AC的转换功能保证电动汽车的正常运行。
补充内容—电动汽车制动能量回收和空调系统

项目八——电动汽车制动能量回馈系统以及空调系统 一 电动汽车制动能量回馈系统
5、制动能量回收要考虑的几个因素 A、能否对制动能量进行回收及回收的多少取决于电池的荷电状态 SOC 值和温度,若制动过
程中电池的 SOC 值很高(例如 0.85 以上),或温度过高(高于 55℃),不能进行制动能量 的回收或减小充电电流以保护电池及延长电池的使用寿命。
4、能量制动回收要解决的问题 目前汽车制动能量回收系统研究主要集中在回收制动能量方法、回收制动能量的效率、驱动电
机与功率转换器的控制技术、再生制动控制策略、机电复合制动的协调等方面。目前急需解决的制 动能量回收系统关键技术问题主要有四个方面: ✓ 制动稳定性问题 ✓ 制动能量回收的充分性问题 ✓ 制动踏板平稳性问题 ✓ 符合制动协调兼容问题
6、制动能量回收要考虑的几个因素 控制策略:为了保证在制动安全的条件下实现能量充分回收,需要合理设计再生制动与机械制
动的分配关系 驱动型式:再生制动系统只能回收驱动轮上的制动能量。 为了尽可能多的回收制动能量,应综合考虑制动能量回收的约束条件,合理配置回收制动能量
的方法、驱动电机及控制策略,以提高制动能量回收的效率。
电动汽车再生制动系统主要由能量存储装置、可逆电机、馈能电路(电机控制器)组成。电动 汽车的再生制动是在原制动系统的基础上添加的,通过对两种制动力的重新匹配实现制动功能。在 此需要解决的两个问题是:
项目八——电动汽车制动能量回馈系统以及空调系统 一 电动汽车制动能量回馈系统
因此,对电动汽车制动能量进行回收,意义如下: 在当前电动汽车电池储能技术没有重大突破的条件下,回收电动汽车制动能量可以提高电动汽车
的能量利用率,增加电动汽车的行驶距离; 机械摩擦制动与电制动结合,可以减少机械摩擦制动器的磨损,延长制动器使用寿命,节约生产
新能源汽车技术概论课件第8章新能源汽车制动能量回收系统ppt

• 图所示为利用液压储能原理设计的一种制动能量再生回收系统。系 统由发动机、液压泵、液压储能器、联动变速箱、驱动桥、液控离 合器和液压控制系统组成。
• 3.电化学储能
• 其工作原理是:首先将车辆在制动或减速过程中的动能,通过 发电机转化为电能并以化学能的形式存储在储能器中;当车辆需要 起动或加速时,再将存储器中的化学能通过电动机转化为车辆行驶 的动能。
• 2.前后轴制动力比例分配时的控制策略
• 并联制动控制策略如图所示。需要的总制动力较小时,全部由再生制动力提 供;当需要的减速度增大时,电机再生制动力所占的比例逐渐减小,机械制动 力开始起作用;当总制动力大于一定值时意味着这是一个紧急制动,再生制动 力减小到零,机械制动提供所有的制动力;当所需的制动减速度在两者之间时, 再生制动与机械制动共同作用。
• 3)从汽车理论知识可知,如果前轮先于后轮抱死,虽然失去了 转向能力,但整车还是稳定的;如果后轮先于前轮抱死,将导致整 车失去控制,极易发生严重交通事故。
•8.5 电动汽车的制动系统
• 电动汽车的再生制动给制动系统的设计添加了一些复杂性,呈现 出两个基本问题:一是如何在再生制动和机械摩擦制动之间分配所 需的总制动力,以回收尽可能多的车辆的动能;二是如何在前后轮 轴上分配总制动力,以实现稳定的制动状态。
• 3)制动控制器根据电动机转速,计算电机实际能够提供的制动强度。 • 4)比较需求的电机再生制动强度上限和电机实际能够提供的制
动强度,并将结果作为电信号发送给电机控制器。
• 5)此时的电动机工作在发电机状态下,可以提供电压恒定流向 的电流,再通过逆变器限制电机产生的最高电压和对电压进行升压, 以便满足电流输出要求,充到动力蓄电池组中。
• 电动汽车三种常见再生制动控制策略进行比较结构
新能源汽车概论ppt课件-2024鲜版

电池回收处理难题
废旧电池处理不当可能对环境 造成污染,需要建立完善的回 收处理体系。
