七年级数学上册第一章有理数1.2有理数1.2.4绝对值课件新版新人教版
七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版
1.2.4 绝对值课题:1.2.4 绝对值课时第1课时教学设计课标要求借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法教材及学情分析本节内容是人教版七年级上册第一章第二节第四小节第一课时的内容,主要讲述和绝对值有关的知识。
借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解绝对值的直观工具,帮助学生学习绝对值这是绝对值得几何意义;通过计算观察归纳等方法发现有理数绝对值的规律,从而知道绝对值的代数意义。
七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求课时教学目标1、掌握绝对值的概念,会求出一个数的绝对值,能利用数轴及绝对值的知识2、经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想重点绝对值的概念难点绝对值的概念提炼课题利用数轴理解绝对值得意义教法学法指导归纳总结、探究教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课回顾知识回顾知识:什么叫数轴?什么叫相反数?怎样表示数a的相反数?回顾知识教学过程分析情景,思考问题知道绝对值的几何意义完成练习,思考问题情景分析:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正。
两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作km,乙车向西行驶10km到达B处,记做km。
以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(2)数轴上表示-4和4的点到原点的距离分别是多少?表示的0.5和-0.5点呢?绝对值的概念:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示。
例如:探究新知:先求下列各数的绝对值,再思考后面的问题:|5|= |-10|=|3.5|= |-4.5|=|50|= |-3|=|100|= |-5000|=0|=0创设情景,引入新知。
1-2-4绝对值课件人教版七年级上册数学
3.下列各式中,不成立的是 ( D )
A.|-5|=5
B.-|5|=-|-5|
C.|+5|=5
D.-|-5|=5
4.若|a|=8,则a= ±8 ; 若|-a|=8,则a= ±8 ; 若|a|=|-8|,则a= ±8 .
练习
5.蜗牛从点O开始沿东西方向直线爬行,规定向东爬行的路程记为正数,向 西爬行的路程记为负数,爬过的各段路程依次为(单位:cm):
非负数
;
(2)绝对值等于它本身的数是
非负数
;
(3)绝对值等于它相反数的数是
非正数
.
活动4 例题与练习
例1 求下列各数的绝对值.
(1) +813;
(2)-7.2;
解: (1) +813 =813;
(3)0.
(2) |-7.2| =-(-7.2) =7.2;
(3) |0| =0.
例2 计算. (1)|-18|+|-6|;
(3)∵1×(|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|)=54(粒), ∴蜗牛一共得到54粒芝麻.
活动5 课堂小结 1.绝对值的几何定义:一般地,数轴上表示数a的点与原点的距 离叫做数a的绝对值,记做|a|.
2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数 的绝对值是它的相反数;0的绝对值是0.用符号表示为:
活动3 知识归纳 1.一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,
记作 |a| ,读作 a的绝对值 .
2.一个正数的绝对值是 它本身 ; 一个负数的绝对值是 它的相反数 ;
0的绝对值是 0 .
即
|a|=
a (a>0), 0 (a=0),
-a (a<0)
2024年新人教版七年级数学上册《第1章1.2.1 有理数》教学课件
正整数:13,20
负有理数: 3 ,-30,-12%, -7.5,-60
负整数:-30,-60
练一练
1. 把下列各数填在相应的括号中:
-3, ,0,4, ,2.12,-0.65,300%,-
正数:(
π,
);
负数:(
);
分数:(
);
整数:(
);
有理数:(
,. ).
归纳总结
有理数分类时注意几点: 1. 像 15,200%,能约分成整数的数_不__能__(填“能”或
正?
正数 分数 小数
负?
负数 小数 分数
合作探究
思考1:正整数,负整数可以写成分数的形式吗?
可以的话将下列整数写成分数的形式.
2
2 = __1___,
3
-3 = __1__,
0
0 = ___1___.
思考2:分组探究小数和分数之间能否互化,所有的 小数都能化成分数吗?
5.32
=
____,-150.25
正整数 0
负整数 正分数 负分数
符号分类 正有 理数
0 有理数
负有 理数
典例精析
例1 指出下列各数中的正有理数、 负有理数,并分
别指出其中的正整数、负整数:
13,4.3, 3 ,8.5%,-30,-12%,
-7.5,20,-60,1.
•
2
.
