2010年云南省红河州中考数学试卷全解全析

合集下载

红河自治州2010年中考数学真题及答案解析

红河自治州2010年中考数学真题及答案解析

ABC D 2010年云南红河自治州高中招生统一考试数学试卷解析一、选择题(本大题共7个小题,每小题只有一个选项符合题目要求,每小题3分,满分21分) 1.(2010云南红河州,1,3分)下列计算正确的是 ( )A .(-1)-1=1 B .(-3)2=-6 C .π0=1 D .(-2)6÷(-2)3=(-2)2 【分析】选项A 错误(-1)-1=11(1)-=-1;选项B 答案是9;选项C 正确;选项D 应该等于(-2)6-3=(-2)3. 【答案】C【涉及知识点】整式、幂的运算【点评】本题考查了幂的运算法则、零指数幂、负指数幂。

幂a n =n 个a 相乘。

当a ≠0,n =0时,为零指数幂,任何非0的数的零次幂都等于1,即a 0=1;负指数幂a -n =1n a;同底数幂的除法法则:a m ÷a n =a m -n . 【推荐指数】★★2.(2010云南红河州,2,3分)不在函数xy 12=图像上的点是( ) A .(2,6) B .(-2,-6) C .(3,4) D .(-3,4) 【分析】分别将4个点的坐标代人解析式验证,只有(-3,4)不符合. 【答案】D【涉及知识点】反比例函数【点评】本题考查了反比例函数,判断某点是否在函数图像上的方法是:把该点的坐标代人解析式,如果符合,就在图像上;如果不符合,就不在函数图像上。

本题还是一道易错题,如果不认真审题,以为是在函数图像上,看到选项A 就选了. 【推荐指数】★★3. (2010云南红河州,3,3分)图1是由大小相同的5个小正方体搭成的几何体,则它的主视图是图1【分析】几何体的主视图,就是从前面看这个几何体得到的正投影,4个选项里,只有B 符合,选项A 为左视图,选项C 为俯视图. 【答案】B【涉及知识点】三视图【点评】本题考查了简单组合体的三视图,考查知识点单一,考查信度高.【推荐指数】★4. (2010云南红河州,4,3分)使分式x-31有意义的x 的取值是 ( ) A .x ≠0 B . x ≠±3 C . x ≠-3 D . x ≠3 【分析】分式x-31有意义的条件是分式的分母不等于0,所以,3-x ≠0, x ≠3. 【答案】D【涉及知识点】分式有意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零. 【推荐指数】★5. (2010云南红河州,5,3分)下列命题错误的是 ( )A 四边形内角和等于外角和B 相似多边形的面积比等于相似比C 点P (1,2)关于原点对称的点的坐标为(-1,-2)D 三角形的中位线平行于第三边,且等于第三边的一半【分析】选项A 正确,四边形内角和等于外角和都是360°;选项B 错误,相似多边形的面积比应该等于相似比的平方. 【答案】B【涉及知识点】命题、n 边形的内角和、n 边形的外角和、相似多边形的性质、关于原点对称的点的坐标规律、三角形的中位线定理.【点评】本题是一道命题判断题,考查的知识点多.n 边形的内角和公式(n -2)180°;n 边形的外角和都是360°;相似多边形的面积比等于相似比的平方;点P (a ,b )关于原点对称的点的坐标为(-a ,-b ); 三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半. 【推荐指数】★★★6. (2010云南红河州,6,3分)如果的取值是和是同类项,则与n m y x y xm m n 31253--( )A .3和-2B .-3和2C .3和2D .-3和-2【分析】两个同类项中相同字母的指数相同,所以,2n -1=m , m =3解得:m =3,n =2.【答案】C【涉及知识点】同类项、二元一次方程组【点评】本题考查了同类项的概念的运用,两个同类项中相同字母的指数相同,结合一次方程进行考查,题目不难,学生容易得分,考查信度好. 【推荐指数】★★7(2010云南红河州,7,3分)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD =60°,则∠DBC 的度数为 ( )A .30°B .40°C .50°D .60°图2E DC BAo【分析】因为BD 为直径,弦AC ⊥BD ,根据垂径定理弧AD =弧DC ,所以,∠AOD =∠COD =60°,再根据圆周角是同弧所对圆心角的一半,则∠DBC 的度数为30°. 【答案】A【涉及知识点】圆、垂径定理、圆周角、圆心角 【点评】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;弧、弦、圆心角关系的定理:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等;圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.【推荐指数】★★★二、填空题(本大题共8个小题,每小题3分,满分24分) 8.(2010云南红河州,8,3分)31-的相反数是 【分析】根据相反数的定义,只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。

