2019届中考北京市朝阳区初三一模数学试卷(含解析)
2019年北京市朝阳区初三数学一模试卷及答案
北京市朝阳区九年级综合练习(一)数 学 试 卷 2019.5学校 姓名 准考证号下面各题均有四个选项,其中只有一个..是符合题意的. 1.3的绝对值是A .3B .-3C .31D .31- 2.2019年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间减少了0.000 001 6 秒,将0.000001 6用科学记数法表示为 A .16×10-7 B .1.6×10-6 C .1.6×10-5 D .0.16×10-5 3.下列运算正确的是A. x 2+x 2 =2x 4B. x x x 232=÷C. x 4 · x 2 = x 6D. 235()x x = 4.从分别标有A 、B 、C 的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下: 那么抽出的两根签中,一根标有A ,一根标有C 的概率是 A .91 B .92 C .31 D .94A.甲B.乙C.丙D.丁 6.在下面的四个几何体中,左视图与主视图不一定相同的几何体是7.一元钱硬币的直径约为24mm ,则用它能完全覆盖住的正六边形的边长最大不能超过A .12 mmB .123mm C .6mm D .63mm 8.已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有 A .最大值 1 B .最大值2 C .最小值0 D .最小值41- 二、填空题(本题共16分,每小题4分)A正方体长方体B 圆柱C 圆锥D9.在函数21+=x y 中,自变量x 的取值范围是______. 10.分解因式2233ax ay -=______.11.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =40°, 点D 是弧BAC 上一点,则∠D 的度数是______. 12.如图,P 为△ABC 的边BC 上的任意一点,设BC=a ,当B 1、C 1分别为AB 、AC 的中点时,B 1C 1=a 21,当B 2、C 2分别为BB 1、CC 1的中点时,B 2C 2=a 43,当B 3、C 3分别为BB 2、CC 2的中点时,B 3C 3=a 87,当B 4、C 4分别为BB 3、CC 3的中点时,B 4C 4=a 1615,当B 5、C 5分别为BB 4、CC 4的中点时,B 5C 5=______, ……当B n 、C n 分别为BB n-1、CC n-1的中点时,则B n C n = ;设△ABC 中BC 边上的高为h ,则△PB n C n 的面积为______(用含a 、h 的式子表示). 三、解答题(本题共30分,每小题5分)13.计算: ()12130tan 32101+-+︒-⎪⎭⎫ ⎝⎛-π.14.已知0122=-+a a ,求)2)(2()1(3)2(2-++--+a a a a 的值.15.已知:如图,在梯形ABCD 中,AD ∥BC ,E 是AB 的中点,CE 的延长线与DA 的延长线相交于点F . (1)求证:△BCE ≌△AFE ;(2)连接AC 、FB ,则AC 与FB 的数量关系是 ,位置关系是 .B(第12题图)(第11题图)16.如图,一次函数y=kx +2的图象与x 轴交于点B ,与反比例函数xmy的图象的一个交 点为A (2,3). (1)分别求出反比例函数和一次函数的解析式;(2)过点A 作AC ⊥x 轴,垂足为C ,若点P 在反比例函数图象上,且△PBC 的面积等于18,求P 点的坐标.17.列方程或方程组解应用题:某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息: 信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元. 根据以上信息,原来报名参加的学生有多少人?18.如图,在矩形ABCD 中,AB =5,BC =4,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,求FC 的长.四、解答题(本题共20分,第19、20题每小题5分,第21题6分,第22题4分) 19.已知关于x 的方程 (m -1) x 2 - 2x + 1=0有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为非负整数,求抛物线y =(m -1)x 2 - 2x + 1的顶点坐标.20.2019年北京春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表 消费者打算购买住房面积统计图请你根据以上信息,回答下列问题: (1)补全统计表和统计图;(2)打算购买住房面积小于100平方米 的消费者人数占被调查人数的百分 比为 ;(3)求被调查的消费者平均每人年收入 为多少万元?21.已知:如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD为⊙O的切线;(2)若BC =5,AB =8,求OF 的长.22.阅读并操作:如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).图①图②图③请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中.(1)新图形为平行四边形;(2)新图形为等腰梯形.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,34tan=∠CAD,CA=CD,E、F分别是线段AD、AC上的动点(点E与点A、D不重合),且∠FEC=∠ACB,设DE=x,CF=y.(1)求AC和AD的长;(2)求y与x的函数关系式;(3)当△EFC为等腰三角形时,求x的值.24.已知抛物线()13)2(2++-+-=m x m x y .(1)求证:无论m 为任何实数,抛物线与x 轴总有交点; (2)设抛物线与y 轴交于点C ,当抛物线与x 轴有两个交点A 、B (点A 在点B 的左侧)时,如果∠CAB或∠CBA 这两角中有一个角是钝角,那么m 的取值范围 是 ;(3)在(2)的条件下,P 是抛物线的顶点,当△P AO 的面积与△ABC 的面积相等时,求该抛物线的解析式.25.已知:△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°,点M 是CE 的中点,连接BM . (1)如图①,点D 在AB 上,连接DM ,并延长DM 交BC 于点N ,可探究得出BD 与BM 的数量关系为 ;(2)如图②,点D 不在AB 上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.图①图②北京市朝阳区九年级综合练习(一) 数学试卷评分标准及参考答案2019.5一、选择题(本题共32分,每小题4分)1.A 2.B 3.C 4.B 5.D 6.B 7.A 8.D 二、填空题(本题共16分,每小题4分)9.2-≠x 10.))((3y x y x a -+ 11.50°12.a 3231,a n n 212-, ah n n 12212+- (注:前两空每空1分,第三空2分) 三、解答题(本题共30分,每小题5分) 13.解:原式=3213332++⨯- ………………………………………………… 4分 =33+. ………………………………………………………………… 5分 14.解:原式= 4334422-++-++a a a a ………………………………………… 3分 = 322++a a . …………………………………………………………… 4分 ∵0122=-+a a ,∴122=+a a .∴原式=1+3=4 . ………………………………………………………………… 5分15.(1)证明:∵AD ∥BC ,∴∠1 =∠F . …………………………… 1分 ∵点E 是AB 的中点,∴BE=AE. ……………………………… 2分 在△BCE 和△AFE 中,∠1=∠F ,∠3=∠2, BE=AE ,∴△BCE ≌△AFE. ……………………………………………………… 3分 (2)相等, ……………………………………………………………………………… 4分 平行. ……………………………………………………………………………… 5分 16. 解:(1)把A (2,3)代入xmy =,∴m=6. ∴xy 6=. ……………………………………………………………… 1分把A (2,3)代入y=kx+2, ∴322=+k . ∴21=k . ∴.221+=x y ………………………………………………………… 2分 (2)令0221=+x ,解得x=-4,即B (-4,0). ∵AC ⊥x 轴,∴C (2,0).∴ BC=6. ………………………………………………………………… 3分设P(x,y), ∵S △PBC=y BC ⋅⋅21=18, ∴y 1=6或y 2=-6. 分别代入xy 6=中, 得x 1=1或x 2=-1.∴P 1(1,6)或P 2(-1,-6). …………………………………………… 5分17.解:设原来报名参加的学生有x 人, ……………………………………………… 1分 依题意,得42480320=-xx . ……………………………………………… 2分 解这个方程,得 x=20. ……………………………………………… 3分 经检验,x=20是原方程的解且符合题意. …………………………………… 4分答:原来报名参加的学生有20人.…………………………………………… 5分18. 解:由题意,得AE=AB=5,AD=BC=4,EF=BF. …………………………………… 1分在Rt △ADE 中,由勾股定理,得DE=3. …………………………………… 2分 在矩形ABCD 中,DC=AB=5.∴CE=DC-DE=2. ………………………………………………………………… 3分 设FC=x ,则EF=4-x.在Rt △CEF 中,()22242x x -=+. .…………………………………………… 4分 解得23=x . ……………………………………………………………………… 5分 即FC=23. 四、解答题(本题共20分,第19、20题每小题5分,第21题6分,第22题4分) 19. 解:(1)∵方程 (m-1) x 2 - 2x + 1=0有两个不相等的实数根,∴()()01422>---=∆m . ……………………………………………… 1分解得m<2. …………………………………………………………………… 2分∴m 的取值范围是m <2且m≠1. …………………………………………… 3分(2)由(1)且m 为非负整数,∴m=0. ………………………………………………………………………… 4分∴抛物线为y= -x 2 - 2x + 1= -(x+1)2+2.∴顶点(-1,2). ………………………………………………………………… 5分20.解:(1)50, ………………………… 1分 如图; ……………………… 2分(2)52%;…………………………3分 (3)100124912309506108.4⨯+⨯+⨯+⨯+⨯=7.5 (万元). ……………… 5分故被调查的消费者平均每人年收入为7.5万元.21.(1)证明:∵OC ⊥AB ,CD ∥BA ,∴∠DCF=∠AHF=90°.∴CD 为⊙O 的切线. ……………… 2分(2)解:∵OC ⊥AB ,AB =8,∴AH=BH=2AB =4.在Rt △BCH 中,∵BH=4,BC=5,∴CH=3. ……………………………… 3分 ∵AE ∥BC ,∴∠B=∠HAF. ∴△HAF ≌△HBC.∴FH=CH=3,CF=6. ………………………………………………………… 4分 连接BO ,设BO=x ,则OC=x ,OH=x-3.在Rt △BHO 中,由()22234x x =-+,解得625=x . …………………… 5分 ∴611=-=OC CF OF . .…………………………………………………… 6分 22. 解:(1) (2)(注:每图2分)五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵AD ∥BC ,∠B=90°, ∴∠ACB=∠CAD. ∴tan ∠ACB =tan ∠CAD=34. ∴34=BCAB.∵AB=8, ∴BC=6.则AC=10. ……………………………………………………1分 过点C 作CH ⊥AD 于点H ,∴CH=AB=8,则AH=6. ∵CA=CD,∴AD=2AH=12. .………………………………………………………………………2分 (2)∵CA=CD, ∴∠CAD=∠D.∵∠FEC=∠ACB ,∠ACB=∠CAD , ∴∠FEC=∠D.∵∠AEC=∠1+∠FEC=∠2+∠D , ∴∠1=∠2.∴△AEF ∽△DCE. ……………………………………………………………………3分 ∴AECDAF DE =,即x -1210y -10x =. ∴1056101y 2+-=x x . .……………………………………………………………4分 (3)若△EFC 为等腰三角形.①当EC=EF 时,此时△AEF ≌△DCE ,∴AE=CD.由12-x=10,得x=2. .…………………………………………5分 ②当FC=FE 时,有∠FCE=∠FEC=∠CAE , ∴CE=AE=12-x.在Rt △CHE 中,由()()2228612+-=-x x ,解得311=x . …………………… 6分 ③当CE=CF 时,有∠CFE=∠CEF=∠CAE ,此时点F 与点A 重合,故点E 与点D 也重合,不合题意,舍去. …………………7分 综上,当△EFC 为等腰三角形时,x=2或311=x . 24. (1)证明:∵()()()131422+⨯-⨯--=∆m m …………………………………………1分()042≥+=m …………………………………………………………… 2分∴无论m 为任何实数,抛物线与x 轴总有交点.(2)m <-1且m≠-4. ……………………………………………………………………… 3分 (3)解:令()013)2(2=++-+-=m x m x y ,解得x 1=m+1,x 2=-3. …………………………………………………………………………4分可求得顶点()⎪⎪⎭⎫⎝⎛+-44,222m m P . ①当A(m+1,0)、B(-3,0)时, ∵ABC PAO S S ∆∆=,数学试卷∴()()()()13421441212+⨯--=+⨯+m m m m .……………………………………………5分 解得16-=m .∴45182---=x x y .…………………………………………………………………………6分 ②当A(-3,0)、B(m+1,0)时,同理得()()()[]13421443212+-⨯+=+⨯⨯m m m .…………………………………………7分 解得58-=m . ∴595182---=x x y .…………………………………………………………………………8分 25. (1)BD=2BM. ……………………………………………………………………………2分 (2)结论成立.证明:连接DM ,过点C 作CF ∥ED ,与DM 的延长线交于点F ,连接BF , 可证得△MDE ≌△MFC.………………………………… 3分 ∴DM=FM, DE=FC. ∴AD=ED=FC. 作AN ⊥EC 于点N.由已知∠ADE=90°,∠ABC=90°,可证得∠1=∠2, ∠3=∠4.……………………………4分 ∵CF ∥ED ,∴∠1=∠FCM.∴∠BCF=∠4+∠FCM =∠3+∠1=∠3+∠2=∠BAD.∴△BCF ≌△BAD. …………………………………………………………………………5分 ∴BF=BD ,∠5=∠6.∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°.∴△DBF 是等腰直角三角形. ………………………………………………………………6分 ∵点M 是DF 的中点, 则△BMD 是等腰直角三角形.∴BD=2BM. ……………………………………………………………………………… 7分(说明:以上答案仅供参考,若有不同解法,只要过程和解法都正确,可相应给分.)。
2019朝阳一模数学试题
北京市朝阳区九年级综合练习(一)数学试卷2019.5学校班级 姓名 考号 考 生 须知 1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.下面是一些北京著名建筑物的简笔画,其中不是..轴对称图形的是(A ) (B ) (C ) (D )2.实数m ,n 在数轴上对应的点的位置如图所示,若0mn <,且m n <,则原点可能是(A )点A(B )点B(C )点C (D )点D3.下列几何体中,其三视图的三个视图完全相同的是(A ) (B ) (C ) (D )4.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为 (A )9.5×104亿千米 (B )95×104亿千米 (C )3.8×105亿千米(D )3.8×104亿千米5.把不等式组14,112x x -≤⎧⎪⎨+<⎪⎩中两个不等式的解集在数轴上表示出来,正确的是(A ) (B ) (C ) (D )6.如果3a b -=,那么代数式2()b aa a a b-⋅+的值为(A )3- (B )3 (C )3(D )237.今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力.北京科技创新能力不断增强,下面的统计图反映了2010—2018年北京市每万人发明专利申请数与授权数的情况.2010—2018年北京市每万人发明专利申请数与授权数统计图[以上数据摘自北京市统计局官网]根据统计图提供的信息,下列推断合理的是(A )2010—2018年,北京市每万人发明专利授权数逐年增长(B )2010—2018年,北京市每万人发明专利授权数的平均数超过10件 (C )2010年申请后得到授权的比例最低 (D )2018年申请后得到授权的比例最高 8抛掷次数n 50 100 150 200 250 300 350 400 450 500 “正面向上”次数m 22527195116138160187214238“正面向上”频率nm0.44 0.52 0.47 0.48 0.46 0.46 0.46 0.47 0.48 0.48 下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生; 其中合理的是(A )①② (B )①③ (C )③ (D )②③二、填空题(本题共16分,每小题2分)9.若1x-在实数范围内有意义,则实数x的取值范围是_____.10.用一组a,b,c 的值说明命题“若ac bc=,则a b=”是错误的,这组值可以是=a_____,=b_____,=c_____.11.如图,某人从点A出发,前进5 m后向右转60°,再前进5 m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了_____m.12.如图所示的网格是正方形网格,△ABC是_____三角形.(填“锐角”,“直角”或“钝角”)13.如图,过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,作直径BC,连接AB,AC,若∠P=80°,则∠C=_____°.14.如图,在矩形ABCD中,过点B作对角线AC的垂线,交AD于点E,若AB=2,BC=4,则AE=_____.15.某班对思想品德,历史,地理三门课程的选考情况进行调研,数据如下:其中思想品德、历史两门课程都选了的有3人,历史、地理两门课程都选了的有4人,则该班选了思想品德而没有选历史的有_____人;该班至少..有学生_____人.16.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此次检测中的排名情况如下图所示,可以看出其中A型保温杯的优势是_____.科目思想品德历史地理选考人数(人)191318第11题图第13题图第12题图第14题图三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算:()02sin 452201918π+----.18.解分式方程:312242x x x -=--.19.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得PQ ∥l . 作法:如图,①在直线l 上取两点A ,B ;②以点P 为圆心,AB 为半径画弧,以点B 为圆心,AP 为半径画弧,两弧在直线l 上方相交于点Q ;③作直线PQ .根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵ P A =_____,AB =_____, ∴ 四边形P ABQ 是平行四边形. ∴ PQ ∥l (_____).(填写推理的依据)20.已知关于x 的方程2(21)10(0)mx m x m m +-+-=≠.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数m 的值.21.如图,在Rt △ABC 中,∠ABC =90°,D ,E 分别是边BC ,AC 的中点,连接ED 并延长到点F ,使DF =ED ,连接BE ,BF ,CF ,AD . (1)求证:四边形BFCE 是菱形; (2)若BC =4,EF =2,求AD 的长.22.如图,四边形ABCD 内接于⊙O ,点O 在AB 上,BC =CD ,过点C 作⊙O 的切线,分别交AB ,AD 的延长线于点E ,F . (1)求证:AF ⊥EF ; (2)若cos A =45,BE =1,求AD 的长.23.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数kyx=的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O’,A’,若线段O’A’与反比例函数kyx=的图象有公共点,直接写出a的取值范围.24.小超在观看足球比赛时,发现了这样一个问题:两名运动员从不同的位置出发,沿着不同的方向,以不同的速度,直线奔跑,什么时候他们离对方最近呢?小超通过一定的测量,并选择了合适的比例尺,把上述问题抽象成如下数学问题:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D以1cm/s的速度从点C向点B运动,点E以2cm/s的速度从点A向点B运动,当点E到达点B时,两点同时停止运动,若点D,E同时出发,多长时间后DE取得最小值?小超猜想当DE⊥AB时,DE最小.探究后发现用几何的知识解决这个问题有一定的困难,于是根据函数的学习经验,设C,D两点间的距离为x cm,D,E两点间的距离为y cm,对函数y随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:(1)由题意可知线段AE和CD的数量关系是:_____;(2)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;x/cm012345y/cm 6.0 4.8 3.8 2.7 3.0(说明:补全表格时相关数值保留一位小数)(3)在平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:小超的猜想_____;(填“正确”或“不正确”)当两点同时出发了_____s 时,DE 取得最小值,为_____cm .25.为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛.该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .甲部门成绩的频数分布直方图如下(数据分成6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤):b .乙部门成绩如下:乙 40 52 70 70 71 73 77 78 80 8182828282838383869194c .甲、乙两部门成绩的平均数、方差、中位数如下:d .近五年该单位参赛员工进入复赛的出线成绩如下:2014年 2015年 2016年 2017年 2018年 出线成绩(百分制)7981808182根据以上信息,回答下列问题:平均数 方差 中位数 甲 79.6 36.84 78.5 乙77147.2m(1)写出表中m 的值;(2)可以推断出选择_____部门参赛更好,理由为_____; (3)预估(2)中部门今年参赛进入复赛的人数为_____.26.在平面直角坐标系xOy 中,抛物线223y x x a =-+-,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B . (1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.27.如图,在Rt △ABC 中,∠A =90°,AB =AC ,将线段BC 绕点B 逆时针旋转α°(0<α<180),得到线段BD ,且AD ∥BC . (1)依题意补全图形;(2)求满足条件的α的值; (3)若AB =2,求AD 的长.28.在平面直角坐标系xOy中,对于任意两点111 (,)P x y和222(,)P x y,称121212(,)d P P x x y y=-+-为1P,2P两点的直角距离.(1)已知点A(1,2),直接写出d(O,A)=_____;(2)已知B是直线334y x=-+上的一个动点,①如图1,求d(O,B)的最小值;②如图2,C是以原点O为圆心,1为半径的圆上的一个动点,求d(B,C)的最小值.图2图1。