1
,
正有理数:
13,4.3,8.5%,1
20,1.
•
2
,
整数
负整数
正分数 负分数
分数
有理数
知识要点
有理数按照定义分类:
1.正整数、0、负 整数统称为整数; 2. 正分数、负分 数统称为分数; 3.整数和分数统 称为有理数.
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
数学七年级上册1.2.4绝对值(共16张PPT)
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.
人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)
2017 √
√
√
4
3
√√
√
-4.9
√
√
√
0
√
-12 √
√
√
√
探究新知
知识点 2 有理数的分类 你能根据有理数的定义对有理数分类吗?
探究新知
有理数
整数 分数
正整数 零 负整数 正分数
负分数
探究新知
质疑探索 学了有理数的分类后,有没有一些数不是有理数呢? 探究总结
有限小数和无限循环小数都是分数,所以也是有理数. 无限不循环小数(如π)不是分数,就不是有理数.
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
第一章 有理数
1.2 有理数及其大小比较 1.2.1 有理数的概念
学习目标
1. 了解有理数的定义. 2. 会判断一个数是整数还是分数,是正数还是负数. 3. 知道有理数的两种分类方法.
探究新知
知识点 1 有理数的概念 某天毛毛看报纸,见到下面一段内容:冬季的一天,某地 的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而 同一天北京的气温为-3℃~7℃. 问题1:这里面出现的数是什么数? 6,7是正数; -10,-3是负数; 0既不是正数也不是负数.
新人教版初中数学七年级上册第1章—1.2有理数 课件
归纳
一般地,设a是一个正数,数轴上与原点 的距离是a的点有2个,它们分别在原点 的左右,表示-a和a,我们说这两点关于 原点对称。
相反数
定义
像-2和2,5和-5这样,只有符号不同的两个数叫做 互为相反数。
思考:数轴上表示相反数的两个点和原点有什么关系?
相反数
定义
像-2和2,5和-5这样,只有符号不同的两个数叫做 互为相反数。
数轴
定义
在数学中,通常用一条直线上的点表示数,这条直 线叫做数轴。 它满足以下要求: 1、画一条直线,在直线上取一点0,叫原点; 2、规定直线上向右的方向为正方向; 3、选取适当的长度作为单位长度,就得到了数轴。
思考:数轴一定是水平的吗?
数轴
例3:下列数轴画得对错? ① ② -3 -2 -1 -1 -2 -3 -3 -2 -1 -1 0 0 0 1 1 1 1 2 2 2 2
③
④
数轴
讨论:数轴能不能表示所有的有理数?
数轴
讨论:数轴能不能表示所有的有理数?
-1.5
-4 -3 -2 -1 0 1 2 3 4
数轴
讨论:数轴能不能表示所有的有理数?
数形结合
-1.5
-4 -3 -2 -1 0 1 2 3 4
结论:任何一个有理数都可以用数轴上的一个点来表示。
相反数
思考 数轴上与原点距离是2 的点有 示的数是 个,这些点表
“东”、“西”具有相对意义,可以用正数、负 数来表示。0定为基准点,正数代表右侧,负数 代表左侧。
数轴
定义
在数学中,通常用一条直线上的点表示数,这条直 线叫做数轴。 它满足以下要求: 1、画一条直线,在直线上取一点0,叫原点; 2、规定直线上向右的方向为正方向; 3、选取适当的长度作为单位长度,就得到了数轴。
1.2.4 绝对值 课件-人教版(2024)数学七年级上册
应 记作 |a| . (这里的数a可以是正数、负数和0). 用
0到原点的距
-5到原点的距 离是5,所以-5的 绝对值是5,记 做|-5|=5
离是0,所以0 的绝对值是0, 记做|0|=0
4到原点的距离是4, 所以4的绝对值是4, 记做|4|=4
│-5│=5 │4│=4 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
第一章 有理数 1.2.4 绝对值
回顾
知 1、什么是数轴? 识
数轴的三 要素
关 数轴是规定了原点、正方向、单位长度的直线
联
-2 -1 0 1 2
2、什么是相反数? 只有符号不同的两个数叫做互为相反数. 规定:0的相反数是0.探情究来自1 导绝入对值的概念探
究
甲、乙两辆出租车在一条东西走向的街道上行驶,
(2)原式=4.2-4.2=0
拓展
探 例4 下列关系一定成立的是
()
究 A.若|m|=|n|,则m=n
B.若|m|=n,则m=n
与 应 C.若|m|=-n,则m=n
D.若m=-n,则|m|=|n|
用 例5 如图 数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中四
个点表示的数的绝对值最大的是 ( )
;绝对值最小的数是 .