【2010真题】红河州数学中考试卷及答案

【2010真题】红河州数学中考试卷及答案

AABC D图2D 图3E DC B A 红河 自治州2010年高中(中专)招生统一考试 数学试卷一、选择题(本大题共7个小题,每小题只有一个选项符合题目要求,每小题3分,满分21分)1. 下列计算正确的是 ( C ) A .(-1)-1=1 B.(-3)2=-6 C.π0=1 D.(-2)6÷(-2)3=(-2)22. 不在函数xy 12=图像上的点是 ( D ) A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4)3. 图1是由大小相同的5个小正方体搭成的几何体,则它的主视图是 ( B )4. 使分式x-31有意义的x的取值是( D ) A.x ≠0 B. x ≠±3 C. x ≠-3 D. x ≠35. 下列命题错误的是 ( B ) A. 四边形内角和等于外角和 B. 相似多边形的面积比等于相似比 C. 点P (1,2)关于原点对称的点的坐标为(-1,-2) D. 三角形的中位线平行于第三边,且等于第三边的一半6. 如果的取值是和是同类项,则与n m y x y x mmn 31253-- ( C ) A.3和-2 B.-3和2 C.3和2 D.-3和-27. 如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的度数为( A )A.30°B.40°C.50°D.60°二、填空题(本大题共8个小题,每小题3分,满分分)8.31-的相反数是319. 四次测试小丽每分钟做仰卧起坐的次数分别为:50、45、48、47,这组数据的中位数为___47.5____.10. 红河州初中毕业生参加今年中考的学生数约是36600人,这个数用科学记数法可表示为3.66×10411. 如图3,D 、E 分别是AB 、AC 上的点,若∠A=70°,∠B=60°,DE//BC.则∠AED 的度数是 50°.12. 已知一次函数y=-3x+2,它的图像不经过第 三 象限.13. 计算:12+2sin60°= 3314. 已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为120° .15. 如图4,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 3n 个.哈尼族彝 族图6F ED C B A 21三、解答题(本大题共8个小题,满分75分)16. (本小题满分7分)先化简再求值:.25624322+-+-÷+-a a a a a 选一个使原代数式有意义的数带入求值. 解:原式=.25)3(2)2)(2(32+-+-+÷+-a a a a a a=.25)2)(2()3(232+--++⋅+-a a a a a a =2522+-+a a =23+-a当即可)、的取值不唯一,只要时,(321-≠=a a a 原式=1213-=+-17.(本小题满分9分)如图5,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12解:延长CD 交AB 于G ,则CG=12依题意:PC=300×10=3000(米)=3在Rt △PCD 中:PC=3,∠P=60° CD=PC ·tan ∠P=3×tan60° =33∴12-CD=12-33≈6.8(千米)答:这座山的高约为6.8千米.18. (本小题满分9分)如图6,在正方形,E 、F 是AG 上的两点(E 、F 与A 、G 两点不重合),若AF=BF+EF,∠1=∠2,请判断线段DE 与BF 有怎样的位置关系,并证明你的结论. 解:根据题目条件可判断DE//BF. 证明如下:∵四边形ABCD 是正方形, ∴AB=AD ,∠BAF+∠2=90°. ∵AF=AE+EF ,又AF=BF+EF∴AE=BF∵∠1=∠2,∴△ABF ≌△DAE (SAS ). ∴∠AFB=∠DEA ,∠BAF=∠ADE. ∴∠ADE+∠2=90°,∴∠AED=∠BFA=90°.A 图5∴DE//BF.19. (本小题满分8分)某中学计划对本校七年级10个班的480名学生按“学科”、“文体”、“手工”三个项目安排课外兴起小组,小组小明从每个班中随机抽取5名学生进行问卷调查,并将统计结果制成如下所示的表和图7.(1)请将统计表、统计图补充完整;(2)请以小明的统计结果来估计该校七年级480名学生参加各个项目的人数.图7图712341234123443214321开始(1) 统计表、统计图补充如上;(2) 七年级480名学生参加个项目人数约为:学科:480×50%=240(人)文体:480×20%=96(人) 手工:480×30%=144(人)答:该校七年级480名学生参加“学科”、“文体”、“手工”三个项目的人数分别约为240人,96人,144人.20. (本小题满分8分)现有一本故事书,姐妹俩商定通过摸球游戏定输赢(赢的一方先看),游戏规则是:用4个完全相同的小球,分别表上1、2、3、4后放进一个布袋内,先由姐姐从布袋中任意摸出一个小球,记下小球的标号后放回并摇匀,再由妹妹任意摸出一个小球,若两人摸出的小球标号之积为偶数,则姐姐赢,两人摸出的小球标号之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由. 解:树状图如下图:或列表如下表:∴ P (姐姐赢)=431612= P (妹妹赢)=41164= 所以此游戏对双方不公平,姐姐赢的可能性大.21.(本小题满分9分)师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求: (1)徒弟平均每天组装多少辆摩托车(答案取整数)?x(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同? 解:(1)设徒弟每天组装x 辆摩托车,则师傅每天组装(x+2)辆.依题意得:7x<28 7(x+2)>28解得2<x<4∵x 取正整数 ∴x=3(2)设师傅工作m 天,师徒两人所组装的摩托车辆数相同. 依题意得:3(m+2)=5m 解得:m=3答:徒弟每天组装3辆摩托车;若徒弟先工作2天,师傅工作3天,师徒两人做组装的摩托车辆数相同. 22.(本小题满分11分)二次函数2x y =的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.(2)求经过两次平移后的图像与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0? 解:画图如图所示: 依题意得:2)1(2--=x y =2122-+-x x =122--x x∴平移后图像的解析式为:122--x x (2)当y=0时,122--x x =0 2)1(2=-x 21±=-x212121+=-=x x , ∴平移后的图像与x 轴交与两点,坐标分别为(21-,0)和(21+,0)由图可知,当x<21-或x>21+时,二次函数2)1(2--=x y 的函数值大于0.23.(本小题满分14分)如图9,在直角坐标系xoy中,O 是坐标原点,点A 在x 正半轴上,OA=312cm ,点B 在y 轴的正半轴上,OB=12cm ,动点P 从点O 开始沿OA 以32cm/s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 的速度向点O 移动.如果P 、Q 、R 分别从O 、A 、B 同时移动,移动时间为t (0<t <6)s. (1)求∠OAB 的度数.(2)以OB 为直径的⊙O ‘与AB 交于点M ,当t 为何值时,PM 与⊙O ‘相切?(3)写出△PQR 的面积S 随动点移动时间t 的函数关系式,并求s 的最小值及相应的t 值. (4)是否存在△APQ 为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.△AOB 中:xxtan ∠OAB=3331212==OA OB ∴∠OAB=30°(2)如图10,连接O ‘P ,O ‘M. 当PM 与⊙O ‘相切时,有∠PM O ‘=∠PO O ‘=90°,△PM O ‘≌△PO O ‘由(1)知∠OBA=60°∵O ‘M= O ‘B ∴△O ‘BM 是等边三角形∴∠B O ‘M=60° 可得∠O O ‘P=∠M O ‘P=60°∴OP= O O ‘·tan ∠O O ‘P =6×tan60°=36 又∵OP=32t∴32t=36,t=3即:t=3时,PM 与⊙O ‘相切.(3)如图9,过点Q 作QE ⊥x 于点E ∵∠BAO=30°,AQ=4t ∴QE=21AQ=2t AE=AQ ·cos ∠OAB=4t ×t 3223= ∴OE=OA-AE=312-32t∴Q 点的坐标为(312-32t ,2t ) S △PQR = S △OAB -S △OPR -S △APQ -S △BRQ=)32312(2212)32312(21)212(32213121221t t t t t t -⋅-⋅---⋅⋅-⋅⋅ =372336362+-t t=318)3(362+-t (60<<t )当t=3时,S △PQR 最小=318 (4)分三种情况:如图11. ○1当AP=AQ 1=4t 时, ∵OP+AP=312 ∴32t+4t=312 ∴t=2336+或化简为t=312-18 ○2当PQ 2=AQ 2=4t 时 过Q 2点作Q 2D ⊥x 轴于点D , ∴PA=2AD=2A Q 2·cosA=34t 即32t+34t =312 ∴t=2○3当PA=PQ 3时,过点P 作PH ⊥AB 于点HAH=PA ·cos30°=(312-32t )·23=18-3t AQ 3=2AH=36-6t得36-6t=4t , ∴t=3.6综上所述,当t=2,t=3.6,t=312-18时,△APQ 是等腰三角形.。