技术创新不足
新能源汽车技术仍处于不断发 展和完善阶段,需要持续的技 术创新。
2024/3/28
28
未来发展趋势预测及建议
01 02 03 04 05
2024/3/28
提升续航里程 充电设施普及 电池回收利用 技术创新加速 政策扶持持续
长沙市在多条公交线路上投入运营电动公交车, 为市民提供更加环保、舒适的出行体验。
2024/3/28
24
网约车领域应用案例
2024/3/28
滴滴出行新能源汽车计划
滴滴出行与多家新能源汽车制造商合作,推动网约车领域的新能 源化进程。
曹操出行绿色出行战略
曹操出行积极布局新能源汽车市场,打造绿色、低碳的出行服务。
整车设计
根据市场需求和消费者偏好,进行新能源汽车的 整车设计。
生产制造
通过现代化的生产线和制造技术,实现新能源汽 车的批量生产。
质量控制
建立完善的质量控制体系,确保生产出的新能源 汽车符合相关标准和要求。
2024/3/28
17
下游充电设施建设与运营商
充电设施建设
包括公共充电桩、私人充电桩等不同类型的充电设施建设 。
电池储能系统
电动汽车使用大容量电池组储存电能,为电机驱动 系统提供能量。
能量回收系统
在制动或减速时,电动汽车可将部分能量回收并储 存到电池中,提高能源利用效率。
2024/3/28
8
混合动力汽车技术原理
80%
内燃机与电机协同工作
混合动力汽车同时搭载内燃机和 电机,两者协同工作以提供最佳 动力输出和燃油经济性。
新能源汽车动力系统的能量回收与利用技术

新能源汽车动力系统的能量回收与利用技术随着环保意识的不断增强和对传统燃油资源的日益枯竭,新能源汽车逐渐成为代替传统燃油汽车的热门选择。
新能源汽车以其零排放、低噪音等特点,在全球范围内得到广泛的推广和应用。
而其中一个重要的技术就是能量回收与利用技术,它能够最大限度地提高新能源汽车的能量利用效率,从而延长续航里程,提升整车性能。
本文将对新能源汽车动力系统的能量回收与利用技术进行探讨。
一、能量回收技术的原理与应用1. 制动能量回收技术制动能量回收技术,也被称为再生制动技术,是一种通过电机驱动汽车动力系统转变为发电机,将制动过程中产生的动能转换为电能并储存起来的方法。
这种技术可以将制动损失转化为有用的能量,从而提高整车的能源利用效率。
常见的制动能量回收技术包括回馈式制动、滑动模式制动等。
2. 减速能量回收技术减速能量回收技术,是指在减速或者制动过程中,在动能转换装置的辅助下,将车辆减速或制动时产生的机械能转化为电能进行回收和储存。
这种技术可以通过控制动力系统的输出力矩和转速,在维持车辆正常行驶的前提下,回收并储存能量,提高能量的利用效率,降低能量浪费。
二、能量回收与利用技术的优势与挑战1. 优势新能源汽车动力系统的能量回收与利用技术具有以下优势:- 提高能源利用效率。
能量回收技术可以将制动和减速过程中浪费的能量进行有效回收和再利用,提高能源的利用效率。
- 增加续航里程。
能量回收与利用技术可以将回收的能量储存起来,利用时供给给动力系统进行驱动,从而延长续航里程,提升车辆的实用性和竞争力。
- 降低污染排放。
新能源汽车动力系统的能量回收与利用技术可以减少制动和减速过程中产生的污染物的排放,对改善空气质量和环境保护起到积极作用。
2. 挑战与优势相对应的是,新能源汽车动力系统的能量回收与利用技术也面临一些挑战:- 技术成熟度不高。
目前的能量回收与利用技术仍处于发展初期,技术成熟度和可靠性有待提高。
- 储能装置成本较高。
新能源汽车制动能量回馈系统实训