5.绝对值小于2的整数有 个,它们分别是
.
检测
课
堂 1.直接填写结果:︱+6︱= 6
,︱-1.5︱= 1.5
,|-
小 |= 结
32,︱0︱=32 0
, -︱-12︱= -12 .
与 2.如果一个数的绝对值等于10,那么这个数等于 10或-10.
检 3.如果一个数的绝对值是它本身,那么这个数一定是 非负数 测
人教版初一数学 1.2.4 绝对值PPT课件
-1 5
= 1; 5
|-2.8|=2.8.
当堂训练
能力提升题
化简: | 0.2 |=__0_.2___;
-2 3 7
=__2_73___;
| b |=__-_b___ (b<0); | a – b | =__a_-_b__(a>b).
当堂训练
拓广探索题 正答式:排第五球个比排赛球对的所质用量的好一排些球,重因量为是它有的严绝对格值规最定小的,,也现就检是离查标5个准排重 球量的的重克数量最,近超.过规定重量的克数记作正数,不足规定重量的克数 记作负数,检查结果如下:
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
学习目标
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.
导入新课
两辆汽车从同一处O出发分别向东、西方向行驶10km,到 达A、B两处.
|5|= 5 |3.5|= 3.5 |-3|= 3 |-4.5|= 4.5 |0|= 0
-3 -4.5
0
5
0 3.5 0
0
01
探究新知
知识点 2 绝对值的性质 观察这些表示绝对值的数,它们有什么共同点?
|5|=5 |100|=100 |-4.5|=4.5
|-10|=10 |-3|=3 |-5000|=5000
探究新知
例如,下图所示:
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5.
-6
-5
-4
-3
-2
0 1
|-5| = 5
-1
0到原点的距离是0,所以 0的绝对值是0,记作
2024年秋季新人教版七年级上册数学教学课件 1.2.4 绝对值
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
1. 判断对错:
(1) 一个数的绝对值等于本身,则该数一定是正数; ( )
(2) 一个数的绝对值等于它的相反数,这个数一定是
负数;
()
(3) 如果两个数的绝对值相等,那么这两个数一定
相等;
()
(4) 如果两个数不相等,那么这两个数的绝对值
一定不等;
()
(5) 有理数的绝对值一定是非负数.
()
2. 化简:
B -10
分析:行驶路线 行驶路程
O
A
0
10
方向 + 距离 方向不同 距离 距离相同
绝对值的定义: 一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作|a|.
B
O
A
-10
0
10
例:因为点 A 表示10,与原点的距离是 10 个单位长度,
所以|10| = 10.
1.利用数轴,口答下列问题:
|5|=5
–5 –4 –3 –2 –1 0 1 2 3 4 5
| 3.5 | = 3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
| -3 | = 3
–5 –4 –3 –2 –1 0 1 2 3 4 5
| -3.5 | =3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
|0|= 0
有理数
新知一览
正数和负数
有理数
数轴
1.2.4 有理数 绝对值 课件(共13张PPT)2024—2025学年七年级上学期数学人教版
0,1,-1,2,-2,-3
.
同学们,再见!
的距离叫做a的绝对值,记
知识点1 绝对值的概念及符号的理解
【例1】(1)6的绝对值是
是
0
,-8的绝对值是
6
,0的绝对值
8
;
-4.5的绝对值
(2)(多维原创)|-4.5|读作
上表示-4.5的点与原点的距离
5
【变式1】(1)2的绝对值是
绝对值是
,其结果等于
,它表示
4.5
.
,-3.9的绝对值是
3.9
点之间的距离,那么|5+2|可以看作|5-(-2)|,表示5与-2
这两个数在数轴上所对应的两点之间的距离.
(1)数轴上,有理数4与-1所对应的点之间的距离为
5
;
(2)结合数轴找出符合条件的整数x,使|x+1|=3,则x=
2或
-4 ;
(3)利用数轴分析,若x是整数,且满足|x+3|+|x-2|=5,则
,反之,绝对值相等的两个
.