红河州2010年中考数学试卷

红河州2010年中考数学试卷

ABC D 图2D 红河 自治州2010年高中(中专)招生统一考试数学试卷一、选择题(本大题共7个小题,每小题只有一个选项符合题目要求,每小题3分,满分21分)1. 下列计算正确的是 ( C )A .(-1)-1=1 B.(-3)2=-6 C.π0=1 D.(-2)6÷(-2)3=(-2)2 2. 不在函数xy 12=图像上的点是 ( D ) A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4)3. 图1是由大小相同的5个小正方体搭成的几何体,则它的主视图是 ( B )图1 4. 使分式x-31有意义的x 的取值是 ( D ) A.x ≠0 B. x ≠±3 C. x ≠-3 D. x ≠35. 下列命题错误的是 ( B )A. 四边形内角和等于外角和B. 相似多边形的面积比等于相似比C. 点P (1,2)关于原点对称的点的坐标为(-1,-2)D. 三角形的中位线平行于第三边,且等于第三边的一半 6. 如果的取值是和是同类项,则与n m y x y xm m n 31253-- ( C )A.3和-2B.-3和2C.3和2D.-3和-27. 如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC的度数 ( A ) A.30° B.40°C.50°D.60°二、填空题(本大题共8个小题,每小题3分,满分24分) 8.31-的相反数是31哈尼族彝 族图3ED CBA (3)(2)(1)C 3B 3A 3A 2C 1B 11C B AC 2B 2B 2C 2A B C 1B 1C 1A 2C 1B 11C B A … 图4 9. 四次测试小丽每分钟做仰卧起坐的次数分别为:50、45、48、47,这组数据的中位数为___47.5____.10. 红河州初中毕业生参加今年中考的学生数约是36600人,这个数用科学记数法可表示为3.66³10411. 如图3,D 、E 分别是AB 、AC 上的点,若∠A=70°,∠B=60°, DE//BC.则∠AED 的度数是 50°.12. 已知一次函数y=-3x+2,它的图像不经过第 三 象限. 13. 计算:12+2sin60°= 3314. 已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为 120° .15. 如图4,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 3n 个.三、解答题(本大题共8个小题,满分75分)16. (本小题满分7分)先化简再求值:.25624322+-+-÷+-a a a a a 选一个使原代数式有意义的数带入求值. 解:原式=.25)3(2)2)(2(32+-+-+÷+-a a a a a a =.25)2)(2()3(232+--++⋅+-a a a a a a =2522+-+a a =23+-a当即可)、的取值不唯一,只要时,(321-≠=a a a原式=1213-=+-17.(本小题满分9分)如图5,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)图6F E D C BA 21图7解:延长CD 交AB 于G ,则CG=12依题意:PC=300³10=3000(米)=3在Rt △PCD 中: PC=3,∠P=60° CD=PC ²tan ∠P =3³tan60°=33∴12-CD=12-33≈6.8(千米) 答:这座山的高约为6.8千米.18. (本小题满分9分)如图6,在正方形ABCD 中,G 是BC 上的任意一点,(G 与B 、C 两点不重合),E 、F 是AG 上的两点(E 、F 与A 、G 两点不重合),若AF=BF+EF ,∠1=∠2,请判断线段DE 与BF 有怎样的位置关系,并证明你的结论. 解:根据题目条件可判断DE//BF.证明如下:∵四边形ABCD 是正方形, ∴AB=AD ,∠BAF+∠2=90°.∵AF=AE+EF ,又AF=BF+EF ∴AE=BF∵∠1=∠2,∴△ABF ≌△DAE (SAS ).∴∠AFB=∠DEA ,∠BAF=∠ADE.∴∠ADE+∠2=90°,∴∠AED=∠BFA=90°. ∴DE//BF.19. (本小题满分8分)某中学计划对本校七年级10个班的480名学生按“学科”、“文体”、“手工”三个项目安排课外兴起小组,小组小明从每个班中随机抽取5名学生进行问卷调查,并将统计结果制成如下所示的表和图7. (1)请将统计表、统计图补充完整;(2)请以小明的统计结果来估计该校七年级480名学生参加各个项目的人数.A图5图712341234123443214321开始解:(1) 统计表、统计图补充如上;(2) 七年级480名学生参加个项目人数约为:学科:480³50%=240(人) 文体:480³20%=96(人) 手工:480³30%=144(人)答:该校七年级480名学生参加“学科”、“文体”、“手工”三个项目的人数分别约为240人,96人,144人.20. (本小题满分8分)现有一本故事书,姐妹俩商定通过摸球游戏定输赢(赢的一方先看),游戏规则是:用4个完全相同的小球,分别表上1、2、3、4后放进一个布袋内,先由姐姐从布袋中任意摸出一个小球,记下小球的标号后放回并摇匀,再由妹妹任意摸出一个小球,若两人摸出的小球标号之积为偶数,则姐姐赢,两人摸出的小球标号之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由. 解:树状图如下图:或列表如下表: 由上述树状图或表格知:所有可能出现的结果共有16种.∴ P (姐姐赢)=431612= P (妹妹赢)=41164= 所以此游戏对双方不公平,姐姐赢的可能性大.21.(本小题满分9分)师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求: (1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同? 解:(1)设徒弟每天组装x 辆摩托车,则师傅每天组装(x+2)辆.依题意得:7x<28 7(x+2)>28解得2<x<4∵x 取正整数 ∴x=3(2)设师傅工作m 天,师徒两人所组装的摩托车辆数相同. 依题意得:3(m+2)=5m 解得:m=3答:徒弟每天组装3辆摩托车;若徒弟先工作2天,师傅工作3天,师徒两人做组装的摩托车辆数相同.22.(本小题满分11分)二次函数2x y =的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.(2)求经过两次平移后的图像与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0?解:画图如图所示:依题意得:2)1(2--=x y =2122-+-x x =122--x x∴平移后图像的解析式为:122--x x (2)当y=0时,122--x x =0 2)1(2=-x 21±=-x212121+=-=x x ,∴平移后的图像与x 轴交与两点,坐标分别为(21-,0)和(21+,0)xxx由图可知,当x<21-或x>21+时,二次函数2)1(2--=x y 的函数值大于0.23.(本小题满分14分)如图9,在直角坐标系xoy 中,O 是坐标原点,点A 在x 正半轴上,OA=312cm ,点B 在y 轴的正半轴上,OB=12cm ,动点P 从点O 开始沿OA 以32cm/s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 的速度向点O 移动.如果P 、Q 、R 分别从O 、A 、B 同时移动,移动时间为t (0<t <6)s. (1)求∠OAB 的度数.(2)以OB 为直径的⊙O ‘与AB 交于点M ,当t 为何值时,PM 与⊙O ‘相切? (3)写出△PQR 的面积S 随动点移动时间t 的函数关系式,并求s 的最小值及相应的t 值. (4)是否存在△APQ 为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.解:(1)在Rt △AOB 中: tan ∠OAB=3331212==OA OB ∴∠OAB=30°(2)如图10,连接O ‘P ,O ‘M. 当PM 与⊙O ‘相切时,有∠PM O ‘=∠PO O ‘=90°,△PM O ‘≌△PO O ‘由(1)知∠OBA=60°∵O ‘M= O ‘B∴△O ‘BM 是等边三角形∴∠B O ‘M=60° 可得∠O O ‘P=∠M O ‘P=60°∴OP= O O ‘²tan ∠O O ‘P =6³tan60°=36 又∵OP=32t∴32t=36,t=3即:t=3时,PM 与⊙O ‘相切.(3)如图9,过点Q 作QE ⊥x 于点Ex∵∠BAO=30°,AQ=4t ∴QE=21AQ=2t AE=AQ ²cos ∠OAB=4t ³t 3223= ∴OE=OA-AE=312-32t∴Q 点的坐标为(312-32t ,2t ) S △PQR = S △OAB -S △OPR -S △APQ -S △BRQ=)32312(2212)32312(21)212(32213121221t t t t t t -⋅-⋅---⋅⋅-⋅⋅ =372336362+-t t=318)3(362+-t (60<<t ) 当t=3时,S △PQR 最小=318 (4)分三种情况:如图11.○1当AP=AQ 1=4t 时, ∵OP+AP=312 ∴32t+4t=312∴t=2336+或化简为t=312-18 ○2当PQ 2=AQ 2=4t 时 过Q 2点作Q 2D ⊥x 轴于点D , ∴PA=2AD=2A Q 2²cosA=34t 即32t+34t =312 ∴t=2○3当PA=PQ 3时,过点P 作PH ⊥AB 于点H AH=PA ²cos30°=(312-32t )²23=18-3tAQ3=2AH=36-6t得36-6t=4t,∴t=3.612-18时,△APQ是等腰三角形. 综上所述,当t=2,t=3.6,t=3。