【附5套中考模拟试卷】北京市朝阳区2019-2020学年中考一诊数学试题含解析
北京市朝阳区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下列实数中,﹣3,2,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.2D.﹣12.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.323.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5 4.下列运算正确的是()A.a6÷a3=a2B.3a2•2a=6a3C.(3a)2=3a2D.2x2﹣x2=15.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤6.平面直角坐标系中的点P(2﹣m,12m)在第一象限,则m的取值范围在数轴上可表示为()A.B.C.D.7.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F 运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A .5B .2C .52D .258.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--9.在△ABC 中,AB=3,BC=4,AC=2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .1110.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元11.数轴上分别有A 、B 、C 三个点,对应的实数分别为a 、b 、c 且满足,|a|>|c|,b•c <0,则原点的位置( )A .点A 的左侧B .点A 点B 之间C .点B 点C 之间D .点C 的右侧12.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A.65°B.60°C.55°D.45°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下列说法正确的是_____.(请直接填写序号)①“若a>b,则ac>bc.”是真命题.②六边形的内角和是其外角和的2倍.③函数y=1xx+的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.14.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.15.已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且1tan3EAC∠=,则BE的长为__________.16.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.17.如图,直线334y x=-+与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.18.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数20.(6分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.21.(6分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.22.(8分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.23.(8分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m ,在随机抽取1张,将卡片的数字即为n .(1)请用列表或树状图的方式把(m ,n )所有的结果表示出来.(2)求选出的(m ,n )在二、四象限的概率.24.(10分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α,(1)如图1所示,当α=60°时,求证:△DCE 是等边三角形;(2)如图2所示,当α=45°时,求证:CD DE=2; (3)如图3所示,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系:CE DE =_____.25.(10分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 26.(12分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.27.(12分)计算:27÷3+8×2﹣1﹣(2015+1)0+2•sin60°.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】|﹣3|=3,|2|=2,|0|=0,|2|=2,|﹣1|=1,∵3>2>2>1>0,∴绝对值最小的数是0,故选:B.2.D【解析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.3.B【解析】【分析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.4.B【解析】【分析】A、根据同底数幂的除法法则计算;B、根据同底数幂的乘法法则计算;C、根据积的乘方法则进行计算;D、根据合并同类项法则进行计算.【详解】解:A、a6÷a3=a3,故原题错误;B、3a2•2a=6a3,故原题正确;C、(3a)2=9a2,故原题错误;D、2x2﹣x2=x2,故原题错误;故选B.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键. 5.D【解析】【分析】①首先利用已知条件根据边角边可以证明△APD≌△AEB;②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD ≌△AEB ,可知S △APD +S △APB =S △AEB +S △APB ,然后利用已知条件计算即可判定;⑤连接BD ,根据三角形的面积公式得到S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD 由此即可判定.【详解】由边角边定理易知△APD ≌△AEB ,故①正确;由△APD ≌△AEB 得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,所以∠BEP=90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离,在△AEP 中,由勾股定理得,在△BEP 中,,,由勾股定理得:∵∠PAE=∠PEB=∠EFB=90°,AE=AP ,∴∠AEP=45°,∴∠BEF=180°-45°-90°=45°,∴∠EBF=45°,∴EF=BF ,在△EFB 中,由勾股定理得:EF=BF=2 故②是错误的;因为△APD ≌△AEB ,所以∠ADP=∠ABE ,而对顶角相等,所以③是正确的;由△APD ≌△AEB ,∴可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =12 连接BD ,则S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD所以S 正方形ABCD =2S △ABD .综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.6.B【解析】【分析】【详解】根据第二象限中点的特征可得:2-m0 1m 0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征7.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a. ∴12DE•AD =a. ∴DE=1.当点F 从D 到B 时,用∴Rt △DBE 中,1=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 1=11+(a-1)1.解得a=52. 故选C .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.8.D【解析】【分析】将各选项的点逐一代入即可判断.【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象;当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象; 故答案为:D .【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.9.B【解析】试题解析:∵D 、E 、F 分别为AB 、BC 、AC 中点,∴DF=12BC=2,DF ∥BC ,EF=12AB=32,EF ∥AB ,∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=1.故选B . 10.A【解析】【分析】 可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元.故选A .【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.11.C【解析】分析:根据题中所给条件结合A 、B 、C 三点的相对位置进行分析判断即可.详解:A 选项中,若原点在点A 的左侧,则a c <,这与已知不符,故不能选A ;B 选项中,若原点在A 、B 之间,则b>0,c>0,这与b·c<0不符,故不能选B ;C 选项中,若原点在B 、C 之间,则a c >且b·c<0,与已知条件一致,故可以选C ;D 选项中,若原点在点C 右侧,则b<0,c<0,这与b·c<0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.12.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC ,根据等腰三角形的性质得到∠C=∠DAC ,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.②④⑤【解析】【分析】根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.【详解】①“若a>b,当c<0时,则ac<bc,故①是假命题;②六边形的内角和是其外角和的2倍,根据②真命题;③函数y=x的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;故答案为②④⑤【点睛】本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.14.y=12 x【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:14πr2=10π解得:r=210. ∵点P(3a ,a)是反比例函y=k x(k>0)与O 的一个交点, ∴3a 2=k. 22(3)a a r +=∴a 2=21(210)10⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 15.3或1【解析】【分析】菱形ABCD 中,边长为1,对角线AC 长为6,由菱形的性质及勾股定理可得AC ⊥BD ,BO=4,分当点E 在对角线交点左侧时(如图1)和当点E 在对角线交点左侧时(如图2)两种情况求BE 得长即可.【详解】解:当点E 在对角线交点左侧时,如图1所示:∵菱形ABCD 中,边长为1,对角线AC 长为6,∴AC ⊥BD ,222253AB AO -=-=4, ∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,222253AB AO-=-,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案为3或1.【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.16.120°【解析】【分析】根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.【详解】解:∵三种品牌的粽子总数为1200÷50%=2400个,又∵A、C品牌的粽子分别有400个、1200个,∴B品牌的粽子有2400-400-1200=800个,则B品牌粽子在图2中所对应的圆心角的度数为360×8001360120 24003=⨯=︒.故答案为120°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.17231【解析】解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.当x=0时,y=3,∴点B 的坐标为(0,3);当y=0时,x=4,∴点A 的坐标为(4,0),∴OA=4,OB=3,∴AB=22OA OB +=5,∴sinB=54OA AB =. ∵C (0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=165. ∵PQ 为⊙C 的切线,∴在Rt △CQP 中,CQ=1,∠CQP=90°,∴PQ=22CP CQ -=2315. 故答案为2315.18.1:4【解析】∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)1500;(2)见解析;(3)108°;(3)12~23岁的人数为400万【解析】试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;(2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图; (3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;(4)先计算调查中12﹣23岁的人数所占的百分比,再求网瘾人数约为2000万中的12﹣23岁的人数. 试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为330÷22%=1500人. 故答案为1500 ;(2)1500-450-420-330=300人.补全的条形统计图如图:(3)18-23岁这一组所对应的圆心角的度数为360×4501500=108°. 故答案为108°; (4)(300+450)÷1500=50%,.考点:条形统计图;扇形统计图. 20.(1)25π;(2)CD 1=2,CD 2=72【解析】 分析:(1)利用圆周角定理的推论得到∠C 是直角,利用勾股定理求出直径AB ,再利用圆的面积公式即可得到答案;(2)分点D 在上半圆中点与点D 在下半圆中点这两种情况进行计算即可.详解:(1)∵AB 是⊙O 的直径,∴∠ACB=90°,∵AB 是⊙O 的直径,∴AC =8,BC =1,∴AB =10,∴⊙O 的面积=π×52=25π.(2)有两种情况:①如图所示,当点D 位于上半圆中点D 1时,可知△ABD 1是等腰直角三角形,且OD 1⊥AB,作CE ⊥AB 垂足为E ,CF ⊥OD 1垂足为F ,可得矩形CEOF ,∵CE =8624105AC BC AB ⋅⨯==, ∴OF= CE=245, ∴1241555D F =-=, ∵2222246()5BE BC CE =-=-=185,∴187 555OE=-=,∴75CF OE==,∴22221171()()255CD CF D F=+=+=;②如图所示,当点D位于下半圆中点D2时,同理可求222222749()()255CD CF FD=+=+=∴CD12CD2=2点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.21.证明见解析.【解析】【分析】想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.【详解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC 和△DEF 中,A DB EAC DF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△DEF(AAS)∴BC=EF.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)35%,126;(2)见解析;(3)1344人【解析】【分析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.【详解】(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×3232100=1344(人), 则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.23.(1)详见解析;(2)P=23. 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析: (1)画树状图得:则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2,4),(-1,2),(-1,﹣3),(1,4),(﹣3,2),(﹣3,-1),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3).(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3),∴所选出的m,n在第二、三四象限的概率为:P=812=23点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P()mAn=.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.24.1【解析】试题分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出DCDE=CFAD,再证明CF=2AD即可.(3)证明EC=ED即可解决问题.试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD ∽△DAE ,∴DC DE =CF AD .∵四边形ADFG 是矩形,FC=2FG ,∴FG=AD ,CF=2AD ,∴CD DE=2.(3)解:如图3中,设AC 与DE 交于点O .∵AE ∥BC ,∴∠EAO=∠ACB .∵∠CDE=∠ACB ,∴∠CDO=∠OAE .∵∠COD=∠EOA ,∴△COD ∽△EOA ,∴CO EO =OD OA ,∴CO OD =EO OA.∵∠COE=∠DOA ,∴△COE ∽△DOA ,∴∠CEO=∠DAO .∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB ,∴∠EDC=∠ECD ,∴EC=ED ,∴CE DE =1. 点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.25.1【解析】【分析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x 值,代入求值.【详解】解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=.26. (1) 14;(2)112. 【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】 (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14; (2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=. 27.3【解析】【分析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【详解】解:原式273÷+8×12﹣1+2×32=3+4﹣33 【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位2.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m3.关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围是()A.94m<B.94m…C.94m>D.94m…4.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个5.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1127.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.8.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°9.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.10.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=12∠BOD C.∠C=∠B D.∠A=∠B0D11.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AGGF的值是()A.43B.54C.65D.7612.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.15.如图,已知AB∥CD,若14ABCD=,则OAOC=_____.16.若a m=2,a n=3,则a m + 2n =______.17.如图,正方形ABCD的边长为422+,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.18.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.20.(6分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.21.(6分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.22.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙甲:79,86,82,85,83. 乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.23.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?24.(10分)计算:|﹣2|﹣8﹣(2﹣π)0+2cos45°.解方程:33xx-=1﹣13x-25.(10分)如图,直线y=﹣x+2与反比例函数kyx=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.26.(12分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?27.(12分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七。
2019年北京市朝阳区初三数学一模试题和答案