新能源汽车制动能量回馈系统实训二级标题1:回顾新能源汽车技术的发展三级标题1:传统汽车制动系统的局限性•制动时会产生大量的热能,浪费能源•制动系统效率低下,无法充分利用制动能量•对环境产生污染,对刹车片和刹车盘造成磨损三级标题2:新能源汽车技术的兴起•新能源汽车采用电动机驱动,具有零排放和低噪音的特点•高效能利用、环保的趋势推动了新能源汽车技术的发展•制动能量回馈系统是新能源汽车的重要技术之一二级标题2:新能源汽车制动能量回馈系统的原理三级标题1:制动能量的回馈1.制动能量指的是车辆在制动过程中产生的能量2.利用回馈系统可以将制动能量转化为电能,存储到电池中3.电能可以用于提供动力,减少对电池的额外充电需求三级标题2:回馈系统的组成部分1.制动器:负责执行制动动作,将动能转化为热能2.能量转换模块:将制动器产生的热能转化为电能3.电池:用于存储回馈系统产生的电能4.控制器:监控制动能量的回馈过程,并控制电能的储存和使用二级标题3:新能源汽车制动能量回馈系统实训三级标题1:实训目标1.了解新能源汽车制动能量回馈系统的工作原理2.学习操作并调试制动能量回馈系统3.掌握实现回馈系统效果的关键参数和控制策略三级标题2:实训内容1.实物体验:通过实际操作制动能量回馈系统的装置,观察制动过程中的能量转换效果2.参数调整:根据教师的指导,调整回馈系统的参数,观察不同参数设置对能量回馈效果的影响3.故障排除:分析并解决实训装置中可能出现的故障,保证系统正常工作三级标题3:实训收获1.提高对新能源汽车技术的理解和认识2.锻炼动手操作和问题解决的能力3.培养团队合作和沟通能力二级标题4:新能源汽车制动能量回馈系统的应用前景三级标题1:环保效益1.制动能量回馈系统可以最大限度地回收制动时产生的能量,减少能源的浪费2.减少了对燃油或电池的消耗,降低了对环境的污染三级标题2:能量管理的重要性1.制动能量回馈系统的应用使得新能源汽车的续航里程得到提升2.合理利用制动能量,可以减少对电池的依赖,延长电池的使用寿命三级标题3:技术进步的推动1.制动能量回馈系统的商业化应用对技术的进步有着重要的推动作用2.制动能量回馈系统的不断优化改进,将使新能源汽车更加高效、环保、经济综上所述,新能源汽车制动能量回馈系统是新能源汽车技术发展的重要组成部分。
新能源汽车概论-电动汽车能力管理与回收系统.doc

第5章电动汽车能力管理与回收系统课题:5.1 电动汽车能量管理系统教学目的:了解什么是电动汽车能量管理控制系统,掌握电池管理系统的功能理解纯电动汽车能量管理系统的组成、混合动力电动汽车的能量管理策略好工作模式教学重点:电池管理系统的功能教学难点:电池管理系统的功能类型:新授课教学方法:讲练结合课时:6引入:导入案例P177。
能量管理系统在电动汽车中非常重要,它由硬件系统和软件系统组成,如P178图5.2所示。
能量管理系统具有从电动汽车各子系统采集运行数据,控制完成电池的充电、显示蓄电池的荷电状态(SOC)、预测剩余行驶里程、监控电池的状态、调节车内温度、调节车灯亮度以及回收再生制动能量为蓄电池充电等功能。
能量管理系统中最主要的是电池管理系统。
一、电池管理系统的功能21.概述电池管理系统是集监测、控制与管理为一体的复杂的电气测控系统,也是电动汽车商品化、实用化的关键。
电池管理系统(bms)是能量管理系统的核心。
(1)主要任务保证电池组工作在安全区间,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。
(2)电池管理的核心问题就是SOC的预估问题电动汽车电池操作窗SOC的合理范围是30~70%,这对保证电池寿命和整体的能量效率至关重要。
(3)首要任务准确和可靠的获得电池soc是电池管理系统中最基本和最首要的任务。
2.功能典型的电池管理系统应具备如下功能:(1)实时采集电池系统运行状态参数。
实时采集电动汽车蓄电池组中的每块电池的端电压和温度、充放电电流以及电池组总电压等。
由于电池组中的每块电池在使用中的性能和状态不一致,因而对每块电池的电压、电流和温度数据都要进行监测。
(2)确定电池的SOC。
准确估测动力电池组的SOC,从而随时预报电动汽车储能电池还剩余多少能量或储能电池的SOC,使电池的SOC值控制在30%~70%的工作范围。
(3)故障诊断与报警。
电动汽车制动能量回收系统PPT课件

不同,主要有3种,即飞轮储能、液压储能和电化学储 能
.