数学八年级上册 全册全套试卷中考真题汇编[解析版]

数学八年级上册 全册全套试卷中考真题汇编[解析版]

数学八年级上册 全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.2.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.3.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=. 故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.4.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3【解析】试题解析:设此三角形三个内角的比为x ,2x ,3x ,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.5.如果一个n 边形的内角和是1440°,那么n=__.【答案】10【解析】∵n 边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.6.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是_____.【答案】85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC 的度数.【详解】∵在△ABC 中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD 平分∠ABC ,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.二、八年级数学三角形选择题(难)7.如图,在ABC ∆中,点D 在BC 上,点O 在AD 上,如果3AOB S ∆=,2BOD S ∆=,1ACO S ∆=,那么COD S ∆=( )A .13B .12C .32D .23【答案】D【解析】【分析】根据三角形的面积公式结合3AOB S ∆=,2BOD S ∆=求出AO 与DO 的比,再根据1ACO S ∆=,即可求得COD S ∆的值.【详解】∵3AOB S ∆=,2BOD S ∆=,且AD 边上的高相同,∴AO :DO=3:2.∵△ACO 和△COD 中,AD 边上的高相同,∴S △AOC :S △COD = AO :DO=3:2,∵1ACO S ∆=,∴COD S ∆=23. 故选D .【点睛】本题考查了三角形的面积及等积变换,利用同底等高的三角形面积相等是解题的关键.8.如图P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )A .085B .090C .095D .0100【答案】C【解析】 ∵070,BAC ∠= 0120,BPC ∠=∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252⨯=; ∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,∴BFC ∠=180°-(∠FBC+∠FCB )=180°-85°=95°.故选C.点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.9.一正多边形的内角和与外角和的和是1440°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1440°,n﹣2=6,n=8.故这个多边形的边数为8.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.10.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A.7 B.8 C.9 D.10【答案】A【解析】设这个多边形的边数为x,根据题意可得:x-=⨯+,180(2)2360180x=.解得:7故选A.11.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD 交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为和,则下列说法不正确的是()A.B.C.D.【答案】D【解析】【分析】根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.【详解】∵△ABD和△ACD同底等高,,,即△ABC 和△DBC 同底等高, ∴∴故A,B,C 正确,D 错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.12.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠【答案】A【解析】【分析】 根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】 如图所示:∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A ,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.【答案】8【解析】【分析】作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠∵DE’⊥AB,∠B=60°,∴BE’=BD×1=2,2∴E点和E’点重合,∴∠EDB=30°,∴∠EDB+∠PDF=90°,∴∠EDP+∠GFD=90°=∠EDP+∠DPE,∴∠DPE=∠GFD∵∠DEP=∠FGD=90°,FD=GP,∴△EPD≌△GDF,∴FG=DE,DG=PE,∴F点运动的路径与G点运动的路径平行,即与BC平行,由图可知,当P点在E点时,G点与D点重合,∵DG=PE,∴F点运动的距离与P点运动的距离相同,∴F点运动的路径长为:AB-BE=10-2=8,故答案为8.【点睛】通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.14.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在△ABC内,②DE和FG的交点在△ABC外.【详解】∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG+EG=BC=12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是___________.【答案】2【解析】【分析】过B作BE⊥AC于E, 过D作DF⊥AC于F,构造得出BE=AF利用等腰三角形三线合一的性质得出:AF=可得BE=AF=,利用三角形ABC的面积为1进行计算即可.【详解】过B作BE⊥AC于E, 过D作DF⊥AC于F,∴∠BEA=∠AFD=90°∴∠2+∠3=90°∵∠BAD=90°∴∠1+∠2=90°∴∠1=∠3∵AB=AD∴∴BE=AF∵AD=CD,DF⊥AC∴AF=∴BE=AF=∴∴AC=2故答案为:2【点睛】 本题考查了利用一线三等角构造全等三角形,以及利用三角形面积公式列方程求线段,熟练掌握辅助线做法构造全等是解题的关键.16.如图,点E 是等边△ABC 内一点,且EA =EB ,△ABC 外一点D 满足BD =AC ,且BE 平分∠DBC ,则∠D =__________.【答案】30°【解析】试题解析:(1)连接CE ,∵△ABC 是等边三角形,∴AC=BC ,在△BCE 与△ACE 中,{AC BCAE BE CE CE===∴△BCE ≌△ACE (SSS )∴∠BCE=∠ACE=30°∵BE 平分∠DBC ,∴∠DBE=∠CBE ,在△BDE 与△BCE 中,{BD BCDBE CBE BE BE∠∠===∴△BDE ≌△BCE (SAS ),∴∠BDE=∠BCE=30°.17.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ; ②∠BCE+∠BCD=180°; ③AF 2=EC 2﹣EF 2; ④BA+BC=2BF .其中正确的是_____.【答案】①②③④.【解析】【分析】根据已知条件易证△ABD ≌△EBC ,可判定①正确;根据等腰三角形的性质、对顶角相等、结合全等三角形的性质及平角的定义即可判定②正确;证明AD=AE=EC ,再利用勾股定理即可判定③正确;过E 作EG ⊥BC 于G 点,证明Rt △BEG ≌Rt △BEF 及Rt △CEG ≌Rt △AFE ,根据全等三角形的性质可得AF=CG ,所以BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,即可判定④正确.【详解】①∵BD 为△ABC 的角平分线,∴∠ABD=∠CBD ,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBC (SAS ),∴①正确;②∵BD 为△ABC 的角平分线,BD=BC ,BE=BA ,∴∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE ,∴△ACE 为等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,∵EF ⊥AB ,∴AF 2=EC 2﹣EF 2;∴③正确;④如图,过E 作EG ⊥BC 于G 点,∵E 是BD 上的点,∴EF=EG ,在Rt △BEG 和Rt △BEF 中,BE BE EF EG=⎧⎨=⎩ , ∴Rt △BEG ≌Rt △BEF (HL ),∴BG=BF ,在Rt △CEG 和Rt △AFE 中,EF FG AE CE =⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE (HL ),∴AF=CG ,∴BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,∴④正确.故答案为:①②③④.【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.18.如图,在等腰直角三角形ABC 中,∠C=90 o,AC=BC=4,点D 是AB 的中点,E , F 在射线AC 与射线CB 上运动,且满足AE=CF ,∠EDF=90°;当点E 运动到与点C 的距离为1时,则△DEF 的面积为___________.【答案】52或132【解析】 解:①E 在线段AC 上.在△ADE 和△CDF 中,∵AD =CD ,∠A =∠DCF ,AE =CF ,∴△ADE ≌△CDF (SAS ),∴同理△CDE ≌△BDF ,∴四边形CEDF 面积是△ABC 面积的一半.∵CE =1,∴CF =4﹣1=3,∴△CEF 的面积=12CE •CF =32,∴△DEF 的面积=12×22×22﹣32=52. ②E '在AC 延长线上.∵AE '=CF ',AC =BC =4,∠ACB =90°,∴CE '=BF ',∠ACD =∠CBD =45°,CD =AD =BD =22,∴∠DCE '=∠DBF '=135°.在△CDE '和△BDF '中,∵CD =BD ,∠DCE ′=DBF ′,CE ′=BF ′,∴△CDE '≌△BDF '(SAS ),∴DE '=DF ',∠CDE '=∠BDF '.∵∠CDE '+∠BDE '=90°,∴∠BDE '+∠BDF '=90°,即∠E 'DF '=90°.∵DE '2=CE '2+CD 2﹣2CD •CE 'cos135°=1+8+2×22×22=13,∴S △E 'DF '=12DE '2=132.故答案为132或52.点睛:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE ≌△CDF 和△CDE ≌△BCF 是解题的关键.四、八年级数学全等三角形选择题(难)19.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=+△△.