1.-3的绝对值是(
1
A.
3
C )
1
B.-
3
C.3
D.-3
2.(2023·深圳一模)下列各数中,绝对值最小的是(
A.-2
B.3
3.若|x|=9,则x的值是(
A.9
B.-9
C.0
C
D.-3
)
C.±9
D.0
C
)
4.(人教7上P11T2改编)判断下列说法,正确的是
③④
.
①符号相反的数互为相反数;
C
A.x=y
B.x与y互为相反数
(2024秋季新教材)人教版数学七年级上册1.2.4绝对值课件(21张PPT)
随堂练习
2.化简下列各数:
(1)
7
+|- |
8
(4) -|-13|
7
=
8
=-13
(2) -|+2.3| =-2.3
(5) |+(-8)|
=8
(3) -|-17| =-17
(6) |-(-3
1
)
4
|=31
4
随堂练习
3.判断下列语句是否正确.
(1)
Hale Waihona Puke |5|=|-5|.(2) -|5|=|-5|.
|a|=൞−,( < 0)
0,( = 0)
用字母表示数后可以用含字母的式子表达一般规律.
新知探究
知识点
绝对值
7
4
例2 (1) 写出1,-0.5,- 的绝对值;
解:(1) | 1 |=1;
|-0.5|=0.5;
7
4
7
4
| - |= .
新知探究
知识点
绝对值
例2 (2)如图,数轴上的点A,B,C,D 分别表示有理数a,b,c,d,
这四个数中,绝对值最小的是哪个数?
A
-4
B
-3
-2
-1
C
0
D
1
2
3
4
分析:对于(2),一个数的绝对值越小,数轴上表示它的点离原点越近;反过
来,数轴上的点离原点越近,它所表示的数的绝对值越小.
解:(2)因为在点A,B,C,D中,点C离原点最近,所以在有理数a,
b,c,d中,c的绝对值最小.
新知探究
思考
-4
知识点
绝对值
互为相反数的两个数的绝对值有什么关系?
1.2.4 绝对值 课件-人教版(2024)数学七年级上册 (2)
+
÷ −
【解】 −
×|-9|= ×9=24.
.
÷ −
1
2
= ×
3
4
= .
5
6
7
6. 如图,在数轴上有两滴墨水将数污染,根据图中数值,你
能确定墨迹盖住的整数是哪几个吗?并求其绝对值的和.
1
2
3
4
5
6
7
【解】由数轴可知在-6.3与-1之间被盖住的整数有-
6,-5,-4,-3,-2共5个,在0与4.1之间被盖住的整
-25,-36,+55,-45,+47,+32,-54,+43,-23.
如果进出库的装卸费都是8元/吨,那么这8天中进出货品需要
付装卸费多少元?
1
2
3
4
5
6
7
【解】|+38|+|-25|+|-36|+|+55|+|-
45|+|+47|+|+32|+|-54|+|+43|+|-
23|=398(吨),398×8=3 184(元).
第一章 有理数
1.2.4 绝对值
知识点1 绝对值的定义
1.2的绝对值是
是
0
2 ,- 的绝对值是
,0的绝对值
.
变式1下列四个数中,绝对值最大的是(
-
A. -3
B.
C. 0
D. +2
1
2
3
4
5
6
7
A
)
知识点2 绝对值的意义
新人教版七年级数学上册总复习课件
然后再合并同类项.
第三章 一元一次方程
1:等式的概念:用等号表示相等关系的式子叫做等式.
2:等式的基本性质(1)等式两边加上(或减去)同一个数或 同一个代数式,所得的结果仍是等式.
即若a=b,则 a±c=b±c. (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所 得的结果仍是等式.
说明:代数式不含等号,方程是用等号把代数式连接而成 的式子,且其中一定要含有未知数.
4:一元一次方程的概念:只含有一个未知数,并且未知数的次 数是1的方程叫一元一次方程.任何情势的一元一次方程,经变 形后,总能变成形为ax=b(a≠0,a、b为已知数)的情势,这种情 势的方程叫一元一次方程的一般式.