北京市朝阳区九年级综合练习(一)数学试卷2019.5学校 班级 姓名 考号一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.下面是一些北京著名建筑物的简笔画,其中不是..轴对称图形的是(A ) (B ) (C ) (D )2.实数m ,n 在数轴上对应的点的位置如图所示,若0mn <,且m n <,则原点可能是(A )点A(B )点B(C )点C (D )点D3.下列几何体中,其三视图的三个视图完全相同的是(A ) (B ) (C ) (D )4.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为 (A )9.5×104亿千米 (B )95×104亿千米 (C )3.8×105亿千米(D )3.8×104亿千米5.把不等式组14,112x x -≤⎧⎪⎨+<⎪⎩中两个不等式的解集在数轴上表示出来,正确的是(A )(B ) (C ) (D )6.如果a b -=,那么代数式2()b aa a b-⋅+的值为(A ) (B (C )3(D )7.今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力.北京科技创新能力不断增强,下面的统计图反映了2010—2018年北京市每万人发明专利申请数与授权数的情况.2010—2018年北京市每万人发明专利申请数与授权数统计图[以上数据摘自北京市统计局官网]根据统计图提供的信息,下列推断合理的是(A )2010—2018年,北京市每万人发明专利授权数逐年增长(B )2010—2018年,北京市每万人发明专利授权数的平均数超过10件 (C )2010年申请后得到授权的比例最低 (D )2018年申请后得到授权的比例最高 8下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生; 其中合理的是(A )①② (B )①③ (C )③ (D )②③二、填空题(本题共16分,每小题2分)9x 的取值范围是_____.10.用一组a ,b ,c 的值说明命题“若ac bc =,则a b =”是错误的,这组值可以是=a _____,.如图,过⊙O 外一点P 作⊙O 的两条切线P A ,PB ,切点分别为B ,作直径BC 接AB ,AC ,若∠P =80°,则∠C =_____°. 如图,在矩形ABCD 中,过点B 作对角线AC 的垂线,交AD 于点,若AB =2,BC 则AE =_____..某班对思想品德,历史,地理三门课程的选考情况进行调研,数据如下: 第11题图 第13题图第12题图 第14题图三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)20.已知关于x 的方程2(21)10(0)mx m x m m +-+-=≠.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数m 的值.21.如图,在Rt △ABC 中,∠ABC =90°,D ,E 分别是边BC ,AC 的中点,连接ED 并延长到点F ,使DF =ED ,连接BE ,BF ,CF ,AD .(1)求证:四边形BFCE 是菱形; (2)若BC =4,EF =2,求AD 的长.22.如图,四边形ABCD 内接于⊙O ,点O 在AB 上,BC =CD ,过点C 作⊙O 的切线,分别交AB ,AD 的延长线于点E ,F .(1)求证:AF ⊥EF ; (2)若cos A =45,BE =1,求AD 的长.(1)求k 的值;(2)已知点P 坐标为(a ,0),过点P 作直线OB 的垂线l ,点O ,A 关于直线l 的对称点分别为O ’,A ’,若线段O ’A’与反比例函数ky x=的图象有公共点,直接写出a 的取值范围.DE⊥AB时,DE最小.探究后发现用几何的知识解决这个问题有一定的困于是根据函数的学习经验,设C,D两点间的距离为x cm,D,E两点间的距离为随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:)由题意可知线段AE和CD的数量关系是:_____;)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;/cm 0 1 2 3 4 5/cm 6.0 4.8 3.8 2.7 3.0(说明:补全表格时相关数值保留一位小数)(3)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:小超的猜想_____;(填“正确”或“不正确”)当两点同时出发了_____s时,DE取得最小值,为_____cm.25.为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛.该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息. a .甲部门成绩的频数分布直方图如下(数据分成6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤):b .乙部门成绩如下:乙 40 52 70 70 71 73 77 78 80 8182828282838383869194c .甲、乙两部门成绩的平均数、方差、中位数如下:d .近五年该单位参赛员工进入复赛的出线成绩如下:根据以上信息,回答下列问题: (1)写出表中m 的值;(2)可以推断出选择_____部门参赛更好,理由为_____; (3)预估(2)中部门今年参赛进入复赛的人数为_____.26.在平面直角坐标系xOy 中,抛物线223y x x a =-+-,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B . (1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.()27.如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.图1图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2019.5一、选择题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:原式212=⨯-………………………………………………………………4分 1=-5分18.解:去分母,得6-x =x -2. ………………………………………………………………………2分整理,得 2x =8.……………………………………………………3分 解得 x =4.………………………………………………………4分经检验,x =4是原方程的解. ………………………………………………5分 所以原方程的解是x =4.19.(1)图略. …………………………………………………………………2分(2)QB ,PQ ,平行四边形对边平行. …………………………………………………5分20.(1)证明:∵0m ≠,∴2(21)10mx m x m +-+-=是关于x 的一元二次方程. ∴2(21)4(1)m m m ∆=--- ……………………………………1分1.= …………………………………………………………………2分∵1>0,∴方程总有两个不相等的实数根. … …………3分 (2)解:由求根公式,得(21)12m x m --±=.∴11-=x ,211x m=-.………………………………………4分∵方程的两个实数根都是整数,且m 为整数,∴1m =±. …………………………………………………………………5分21.(1)证明:∵D ,E 分别是边BC ,AC 的中点,∴CD =BD ,ED ∥AB . ……………………………………………1分 ∵∠ABC =90°, ∴∠EDC =90°. ………2分 ∵DF =ED ,∴线段BC ,EF 互相垂直平分.∴四边形BFCE 是菱形.…………………………………………………3分(2)解:∵BC =4,EF =2,∴BD =2,ED =1.………………………………………………………4分 由(1)可知AB =2ED =2.∴在Rt △ABD 中,由勾股定理可求AD =.………………………5分22.(1)证明:如图1,连接OC .∵EF 是⊙O 的切线,∴∠OCE =90°. ……………………1分∵BC =CD , ∴BC CD =.∴∠COB =∠DAB .……………………2分 ∴AF ∥CO . ∴∠AFE =∠OCE =90°. 即AF ⊥EF . ……………………3分(2)解:如图2,连接BD ,∴∠ADB =90°.由(1)可知cos ∠COE =cos A =45. 设⊙O 的半径为r ,∵BE =1, ∴415r r =+. 解得4r =. ……………………4分∴AB =8.∴在Rt △ABD 中,AD =32cos 5AB A ⋅=.… ……………5分23.(1)解:∵△OAB 的面积为2, ∴22k=.∴4k =.………………………………………………………2分(2)21a -≤≤-21a ≤≤ ……………………………………6分 24. 解:(1)AE =2CD .…………………………………………………………1分(2)………………2分(3)…………4分(4)不正确;4,2.7.………………………………………………………6分25.解:(1)81.5. ……………………………………………………………………2分(2)乙;理由为:从近五年进入复赛的出线成绩可以预测今年的出线成绩约为81分,乙部门抽样成绩的中位数为81.5,说明20人中有10人可以进入复赛,甲部门不仅抽样成绩的中位数为78.5,低于乙部门,而且通过直方图可知超过80分的人数在20人中有8人,因此可以预测乙部门能进入复赛的人数多于甲部门,选择乙部门参赛更好. ………………………………5分 (3)答案不唯一,如:110. ……………………………………………………6分26. 解:(1)当0a =时,抛物线表达式为223y x x =--,∵当0x =时,3y =-,∴点A 的坐标为(0,3)-. ……………………………………………1分 ∴点B 的坐标为(4,3)-. ………………………………………………2分 (2)如图1,当a =0时,图形M 与线段AB 恰有三个公共点,如图2,当a =-3时,图形M 与线段AB 恰有一个公共点, 如图3,当a =1时,图形M 与线段AB 恰有两个公共点,由图象可知,当30a -<<或1a =时,图形M 与线段AB 恰有两个公共点.…………………………………………6分 27. 解:(1)满足条件的点D 有两个,补全图形如图1所示.……………………2分(2)如图2,过点B 作BE ⊥D 1D 2于点E .由题意可知,BD 1=BD 2 =BC ,AE ∥BC . ∴∠AEB =90°.∵在Rt △ABC 中,∠BAC =90°,AB =AC , ∴∠EAB =∠ABC =45°.∴在Rt △ABE 中,BE AB =,在Rt △ABC 中,2AB BC =. ∴11122BE BC BD ==.…………………………………………………4分∴∠D 1=∠D 2=30°. ∵D 1D 2∥BC ,∴30α=或150.…………………………………………………………………5分(3)∵AB =2,∴BE AE ==∴D 1E = D 2E .∴AD 7分28.解:(1)3.…………………………………………………………………………2分(2)①设直线334y x=-+与x轴的交点为M,与y轴的交点为N,当点B运动到点N时,d(O,B)取得最小值,由直角距离的定义可知,d(O,B)=ON=3.理由如下:当点B运动到点M时,d(O,B)=OM>ON;作BP⊥y轴于点P,如图1,当点B在点N的左侧时,d(O,B)=BP+OP>OP>ON;如图2,当点B在线段MN上时,d(O,B)=BP+OP>NP+OP,即d(O,B)>ON;如图3,当点B在点M的右侧时,d(O,B)=BP+OP>BP>OM>ON;综上所述,当点B运动到点N时,d(O,B)取得最小值,为3.……5分②由①可知,对于⊙O上每一个给定的点C,当点B,C运动到使BC⊥x轴时,d(B,C)取得最小值,为线段BC的长度.如图4,过点C作直线334y x=-+的垂线,垂足为D,过点C作x轴的垂线,交直线334y x=-+于点B.可证54BC CD=.当CD取得最小值时,BC取得最小值.因此,将直线334y x=-+沿图中所示由点D到点C的方向平移到第一次与⊙O有公共点,即与⊙O在第一象限内相切的位置时,切点即为所求的点C.此时75CD=,74BC=.所以d(B,C)的最小值为74.………………………………………………7分。
2019年北京市朝阳区中考一模数学试题及答案
北京市朝阳区九年级综合练习(一)数 学 试 卷 2019.5学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的倒数是A .13B .13- C . 3 D .-32.“厉行勤俭节约,反对铺张浪费”势在必行.最新统计数据显示,中国每年浪费食物总量折合为粮食大约是200000000人一年的口粮.将200000000用科学记数法表示为 A .8210⨯ B .9210⨯ C .90.210⨯ D .72010⨯3. 若一个正多边形的一个外角是72°,则这个正多边形的边数是 A .10 B .9 C .8 D .54.如图,AB ∥CD ,E 是AB 上一点,EF 平分∠BEC 交CD 于点F ,若∠BEF =70°,则∠C 的度数是A .70°B .55°C .45°D .40°5.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上 的点数大于4的概率为 A .61 B .31 C .41 D .216.把方程2630x x ++=化成()2x n m +=的形式,正确的结果为A .()236x += B .()236x -= C .()2312x += D .()2633x +=7.某校春季运动会上,小刚和其他16名同学参加了百米预赛,成绩各不相同,小刚已经知道了自己的成绩,如果只取前8名参加决赛,他想知道自己能否进入决赛,还需要知道所有参加预赛同学成绩的A . 平均数B . 众数C . 中位数D . 方差8.如图,将一张三角形纸片ABC 折叠,使点A 落在BC 边上,折痕EF ∥BC ,得到△EFG ;再继续将纸片沿△BEG 的对称轴EM 折叠,依照上述做法,再将△CFG 折叠,最终得到矩形EMNF ,折叠后的△EMG 和△FNG 的面积分别为1和2,则△ABC 的面积为A . 6B . 9C . 12D . 18二、填空题(本题共16分,每小题4分)9.在函数12y x =+中,自变量x 的取值范围是 .10.分解因式:3m m -= .11.如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,AB =32,∠B =30°,则△AOC 的周长为 .12. 在平面直角坐标系xOy 中,动点P 从原点O 出发,每次向上平移1个单位长度或向右平移2个单位长度,在上一次平移的基础上进行下一次平移.例如第1次平移后可能到达的点是(0,1)、(2,0),第2次平移后可能到达的点是(0,2)、(2,1)、(4,0),第3次平移后可能到达的点是(0,3)、(2,2)、(4,1)、(6,0),依此类推…….我们记第1次平移后可能到达的所有点的横、纵坐标之和为l 1,l 1=3;第2次平移后可能到达的所有点的横、纵坐标之和为l 2,l 2=9;第3次平移后可能到达的所有点的横、纵坐标之和为l 3,l 3=18;按照这样的规律,l 4= ; l n = (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分) 13.计算:()0223tan 602013--︒+.14.求不等式13(1)x x +>-的非负整数解.15.已知2270x x --=,求2(2)(3)(3)x x x -++-的值.16.已知:如图,OP 平分∠MON ,点A 、B 分别在OP 、ON 上,且OA =OB ,点C 、D 分别在OM 、OP 上,且∠CAP =∠DBN . 求证:AC =BD .17.如图,在平面直角坐标系xOy 中,一次函数y = -x 的图象 与反比例函数()0ky x x=<的图象相交于点()4A m -,. (1)求反比例函数ky x=的解析式; (2)若点P 在x 轴上,AP =5,直接写出点P 的坐标.18.北京地铁6号线正式运营后,家住地铁6号线附近的小李将上班方式由自驾车改为了乘坐地铁,这样他从家到达上班地点的时间缩短了0.3小时.已知他从家到达上班地点,自驾车时要走的路程为17.5千米,而改乘地铁后只需走15千米,并且他自驾车平均每小时走的路程是乘坐地铁平均每小时所走路程的23.小李自驾车从家到达上班地点所用的时间是多少小时?四、解答题(本题共20分,每小题5分)19. 如图,在四边形ABCD 中,∠D =90°,∠B =60°,AD =6,ABAB ⊥AC ,在CD 上选取一点E ,连接AE ,将△ADE 沿AE 翻折,使点D 落在AC 上的点F 处. 求(1)CD 的长; (2)DE 的长.OA20. 如图,⊙O 是△ABC 是的外接圆,BC 为⊙O 直径,作∠CAD =∠B ,且点D 在BC 的延长线上.(1)求证:直线AD 是⊙O 的切线; (2)若sin ∠CAD=4,⊙O 的半径为8,求CD 长.21. “2019年度中国十大科普事件”今年4月份揭晓,“PM2.5被写入‘国标’,大气环境质量广受瞩目”名列榜首.由此可见,公众对于大气环境质量越来越关注,某市对该市市民进行一项调查,以了解PM2.5浓度升高时对人们户外活动是否有影响,并制作了统计图表的一部分如下:(1)结合上述统计图表可得:p = ,m = ; (2)根据以上信息,请直接补全条形统计图;(3)若该市约400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.(说明:“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物)PM 2.5浓度升高时对于户外活动公众的态度的条形统计图PM 2.5浓度升高时对于户外活动 公众的态度的扇形统计图PM 2.5浓度升高时对于户外活动 公众的态度的统计表22.阅读下面材料:小雨遇到这样一个问题:如图1,直线l 1∥l 2∥l 3 ,l 1与l 2之间的距离是1,l 2与l 3之间的距离是2,试画出一个等腰直角三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并求出所画等腰直角三角形ABC 的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l 1任取一点A ,作AD ⊥l 2于点D ,作∠DAH =90°,在AH 上截取AE =AD ,过点E 作EB ⊥AE 交l 3于点B ,连接AB ,作∠BAC =90°,交直线l 2于点C ,连接BC ,即可得到等腰直角三角形ABC .请你回答:图2中等腰直角三角形ABC 的面积等于 . 参考小雨同学的方法,解决下列问题:如图3,直线l 1∥l 2∥l 3, l 1与l 2之间的距离是2,l 2与l 3之间的距离是1,试画出一个等边三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并直接写出所画等边三角形ABC 的面积(保留画图痕迹).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.二次函数2134y x x n =++-的图象与x 轴只有一个交点;另一个二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交于两点,这两个交点的横坐标都是整数,且m 是小于5的整数. 求(1)n 的值;(2)二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交点的坐标.l 1l 2l 3图3l 1l 2l 3图1l 1l 2l 3图224.在Rt △ABC 中,∠A =90°,D 、E 分别为AB 、AC 上的点.(1)如图1,CE =AB ,BD =AE ,过点C 作CF ∥EB ,且CF =EB ,连接DF 交EB 于点G ,连接BF ,请你直接写出EBDC的值; (2)如图2,CE =kAB ,BD =kAE ,12EB DC ,求k 的值.25.如图,二次函数y =ax 2+2ax +4的图象与x 轴交于点A 、B ,与y 轴交于点C ,∠CBO 的正切值是2.(1)求此二次函数的解析式.(2)动直线l 从与直线AC 重合的位置出发,绕点A 顺时针旋转,与直线AB 重合时终止运动,直线l 与BC 交于点D ,P 是线段AD 的中点. ①直接写出点P 所经过的路线长.②点D 与B 、C 不重合时,过点D 作DE ⊥AC 于点E 、作DF ⊥AB 于点F ,连接PE 、PF ,在旋转过程中,∠EPF 的大小是否发生变化?若不变,求∠EPF 的度数;若变化,请说明理由.③在②的条件下,连接EF ,求EF 的最小值.北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准 2019.5一、选择题(本题共32分,每小题4分)图2B 图1 FB1.B2.A3.D4.D5.B6.A7.C8.C 二、填空题(本题共16分,每小题4分) 9.x ≠-2 10.(1)(1)m m m +- 11.612.30;()312n n +(说明:结果正确,不化简整理不扣分).(每空2分) 三、解答题(本题共30分,每小题5分)13. 解:原式114=- ……………………………………………………4分 34=-.…………………………………………………………………………5分14.解:133x x +>- ……………………………………………… ………………………1分 24x ->-2x <.… …………………………………………………………………………3分 ∴原等式的非负整数解为1,0. ……………………………………………………5分 15. 解:原式22449x x x =-++- ………………………………………………………2分2245x x =--.…………………………………………………………………3分∵2270x x --=,∴227x x -=.……………………………………………………………………………4分 ∴原式22(2)5x x =--9=.………………………………………………………………………………5分16.证明:∵OP 平分∠MON ,∴∠COA =∠DOB .…………………………………………………………………1分 ∵∠CAP =∠DBN ,∴CAO DBO ∠=∠.………………………………………………………………2分 ∵OA =OB ,…………………………………………………………………………3分 ∴COA ∆≌DOB ∆. ………………………………………………………………4分 ∴AC =BD . …………………………………………………………………………5分17.(1)解:把()4A m -,代入y = -x ,得m =4.……………………………………………1分 ∴()44A -,. ………………………………………………………………………………2分 把()44A -,代入ky x=,得k = -16. ∴反比例函数解析式为16y x=-. ………………………………………………………3分 (2)(-7,0)或(-1,0).………………………………………………………………5分18. 解:设小李自驾车从家到达上班地点所用的时间是x 小时. …………………………1分由题意,得17.51520.33x x =⨯-. ……………………………………………………2分 解方程,得 x =0.7. ………………………………………………………………………3分经检验,x =0.7是原方程的解,且符合题意.……………………………………………4分 答:小李自驾车从家到达上班地点所用的时间是0.7小时. ……………………………5分 四、解答题(本题共20分,题每小题5分) 19.解:(1)∵AB ⊥AC ,∴∠BAC =90°.∵∠B =60°,AB, ∴AC =10. ………………………………………………………………………1分 ∵∠D =90°,AD =6,∴CD =8. ………………………………………………………………………2分 (2)由题意,得∠AFE =∠D=90°,AF=AD =6, EF=DE .∴∠EFC =90°,∴FC =4. … ……………………………………………………………………3分 设DE =x ,则EF=x ,CE=8-x .在Rt △EFC 中,由勾股定理,得 2224(8)x x +=-.………………………4分解得x =3.所以DE =3. ……………………………………………………………………5分20.