其中正确的结论是( )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤【答案】D【解析】【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO ′是等边三角形,可知结论②正确;在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;6AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.【详解】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB =O ′B ,AB =BC ,∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图①,连接OO ′,∵OB =O ′B ,且∠OBO ′=60°,∴△OBO ′是等边三角形,∴OO ′=OB =4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;2134462AOO OBO AOBO S S S '∆'∆'=+=⨯⨯=+四边形 故结论④正确;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,则2134362AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+=四边形, 故结论⑤正确.综上所述,正确的结论为:①②③④⑤.故选:D .【点睛】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.20.如图,ABC ∆中,45ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论正确的有( )个①BF AC =;②12AE BF =;③67.5A ∠=;④DGF ∆是等腰三角形;⑤ADGE GHCE S S =四边形四边形.A .5个B .4个C .3个D .2个【答案】B【解析】【分析】 只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.【详解】∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°−45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中BDF CDA A DFBBD CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△BDF ≌△CDA (AAS ),∴BF =AC ,故①正确.∵∠ABE =∠EBC =22.5°,BE ⊥AC ,∴∠A =∠BCA =67.5°,故③正确,∴BA =BC ,∵BE ⊥AC ,∴AE =EC =12AC =12BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,∴∠ABE =∠CBE =22.5°,∵∠BDF =∠BHG =90°,∴∠BGH =∠BFD =67.5°,∴∠DGF =∠DFG =67.5°,∴DG =DF ,故④正确.作GM ⊥AB 于M .∵∠GBM =∠GBH ,GH ⊥BC ,∴GH =GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故⑤错误,∴①②③④正确,故选:B .【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.21.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF=12∠BAD,若DF=1,BE=5,则线段EF的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.【详解】在BE上截取BG=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ADF与△ABG中AB ADB ADFBG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ABG(SAS),∴AG=AF,∠FAD=∠GAB,∵∠EAF=12∠BAD,∴∠FAE=∠GAE,在△AEG与△AEF中AG AFFAE GAEAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS)∴EF=EG=BE﹣BG=BE﹣DF=4.故选:B.【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.22.在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与△ABC全等的是()A.△ACF B.△ACEC.△ABD D.△CEF【答案】C【解析】【分析】利用勾股定理先分别求得△ABC的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.【详解】在△ABC中,AB=22+=10,BC=2231+=2,AC=22,11A、在△ACF中,AF=2221+=5≠10,5≠2,5≠22,则△ACF与△ABC不全等,故不符合题意;B、在△ACE中,AE=3≠10,3≠2,3≠22,则△ACE与△ABC不全等,故不符合题意;C、在△ABD中,AB=AB,AD=2=BC,BD=22=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.【点睛】本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.23.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB与∠BCO的数量关系为()A.∠OAB+∠BCO=180°B.∠OAB=∠BCOC.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定【答案】C【解析】根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.24.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS,SAS,ASA,AAS,HL,确定条件即可,此题为开放题,只要答案符合判定定理即可.五、八年级数学轴对称三角形填空题(难)25.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=22,∴OA=OP=22,∴P的坐标是(﹣22,0).综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.∥,26.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.∥,若ABC的周长为12cm,则PD PE PFPF AC【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.27.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.28.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键29.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A .100米B .100-米C .200米D .200-米【答案】B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A .45.7810⨯B .357.810⨯C .257810⨯D .578010⨯【答案】A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3.下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4在实数范围内有意义,则x的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A .正方体B .圆柱C .圆锥D .长方体【答案】D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6.一个七边形的内角和等于()A .540︒B .900︒C .980︒D .1080︒【答案】B【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x 环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁【答案】A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A .8.已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .72【答案】C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF 平分BAC ∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF 是等腰ABC 底边BC 上的高,∴AF 平分BAC ∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A .2nx B .()1nn x-C .1n nx +D .()1nn x+【答案】D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .爱B .国C .敬D .业【答案】D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不是轴对称图形,不符合题意;B 、图形不是轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A .45B .35C .43D .3413.如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4514.分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公二、填空题16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是.【答案】1c >/1c<【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.【答案】120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题20.计算:12117sin3062-⎛⎫++---⎪⎝⎭.21.如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AEBAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22.某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长. ∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、25.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线2x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M27.如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析∴点O在线段AD的中垂线上,=,∵CA CD∴点C在线段AD的中垂线上,⊥,∴OC AD。