(分母含有字母的代数式不是整式)
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
注意:①.若两个同类项的系数互为相反数,则两项的和等于零, 如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
。
注意:①|a|≥0即对任意有理数a,它的绝对值是非负数 ②绝对值最小数为0
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。
②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。
③正数都大于零,负数都小于零,正数大于负数。
②.多项式中只有同类项才能合并,不是同类项不能合并。 ③.通常我们把一个多项式的各项按照某个字母的指数从 大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或 写5+5x-4x2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.比较大小:3 > -2,0 > -2,-3 < -2.(填“>”“<”或“=”)
互动课堂理解
1.比较两个有理数的大小
【例 1】 比较下列各组数的大小:
(1)-172与-56;
(2)-67与-78.
分析:两个负数比较大小,应首先求出两个负数的绝对值,再比较
绝对值的大小,最后判断两个负数的大小.
解:(1)因为
-
7 12
=
7 12
,
-
5 6
=
5 6
=
10 12
,
7 12
<
1102,所以-172>-56.
(2)因为
-
6 7
=
6 7
=
48 56
,
-
7 8
=
7 8
=
49 56
,
48 56
<
4596,
所以-67>-78.
互动课堂理解
2.绝对值的应用 【例2】 一天上午,出租车司机小王在东西走向的中山路上运营, 如果规定向东为正,向西为负,出租车的行车里程如下(单位:千 米):+15,-3,+12,-11,-13,+3,-12,-18.请问小王把最后一位乘客送到目 的地时,共行驶了多少千米? 分析本题是绝对值意义在实际问题中的具体应用,有理数中的“+” 和“-”在本题中表示的是方向,而它们的绝对值是小王在运营中所 行驶的路程,因此总的行驶路程应是每次行车里程的绝对值之和. 解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18| =15+3+12+11+13+3+12+18 =87(千米). 答:小王将最后一位乘客送到目的地时,共行驶了87千米.
C.13
D.±3
轻松尝试应用
关闭
根据绝对值的定义,一个数的绝对值等于3,说明这个数在数轴上对应
的点到原点的距离等于3,所以这样的点应有2个,即为±3.
关闭
D
解析 答案
1
2
3
4
5
6
4.-2的绝对值是 2 .
轻松尝试应用
1
2
3
4
5
6
轻松尝试应用
5.实数a,b在数轴上对应点的位置如图所示,则a <
b(填
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
1
2
3
4
5
6
1.下列各式中,不成立的是( D )
A.|-3|=3 B.-|3|=-3
C.|-3|=|3|
D.-|-3|=3
轻松尝试应用
1
2
3
4
5
6
2.下列各数中,最小的数是( B ) A.-1 B.-2 C.0 D.1
轻松尝试应用
1
2
3
4
5
6
3.若|a|=3,则 a 的值是( )
A.-3
B.3
答案
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
作 |-3| .
2.在数轴上,表示-2的点与原点的距离等于 ( A)
A.2 B.-2
C.±2 D.4
3.一个正数的绝对值是 它本身 ;一个负数的绝对值是它
的 相反数
;0的绝对值是 0 .
4.计算:|2|= 2 ,|-5|= 5 ,|0|= 0 .
学前温故 新课早知
快乐预习感知
5.(1)正数 大于 0,0 大于 负数,正数 大于 负数;两个负数, 绝对值大的 反而小 ;
2019/5/26
最新中小学教学课件
thank
you!
2019/5/26
最新中学教学课件
1.2.4 绝对值
学前温故 新课早知
快乐预习感知
1.数轴上到原点的距离为5的点有 2 个,分别是 +5,-5 ,它
们互为 相反数
.
2. 互为相反数
的两个数在数轴上对应的两个点位
于原点的 两侧 且到原点的距离 相等 .
学前温故 新课早知
快乐预习感知
1.一般地,数轴上表示数a的点与原点的距离叫做数a 的 绝对值 ,记作 |a| .-3的绝对值等于 3 ,记
“>”“<”或“=”).
1
2
3
4
5
6
轻松尝试应用
6.将下列各数的绝对值在数轴上表示出来,并把绝对值按由小到大 的顺序排列,并用“<”连接. 6,-23,0,-4.5,54.
关闭
题中各数的绝对值分别是 6,23,0,4.5,54,把它们表示在数轴上如图所 示,
按由小到大的顺序排列为 0<23 < 54<4.5<6.