(1)证明:连接OA .∵BC 为⊙O 的直径, ∴∠BAC =90°. ……………………………………………………………………………1分 ∴∠B +∠ACB =90°.∵OA=OC ,∴∠OAC =∠OCA . ∵∠CAD =∠B , ∴∠CAD +∠OAC =90°. 即∠OAD =90°. ∴OA ⊥AD .∴AD 是⊙O 的切线. ……………………………………………………………………2分 (2) 解:过点C 作CE ⊥AD 于点E . ∵∠CAD =∠B ,∴sinB =sin ∠CAD………………………………………………………………3分 ∵⊙O 的半径为8, ∴BC=16.∴AC =sin BC B ⋅=.∴在Rt △ACE 中,CE=sin AC CAD ⋅∠=2.…………………………………………4分 ∵CE ⊥AD ,BB∴∠CED =∠OAD =90°.∴CE ∥OA .∴△CED ∽△OAD .∴CD CEOD OA=. 设CD =x ,则OD =x +8.即288x x =+. 解得x =83.所以CD =83.………………………………………………………………………………5分21.解:(1)30%,20%; ………………………2分(2)如图;………………………………4分(3)400×20%=80(万人). …………5分22. 解: 5;……………………………………………2分 如图; ………………………………………3分3. ………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵2134y x x n =++-的图象与x 轴只有一个交点, ∴令10y =,即2304x x n ++-=.……………………………………………1分∴131404n ⎛⎫∆=--= ⎪⎝⎭. 解得n =1. ………………………………………………………………………2分 (2)由(1)知,()2222146y x m x m m =--+-+.∵()2222146y x m x m m =--+-+的图象与x 轴有两个交点,l 1l 2l 3∴[]2222(1)4(46)m m m ∆=----+820m =-.∵20∆>,∴52m >.……………………………………………………………………………3分 又∵5m <且m 是整数,∴m =4或3. …………………………………………………………………………5分当m =4时,2266y x x =-+的图象与x 轴的交点的横坐标不是整数;当m =3时,2243y x x =-+,令20y =,即2430x x -+=,解得11x =,23x =. 综上所述,交点坐标为(1,0),(3,0). ………………………………………7分24. 解:(1)EB DC =………………………………………………………………………2分 (2)过点C 作CF ∥EB 且CF =EB ,连接DF 交EB 于点G , 连接BF .∴四边形EBFC 是平行四边形. …………………………………………………3分 ∴CE ∥BF 且CE =BF . ∴∠ABF =∠A =90°.∵BF =CE =kAB .∴BFk AB=. ∵BD =kAE ,∴BDk AE=.… ……………………………………………………………………4分 ∴BF BD AB AE=. ∴DBF ∆∽EAB ∆. ……………………………………………………………5分 ∴DF k BE=,∠GDB=∠AEB . ∴∠DGB =∠A =90°. ∴∠GFC =∠BGF =90°. ∵12CF EB DC DC ==.∴DF DF EB CF==∴k…………………………………………………………………………7分25. 解:(1)根据题意,C (0,4).∴OC =4.∵tan ∠CBO =2,∴OB =2.∴B (2,0).………………………………………………………………………1分∴ 0444a a =++.∴12a =-.B数学试卷 ∴二次函数的解析式为2142y x x =--+.……………………………………2分 (2) ①点P…… ……………………………………………3分 ②∠EPF 的大小不发生改变.………………………………………………………4分 由2142y x x =--+可得,A (-4,0). ∴OA = OC . ∴△AOC 是等腰直角三角形. ∴∠CAO =45°. ∵DE ⊥AC , DF ⊥AB , ∴∠AED = ∠AFD =90°.∵点P 是线段AD 的中点,∴PE = PF =12AD = AP . ∴∠EPD =2∠EAD ,∠FPD =2∠F AD .∴∠EPF =∠EPD +∠FPD =2∠EAD +2∠F AD = 2∠CAO =90°.…………………5分 ③由②知,△EPF 是等腰直角三角形.∴EFPE=2AD .……………………………………………………………6分 ∴当AD ⊥BC 时,AD 最小,此时EF 最小.……………………………………7分 在Rt △ABD 中,∵tan ∠CBO =2,AB =6,∴AD=5. ∴EF即此时EF8分。
北京朝阳区2019年中考一模试题-数学
北京朝阳区2019年中考一模试题-数学数学试卷 2018.5下面各题均有四个选项,其中只有一个是符合题意的、1.21的相反数是 A.21-B 、21C 、2D 、-2 2、据报道,2017年北京市户籍人口中,60岁以上的老人有2460000人,预计未来五年北京人口“老龄化”还将提速、将2460000用科学记数法表示为A 、0.25×106B 、24.6×105C 、2.46×105D 、2.46×1063、在ABC △中,280A B ∠=∠=,那么C ∠等于 A.40°B.60° C.80°D.120°4、假设分式392--x x 的值为零,那么x 的取值为A.3≠xB.3-≠xC.3=xD.3-=x5、以下图形中,既是中心对称图形又是轴对称图形的是 A.角B.等边三角形C.平行四边形D.圆6、在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,假设随机从袋子里摸出1个球,那么摸出黄球的概率是A.41B.31C.21D.437、在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩〔单位:个〕如下表:成绩 444445x56789人数124251这此测试成绩的中位数和众数分别为 A.47,49B.47.5,49C.48,49D.48,508、关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,bx =2〔b a <〕,那么二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是A 、a x <B 、b x >C 、b x a <<D 、a x <或b x > 【二】填空题〔此题共16分,每题4分〕 9、函数4-=x y 中,自变量x 的取值范围是___、10、分解因式:2255ma mb -=___、11、如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,假设∠B =20°,那么∠ADC 的度数为、〔第11题〕〔第12题〕12、如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,〔1〕假设CE =12CB ,CF =12CD ,那么图中阴影部分的面积是;〔2〕假设CE =1n CB ,CF =1n CD ,那么图中阴影部分的面积是〔用含N 的式子表示,N 是正整数〕、【三】解答题〔此题共30分,每题5分〕13、计算:01)22()21(60sin 627--+-- .14、解不等式312+-)(x 《x 5,并把它的解集在数轴上表示出来. 21世纪教育网15、:如图,C 是AE 的中点,∠B =∠D ,BC ∥DE 、 求证:AB =CD16、0132=-+x x ,求(3)1()2(422---++x x x x 17、如图,P 是反比例函数ky x =〔x 》0〕的图象上的一点,PN 垂直x 轴于点N ,PM垂直Y 轴于点M ,矩形OMPN 的面积为2,且ON =1,一次函数y x b =+的图象经过点P 、〔1〕求该反比例函数和一次函数的解析式;B 2-1-210〔2〕设直线y x b =+与x 轴的交点为A ,点Q 在Y 轴上,当△QOA 的面积等于矩形OMPN 的面积的41时,直接写出点Q 的坐标、18、如图,在□ABCD 中,对角线AC 、BD 相交于点O ,点E 在BD 的延长线上,且△EAC 是等边三角形,假设AC =8,AB =5,求ED 的长、【四】解答题〔此题共21分,第19、20、21题每题5分,第19、列方程解应用题:为提高运输效率、保障高峰时段人们的顺利出行,下,缩短了发车间隔,从而提高了运送乘客的数量.平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400隔前运送1280020、如图,在△ABC 中,点D 在AC 上,DA =DB ,∠C =∠DBC ,以AB 为直径的O ⊙交AC 于点E ,F 是O ⊙上的点,且AF =BF 、〔1〕求证:BC 是O ⊙的切线;〔2〕假设SINC =53,AE =23,求SINF 的值和AF 的长、21世纪教育网21.为了了解北京市的绿化进程,小红同学查询了首都园林绿化政务网,根据网站发布的近几年北京市城市绿化资源情况的相关数据,绘制了如下统计图〔不完整〕:〔1〕请根据以上信息解答以下问题:①2017年北京市人均公共绿地面积是多少平方米〔精确到0.1〕? ②补全条形统计图;〔2〕小红同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高北京市人均公共绿地面积做贡献.她对所在班级的40名同学2017年参与植树的情况做了调查,并根据调查情况绘制出如下统计表:种树棵数〔棵〕 0 12345人数15 6 9 4 6如果按照小红的统计数据,请你通过计算估计,她所在学校的300名同学在2017年共植树多少棵.21世纪教育网22.根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润Y1〔千元〕与进货量X 〔吨〕之间的函数kx y =1的图象如图①所示,乙种蔬菜的销售利润Y2〔千元〕与进货量X 〔吨〕之间的函数bx ax y +=22的F图象如图②所示.〔1〕分别求出Y1、Y2与X之间的函数关系式;〔2〕如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为T吨,写出这两种蔬菜所获得的销售利润之和W〔千元〕与T〔吨〕之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?图①图②【五】解答题〔此题共21分,第23题6分,第24题8分,第25题7分〕23.阅读下面材料:问题:如图①,在△ABC中,D是BC边上的一点,假设∠BAD=∠C=2∠DAC=45°,DC=2、求BD的长、小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决、〔1〕请你回答:图中BD的长为;〔2〕参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,假设∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长、24.y ax=,过点N作X M,MN=6.〔1〔2〕点D,当△DMN为直角三角形时,求点P的坐标;〔3〕设此抛物线与Y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM?假设存在,求出点Q21世纪教育网25.在矩形ABCD中,点P在AD上,AB=2,处,三角板的两直角边分别能与AB、BC〔1〕如图,当点E与点B重合时,点F〔2〕将三角板从〔1〕中的位置开始,绕点P止,在这个过程中,请你观察、探究并解答:①∠PEF的大小是否发生变化?请说明理由;②直接写出从开始到停止,线段EF备用图参考答案及评分标准2018.5【一】选择题〔此题共32分,每题4分〕题号 1 2 3 4 5 6 7 8答案 A D B D D A C C【二】填空题〔此题共16分,每题4分,〕9.X≥410.))((5babam-+11.70°12.32,1+nn〔每空2分〕【三】解答题〔此题共30分,每题5分〕13.解:原式1223633-+⨯-= (4)分1=.…………………………………………………………………………5分14.解:x x 5322<+-.…………………………………………………………………2分13-<-x .……………………………………………………………………3分∴31>x .……………………………………………………………………4分这个不等式的解集在数轴上表示为: ……………………5分15.证明:∵C 是AE 的中点,∴AC =CE.…………………………………………………………………………1分 ∵BC ∥DE ,∴∠ACB =∠E.……………………………………………………………………2分 在△ABC 和△CDE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE AC E ACB D B ,∴△ABC ≌△CDE.………………………………………………………………4分 ∴AB =CD.………………………………………………………………………5分16.解:)1(3)1()2(422---++x x x x 331284222+-+-++=x x x x x4622++=x x ………………………………………………………………………3分4)3(22++=x x .∵0132=-+x x ,∴132=+x x (4)分∴原式=6.……………………………………………………………………………5分 17.解:〔1〕∵PN 垂直x 轴于点N ,PM 垂直Y 轴于点M ,矩形 OMPN 的面积为2,且ON =1,∴PN =2.∴点P 的坐标为〔1,2〕.………………………1分∵反比例函数ky x =〔x 》0〕的图象、一次函数y x b =+的图象都经过点P , 由12k=,b +=12得2=k ,1=b .∴反比例函数为x y 2=,………………………………………………………2分一次函数为1+=x y .………………………………………………………3分 〔2〕Q1〔0,1〕,Q2〔0,-1〕.……………………………………………………5分18.解:∵四边形ABCD 是平行四边形,∴421===AC CO AO ,BO DO =.∵△EAC 是等边三角形,∴8==AC EA ,EO ⊥AC.………………………………………………………2分在RT △ABO 中,322=-=AO AB BO . ∴DO =BO =3.………………………………………………………………………3分 在RT △EAO 中,3422=-=AO EA EO .…………………………………4分∴334-=-=DO EO ED .……………………………………………………5分 【四】解答题〔此题共21分,第19、20、21题每题5分,第22题6分〕19.解:设缩短发车间隔前平均每分钟运送乘客X 人.……………………………………1分根据题意,得x x 128005014400=+,…………………………………………………………………3分解得400=x .………………………………………………………………………4分 经检验,400=x 是原方程的解.…………………………………………………5分 答:缩短发车间隔前平均每分钟运送乘客400人. 20.〔1〕证明:∵DA =DB ,∴∠DAB =∠DBA. 又∵∠C =∠DBC ,∴∠DBA ﹢∠DBC =︒=︒⨯9018021.∴AB ⊥BC.又∵AB 是O ⊙的直径,∴BC 是O ⊙的切线.………………………………………………………2分 〔2〕解:如图,连接BE , ∵AB 是O ⊙的直径,∴∠AEB =90°.∴∠EBC +∠C =90°. ∵∠ABC =90°,∴∠ABE +∠EBC =90°. ∴∠C =∠ABE.又∵∠AFE =∠ABE , ∴∠AFE =∠C.∴SIN ∠AFE =SIN ∠ABE =SINC.∴SIN ∠AFE =53.…………………………………………………………………3分连接BF , ∴︒=∠90AFB .在RT △ABE 中,25sin =∠=ABE AEAB .……………………………………4分∵AF =BF ,∴5==BF AF .…………………………………………………………………5分 21.解:〔1〕①0.15%)4.31(5.14≈+⨯,………………………………………………2分即2017年北京市人均绿地面积约为15.0平方米.② 〔2675300=.…………………5分675棵. 22.人均公共绿地Fx y 6.01=.………………………………………………………………………1分x x y 2.22.022+-=.……………………………………………………………3分〔2〕)2.22.0()10(6.02t t t W +-+-=, 66.12.02++-=t t W .…………………………………………………………4分即2.9)4(2.02+--=t W . 所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.…………………………………………………6分【五】解答题〔此题共21分,第23题6分,第24题8分,第25题7分〕 23.解:〔1〕22=BD .……………………………………………………………………2分〔2〕把△ADC 沿AC 翻折,得△AEC ,连接DE ,∴△ADC ≌△AEC.∴∠DAC =∠EAC ,∠DCA =∠ECA ,DC =EC. ∵∠BAD =∠BCA =2∠DAC =30°,∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形.……………………3分∴DC =DE.在AE 上截取AF =AB ,连接DF ,21世纪教育网 ∴△ABD ≌△AFD. ∴BD =DF.在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF. ∴DF =DE.∴BD =DC =2.…………………………………………………………………4分 作BG ⊥AD 于点G ,∴在RT △BDG 中,2=BG .……………………………………………5分 ∴在RT △ABG 中,22=AB .……………………………………………6分24.解:〔1〕∵32++=bx ax y 过点M 、N 〔2,-5〕,6=MN ,由题意,得M 〔4-,5-〕.∴⎩⎨⎧-=+--=++.53416,5324b a b a 解得⎩⎨⎧-=-=.2,1b a ∴此抛物线的解析式为322+--=x x y .…………………………………2分 〔2〕设抛物线的对称轴1-=x 交MN 于点G ,假设△DMN 为直角三角形,那么32121===MN GD GD .∴D1〔1-,2-〕,2D 〔1-,8-〕.…………………………4分 直线MD1为1-=x y ,直线2MD 为9--=x y .将P 〔X ,322+--x x 〕分别代入直线MD1,2MD 的解析式,得1322-=+--x x x ①,9322--=+--x x x ②. 解①得11=x ,42-=x 〔舍〕,∴1P 〔1,0〕.…………………………………5分 解②得33=x ,44-=x 〔舍〕,∴2P 〔3,-12〕.……………………………6分〔3〕设存在点Q 〔X ,322+--x x 〕,使得∠QMN =∠CNM.①假设点Q 在MN 上方,过点Q 作QH ⊥MN ,交MN 于点H ,那么4tan =∠=CNM MH QH.即)(445322+=++--x x x .解得21-=x ,42-=x 〔舍〕.∴1Q 〔2-,3〕.……………………………7分②假设点Q 在MN 下方,同理可得2Q 〔6,45-〕.…………………8分25.解:〔1〕在矩形ABCD 中,90A D ∠=∠=︒,AP =1,CD =AB =2, ∴PB,90ABP APB ∠+∠=︒、 ∵90BPC ∠=︒, ∴90APB DPC ∠+∠=︒、 ∴ABP DPC ∠=∠、 ∴△ABP ∽△DPC 、∴AP PBCD PC =,即12=、∴PC =、……………………………………………………………………2分 〔2〕①∠PEF 的大小不变、理由:过点F 作FG ⊥AD 于点G 、 ∴四边形ABFG 是矩形、 ∴90A AGF ∠=∠=︒、∴GF =AB =2,90AEP APE ∠+∠=︒、 ∵90EPF ∠=︒, ∴90APE GPF ∠+∠=︒、 ∴AEP GPF ∠=∠、∴△APE ∽△GFP.…………………………………………………………4分 ∴221PF GF PE AP ===、∴在RT △EPF 中,TAN ∠PEF =2PFPE =、……………………………………5分 即TAN ∠PEF 的值不变、∴∠PEF 的大小不变、…………………………………………………………6分.…………………………………………………………………………7分。
2019届北京市朝阳区中考一模数学试卷【含答案及解析】