2010年河南省中考数学试卷答案与解析

2010年河南省中考数学试卷答案与解析

年河南省中考数学试卷2010参考答案与试题解析分)18分,满分3小题,每小题6一、选择题(共的相反数是(深圳)﹣•2011(分)3(.1 ) 2 .D .C .B2 ﹣.A ﹣相反数.:考点根据相反数的定义:只有符号不同的两个数叫相反数即可求解.分析:解答:.B.故选的相反数是解:根据概念得:﹣”﹣“一个数的相反数就是在这个数前面添上本题考查了相反数的意义,点评:一个一个正数的相反数是负数,号:.不要把相反数的意义与倒数的意义混淆.0的相反数是0负数的相反数是正数,亿元.19367,达到约10.7%年增长2008年全年生产总值比200河南)我省•2010(分)3(.2亿元用科学记19367 )数法表示为(14131211.D .C .B.A 元10×.93671 元10×.93671 元10×.93671 元10×.93671:考点表示较大的数.—科学记数法应用题.:专题n 分析:为整数.确定n,10<|a|≤1的形式,其中10×a科学记数法的表示形式为时,a的值时,要看把原数变成n是正数;当原数的n时,1的绝对值与小数点移动的位数相同.当原数绝对值大于n小数点移动了多少位,是负数.n时,1绝对值小于12 解答:×1.9367元用科学记数法表示为1 936 700 000 000亿元即19 367解:.B元.故选10n 点评:为整数,表示n,10<|a|≤1的形式,其中10×a此题考查科学记数法的表示方法.科学记数法的表示形式为的值.n的值以及a时关键要正确确定,1.85,1.71)分别为:m位同学的立定跳远成绩(单位:6河南)在某次体育测试中,九年级三班•2010(分)3(.3 ).则这组数据的众数和极差分别是(2.31,2.10,1.96,1.85.C0.46 和.112 .B0.21 和.851.A 0.60 和.312 .D0.60 和.851 众数;极差.:考点根据众数、极差的概念求解即可.分析:;1.85次,次数最多,所以众数是2出现 1.85解:数据解答:.1.71=0.60﹣=2.31极差.C故选考查众数、极差的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.极差是最大的点评:数与最小的数的差.分)3(.4;ABC△∽ADE△②;BC=2DE①则下列结论:的中点,AC、AB分别是E、D点中,ABC△如图,河南)•2010().其中正确的有(③ 个0 .D 个1 .C 个2 .B 个3.A 1三角形中位线定理;相似三角形的判定与性质.:考点压轴题.:专题可根据三角形中位线定理得出的等量条件进行判断.的中位线,ABC△是DE则的中点,AC、AB是E、D若分析:的中点,AC、AB是E、D解:∵解答:的中位线;ABC△是DE∴正确)(故①;BC=2DE,BC∥DE∴正确)(故②;ABC△∽ADE△∴正确)(故③;,即∴因此本题的三个结论都正确,故选.A 此题主要考查了三角形中位线定理以及相似三角形的判定和性质.点评:2)的根为(3=0﹣x河南)一元二次方程•2010(分)3(.5=3 x .D .C .B.A 3 ﹣=x,=3x ﹣=x,=x =x2121直接开平方法.-解一元二次方程:考点压轴题.:专题2分析:的平方根.3,把问题转化为求=3x先移项,写成2解答:.C.故选﹣=x,=x,开方得=3x解:移项得21用直接开方法求一元二次方程的解,要仔细观察方程的特点.点评:′A,则点)b,a的坐标为(A,设点A'B'C△得到°180)旋转1,﹣0(C绕点ABC△河南)如图,将•2010(分)3(.6 )的坐标为()2﹣b,﹣a﹣(.AD )b+1,﹣a﹣(. C )1﹣b.﹣a﹣(.B )b,﹣a﹣(.旋转.-坐标与图形变化:考点压轴题.:专题我们已知关于原点对称的点的坐标规律:横坐标和纵坐标都互为相反数;还知道平移规律:上加下减;左分析:坐标后求A对应点′A坐标和A的对应点A 个单位得1向上平移′AA加右减.在此基础上转化求解.把21解.解答:.)b+1,a坐标为(A的对应点A个单位得1向上平移′AA解:把1.)1﹣b,﹣a(﹣A对应点′A关于原点对称,所以A、A因221A∴.)2﹣b,﹣a(﹣′ .D故选此题通过平移把问题转化为学过的知识,从而解决问题,体现了数学的化归思想.点评:分)27分,满分3小题,每小题9二、填空题(共2. 5 =)2(﹣1|+﹣|河南)计算•2010(分)3(.7:考点有理数的乘方;绝对值. 2负数的绝对值是它的相反数,负数的偶次幂是正数.分析:2解答:.=1+4=5)2(﹣1|+﹣|解:此题综合考查了绝对值的性质和乘方的意义.点评:表示在数轴上,其中能被如图所示的墨迹覆盖的数是河南)若将三个数•2010(分)3(.8 .实数与数轴.:考点图表型.:专题分析:,从而可判断前后的整数(即它们分别在那两个整数之间),,首先利用估算的方法分别得到﹣出被覆盖的数.解答:,3﹣1,且墨迹覆盖的范围是4<<3,<﹣3<<2,1<﹣2﹣解:∵能被墨迹覆盖的数是∴.本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.点评:. y=x答案不唯一,如增大而增大的一次函数的解析式:x随y河南)写出一个•2010(分)3(.9一次函数的性质.:考点开放型.:专题即可.0根据一次函数的性质只要使一次项系数大于分析:等,答案不唯一.y=x+2,或y=x解:例如:解答:k (y=kx+b此题比较简单,考查的是一次函数点评:)的性质:0≠ 的增大而增大;x随y时,0>k当的增大而减小.x随y 时,0<k当角的三角板的一条直°45角的三角板的直角边和含°30河南)将一副直角三角板如图放置,使含•2010(分)3(.10 度. 75 的度数为1角边重合,则∠三角形内角和定理;平行线的性质.:考点计算题;压轴题.:专题求解.