5
2.1飞轮储能
➢ 飞轮储能是利用高速旋转的飞轮来储存和释放能 量,能量转换过程如图所示。当汽车制动或减速 时,先将汽车在制动或减速过程中的动能转换成 飞轮高速旋转的动能;当汽车再次启动或加速时, 高速旋转的飞轮又将存储的动能通过传动装置转 化为汽车行驶的驱动力。
车,它的制动系统包括能量回收制动和液压制动, 能量回收制动由整车ECU控制,液压制动则是由制 动控制器控制,液压制动系统如图所示。
点击添加文本
.
14
4.2 再生—液压混合制动系统 ➢ 图是某电动汽车的再生—液压混合制动系统,它只
在前轮上进行制动能量回收,前轮上的总制动力矩 大小等于电机产生的再生制动力矩与机械制动系统 产生的摩擦制动力矩的和。
点击添加文本
点击添加文本
液压储能式制动能量回收系统示意图
.
9
2.3电化学储能
➢ 电化学储能工作原理如图所示。它是先将汽车在制动 或减速过程中的动能,通过发电机转化为电能并以化 学能的形式储存在储能器中;当汽车再次启动或加速 时,再将储能器中的化学能通过电动机转化为汽车行 驶的动能。储能器可采用蓄电池或超级电容,由发电 机/电动机实现机械能和电能之间的转换。系统还包括 一个控制单元,用来控制蓄电池点或击超添加级文电本容的充放电 状态,并保证蓄电池的剩余电量在规定的范围内。
.
7
2.2液压储能
➢ 液压储能工作过程如图所示。它是先将汽车在制动或减 速过程中的动能转换成液压能,并将液压能储存在液压 蓄能器中;当汽车再次启动或加速时,储能系统又将蓄 能器中的液压能以机械能的形式反作用于汽车,以增加 汽车的驱动力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 8.4.3 前后轮的制动功率和能量
• 假定在最初前后轮上的制动力分布遵循I曲线,并忽略不计阻力,则 施加于前后轮上的制动力可表达为
•
Fμ1
=
jm L
Lb
+
hg g
j
(8-9)
•
Fμ2
=
jm L
La
−
hg g
j
(8-10)
• 式中,j为车辆的负加速度(m/s2);L为车辆的轮距;La和Lb分别为车辆 重心至前后轮中心之间的水平距离;hg为车辆重心至地面的高度,m为 电动汽车质量。
• 8.1.3新能源汽车制动能量收回方法
• 1.飞轮储能 • 飞轮储能是利用高速旋转的飞轮来储存和释放能量, 其基本工作原理是:当车辆制动或减速时,先将车辆在 制动或减速过程中的动能转换为飞轮高速旋转的动能; 当车辆再次起动或加速时,高速旋转的飞轮又将存储的 动能通过传动装置转化为车辆行驶的驱动力。
• 飞轮储能式制动能量再生系统构成如图所示,主要由发动机、高速 储能飞轮、增速齿轮、飞轮离合器和驱动桥组成。发动机用来提供 驱动车辆的主要动力,高速储能飞轮用来回收制动能量以及作为负 荷平衡装置,为发动机提供辅助的功率以满足峰值功率要求。
• 2.液压储能
• 其工作原理是:先将车辆在制动或减速过程中的动能转换成液 压能,并将液压能储藏在液压储能器中;当车辆再次起动或加速时, 储能系统又将储能器中的液压能以机械能的形式反作用于车辆,以 增加车辆的驱动力。
• 8.5.1 电动汽车制动能量回收系统的结构
• 电动汽车制动能量回收系统主要由两部分组成:电机再生制动部分 和传统液压摩擦制动部分。所以,该制动系统可以视为机电复合制动系 统。
• 电动汽车的制动系统为双回路液压制动系统+电动真空助力+电机再 生制动。
• 电动汽车的制动助力采用电动真空助力,保证踏板力符合习惯大小, 同时具有一定的制动脚感。
• 阻止型高效缓冲吸收电路有三种类型:C型放电阻止型、RCD型 放电阻止型和双RCD型放电阻止型吸收回路,如图所示。
• 3. 缓冲吸收电路的设计要点 • 为保证每次关断前吸收电容的s
<