2019届北京市朝阳区中考⼀模数学试卷【含答案及解析】2019届北京市朝阳区中考⼀模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________⼀、单选题1. 实数a,b,c,d在数轴上的对应点的位置如图所⽰,这四个数中,绝对值最⼩的是()A. aB. bC. cD. d2. 京津冀⼀体化是由京津唐⼯业基地的概念发展⽽来,涉及到的⼈⼝总数约为90 000 000⼈.将90 000 000⽤科学记数法表⽰应为()A. B. C. D.3. 右图是某个⼏何体的三视图,该⼏何体是()A. 棱柱B. 圆锥C. 球D. 圆柱4. 如图,直线l1∥l2,若∠1=70°,∠2=60°,则∠3的度数为()A. 40°B. 50°C. 60°D. 70°5. ⼀个试验室在0:00—4:00的温度T(单位:℃)与时间t (单位:h)的函数关系的图象如图所⽰,在0:00—2:00保持恒温,在2:00—4:00匀速升温,则开始升温后试验室每⼩时升⾼的温度为()A. 5℃B. 10℃C. 20℃D. 40℃6. 《九章算术》是我国古代的数学名著,书中的“折⽵抵地”问题: 今有⽵⾼⼀丈,末折抵地,去本三尺.问折者⾼⼏何?意思是:⼀根⽵⼦,原⾼⼀丈(⼀丈=10尺),⼀阵风将⽵⼦折断,其⽵梢恰好抵地,抵地处离⽵⼦底部3尺远, 问折断处离地⾯的⾼度是多少?设折断后离地⾯的⾼度为x尺,则可列⽅程为()A. B.C. D.7. ⼩军为了解同学们的课余⽣活,设计了如下的调查问卷(不完整):他准备在“①看课外书,②体育活动,③看电视,④踢⾜球,⑤看⼩说”中选取三个作为该问题的备选答案,选取合理的是()A. ①②③B. ①④⑤C. ②③④D. ②④⑤8. 如图,⼴场中⼼的菱形花坛ABCD的周长是40⽶,∠A=60°,则A,C两点之间的距离为()A. 5⽶B. ⽶C. 10⽶D. ⽶⼆、填空题9. 某班25名同学在⼀周内做家务劳动时间如图所⽰,则做家务劳动时间的众数和中位数分别是()B. 1.5和1.5C. 2和2.5D. 1.75和2三、单选题10. 如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的⼀个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表⽰y与x的函数关系的图象⼤致如图2所⽰,则这条线段可能是()A. PDB. PBC. PED. PC四、填空题11. 因式分【解析】=______.五、单选题12. 某⽔果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若⼲进⾏统计,部分结果如下表:13. 苹果总质量n(kg)1002003004005001000损坏苹果质量m(kg)10.5019.4230.6339.2449.54101.10苹果损坏的频率(结果保留⼩数点后三位)0.1050.0970.1020.0980.0990.101td六、填空题14. 如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.七、单选题15. 某同学看了下⾯的统计图说:“这幅图显⽰,从2015年到2016年A市常住⼈⼝⼤幅增加.”你认为这位同学的说法是否合理?答:_______ (填“合理”或“不合理”),你的理由是_______.16. 如图,图中的四边形都是矩形,根据图形,写出⼀个正确的等式:___________.17. 阅读下⾯材料:在数学课上,⽼师提出如下问题:⼩红的作法如下:⽼师说:“⼩红的作法正确.”请回答:⼩红的作图依据是_________________________.九、解答题18. 计算:19. 已知. 求代数式的值.20. 解不等式组21. 如图,四边形ABCD中,AB∥DC,AE,DF分别是∠BAD,∠ADC的平分线,AE,DF交于点O. 求证:AE⊥DF.22. “五·⼀”假期的某天,⼩明、⼩东两⼈同时分别从家出发骑共享单车到奥林匹克公园,已知⼩明家到公园的路程为15km,⼩东家到公园的路程为12km,⼩明骑车的平均速度⽐⼩东快3.5km/h,结果两⼈同时到达公园.求⼩东从家骑车到公园的平均速度.23. 在平⾯直⾓坐标系中,直线与双曲线的⼀个交点为,与y轴分别交于点B.(1)求m和b的值;(2)若点C在y轴上,且△ABC的⾯积是2,请直接写出点C的坐标.24. 如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平⾏线,过点B作AD 的平⾏线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB于点O,若BC=8,AO=,求cos∠AED的值.25. 阅读下列材料:2017年3⽉29⽇,习主席来到了北京市朝阳区将台乡参加⾸都义务植树活动,他指出爱绿护绿是每个公民的职责,造林绿化是功在当代、利在千秋的事业.⾸都北京⼀直致⼒于创造绿⾊低碳的良好⽣态环境,着⼒加⼤城区规划建绿. 2013年,城市绿化覆盖率达到46.8%,森林覆盖率为40%,园林绿地⾯积67048公顷.2014年,城市绿化覆盖率⽐上年提⾼0.6个百分点,森林覆盖率为41%.2015年,城市绿化覆盖率达到48.4%,森林覆盖率为41.6%,⽣态环境进⼀步提升,园林绿地⾯积达到81305公顷.2016年,城市绿化覆盖率达到48.1%,森林覆盖率为42.3%,园林绿地⾯积⽐上年增加408公顷. 根据以上材料解答下列问题:(1)2016年⾸都北京园林绿地⾯积为公顷;(2)⽤统计表将2013-2016年⾸都北京城市绿化覆盖率、森林覆盖率表⽰出来.26. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D在AB上,以BD为直径的⊙O切AC于点E,连接DE并延长,交BC的延长线于点F.(1) 求证:△BDF是等边三⾓形;(2) 连接AF、DC,若BC=3,写出求四边形AFCD⾯积的思路.27. 有这样⼀个问题:探究函数的图象与性质.⼩华根据学习函数的经验,对函数的图象与性质进⾏了探究.下⾯是⼩华的探究过程,请补充完整:(1)函数的⾃变量x的取值范围是;(2)下表是y与x的⼏组对应值.28. x…-3-2-10134567…y…66m…td29. 在平⾯直⾓坐标系中xOy中,抛物线的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上⼀点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标;②抛物线与直线y=2交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E 和点F)之间的部分沿x轴平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.30. 在△ABC中,∠ACB=90°,AC<BC,点D在AC的延长线上,点E在BC边上,且BE=AD,(1) 如图1,连接AE,DE,当∠AEB=110°时,求∠DAE的度数;(2) 在图2中,点D是AC延长线上的⼀个动点,点E在BC边上(不与点C重合),且BE=AD,连接AE,DE,将线段AE绕点E顺时针旋转90°得到线段EF,连接BF,DE.①依题意补全图形;②求证:BF=DE.31. 在平⾯直⾓坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B旋转90°,分别得到线段BP1,B P2,称点P1,P2为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的⽰意图.(1)已知点A(0,4),①当点B的坐标分别为(1,0),(-2,0)时,点A关于点B的“伴随点”的坐标分别为;②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;(2)如图2,点C的坐标为(-3,0),以C为圆⼼,为半径作圆,若在⊙C上存在点A 关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
【附5套中考模拟试卷】北京市朝阳区2019-2020学年中考数学一模考试卷含解析
北京市朝阳区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一列动车从A 地开往B 地,一列普通列车从B 地开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.下列叙述错误的是( )A .AB 两地相距1000千米B .两车出发后3小时相遇C .动车的速度为10003D .普通列车行驶t 小时后,动车到达终点B 地,此时普通列车还需行驶20003千米到达A 地 2.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3πC .3π或πD .4π或3π 3.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.A .3B .4C .5D .64.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .105.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14 D .136.16的相反数是 ( )A .6B .-6C .16 D .16-7.如图,AB 为O e 的直径,,C D 为O e 上两点,若40BCD ∠︒=,则ABD ∠的大小为().A .60°B .50°C .40°D .20°8.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-39.若一个多边形的内角和为360°,则这个多边形的边数是( )A .3B .4C .5D .610.已知反比例函数,下列结论不正确的是( )A .图象必经过点(﹣1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若,则11.已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ;③作直线PM ,则直线PM 即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2).对于两人的作业,下列说法正确的是( )A .甲乙都对B .甲乙都不对C .甲对,乙不对D .甲不对,已对12.计算﹣1﹣(﹣4)的结果为( )A .﹣3B .3C .﹣5D .5 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的方程kx 2+2x ﹣1=0有实数根,则k 的取值范围是_____.14.若正六边形的边长为2,则此正六边形的边心距为______.15.若关于x 的方程230x x m --=有两个相等的实数根,则m 的值是_________.16.用一条长 60 cm 的绳子围成一个面积为 2162cm 的矩形.设矩形的一边长为 x cm ,则可列方程为______.17.(2016辽宁省沈阳市)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM=3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是______.18.已知边长为2的正六边形ABCDEF在平面直角坐标系中的位置如图所示,点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点B的坐标是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:(1)当为t何值时,PQ∥BC;(2)设△AQP的面积为y(c m2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C 为菱形?若存在,求出此时t的值;若不存在,请说明理由.20.(6分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)21.(6分)计算:(π﹣3.14)02﹣1|﹣2sin45°+(﹣1)1.22.(8分)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点. 求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.23.(8分)如图,在Rt △ABC 中,∠C=90°,AC=12AB .求证:∠B=30°. 请填空完成下列证明.证明:如图,作Rt △ABC 的斜边上的中线CD , 则 CD=12AB=AD ( ). ∵AC=12AB , ∴AC=CD=AD 即△ACD 是等边三角形.∴∠A= °.∴∠B=90°﹣∠A=30°.24.(10分)先化简代数式:222111a a a a a +⎛⎫-÷ ⎪---⎝⎭,再代入一个你喜欢的数求值. 25.(10分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式.26.(12分)如图,点D ,C 在BF 上,AB ∥EF ,∠A=∠E ,BD=CF .求证:AB =EF .27.(12分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.2.A【解析】【分析】根据平行线的性质及圆周角定理的推论得出点M 的轨迹是以EF 为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.【详解】当点D 与B 重合时,M 与F 重合,当点D 与A 重合时,M 与E 重合,连接BD ,FM ,AD ,EM , ∵2,33CF CM CE EF AB BC CD CA AB ===== ∴//,//,2FM BD EM AD EF =,FMC BDC CME CDA ∴∠=∠∠=∠∵AB 是直径90BDA ∴∠=︒即90BDC CDA ∠+∠=︒∴90FMC CME ∠+∠=︒∴点M 的轨迹是以EF 为直径的半圆,∵2EF =∴以EF 为直径的圆的半径为1∴点M 运动的路径长为1801=180ππg g 当1'3CM CD = 时,同理可得点M 运动的路径长为12π 故选:A .【点睛】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键. 3.C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p (5)最大,故选C .4.B【解析】【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1,∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .5.D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求ta nB′的问题,转化为在Rt△BCD 中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.6.D【解析】【分析】根据相反数的定义解答即可.【详解】根据相反数的定义有:16的相反数是16-.故选D.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.7.B【解析】【分析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的ABD∠的大小.【详解】解:连接AD,∵AB 为O e 的直径,∴90ADB ∠=︒.∵40BCD ∠=︒,∴40A BCD ∠=∠=︒,∴904050ABD ∠=︒-︒=︒.故选:B .【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.8.D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x 2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,当x <-1时,y 随x 的增大而减小,故选项C 错误,当x=-1时,y 取得最小值,此时y=-3,故选项D 正确,故选D .点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.9.B【解析】【分析】利用多边形的内角和公式求出n 即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.【解析】试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.考点:反比例函数的性质11.A【解析】【分析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.【详解】证明:(1)如图1,连接OM,OA.∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;(1)如图1.∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确.故选A.本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.12.B【解析】【分析】原式利用减法法则变形,计算即可求出值.【详解】1(4)143---=-+=,故选:B .【点睛】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.k≥-1【解析】【分析】首先讨论当0k =时,方程是一元一次方程,有实数根,当0k ≠时,利用根的判别式△=b 2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当0k =时,方程是一元一次方程:210x -=,1,2x =方程有实数根; 当0k ≠时,方程是一元二次方程,24440b ac k =-=+≥V ,解得:1k ≥-且0k ≠.综上所述,关于x 的方程2210kx x +-=有实数根,则k 的取值范围是1k ≥-.故答案为 1.k ≥-【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略0k =这种情况.14【解析】【分析】连接OA 、OB ,根据正六边形的性质求出∠AOB ,得出等边三角形OAB ,求出OA 、AM 的长,根据勾股定理求出即可.【详解】连接OA 、OB 、OC 、OD 、OE 、OF ,∵正六边形ABCDEF ,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF ,∴∠AOB=60°,OA=OB ,∴△AOB 是等边三角形,∴OA=OB=AB=2,∵AB ⊥OM ,∴AM=BM=1,在△OAM 中,由勾股定理得:315.m=-34【解析】【分析】根据题意可以得到△=0,从而可以求得m 的值.【详解】∵关于x 的方程230x x m -=有两个相等的实数根,∴△=2(3)41()0m -⨯⨯-=, 解得:34m =-. 故答案为34-. 16.(30)216x x -=【解析】【分析】根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程.【详解】解:由题意可知,矩形的周长为60cm ,∴矩形的另一边为:(30)x cm -,∵面积为 2162cm ,∴(30)216x x -=故答案为:(30)216x x -=.【点睛】本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.17.256或5013. 【解析】由图可知,在△OMN 中,∠OMN 的度数是一个定值,且∠OMN 不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN 是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当∠ONM=90°时,则DN ⊥BC.过点E 作EF ⊥BC ,垂足为F.(如图)∵在Rt △ABC 中,∠A=90°,AB=AC ,∴∠C=45°,∵BC=20,∴在Rt △ABC 中,2cos cos 45201022AC BC C BC =⋅=⋅︒=⨯= ∵DE 是△ABC 的中位线, ∴111025222CE AC ==⨯= ∴在Rt △CFE 中,2sin sin 455252EF CE C BC =⋅=⋅︒==,5FC EF ==. ∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt △MFE 中,5tan 12EF EMF MF ∠==, ∵DE 是△ABC 的中位线,BC=20,∴11201022DE BC ==⨯=,DE ∥BC , ∴∠DEM=∠EMF ,即∠DEO=∠EMF , ∴5tan tan 12DEO EMF ∠=∠=, ∴在Rt △ODE 中,525tan 10126DO DE DEO =⋅∠=⨯=.(2) 当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,222212513ME MF EF+=+=,∴在Rt△MFE中,5 sin13EFEMFME∠==,∵∠DEO=∠EMF,∴5 sin sin13DEO EMF∠=∠=,∵DE=10,∴在Rt△DOE中,550sin101313 DO DE DEO=⋅∠=⨯=.综上所述,DO的长是256或5013.故本题应填写:256或5013.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.18.(40333【解析】【分析】根据正六边形的特点,每6次翻转为一个循环组循环,用2018除以6,根据商和余数的情况确定出点B 的位置,经过第2017次翻转之后,点B的位置不变,仍在x轴上,由A(﹣2,0),可得AB=2,即可求得点B离原点的距离为4032,所以经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置(如图所示),则△BB′C为等边三角形,可求得BN=NC=1,3,由此即可求得经过2018次翻转之后点B的坐标.然后求出翻转前进的距离,过点C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后写出点C的坐标即可.【详解】设2018次翻转之后,在B′点位置,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组,∵2018÷6=336余2,∴经过2016次翻转为第336个循环,点B在初始状态时的位置,而第2017次翻转之后,点B的位置不变,仍在x轴上,∵A(﹣2,0),∴AB=2,∴点B离原点的距离=2×2016=4032,∴经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置,则△BB′C为等边三角形,此时BN=NC=1,B′N=3,故经过2018次翻转之后,点B的坐标是:(4033,3).故答案为(4033,3).【点睛】本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点B所在的位置是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)当t=4013时,PQ∥BC;(2)﹣35(t﹣52)2+154,当t=52时,y有最大值为154;(3)存在,当t=4021时,四边形PQP′C为菱形【解析】【分析】(1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;(2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,则AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴当t=4013时,PQ∥BC.(2)过点P作PD⊥AC于D,则有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣35(t﹣52)2+154,∴当t=52时,y有最大值为154.(3)存在.理由:连接PP′,交AC于点O.∵四边形PQP′C为菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴当t=4021时,四边形PQP′C为菱形.【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.20.43米【解析】【分析】作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=AEEC,列出方程即可解决问题.【详解】解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.在Rt△ABD中,∵∠ADB=45°,∴AB=BD=x,在Rt△AEC中,tan∠ACE==tan37.5°≈0.77,∴=0.77,解得x≈43,答:“小雁塔”的高AB的长度约为43米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.21.1直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【详解】原式()1121=+-+-1=-.【点睛】考核知识点:三角函数混合运算.正确计算是关键.22.见解析【解析】【分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-12x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.【详解】(1)把()2,0A,()0,6B-代入212y x bx c=-++得2206b cc-++=⎧⎨=-⎩,解得46bc=⎧⎨=-⎩.∴这个二次函数解析式为21462y x x=-+-.(2)∵抛物线对称轴为直线44122x=-=⎛⎫⨯-⎪⎝⎭,∴C的坐标为()4,0,∴422AC OC OA=-=-=,∴1126622ABCS AC OB∆=⨯=⨯⨯=.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.23.直角三角形斜边上的中线等于斜边的一半;1.根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt △ABC 的斜边上的中线CD ,则CD=12AB=AD (直角三角形斜边上的中线等于斜边的一半), ∵AC=12AB , ∴AC=CD=AD 即△ACD 是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.24.13【解析】【分析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算.【详解】 解:原式2211(1)(1)a a a a a a ⎡⎤+-=-⋅⎢⎥-+-⎣⎦ 2(1)21(1)(1)a a a a a a+---=⋅+- 11a =+. 使原分式有意义的a 值可取2, 当2a =时,原式11213==+. 【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.25.(1)一件A 型、B 型丝绸的进价分别为500元,400元;(2)①1625m ≤≤,②7512500(50100)5000(100)6611600(100150)n n w n n n -+≤<⎧⎪==⎨⎪-+<≤⎩.【解析】【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m 的不等式组,求m 的取值范围;②本问中,首先根据题意,可以先列出销售利润y 与m 的函数关系,通过讨论所含字母n 的取值范围,得到w 与n 的函数关系.