°180根据三角形三内角之和等于分析:解:如图.解答:∠∵,°4=45,∠°3=60.°4=75﹣∠3﹣∠°5=180∠1=∠∴.°180考查三角形内角之和等于点评:如图,河南)•2010(分)3(.11,°ABO=32若∠的一点,A、C上异于点是D点,C于点O交⊙BO,A于点O切⊙AB 的度数是ADC则∠度. 29 3切线的性质;圆周角定理.:考点压轴题.:专题由圆周角定理即可解答.的度数,AOB再根据三角形内角和定理求出∠的度数,AOC先根据切线的性质求出∠分析:,A于点O切⊙AB解:∵解答:,AB⊥OA∴,°ABO=32∠∵,°=58°32﹣°AOB=90∠∴.°=29°58×AOB=∠ADC=∠∴此题比较简单,解答此题的关键是熟知切线的性质、三角形内角和定理及圆周角定理,有一定的综合性.点评:的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两5,4,3,2河南)现有点数为:•2010(分)3(.12.张牌上的数字之和为偶数的概率为列表法与树状图法.:考点用树状图法列举出所有情况,看所求的情况与总情况的比值即可得答案.分析:解:根据题意,作树状图可得:解答:种情况符合条件;4种情况,有12分析可得,共.故其概率为所求情况数与总情况数之比.=树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率点评:如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的河南)•2010(分)3(.13 . 7 小正方体的个数最多为由三视图判断几何体.:考点列,先看第一层正方体可能的最多个数,再看第二层正方体的可能的最2行,3层,2易得这个几何体共有分析:多个数,相加即可.2行,3解:解答:个正方体,1个正方体,第二层有2=6×3列,最底层最多有个正方体组成.6+1=7那么共有.7故答案为:主视图和左视图确定组合几何体的层数,行数及列数.点评:•2010(分)3(.14 ,则图中E于点BC交A的长为半径的⊙AD,以AD=,AB=1中,ABCD河南)如图矩形.阴影部分的面积为 4扇形面积的计算;矩形的性质.:考点压轴题.:专题的面积.ADE的面积和扇形ABE.则阴影部分的面积等于矩形的面积减去直角三角形AE连接分析:.°DAE=45,则∠°BAE=45,∠BE=1,则AE=AD=根据题意,知.AE解:连接解答:.AE=AD=根据题意,知.BE=1则根据勾股定理,得.°BAE=45根据三角形的内角和定理,得∠.°DAE=45则∠.﹣﹣=则阴影部分的面积此题综合运用了等腰直角三角形的面积、扇形的面积公式.点评:边上一点BC是E边上,点AB在D.点,∠AB=6,°ABC=30°C=90中,∠ABC△Rt河南)如图,•2010(分)3(.15 . 3<AD≤2 的取值范围是AD,则DA=DE,且重合)C、B(不与点度角的直角三角形.30直线与圆的位置关系;含:考点压轴题.:专题AD 相切时,BC当圆与的长为半径画圆,AD为圆心,D以分析:AD时,C或B相交且交点为BC与线段最小,最大,分别求出即可得到范围.的长为半径画圆AD为圆心,D解:以解答:时,BC⊥DE相切时,BC,当圆与1如图① ,°ABC=30∠∵,BDDE=∴,AB=6∵;AD=2∴C或B相交时,若交点为BC,当圆与2如图② ,AB=3AD=,则.3<AD≤2的取值范围是AD∴ 5最小和最大的两种情况是解决本题的关键.AD与圆的位置关系解答,分清BC利用边点评:分)75小题,满分8三、解答题(共2010(分)8(.16的形式,请C÷B﹣A或C÷)B ﹣A.将它们组合成(河南)已知• .x=3你从中任选一种进行计算,先化简,再求值其中分式的化简求值.:考点压轴题;开放型.:专题代入计算即可.x=3的式子代入原式,再根据分式化简的方法进行化简,最后把C、B、A先把表示分析:解答: C=÷)B﹣A(解:选一: =.=;=时,原式x=3当 C=÷B﹣A选二: = =.==时,原式x=3当.此类题目比较简单,解答此题的关键是熟练掌握因式分解及分式的化简方法.点评:C′AB△是平行四边形,ABCD四边形如图,河南)•2010(分)9(.17C′B和AD所在的直线对称,AC关于ABC△和.′BB,连接O相交于点;)请直接写出图中所有的等腰三角形(不添加字母)1(.CDO△≌O′AB△)求证:2( 6等腰三角形的判定;全等三角形的判定;平行四边形的性质.:考点证明题.:专题;C′BB△和AOC△)根据题意,结合图形可知等腰三角形有,′ABB△1(分析:所在AC关于ABC△和C’AB△ABCD,又因为,D∠ABC=,∠AB=DC是平行四边形,所以)因为四边形2(.CDO△≌O’AB△,则可证C′AB∠ABC=,∠=AB′AB的直线对称,故;C′BB△和AOC△,′ABB△)1(解:解答:,D∠ABC=,∠AB=DC中,ABCD▱)在2(′AB由轴对称知,C′AB∠ABC=,∠=AB .D∠O=′AB,∠=CD′AB∴中CDO△和O′AB△在,.)AAS(CDO△≌O′AB△∴此题是一道把等腰三角形的判定、平行四边形的性质和全等三角形的判定结合求解的综合题.考查学生综点评:合运用数学知识的能力.”五一“现象越来越受到社会的关注.”校园手机“河南)•2010(分)9(.18期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:;)求这次调查的家长人数,并补全图①1(的圆心角的度数;”赞成“中表示家长)求图②2(态度的学生的概率是多少?”无所谓“)从这次接受调查的学生中,随机抽查一个,恰好是3(条形统计图;扇形统计图;概率公式.:考点:专题压轴题;图表型.