1 6Csf
(8-4)
• 式中,f 为开关器件的工作频率。同时,为防止Cs的放电引起振荡,
• 5.恒定充电功率制动方式
• 复合电源系统,分别采用恒定充电电流和恒定充电功率制动方 式下的超级电容充电电流和电枢电流实测结果。和恒定充电电流制 动方式相比,恒定充电功率制动方式更实用,而且由于蓄电池端电 压变化缓慢,其充电电流恒等效于充电功率恒定,因此可以说恒定 充电电流制动方式是恒定充电功率制动方式在以蓄电池作为电动机 回馈能量储存器件的系统中的一个实例。
• 2.最大回馈效率制动方式
• 最大回馈效率制动方式定义回馈效率为
•
ηp =
Vbib
= KeimΩ−im2 rm
TL+Keim Ω
TL+Keim Ω
(8-6)
• 式中,TL为负荷力矩;Vb为电源电压;ib为蓄电池充电电流;Ke为涡流损耗系 数;im为电枢电流;rm为电枢电阻;Ω为平均转速。
• 以im为自变量,即
• 1. 过电压产生的原因 • 大功率IGBT使用的驱动电路板上一般提供IGBT的驱动电路、过电流
保护、软降栅压和软关断驱动保护电路,这些保护措施是一种逐个 脉冲保护。该-di/dt在主回路的布线上引起较大的-Ldi/dt,如图所 示。
• 2.缓冲吸收电路的工作原理 • 抑制过电压的有效方法是采用缓冲吸收电路( Snubber Circuit)。 IGBT的关断缓冲吸收回路分为充放电型和放电阻止型两类。
• 图所示为利用液压储能原理设计的一种制动能量再生回收系统。系 统由发动机、液压泵、液压储能器、联动变速箱、驱动桥、液控离 合器和液压控制系统组成。
• 3.电化学储能
• 其工作原理是:首先将车辆在制动或减速过程中的动能,通过 发电机转化为电能并以化学能的形式存储在储能器中;当车辆需要 起动或加速时,再将存储器中的化学能通过电动机转化为车辆行驶 的动能。
• 4.恒定充电电流制动方式
• 电动机初始反电动势为100V,电池电压为120V,蓄电池充电电 流为40A情况下的蓄电池充电电流ib和电动机电枢电流im的关系。由 图可知,控制系统在车辆制动过程中维持蓄电池充电电流40A,而随 着车辆的减速,电动机反电动势持续下降,电枢电流持续上升,其 峰值达到130A左右。
• 8.2.2 电动汽车的制动模式
• 1.急刹车 • 急刹车对应于制动减速度大于2m/s2 的过程。
• 2.中轻度刹车 • 中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程
与停止过程。 • 3.汽车下长坡时的刹车 • 汽车下长坡一般发生在盘山公路下缓坡时。在制动力要求不大时, 可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。 限制因素主要为电池的电荷状态和接受能力。
• 制动过程中,制动控制器根据制动踏板的开度(实际为主缸压力), 判断整车的制动强度,确定相应的摩擦制动和再生制动的分配关系。
• 8.5.2 电动汽车制动能量回收系统的原理
• 电动汽车制动能量回收系统的结构原理图,如图所示。电动汽车的 制动过程是由液压摩擦制动与电机再生制动协调作用完成的。再生制动 系统主要是由轮毂电机、电机控制器、逆变器、制动控制器和动力蓄电 池等主要部件组成。制动能量回收的实现过程如下:
•8.4 前后轮的制动功率和制动能量
• 8.4.1 电动汽车制动力的分类
• 通常有再生制动的电动汽车还存在机械制动系统,其制动系统是 机械和再生制动(电制动)的复合。 • 它们之间的分配比例关系可以用图来表示,这只是一种三者之间的 分配关系,目的是保持最大的再生制动力矩的同时为驾驶人提供与 燃油车相同的制动感。
• 一种用于前 轮驱动轿车的 电化学储能式 制动能量再生 系统如图所示。