【详解】(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为()100x +元, 根据题意得:100008000100x x=+, 解得400x =,经检验,400x =为原方程的解,100500x ∴+=,答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:5016m m m -⎧⎨⎩……, m ∴的取值范围为:1625m 剟,②设销售这批丝绸的利润为y ,根据题意得:()()()8005002600400?50y n m n m =--+---,()1001000050n m n =-+-50150n Q 剟,∴(Ⅰ)当50100n <…时,1000n ->,25m =时,销售这批丝绸的最大利润()2510010000507512500w n n n =-+-=-+;(Ⅱ)当100n =时,1000n -=,销售这批丝绸的最大利润5000w =;(Ⅲ)当100150n <…时,1000n -<当16m =时,销售这批丝绸的最大利润6611600w n =-+.综上所述:7512500(50100)50001006611600(100150)n n w n n n -+<⎧⎪==⎨⎪-+<⎩…….【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.26.见解析【解析】试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF 即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.证明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC与△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.27.(4)4;(2)35;(4)点E的坐标为(4,2)、(53,103)、(4,2).【解析】分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD 中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=4,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG ,如图4(2).由(4)得:OH=2,BH=4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN=MB=MD=r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM=DM ,∴CN=ON ,∴MN=12(BC+OD ),∴OD=2r ﹣2,∴DH=OD OH -=24r -. 在Rt △BHD 中,∵∠BHD=90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r=2,∴DH=0,即点D 与点H 重合,∴BD ⊥0A ,BD=AD .∵BD 是⊙M 的直径,∴∠BGD=90°,即DG ⊥AB ,∴BG=AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF=12AD=2,GF=12BD=2,∴OF=4,∴同理可得:,∴BG=12.设OR=x ,则x .∵BR ⊥OG ,∴∠BRO=∠BRG=90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x=5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR=5.在Rt △ORB 中,sin ∠BOR=BR OB35. 故答案为35. (4)①当∠BDE=90°时,点D 在直线PE 上,如图2.此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t ,OP=t . 则有2t=2.解得:t=4.则OP=CD=DB=4.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE=2,∴EP=2, ∴点E 的坐标为(4,2).②当∠BED=90°时,如图4.∵∠DBE=OBC ,∠DEB=∠BCO=90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,,∴BE=5t .∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴OEOB=25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+5t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=2,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.2﹣2B.1 C.2D.2﹣l 2.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>03.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9416)A.±4 B.4 C.±2 D.25.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-86.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A .30°B .36°C .54°D .72°7.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥8.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是( )A .B .C .D .9.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-= 10.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 11.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .12.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.14.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).15.分式方程32xx2--+22x-=1的解为________.16.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.17.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.18.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?20.(6分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)21.(6分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.22.(8分)先化简,再求值:22+x21(-)21-1xx x x x÷-+,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.23.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的。
北京市朝阳区2019年初中毕业考试(一模)数学试卷含答案
北京市朝阳区2019年初中毕业考试数学试卷 2019.4考 生 须 知1. 考试时间为90分钟,满分100分;2. 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(填空题、解答题)两部分,共8页,第8页为草稿纸;3. 认真填写密封线内学校、班级、姓名.第Ⅰ卷(共30分)一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.在下列各数中,绝对值最大的数是A .1B .-2C .21D .13-2.2019年10月16日,新一期全球超级计算机500强榜单在美国公布,中国“天河二号”超级计算机以每秒338600000亿次浮点运算速度连续第六度称雄.将338600000用科学记数法表示为A .3.386×107B .0.3386×109C .3.386×108D .0.3386×1083. 右图是某个几何体的三视图,则这个几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥4.阿仁是一名非常爱读书的学生.他制作了五张材质和外观完全一样的书签,每张书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼·奥斯特洛夫斯基,前苏联),从这五张书签中随机抽取一张,则抽到的书签上的作者是中国人的概率是A .15B .25C .35D .455. 下列运算正确的是A .236x x x =B .632x x x ÷=C .32422x x x -= D .()236x x =6.一次函数y kx b =+的图象如右图所示, 则k,b 应满足的条件是A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<C OAB7.如图,将一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是A .15°B .20°C .25°D .30°8.如图,⊙O 的半径为10,AB 是弦,OC ⊥AB 于点C , 若AB =12,则OC 的长为A .2B .22C .6D .89.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例, 右图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则 电流I 关于电阻R 的函数关系式为 A .6I R =B .6I R =-C .3I R =D .2I R=10.如图,把正方形ABCD 绕它的中心O 顺时针旋转,得到 正方形A ’B ’C ’D ’,旋转角大于0°小于90°.△A ’EF 的面积为S , 线段AE 的长度为x ,那么S 关于x 的函数的图象可能是机读答题卡题号12345678910答 案〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕ABCDS xO SnOFEC'B'O DACBS x OxO第13题图 第14题图 第Ⅱ卷 (共70分)二、填空题 (共6道小题,每小题3分,共18分) 11. 分解因式:22ax ay -=___________.12.某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg ),则这组数据的中位数是__________.13. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐标为 . 14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为 .15.若关于x 的一元二次方程2420kx x +-=有两个不相等的实数根,则k 的取值范围是_________________. 16. 阅读下面材料:在数学课上,老师提出如下问题:小义同学作法如下:老师说:“小义的作法正确.”请回答:小义的作图依据是______________________________________________________.尺规作图:作一个角等于已知角. 已知:∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .①作射线O′A′;②以点O 为圆心,以任意长为半径作弧,交OA 于C ,交OB 于D ; ③以点O′为圆心,以OC 长为半径作弧,交O′A′于C′; ④以点C′为圆心,以CD 为半径作弧,交③中所画弧于D′; ⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.D'C'CDBOAA'O'B'AOB三、解答题(共10道小题,17-24题每小题5分,25-26题每小题6分,共52 分) 17.(本小题5分) 计算:()1201611-3-⎛⎫-++︒ ⎪⎝⎭.18.(本小题5分)解不等式2113x x --≤,并写出不等式的正整数解.19.(本小题5分)如图,△AFD 和△BEC 中,点A 、E 、F 、C 在同一条直线上.有下面四个关系式: (1)AD =CB ,(2)AD ∥BC ,(3)∠B =∠D ,(4)AE =CF .请用其中三个作为已知条件,余下一个作为求证的结论,写出你的已知和求证,并证明. 已知: 求证:证明:20.(本小题5分)先化简,再求值:2212 2x xy y x y x y-+--,其中3x y =.A B C D E F某城市2019年约有初中生10万人, 2019年初中生人数还会略有增长.该市青少年活动中心对初中生阅读情况进行了统计,绘制的统计图表如下:根据以上信息解答下列问题: (1)扇形统计图中m 的值为 ;(2)2019年,在该市喜爱阅读的初中生中,首选阅读科普读物的人数为 万; (3)请你结合对数据的分析,预估2019年该市喜爱阅读的初中生人数,并简单说明理由. 22.(本小题5分)在“校园文化”建设中,某校用8 000元购进一批绿植,种植在礼堂前的空地处. 根据建设方案的要求,该校又用7500元购进第二批绿植.两次所买绿植盆数相同,且第二批每盆的价格比第一批的少10元. 请问第二批绿植每盆多少元?23.(本小题5分) 如图,△ABC 和△CDE 都是直角三角形,点B 、C 、D 在同一条直线上,∠B =∠D =∠ACE =90°,112BC AB == ,4CD = . (1)求DE 的长;(2)连接AE .求证:四边形ABDE 是矩形.年份 喜爱阅读的初中生人数(万人) 2019 1.02019 2.22019 3.52019 5.0E B DA C2015年某市喜爱阅读的初中生的阅读首选类别 2012-2015年某市 喜爱阅读的初中生人数1ODCA如图,以△ABC 的一边BC 为直径的⊙O ,交AB 于点D ,连接CD ,OD , 已知∠A +12∠1=90°. (1)求证:AC 是⊙O 的切线; (2)若∠B =30°,AD =2,求⊙O 的半径. 25.(本小题6分)在平面直角坐标系中,已知抛物线22y x mx =-与x 轴的一个交点为A (4,0). (1)求抛物线的表达式及顶点B 的坐标;(2)将05x ≤≤时函数的图象记为G ,点P 为G 上一动点,求P 点纵坐标n 的取值范围;(3)在(2)的条件下,若经过点C (4,-4)的直线()0y kx b k =+≠与图象G 有两个公共点,结合图象直接写出b 的取值范围.在一节数学活动课上,老师和同学们一起研究不同等腰三角形形状差异问题,老师提出我们可以规定一个“正度”,“正度”应满足三个条件:①可以用来衡量等腰三角形与正三角形的接近程度;②相似的等腰三角形的“正度”相等;③“正度”的值是非负数.经过讨论后,有两个组给出了答案:小智组提出:设等腰三角形的底和腰分别为a ,b ,可用式子a b -来表示“正度”,a b -的值越小,表示等腰三角形越接近正三角形;小信组提出:设等腰三角形的底角和顶角分别为α和β,可用式子αβ-来表示“正度”,αβ-的值越小,表示等腰三角形越接近正三角形.⑴ 他们的方案哪个较为合理,为什么?⑵ 请再写出一种可以衡量“正度”的表达式.北京市朝阳区2019年初中毕业考试数学试卷评分标准及参考答案 2019.4一、选择题(每小题3分,共30分)1.B 2.C 3.B 4.C 5.D 6.A 7.C 8.D 9.A 10.B 二、填空题(每小题3分,共18分)11.()()a x y x y +- 12.6 13.(5-,1) 14.5π 15. 2k >-且0k ≠ 16.三边分别相等的两个三角形全等;全等三角形对应角相等(写出其中一个即可). 三、解答题(17—24题每小题5分,25—26题每小题6分,共52 分)17.解:原式1322=++⨯………………………………………………4分 =4. ………………………………………………………………… 5分18.解:3321x x -≤- ………………………………………………………………2分 3231x x -≤- ……………………………………………………3分2x ≤ ………………………………………………………………4分∴原不等式的所有正整数解为1,2. ………………………………………5分19.已知:AD =CB ,AD ∥CB ,∠D =∠B . ……………………………………1分 求证:AE =CF . 证明:∵AD ∥CB ,∴∠A =∠C. ……………………………………………………2分 ∵AD =CB ,∠D =∠B ,∴△ADF ≌△CBE ………………………………………………… 3分 ∴AF =CE. …………………………………………………………………4分 ∴AE =CF . ………………………………………………………… 5分20.解:原式()212x y x y x y -=⋅-- …………………………………………………3分 2x y x y-=- …………………………………………………………… 4分 当3x y =时, 原式3232y yy y-==-. …………………………………………………… 5分21. 解:(1)8. …………………………………………… … ………………1分(2)0.75. ……………………………………………… … ……………3分 (3)答案依据数据说明,合理即可.如:6.6万人,因为该市喜爱阅读的初中生人数逐年增长,且增长趋势变快. …………………………5分22. 解:设第二批绿植每盆x 元. ……………………………………………1分依题意,得8000750010x x=+. ……………………………………… 2分 解得 150x =. ………………………………… 3分经检验,x = 150是原方程的解,且符合题意. …………… 4分 答:第二批绿植每盆150元. ………………………… …………………5分23.(1) 解:∵∠B =∠ACE =90°,∴∠A +∠ACB =90°,∠ECD +∠ACB =90°.∴∠A =∠ECD . …………… …………………………………1分 ∵∠B =∠D =90°,∴△ABC ∽△CDE . …………………………………………2分∴BC ABDE CD=. ∵112BC AB == ,4CD =,∴2DE =. ………………… ………………………………3分(2)证明: ∵∠B =∠D =90°,∴∠B +∠D =180°.∴AB ∥DE . …………………………………………………4分 ∵AB =DE =2,∴四边形ABDE 是平行四边形. ∵∠B =90°,∴平行四边形ABDE 是矩形. ………………………………5分 24.(1)证明:依题意,得 ∠B =12∠1. …………………………………1分 ∵∠A +12∠1=90°, ∴∠A +∠B =90°. ∴∠ACB =90°. ∴AC ⊥BC .∵BC 是⊙O 的直径,∴AC 是⊙O 的切线. …… …………………………………2分(2) 解:∵BC 是⊙O 的直径,∴∠CDB =∠ADC =90°. ……………………………………3分 ∵∠B =30°, ∴∠A =60°,∠ACD =30°.∴AC =2AD =4. ………………………………………………4分∴tan ACBC B==∠.∴⊙O 的半径为 ……………………………………5分25.解:(1)∵A (4,0)在抛物线22y x mx =-上,∴1680m -=.解得 2m =.∴24y x x =-. …………………………………………………1分 即 ()224y x =--.∴顶点坐标为()2,4B -. ……………………………………………2分(2)当2x =时,y 有最小值–4;当5x =时,y 有最大值5.∴点P 纵坐标的n 的取值范围是45n -≤≤. ……………………………4分 (3)40b -<≤. …………………………………………………………………6分26.解:(1)小信组的方案合理. …………………………………………………………1分因为αβ-的值越小,两个角越接近60°,等腰三角形就越接近正三角形, 且保证相似三角形的正度相等. ………………………………………………2分小智组的方案不合理. ……………………………………………………………3分 因为不能保证相似的等腰三角形的正度相等,如三边分别为4、4、2和8、8、4,4284-≠-|. …………………………4分 (2)60α-︒(+120αβ-︒,1b a -,1αβ-,…) …………………………6分说明:各解答题的其他正确解法请参照以上标准给分.。
2019年北京市朝阳区中考数学一模试卷-解析版
2019年北京市朝阳区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1. 下面是一些北京著名建筑物的简笔画,其中不是轴对称图形的是( )A. B.C. D.2. 实数m ,n 在数轴上对应的点的位置如图所示,若mn <0,且|m|<|n|,则原点可能是( )A. 点AB. 点BC. 点CD. 点D3. 下列几何体中,其三视图的三个视图完全相同的是( )A.B.C.D.4. 电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为( )A. 9.5×104亿千米B. 95×104亿千米C. 3.8×105亿千米D. 3.8×104亿千米5. 把不等式组{1−x ≤4x+12<1中两个不等式的解集在数轴上表示出来,正确的是( )A.B. C.D.6. 如果a −b =√3,那么代数式(b 2a −a)⋅aa+b的值为( )A. −√3B. √3C. 3D. 2√37. 今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力,北京科技创新能力不断增强,下面的统计图反映了2010−2018年北京市每万人发明专利申请数与授权数的情况.根据统计图提供的信息,下列推断合理的是()A. 2010−2018年,北京市毎万人发明专利授权数逐年增长B. 2010−2018年,北京市毎万人发明专利授权数的平均数超过10件C. 2010年申请后得到授权的比例最低D. 2018年申请后得到授权的比例最高8.抛掷次数n50100150200250300350400450500“正面向上”次22527195116138160187214238数m“正面向上”频0.440.520.470.480.460.460.460.470.480.48率mn下面有三个推断:①表中没有出现“正面向上”的概率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;其中合理的是()A. ①②B. ①③C. ③D. ②③二、填空题(本大题共8小题,共16.0分)9.代数式√x−1在实数范围内有意义,则x的取值范围是______.10.用一组a,b,c的值说明命题“若ac=bc,则a=b”是错误的,这组值可以是a=______.11.如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了______m.12.如图所示的网格是正方形网格,△ABC是______三角形.(填“锐角”“直角”或“钝角”)13.如图,过⊙O外一点P作⊙O的两条切线PA,PB,切点分别为A,B,作直线BC,连接AB,AC,若∠P=80°,则∠C=______°.14.如图,在矩形ABCD中,过点B作对角线AC的垂线,交AD于点E,若AB=2,BC=4,则AE=______.15.科目思想品德历史地理参考人数(人)191318其中思想品德、历史两门课程都选了的有人,历史、地理两门课程都选了的有人,则该班选了思想品德而没有选历史的有______人;该班至少有学生______人.16.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A型保温杯的优势是______.三、计算题(本大题共1小题,共5.0分)17.解分式方程:3x−2−x2x−4=12四、解答题(本大题共11小题,共63.0分)18.计算:2sin45°+|−√2|−(π−2019)0−√1819.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ//l.作法:如图.①在直线l上取两点A,B;②以点P为圆心,AB为半径画弧,以点B为圆心,AP为半径画弧,两弧在直线l上方相交于点Q;③作直线PQ.根据小东设计的尺规作图过程(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:PA=______,AB=______,∴四边形PABQ是平行四边形∴PQ//l(______).(填写推理的依据)20.已知关于x的方程mx2+(2m−1)x+m−1=0(m≠0).(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数m的值.21.如图,在Rt△ABC中,∠ABC=90°,D、E分别是边BC,AC的中点,连接ED并延长到点F,使DF=ED,连接BE、BF、CF、AD.(1)求证:四边形BFCE是菱形;(2)若BC=4,EF=2,求AD的长.22.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cos∠DAB=4,BE=1,求AD的长.523.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面的图象经过点B.积为2,反比例函数y=kx(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′的图象有公共点,直接写出a的取与反比例函数y=kx值范围.24.小超在观看足球比赛时,发现了这样一个问题:两名运动员从不同的位置出发,沿着不同的方向,以不同的速度直线奔跑,什么时候他们离对方最近呢?小超通过一定的测量,并选择了合适的比例尺,把上述问题抽象成如下数学问题:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D以1cm/s的速度从点C向点B运动,点E以2cm/s的速度从点A向点B运动,当点E到达点B时,两点同时停止运动,若点D,E同时出发,多长时间后DE取得最小值?小超猜想当DE⊥AB时,DE最小,探究后发现用几何的知识解决这个问题有一定的困难,于是根据函数的学习经验,设C,D两点间的距离为xcm,D,E两点间的距离为ycm,对函数y随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:(1)由题意可知线段AE和CD的数量关系是______;x/cm012345y/cm 6.0 4.8 3.8______ 2.7 3.0(3)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题,小组的猜想______;(填“正确”或“不正确”)当两点同时出发了______s时,DE取得最小值,为______cm.25.为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b.乙部门成绩如下:40、52、70、70、71、73、77、78、80、81、82、82、82、82、83、83、83、86、91、94平均数方差中位数甲79.636.8478.5乙77147.2m2014年2015年2016年2017年2018年出线成绩(百分制)7981808182(1)写出表中m的值;(2)可以推断出选择______部门参赛更好,理由为______;(3)预估(2)中部门今年参赛进入复赛的人数为______.26.在平面直角坐标系xOy中,抛物线y=x2−2x+a−3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.27.如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD//BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.28.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)和P2(x2,y2),称d(P1,P2)=|x1−x2|+|y1−y2|为P1、P2两点的直角距离.(1)已知:点A(1,2),直接写出d(O,A)=______;x+3上的一个动点.(2)已知:B是直线y=−34①如图1,求d(O,B)的最小值;②如图2,C是以原点O为圆心,1为半径的圆上的一个动点,求d(B,C)的最小值.答案和解析1.【答案】D【解析】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】B【解析】【分析】由若mn<0可知,m、n异号,所以原点可能是点B或点C,而又由|m|<|n|即可根据距离正确判断.本题考查的是绝对值的意义,利用数形结合的思想研究绝对值会让问题更加明确清晰,是一种常用的方法.【解答】解:∵mn<0∴m、n异号∴原点可能是点B或点C又由|m|<|n|,观察数轴可知,原点应该是点B.故选:B.3.【答案】D【解析】解:A、圆柱的俯视图与主视图和左视图不同,错误;B、圆锥的俯视图与主视图和左视图不同,错误;C、三棱锥的俯视图与主视图和左视图不同,错误;D、球的三视图完全相同,都是圆,正确;故选:D.找到从物体正面、左面和上面看得到的图形全等的几何体即可.考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.4.【答案】C【解析】解:95000×4=380000380000亿千米=3.8×105亿千米.故选:C.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】C【解析】【解答】解:{1−x≤4①x+12<1②,由①得,x≥−3,由②得,x<1,故不等式组的解集为:−3≤x<1.在数轴上表示为:.故选:C.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】A【解析】解:原式=b2−a2a ⋅aa+b=−(a+b)(a−b)a⋅aa+b=−(a−b),∵a−b=√3,∴原式=−√3,故选:A.先化简分式,然后将a−b=√3代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.7.【答案】B【解析】解:A.2010−2018年,北京市毎万人发明专利授权数在2012−2013年不变,此选项错误;B.2010−2018年,北京市毎万人发明专利授权数的平均数为5.9+8+9.9+9.9+10.9+16.3+19.1+21.2+22.39≈13.7,超过10件,此选项正确;C.2014年申请后得到授权的比例最低,此选项错误;D.2017年申请后得到授权的比例最高,此选项错误;故选:B.根据统计图得出各年的具体数据,依据增长情况和百分比概念逐一判断即可得.本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】【分析】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故错误;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48,故错误;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生,正确;故选:C.9.【答案】x≥1【解析】解:∵√x−1在实数范围内有意义,∴x−1≥0,解得x≥1.故答案为:x≥1.先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.【答案】−1(答案不唯一)【解析】【分析】根据题意选择a、b、c的值即可.本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:当c=0,a=−1,b=−2,所以ac=bc,但a≠b,故答案为:−1(答案不唯一)11.【答案】30【解析】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,∴他第一次回到出发点A时一共走了:5×6=30(m),故答案为:30.从A点出发,前进5m后向右转60°,再前进5m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.12.【答案】锐角【解析】解:∵AB2=32+12=10,AC2=12+42=17,BC2=32+42=25,∴AB2+AC2>BC2,∴△ABC为锐角三角形,故答案为:锐角.根据三边的长可作判断.本题考查了三边的关系,会利用三边关系确定三角形的形状:若三角形的三边分别为a、b、c,①当a2+b2>c2时,△ABC为锐角三角形;②当a2+b2<c2时,△ABC为钝角三角形;③当a2+b2=c2时,△ABC为直角三角形.13.【答案】50【解析】解:连接OA,∵过⊙O外一点P作⊙O的两条切线PA,PB,切点分别为A,B,∴∠PAO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°−90°−90°−80°=100°,∴∠C=12∠AOB=50°,故答案为:50.根据切线的性质得出∠PAO=∠PBO=90°,求出∠AOB的度数,根据圆周角定理求出∠C 即可.本题考查了切线的性质,圆周角定理等知识点,能求出∠AOB的度数和根据圆周角定理得出∠C=12∠AOB是解此题的关键.14.【答案】1【解析】解:∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,AD=BC=4,∴AC=√AB2+BC2=2√5,设AC与BE交于F,∵BE⊥AC,∴AB2=AF⋅AC,∴AF=222√5=2√55,∴CF=AC−AF=8√55,∵AE//BC,∴△AEF∽△CBF,∴AEBC =AFCF,∴AE4=2√558√55,∴AE=1,故答案为:1.根据矩形的性质得到∠DAB=∠ABC=90°,AD=BC=4,根据勾股定理得到AC=√AB2+BC2=2√5,设AC与BE交于F,根据相似三角形的性质即可得到结论.本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握正方形的性质是解题的关键.15.【答案】16 29【解析】解:思想品德、历史两门课程都选了的有3人,∴选了思想品德而没有选历史的有19−3=16人,设三门课都选的有x人,同时选择地理和政治的有y人,则有总人数为19+18+13−3−4−2x−y=43−2x−y,∵选择历史没有选择政治的有6人,∴2x<6,∴x<3,∴x=1,2,∵只选政治的现在有19−3−4−1−y=11−y,∴y最大是10,该班至少有学生43−4−10=29,故答案为16;29;选了思想品德而没有选历史的有19−3=16人,设三门课都选的有x人,同时选择地理和政治的有y人,总人数为19+18+13−3−4−2x−y=43−2x−y,根据各自选课情况可知x<3,11−y≥0,该班至少有学生43−4−10=29.本题考查统计的应用;能够将问题转化为二元一次方程,借助实际问题的取值情况,求至少的人数;16.【答案】便携性【解析】解:从分布的情况可以看到便携性的综合名次好于保温性,故答案为便携性;从点图的分布可以看到在便携性中,综合质量名次好于保温性;本题考查用样本估计总体;能够从图中综合对比出样本的优劣是解题的关键.17.【答案】解:两边同乘以(2x−4)去分母得:6−x=x−2,移项:−x−x=−2−6,合并同类项系数化1得:x=4,经检验x=4是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:原式=2×√2+√2−1−3√22=−√2−1.【解析】直接利用零指数幂的性质和绝对值的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】(1)直线PQ如图所示.(2)证明:∵PA=BQ,AB=PQ,∴四边形PABQ是平行四边形∴PQ//l(平行四边形的对边平行).故答案为:BQ,PQ,平行四边形的对边平行.【解析】解:(1)直线PQ如图所示.(2)证明:∵PA=BQ,AB=PQ,∴四边形PABQ是平行四边形∴PQ//l(平行四边形的对边平行).故答案为:BQ,PQ,平行四边形的对边平行.(1)根据要求画出图形即可.(2)利用平行四边形的判定和性质解决问题即可.本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】(1)证明:∵m≠0,∴方程为一元二次方程,∵△=(2m−1)2−4m(m−1)=1>0,∴此方程总有两个不相等的实数根;(2)∵x=−(2m−1)±1,2m−1,∴x1=−1,x2=1m∵方程的两个实数根都是整数,且m是整数,∴m=1或m=−1.【解析】(1)由于m≠0,则计算判别式的值得到△=1,从而可判断方程总有两个不相等的实数根;(2)先利用求根公式得到x1=−1,x2=1m−1,然后利用有理数的整除性确定整数m的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.【答案】(1)证明:∵D是边BC的中点,∴BD=CD,∵DF=ED,∴四边形BFCE是平行四边形,∵在Rt△ABC中,∠ABC=90°,E是边AC的中点,∴BE=CE,∴四边形BFCE是菱形;(2)解:连接AD,∵四边形BFCE是菱形,BC=4,EF=2,∴BD=12BC=2,DE=12EF=1,∴BE=√22+12=√5,∴AC=2BE=2√5,∴AB=√AC2−BC2=√20−16=2,∴AD=√AB2+BD2=2√2.【解析】(1)根据平行线的判定定理得到四边形BFCE是平行四边形,根据直角三角形的性质得到BE=CE,于是得到四边形BFCE是菱形;(2)连接AD,根据菱形的性质得到BD=12BC=2,DE=12EF=1,根据勾股定理即可得到结论.本题考查了菱形的判定和性质,三角形的中位数的性质,勾股定理,熟练掌握菱形的判定和性质定理是解题的关键.22.【答案】(1)证明:连接OC,如图,∵CD=BD,∴CD⏜=BC⏜,∴∠1=∠2,∵OA=OC,∴∠2=∠OCA,∴∠1=∠OCA,∴OC//AF,∵EF为切线,∴OC⊥EF,∴AF⊥EF;(2)解:∵OC//AF,∴∠COE=∠DAB,在Rt△OCE中,设OC=r,∵cos∠COE=cos∠DAB=OCOE =45,即rr+1=45,解得r=4,连接BD,如图,∵AB为直径,∴∠ADB=90°,在Rt△ADB中,cos∠DAB=ADAB =45,∴AD=45×8=325.【解析】(1)连接OC,如图,先证明OC//AF,再根据切线的性质得OC⊥EF,从而得到AF⊥EF;(2)先利用OC//AF得到∠COE=∠DAB,在Rt△OCE中,设OC=r,利用余弦的定义得到rr+1=45,解得r=4,连接BD,如图,根据圆周角定理得到∠ADB=90°,然后根据余弦的定义可计算出AD的长.本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和解直角三角形.23.【答案】解:(1)∵∠OAB=90°,OA=AB,∴设点B的坐标为(m,m),则OA=AB=m,∵△OAB的面积为2,∴12m⋅m=2,解得:m=2(负值舍去),∴点B的坐标为(2,2),代入反比例函数y=kx中,得k=4;(2)∵B(2,2)∴∠BOA=45°,∵l⊥OB,∴O′A′⊥x轴∴P、O′、A′三点共线,且点O′在直线OB上∴O′(a,a)、A′(a,a−2)当O′在反比例函数图象上时,有a×a=4解得:a1=−2,a2=2当A′在反比例函数图象上时,有a×(a−2)=4解得:a3=1+√5,a4=1−√5若线段O′A′与反比例函数y=kx的图象有公共点,a的取值范围是:−2≤a≤1−√5或2≤a≤1+√5【解析】(1)运用反比例函数的几何意义,求出k=4;(2)运用对称的点坐标关系,分别表示O′、A′,在第三象限,当点O′在双曲线上时a取最小值,当点A′在双曲线上时,a取最大值;在第一象限,同理可求a的取值范围本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键24.【答案】解:(1)AE=2CD(2)3.0(3)如图所示:(4)不正确 4 2.7【解析】解:(1)由题意得:AE=2x,CD=x ∴AE=2CD;故答案为:AE=2CD;(2)根据图象可得:当x=3时,y=3.0,故答案为:3.0;(3)见答案(4)如图所示,过D作DG⊥AB于G,由(1)知:CD=x,则BD=8−x,sin∠B=ACAB =DGBD,∴610=DG8−x,DG=35(8−x),BG=45(8−x),∴EG=AE+BG−10=2x+45(8−x)−10=65x−185,∴y=√DG2+EG2=√[35(8−x)]2+(65x−185)2=√95(x−4)2+18025,∵0≤x≤5,∴当x=4时,y有最小值是√18025=65√5≈2.7,故答案为:不正确,4,2.7.(1)根据时间和速度可得AE和CD的长,可得结论;(2)根据图象可得结论;(3)画图象即可;(4)作辅助线,根据勾股定理计算DE的长,根据二次函数的最值可得结论.本题属于三角形和函数的综合题,考查了勾股定理,函数图象,直角三角形的性质等知识,解题的关键是理解题意,学会利用勾股定理解决问题,学会利用图象法解决问题,属于中考压轴题.25.【答案】解:(1)81.5;(2)甲,甲的平均成绩高,且方差小,成绩稳定;(3)80人.【解析】【分析】本题主要考查频数分布直方图,解题的关键是掌握中位数、平均数、方差的定义及样本估计总体思想的运用.(1)根据中位数的定义求解可得;(2)依据平均数和方差的意义求解可得;(3)利用样本估计总体思想求解可得.【解答】=81.5,解:(1)乙组成绩的中位数m=81+822故答案为:81.5;(2)可以推断出选择甲部门参赛更好,理由为甲的平均成绩高,且方差小,成绩稳定;故答案为:甲,甲的平均成绩高,且方差小,成绩稳定.=80(人),(3)预估(2)中部门今年参赛进入复赛的人数为200×7+120故答案为:80人.26.【答案】解:(1)A(0,−3),B(4,−3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>−3∴−3<a≤0;【解析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.27.【答案】解:(1)满足条件的点D和D′如图所示.(2)作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF=12BC,∵BC=BD,AF=DE,∴DE=12BD,∴∠DBE=30°,∴∠D′BC=120°+30°=150°,∴满足条件的α的值为30°或150°.(3)由题意AB=AC=2,∴BC=2√2,∴AF=BF=DE=√2,∴BE=√3DE=√6,∴AD=√6−√2,AD′=2√6−(√6−√2)=√6+√2.【解析】(1)根据要求好像图形即可.(2)分两种情形分别求解即可.(3)解直角三角形求出BE,BF即可解决问题.本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.,属于中考常考题型.28.【答案】(1)3;(2)①设B(a,−34a+3),则d(O,B)=|0−a|+|0−(−34a+3)|=|−a|+|34a−3|,当a<0时,d(O,B)=−a−34a+3=−74a+3>3;当a=0时,d(O,B)=3;当0<a<4时,d(O,B)=a−34a+3=14a+3>3;当a=4时,d(O,B)=4;当a>4时,d(O,B)=a+34a−3=74a−3>4;综上,d(O,B)的最小值为3;②当点C在过原点且与直线y=−34x+3垂直的直线上时,点B与点C的“直角距离”最小,则OC直线解析式为y=43x,设点C 的坐标为(x,y)(点C 位于第一象限),则{yx =43x 2+y 2=1.解得:{x =35y =45∴点C(35,45).由{y =43xy =−34x +3得{x =3625y =4825,∴B(3625,4825),则d(B,C)的最小值为|3625−35|+|4825−45|=4925.【解析】解:(1)d(O,A)=|0−1|+|0−2|=1+2=3, 故答案为:3. (2)见答案. 【分析】(1)根据直角距离概念列式计算可得;(2)①设B(a,−34a +3),得出d(O,B)=|−a|+|34a −3|,再分a <0、a =0、0<a <4、a =4及a >4分别求解可得;②当点C 在过原点且与直线y =−34x +3垂直的直线上时,点B 与点C 的“直角距离”最小.设点C 的坐标为(x,y)(点C 位于第一象限),由{yx =43x 2+y 2=1得点C(35,45).由{y =43x y =−34x +3得B(3625,4825),再根据直角距离概念求解可得. 本题考查了圆的综合题:掌握直线与圆的位置关系、绝对值的意义和直线与直线的交点问题;通过阅读理解新概念、新定义的意义.。
2019年北京市朝阳区中考数学一模试卷及答案(word解析版)
北京市朝阳区2019年中考数学一模试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.2.(4分)(2019•朝阳区一模)中国航空母舰“辽宁号”的满载排水量为67500吨.将数675003.(4分)(2019•朝阳区一模)把4张形状、质地完全相同的卡片分别写上数字1,2,3,4,再将这些卡片放在一个不透明的盒子里,随机从中抽取1张卡片,则抽取的卡片上的数字为B∴抽取的卡片上的数字为奇数的概率是=.4.(4分)(2019•朝阳区一模)北京2019年3月的一周中每天最高气温如下:7,13,15,5.(4分)(2019•朝阳区一模)如图所示,直线l1∥l2,∠1=40°,则∠2为()6.(4分)(2019•朝阳区一模)如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()==47.(4分)(2019•朝阳区一模)二次函数y=(x ﹣1)2+3的顶点在( )y=8.(4分)(2019•朝阳区一模)如图,矩形ABCD 的两条对角线相交于点O ,∠BOC=120°,AB=3,一动点P 以1cm/s 的速度延折线OB ﹣BA 运动,那么点P 的运动时间x (s )与点C 、O 、P 围成的三角形的面积y 之间的函数图象为( )BAB==•(二.填空题(共5道小题,每小题4分,共20分)9.(4分)(2019•朝阳区一模)如果2是方程x2﹣mx+6=0的一个根,那么m=5.10.(4分)(2019•朝阳区一模)因式分解:2x2﹣18=2(x+3)(x﹣3).11.(4分)(2019•朝阳区一模)侧面展开图是矩形的简单几何体是圆柱,棱柱.12.(4分)(2019•朝阳区一模)如图所示,菱形ABCD的一条对角线BD上一点O到菱形一边AB的距离为3,那么O点到另外一边BC的距离为3.13.(4分)(2019•朝阳区一模)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.三.解答题(共9道小题,14题-20题每小题5分,21题6分,22题7分,共48分)14.(5分)(2019•朝阳区一模)计算:(1﹣)0+﹣2sin45°﹣()﹣1.﹣×﹣=﹣15.(5分)(2019•朝阳区一模)求不等式组的整数解.则不等式组16.(5分)(2019•朝阳区一模)如图所示,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,且BF=AC.求证:DF=DC.17.(5分)(2019•朝阳区一模)动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29000元.求成人票和儿童票各售出多少张.,解得18.(5分)(2019•朝阳区一模)某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)请根据所提供的信息补全频数分布直方图;(2)写出该样本中,七年级学生身高的中位数所在组的范围;155~160cm;(3)如果该校七年级共有500名学生,那么估计该校七年级身高在160cm及160cm以上的学生共有160人;(4)若该校所在区的七年级学生平均身高为155cm,请结合以上信息,对该校七年级学生的身高情况提出一个你的见解.19.(5分)(2019•朝阳区一模)已知:一次函数y=x+2与反比例函数y=相交于A、B两点且A点的纵坐标为4.(1)求反比例函数的解析式;(2)求△AOB的面积.y=得,y=组成方程组得,,,×4+20.(5分)(2019•朝阳区一模)如图,AB为⊙O的直径,BC是弦,OE⊥BC,垂足为F,且与⊙O相交于点E,连接CE、AE,延长OE到点D,使∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)若cosD=,BC=8,求AB的长.都对BF=CF=ABC=,=521.(6分)(2019•朝阳区一模)如图,抛物线y=﹣x2+c与x轴分别交于点A、B,直线y=﹣x+过点B,与y轴交于点E,并与抛物线y=﹣x2+c相交于点C.(1)求抛物线y=﹣x2+c的解析式;(2)直接写出点C的坐标;(3)若点M在线段AB上以每秒1个单位长度的速度从点A向点B运动(不与点A、B 重合),同时,点N在射线BC上以每秒2个单位长度的速度从点B向点C运动.设点M 的运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?=x+过点﹣)联立抛物线及直线解析式可得:或,,)BE==EBO=,EBO==(×t=t t=((.﹣t最大面积是22.(7分)(2019•朝阳区一模)在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=2.=cot60,== HG=AM=2=cot60===AM=2 AB=HG=2.。