•8.2 电动汽车制动模式
• 8.2.1 汽车的制动要求及电动汽车的复合制动
• 1.汽车的制动要求 • 一方面,在紧急制动状态下,必须有足够的制动力,能使汽车在 最短可能的距离中停止; • 另一方面,必须满足汽车的操控稳定性要求,即要保证驾驶人对 汽车方向的控制,不能失控。
• 2. 电动汽车的复合制动
• 电动机制动的方法可分为机械制动和电气制动 两大类。电气制动又可分为反接制动、能耗制动 和回馈发电制动三种形式,其中的回馈发电制动 (即再生制动)就是制动能量回收的最有效方法。
• 另一方面,从电动汽车的角度来看,再生制动 产生的制动力矩通常不能像传统燃油车中的制动 系统一样提供足够的制动减速度。图示了再生制 动与机械摩擦制动结合的复合制动系统情况。
•
i2
=
E−U R1+R3
(8-3)
• 8.3.2 永磁电机再生制动电路
• 电动汽车所用的永磁电动机一般为永磁直流电动机和永磁交流 电动机。永磁直流电动机和永磁交流电动机本质统一,永磁交流电 动机常等效成相应的直流电动机进行分析。
• 永磁直流电动机再生制动电路原理图如图所示。
• 8.3.3 IGBT缓冲吸收电路的设计主要考虑以下几个方面:
• 3)从汽车理论知识可知,如果前轮先于后轮抱死,虽然失去了 转向能力,但整车还是稳定的;如果后轮先于前轮抱死,将导致整 车失去控制,极易发生严重交通事故。
•8.5 电动汽车的制动系统
• 电动汽车的再生制动给制动系统的设计添加了一些复杂性,呈现 出两个基本问题:一是如何在再生制动和机械摩擦制动之间分配所 需的总制动力,以回收尽可能多的车辆的动能;二是如何在前后轮 轴上分配总制动力,以实现稳定的制动状态。
• 8.1.2 制动中的能量损耗
• 汽车在制动期间,消耗了较多的能量。例如,将1500kg车辆从 100km/h车速制动到零车速,在几十米距离内约消耗了0.16kW·h的 能量。如果能量消耗在仅克服阻力(滚动阻力和空气阻力)而没有 制动的惯性滑行中,则该车辆将行驶约2km,如图所示。
• 图展示了不同城市公交车工况的比例。表8-2列出了在不同的行 驶工况下,1500kg客车的最高车速、平均车速、驱动轮上的总牵引 能量,以及每100km行程因阻力和制动所消耗的总能量。
•8.3 永磁电动机再生制动
• 8.3.1 制动能量回收基本原理
• 再生制动系统的发电电压总是低于蓄电池的 电压,为了使再生制动产生的电能存储在储能 装置中,必须采用电子制动控制系统使电机工 作于发电状态。制动能量回收的基本原理如图 所示。
• 感应电动势E与感应电流i随时间t的变化有如下关系:
•
• 8.2.3 电动汽车制动能力收回要求
• (1)满足制动的安全要求,符合驾驶时的制动习惯 • (2)考虑驱动电动机的发电工作特性和输出能力 • (3)确保电池组在充电过程中的安全,防止过充 • 由以上分析可发现电动汽车制动能量的回收约束条件为:①根
据电池放电深度,即电池的荷电状态SOC的不同,电池可接受的最大 充电电流;②电池可接受的最大充电时间;③能量回收停止时电动 机转速,以及与此相对应的充电电流值。
• 按FTP75市区循环运行的车辆的车速及其加/减速度。
• 这一实例的参数为L=2.7m,La =0.4L,Lb=0.6L和hg=0.55m。从图 中可以看出:
• 1)前轮消耗约65%的总制动功率和能量,因此,若仅在一个轴 上实施再生制动,则在前轮上的再生制动比后轮上的再生制动将更 为有效。
• 2)在车速小于50km/h的范围内,制动力几乎为一恒值,且当车速 大于40km/h时,其值减小。
Rs还应满足:
•
Rs
>
2
1
Ls Cs
(8-5)
• 8.3.4 永磁电机再生制动策略
• 1. 最大回馈功率制动方式
•
当制动电流Im