朝阳区2019年初三一模数学试卷答案
数学试题答案一、选择题(本题共16分,每小题2分)题号12345678答案DBDCCABC二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:原式2212=⨯--………………………………………………………………4分1=-.………………………………………………………………………………5分18.解:去分母,得6-x =x -2.………………………………………………………………………2分整理,得2x =8.………………………………………………………………………………3分解得x =4.……………………………………………………………………………………4分经检验,x =4是原方程的解.…………………………………………………………………5分所以原方程的解是x =4.19.(1)图略.…………………………………………………………………………………………2分(2)QB ,PQ ,平行四边形对边平行.……………………………………………………………5分20.(1)证明:∵0m ≠,∴2(21)10mx m x m +-+-=是关于x 的一元二次方程.∴2(21)4(1)m m m ∆=---…………………………………………………………1分1.=…………………………………………………………………………………2分∵1>0,∴方程总有两个不相等的实数根.…………………………………………………3分题号9101112答案x ≥1答案不唯一,如a =1,b =2,c =030锐角题号13141516答案50116;29便携性(2)解:由求根公式,得(21)12m x m--±=.∴11-=x ,211x m=-.………………………………………………………………4分∵方程的两个实数根都是整数,且m 为整数,∴1m =±.……………………………………………………………………………5分21.(1)证明:∵D ,E 分别是边BC ,AC 的中点,∴CD =BD ,ED ∥AB .………………………………………………………………1分∵∠ABC =90°,∴∠EDC =90°.……………………………………………………………………2分∵DF =ED ,∴线段BC ,EF 互相垂直平分.∴四边形BFCE 是菱形.……………………………………………………………3分(2)解:∵BC =4,EF =2,∴BD =2,ED =1.……………………………………………………………………4分由(1)可知AB =2ED =2.∴在Rt△ABD 中,由勾股定理可求AD =.…………………………………5分22.(1)证明:如图1,连接OC .∵EF 是⊙O 的切线,∴∠OCE =90°.……………………1分∵BC =CD ,∴BC CD =.∴∠COB =∠DAB .……………………2分∴AF ∥CO .∴∠AFE =∠OCE =90°.即AF ⊥EF .……………………3分(2)解:如图2,连接BD ,∴∠ADB =90°.由(1)可知cos∠COE =cos A =45.设⊙O 的半径为r ,∵BE =1,∴415r r =+.解得4r =.……………………4分∴AB =8.∴在Rt△ABD 中,AD =32cos 5AB A ⋅=.…………………………………………5分23.(1)解:∵△OAB 的面积为2,∴22k=.∴4k =.………………………………………………………………………2分(2)21a -≤≤-或21a ≤≤+.………………………………………………………6分24.解:(1)AE =2CD .…………………………………………………………………………………1分(2)x /cm 012345y /cm6.04.83.83.02.73.0………………2分(3)…………………………4分(4)不正确;4,2.7.…………………………………………………………………………6分25.解:(1)81.5.………………………………………………………………………………………2分(2)乙;理由为:从近五年进入复赛的出线成绩可以预测今年的出线成绩约为81分,乙部门抽样成绩的中位数为81.5,说明20人中有10人可以进入复赛,甲部门不仅抽样成绩的中位数为78.5,低于乙部门,而且通过直方图可知超过80分的人数在20人中有8人,因此可以预测乙部门能进入复赛的人数多于甲部门,选择乙部门参赛更好.………………………………………………………………………………………5分(3)答案不唯一,如:110.…………………………………………………………………6分26.解:(1)当0a =时,抛物线表达式为223y x x =--,∵当0x =时,3y =-,∴点A 的坐标为(0,3)-.…………………………………………………………1分∴点B 的坐标为(4,3)-.…………………………………………………………2分(2)如图1,当a =0时,图形M 与线段AB 恰有三个公共点,如图2,当a =-3时,图形M 与线段AB 恰有一个公共点,如图3,当a =1时,图形M 与线段AB 恰有两个公共点,由图象可知,当30a -<<或1a =时,图形M 与线段AB 恰有两个公共点.…………………………………………………………6分27.解:(1)满足条件的点D 有两个,补全图形如图1所示.………………………………………2分(2)如图2,过点B 作BE ⊥D 1D 2于点E .由题意可知,BD 1=BD 2=BC ,AE ∥BC .∴∠AEB =90°.∵在Rt△ABC 中,∠BAC =90°,AB =AC ,∴∠EAB =∠ABC =45°.∴在Rt△ABE 中,2BE AB =,在Rt△ABC 中,22AB BC =.∴11122BE BC BD ==.……………………………………………………………………4分∴∠D 1=∠D 2=30°.∵D 1D 2∥BC ,∴30α=或150.……………………………………………………………………………5分(3)∵AB =2,∴BE AE ==.∴D 1E =D 2E .∴AD 的长为-或+分28.解:(1)3.………………………………………………………………………………………2分(2)①设直线334y x =-+与x 轴的交点为M ,与y 轴的交点为N ,当点B 运动到点N 时,d (O ,B )取得最小值,由直角距离的定义可知,d (O ,B )=ON =3.理由如下:当点B 运动到点M 时,d (O ,B )=OM >ON ;作BP ⊥y 轴于点P ,如图1,当点B 在点N 的左侧时,d (O ,B )=BP +OP >OP >ON ;如图2,当点B 在线段MN 上时,d (O ,B )=BP +OP >NP +OP ,即d (O ,B )>ON ;如图3,当点B 在点M 的右侧时,d (O ,B )=BP +OP >BP >OM >ON ;综上所述,当点B 运动到点N 时,d (O ,B )取得最小值,为3.………………5分②由①可知,对于⊙O 上每一个给定的点C ,当点B ,C 运动到使BC ⊥x 轴时,d (B ,C )取得最小值,为线段BC 的长度.如图4,过点C 作直线334y x =-+的垂线,垂足为D ,过点C 作x 轴的垂线,交直线334y x =-+于点B .可证54BC CD =.当CD 取得最小值时,BC 取得最小值.因此,将直线334y x=-+沿图中所示由点D到点C的方向平移到第一次与⊙O有公共点,即与⊙O在第一象限内相切的位置时,切点即为所求的点C.此时75CD=,74BC=.所以d(B,C)的最小值为7 4.………………………………………………………………7分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区九年级综合练习(一)数学试卷2019.5学校 班级 姓名 考号 考 生 须知 1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.下面是一些北京著名建筑物的简笔画,其中不是..轴对称图形的是(A ) (B ) (C ) (D )2.实数m ,n 在数轴上对应的点的位置如图所示,若0mn <,且m n <,则原点可能是(A )点A(B )点B(C )点C (D )点D3.下列几何体中,其三视图的三个视图完全相同的是(A ) (B ) (C ) (D )4.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为 (A )9.5×104亿千米 (B )95×104亿千米 (C )3.8×105亿千米(D )3.8×104亿千米5.把不等式组14,112x x -≤⎧⎪⎨+<⎪⎩中两个不等式的解集在数轴上表示出来,正确的是(A ) (B ) (C ) (D )6.如果3a b -=,那么代数式2()b aa a a b-⋅+的值为(A )3- (B )3 (C )3(D )237.今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力.北京科技创新能力不断增强,下面的统计图反映了2010—2018年北京市每万人发明专利申请数与授权数的情况.2010—2018年北京市每万人发明专利申请数与授权数统计图[以上数据摘自北京市统计局官网]根据统计图提供的信息,下列推断合理的是(A )2010—2018年,北京市每万人发明专利授权数逐年增长(B )2010—2018年,北京市每万人发明专利授权数的平均数超过10件 (C )2010年申请后得到授权的比例最低 (D )2018年申请后得到授权的比例最高 8.下表是某班同学随机投掷一枚硬币的试验结果.抛掷次数n 50 100 150 200 250 300 350 400 450 500 “正面向上”次数m 22527195116138160187214238“正面向上”频率nm0.44 0.52 0.47 0.48 0.46 0.46 0.46 0.47 0.48 0.48 下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生; 其中合理的是(A )①② (B )①③ (C )③ (D )②③二、填空题(本题共16分,每小题2分)9.若1x -在实数范围内有意义,则实数x 的取值范围是_____.10.用一组a ,b ,c 的值说明命题“若ac bc =,则a b =”是错误的,这组值可以是=a _____,=b _____,=c _____. 11.如图,某人从点A 出发,前进5 m 后向右转60°,再前进5 m 后又向右转60°,这样一直走下去,当他第一次回到出发点A 时,共走了_____m .12.如图所示的网格是正方形网格,△ABC 是_____三角形.(填“锐角”,“直角”或“钝角”)13.如图,过⊙O 外一点P 作⊙O 的两条切线P A ,PB ,切点分别为A ,B ,作直径BC ,连接AB ,AC ,若∠P =80°,则∠C =_____°. 14.如图,在矩形ABCD 中,过点B 作对角线AC 的垂线,交AD 于点E ,若AB =2,BC =4,则AE =_____.15.某班对思想品德,历史,地理三门课程的选考情况进行调研,数据如下:其中思想品德、历史两门课程都选了的有3人,历史、地理两门课程都选了的有4人,则该班选了思想品德而没有选历史的有_____人;该班至少..有学生_____人. 16.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此次检测中的排名情况如下图所示,可以看出其中A 型保温杯的优势是_____.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)科目 思想品德 历史 地理选考人数(人) 19 13 18 第11题图 第13题图第12题图 第14题图17.计算:()02sin 452201918π+----o .18.解分式方程:312242x x x -=--.19.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得PQ ∥l . 作法:如图,①在直线l 上取两点A ,B ;②以点P 为圆心,AB 为半径画弧,以点B 为圆心,AP 为半径画弧,两弧在直线l 上方相交于点Q ;③作直线PQ .根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵ P A =_____,AB =_____, ∴ 四边形P ABQ 是平行四边形. ∴ PQ ∥l (_____).(填写推理的依据)20.已知关于x 的方程2(21)10(0)mx m x m m +-+-=≠.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数m的值.21.如图,在Rt△ABC中,∠ABC=90°,D,E分别是边BC,AC的中点,连接ED并延长到点F,使DF=ED,连接BE,BF,CF,AD.(1)求证:四边形BFCE是菱形;(2)若BC=4,EF=2,求AD的长.22.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cos A=45,BE=1,求AD的长.23.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数kyx=的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O’,A’,若线段O’A’与反比例函数kyx=的图象有公共点,直接写出a的取值范围.24.小超在观看足球比赛时,发现了这样一个问题:两名运动员从不同的位置出发,沿着不同的方向,以不同的速度,直线奔跑,什么时候他们离对方最近呢?小超通过一定的测量,并选择了合适的比例尺,把上述问题抽象成如下数学问题:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D以1cm/s的速度从点C向点B 运动,点E以2cm/s的速度从点A向点B运动,当点E到达点B时,两点同时停止运动,若点D,E同时出发,多长时间后DE取得最小值?小超猜想当DE⊥AB时,DE最小.探究后发现用几何的知识解决这个问题有一定的困难,于是根据函数的学习经验,设C,D两点间的距离为x cm,D,E两点间的距离为y cm,对函数y随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:(1)由题意可知线段AE和CD的数量关系是:_____;(2)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;x/cm 0 1 2 3 4 5y/cm 6.0 4.8 3.8 2.7 3.0(说明:补全表格时相关数值保留一位小数)(3)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:小超的猜想_____;(填“正确”或“不正确”)当两点同时出发了_____s时,DE取得最小值,为_____cm.25.为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛.该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .甲部门成绩的频数分布直方图如下(数据分成6组:4050x ≤<,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤):b .乙部门成绩如下:乙 40 52 70 70 71 73 77 78 80 8182828282838383869194c .甲、乙两部门成绩的平均数、方差、中位数如下:d .近五年该单位参赛员工进入复赛的出线成绩如下:2014年 2015年 2016年 2017年 2018年 出线成绩(百分制)7981808182根据以上信息,回答下列问题: (1)写出表中m 的值;(2)可以推断出选择_____部门参赛更好,理由为_____; (3)预估(2)中部门今年参赛进入复赛的人数为_____.26.在平面直角坐标系xOy 中,抛物线223y x x a =-+-,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B .平均数 方差 中位数 甲 79.6 36.84 78.5 乙77147.2m(1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.27.如图,在Rt △ABC 中,∠A =90°,AB =AC ,将线段BC 绕点B 逆时针旋转α°(0<α<180),得到线段BD ,且AD ∥BC . (1)依题意补全图形;(2)求满足条件的α的值; (3)若AB =2,求AD 的长.28.在平面直角坐标系xOy 中,对于任意两点111(,)P x y 和222(,)P x y ,称121212(,)d P P x x y y =-+-为1P,2P 两点的直角距离.(1)已知点A(1,2),直接写出d(O,A)=_____;(2)已知B是直线334y x=-+上的一个动点,①如图1,求d(O,B)的最小值;②如图2,C是以原点O为圆心,1为半径的圆上的一个动点,求d(B,C)的最小值.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2019.5一、选择题(本题共16分,每小题2分)图2图1题号 1 2 3 4 5 6 7 8 答案DBDCCABC二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:原式 2221322=⨯+-- ……………………………………4分 12=--.…………………………………………………………5分18.解:去分母,得 6-x =x -2. ……………………………………………………2分整理,得 2x =8.………………………………………………………3分 解得 x =4.……………………………………………………………………4分 经检验,x =4是原方程的解. ……………………………………………………5分 所以原方程的解是x =4.19.(1)图略. ……………………………………………………………………………2分 (2)QB ,PQ ,平行四边形对边平行. ………………………………………………5分20.(1)证明:∵0m ≠,∴2(21)10mx m x m +-+-=是关于x 的一元二次方程.∴2(21)4(1)m m m ∆=--- ………………………………………1分1.= …………………………………………………………………2分∵1>0,∴方程总有两个不相等的实数根. ……………………………………3分 (2)解:由求根公式,得(21)12m x m --±=.∴11-=x ,211x m=-.…………………………………………………4分∵方程的两个实数根都是整数,且m 为整数,题号 9 10 11 12 答案 x ≥ 1 答案不唯一,如 a =1,b =2,c =030 锐角 题号 13 14 15 16 答案50116;29便携性∴1m =±. ………………………………………………………………5分21.(1)证明:∵D ,E 分别是边BC ,AC 的中点,∴CD =BD ,ED ∥AB . ……………………………………………………1分 ∵∠ABC =90°,∴∠EDC =90°. …………………………………………………………2分 ∵DF =ED ,∴线段BC ,EF 互相垂直平分.∴四边形BFCE 是菱形.……………………………………………………3分(2)解:∵BC =4,EF =2,∴BD =2,ED =1.………………………………………………………………4分 由(1)可知AB =2ED =2.∴在Rt △ABD 中,由勾股定理可求AD =22. (5)分 22.(1)证明:如图1,连接OC .∵EF 是⊙O 的切线,∴∠OCE =90°. ……………………1分 ∵BC =CD ,∴»»BCCD =. ∴∠COB =∠DAB .……………………2分 ∴AF ∥CO .∴∠AFE =∠OCE =90°. 即AF ⊥EF . ……………………3分(2)解:如图2,连接BD ,∴∠ADB =90°.由(1)可知cos ∠COE =cos A =45. 设⊙O 的半径为r , ∵BE =1,∴415r r =+. 解得4r =.……………………4分∴AB =8.∴在Rt △ABD 中,AD =32cos 5AB A ⋅=.………………………………5分 23.(1)解:∵△OAB 的面积为2,∴22k=. 图1图2∴4k =.………………………………………………2分(2)215a -≤≤-或215a ≤≤+. ……………………………………6分24. 解:(1)AE =2CD .………………………………………………………………………1分(2)x /cm 0 1 2 3 4 5 y /cm6.0 4.8 3.8 3.0 2.7 3.0………………2分(3)…………………………4分(4)不正确;4,2.7. (6)分25.解:(1)81.5. …………………………………………………………………………2分(2)乙;理由为:从近五年进入复赛的出线成绩可以预测今年的出线成绩约为81分,乙部门抽样成绩的中位数为81.5,说明20人中有10人可以进入复赛,甲部门不仅抽样成绩的中位数为78.5,低于乙部门,而且通过直方图可知超过80分的人数在20人中有8人,因此可以预测乙部门能进入复赛的人数多于甲部门,选择乙部门参赛更好. ………………………………………5分 (3)答案不唯一,如:110. ……………………………………………………6分26. 解:(1)当0a =时,抛物线表达式为223y x x =--,∵当0x=时,3y =-,∴点A 的坐标为(0,3)-. ………………………………………………1分 ∴点B 的坐标为(4,3)-. ……………………………………………2分(2)如图1,当a =0时,图形M 与线段AB 恰有三个公共点,如图2,当a =-3时,图形M 与线段AB 恰有一个公共点, 如图3,当a =1时,图形M 与线段AB 恰有两个公共点,由图象可知,当30a -<<或1a =时,图形M 与线段AB 恰有两个公共点.……………………………………………6分27. 解:(1)满足条件的点D 有两个,补全图形如图1所示.…………………………2分 (2)如图2,过点B 作BE ⊥D 1D 2于点E .由题意可知,BD 1=BD 2 =BC ,AE ∥BC . ∴∠AEB =90°.∵在Rt △ABC 中,∠BAC =90°,AB =AC , ∴∠EAB =∠ABC =45°.∴在Rt △ABE 中,22BE AB =,在Rt △ABC 中,22AB BC =. ∴11122BE BC BD ==.………………………………………………………4分图3图2 图1图1图2∴∠D1=∠D2=30°.∵D1D2∥BC,∴30α=或150.………………………………………………………………5分(3)∵AB=2,∴2BE AE==.∴D1E= D2E=6.∴AD的长为62-或62+.…………………………………………7分28.解:(1)3.…………………………………………………………………………2分(2)①设直线334y x=-+与x轴的交点为M,与y轴的交点为N,当点B运动到点N时,d(O,B)取得最小值,由直角距离的定义可知,d(O,B)=ON=3.理由如下:当点B运动到点M时,d(O,B)=OM>ON;作BP⊥y轴于点P,如图1,当点B在点N的左侧时,d(O,B)=BP+OP>OP>ON;如图2,当点B在线段MN上时,d(O,B)=BP+OP>NP+OP,即d(O,B)>ON;如图3,当点B在点M的右侧时,d(O,B)=BP+OP>BP>OM>ON;综上所述,当点B运动到点N时,d(O,B)取得最小值,为3.………………5分②由①可知,对于⊙O上每一个给定的点C,当点B,C运动到使BC⊥x轴时,d(B,C)取得最小值,为线段BC的长度.图3图2图1如图4,过点C作直线33 4y x=-+的垂线,垂足为D,过点C作x轴的垂线,交直线334y x=-+于点B.可证54BC CD=.当CD取得最小值时,BC取得最小值.因此,将直线334y x=-+沿图中所示由点D到点C的方向平移到第一次与⊙O 有公共点,即与⊙O在第一象限内相切的位置时,切点即为所求的点C.此时75CD=,74BC=.所以d(B,C)的最小值为74.…………………………………………………7分更多初中数学资料,初中数学试题精解请微信关注图4。