有”无所谓“,从条形统计图可知,20%占”无所谓“)由扇形统计图可知,家长1(分析:人,即可求出这次调查80 的家长人数;的比,赞成°360)在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与2(人,则圆心角的度数可求;40的有)用学生3(人,除以学生赞成、无所谓、反对总人数即可求得其概率.30”无所谓“如下:,补全图①20%=400÷80)家长人数为1(解:解答: 7;的圆心角的度数为”赞成“)表示家长2(.态度的概率是”无所谓“)学生恰好持3(读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目点评:所求情况数与总情况数之=的数据;扇形统计图直接反映部分占总体的百分比大小.用到的知识点为:概率相应百分比.÷部分数目=比.总体数目,°C=45∠,CD=,BC=12,ABCDAD=5的中点,BC是E,BC∥AD在梯形中,如图,河南)•2010(分)9(.19 .x的长为PB边上一动点,设BC是P点为顶点的四边形为直角梯形;E、D、A、P时,以点8或3 的值为x)当1(E、D、A、P时,以点11或1 的值为x)当2(为顶点的四边形为平行四边形;为顶点的四边形能否构成菱形?试说明理由.E、D、A、P边上运动的过程中,以BC在P)点3(直角梯形;平行四边形的判定;菱形的判定.:考点动点型.:专题分析:AM作D、A分别过如图,)1(,°C=45∠,CD=而,AD=MN,AM=DN容易得到,N 于CB⊥DN,M于BC⊥为顶点的四边形为直角梯E、D、A、P,若点CN、BM,容易求出AD=5,又因为AM=DN由此可以求出°DEB=90或∠°APC=90形,则∠的值;x重合,即可求出此时的N与E重合或M与P,那么为顶点的四边形为平行四边形,那么E、D、A、P)若以点2(的左边,E在P当,有两种情况:①AD=PE 的长度;BP的右边,利用已知条件也可求出E在P 当的长度;②BP利用已知条件可以求出、P)以点3(为顶点E、D、A、P时,以点BP=11)知,当2为顶点的四边形能构成菱形.由(E、D、A 的四边形是平行四边形,根据已知条件分别计算一组邻边证明它们相等即可证明它是菱形.解:解答:,N于CB⊥DN,M于BC⊥AM作D、A)如图,分别过1(是矩形,AMND则四边形,AD=MN=5,AM=DN∴,°C=45,∠CD=而,=4=AM×C=4∠sin•DN=CN=CD∴,MN=3﹣CN﹣BM=CB∴为顶点的四边形为直角梯形,E、D、A、P若点或∠°APC=90则∠,°DEB=90 时,°APC=90当∠重合,M与P∴ 8;BP=BM=3∴重合,N与P时,°DPB=90当∠;BP=BN=8∴x故当为顶点的四边形为直角梯形;E、D、A、P时,以点8或3的值为、P)若以点2(,AD=PE为顶点的四边形为平行四边形,那么E、D、A 的左边,E在P当有两种情况:①是E∵的中点,BC ,BE=6∴;5=1﹣PE=6﹣BP=BE∴的右边,E在P当② ;BP=BE+PE=6+5=11D、A、P时,以点11或1的值为x故当为顶点的四边形为平行四边形;E、,4=2﹣NE=6,CN=DN=4时,此时BP=1当)知,①2)由(3(,故不能构成菱形.AD≠=2=DE=∴A、′P时,以点=11′BP当② 为顶点的四边形是平行四边形E、D、,=AD=5′EP∴于BC⊥DN 作D过,N,°C=45,∠CD=∵,DN=CN=4则′=BP′NP∴.12+4=3﹣=11)CN﹣BC﹣(′BN=BP﹣=5==′DP∴,,′=DP′EP∴是菱形.DAE′P▱故此时、P即以点为顶点的四边形能构成菱形;E、D、A本题是一个开放性试题,利用梯形的性质、直角梯形的性质、平行四边形的性质、菱形的性质等知识来解点评:决问题,要求学生对于这些知识比较熟练,综合性很强.分)9(.20元的资金再购买一批篮球和排球,1600河南)为鼓励学生参加体育锻炼,学校计划拿出不超过•2010(元.80.单价和为2:3已知篮球和排球的单价比为)篮球和排球的单价分别是多少元?1((个,有哪几种购买方案?25个,且购买的篮球数量多于36)若要求购买的篮球和排球的总数量是2一元一次不等式组的应用;一元一次方程的应用.:考点经济问题.:专题分析:,列方程求解;”元80单价和为“元.根据等量关系x元,则排球的单价为x)设篮球的单价为1(个,则购买的排球数量为(n)设购买的篮球数量为2()个.n﹣36 9元的资金购买一批篮球和排球.列不等式组,进1600不超过个;②25买的篮球数量多于根据不等关系:① 行求解.元,x)设篮球的单价为1(解:解答:,2:3篮球和排球的单价比为∵元.x则排球的单价为,x=80x+依题意,得:,x=48解得.x=32∴元.32元,排球的单价为48即篮球的单价为)个.n﹣36个,则购买的排球数量为(n)设购买的篮球数量为2(,∴.28≤n<25解,得.8,9,10的值为n﹣36,对应的28,27,26为整数,所以其取值为n 而所以共有三种购买方案:个;10个,排球26方案一:购买篮球个;9个,排球27方案二:购买篮球个.8个,排球28方案三:购买篮球解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.点评:)两3,a(B,)6,1(A)的图象交于0>x(.21与反比例函数x+by=k河南)如图,直线•2010(分)10(1点.k)求1(的值.k、21的取值范围;x时)直接写出2(和反比例函CE,E于点OD⊥CE3作C轴上,过点x边在OD,OB=CD (,OD∥BC中,OBCD)如图,等腰梯形的大小关系,并说明理由.PE和PC时,请判断12的面积为OBCD,当梯形P数的图象交于点反比例函数综合题;一次函数的性质;反比例函数系数:考点的几何意义.k 综合题;压轴题.:专题再把点代入反比例函数求得反比例函数的解析式,A先把点)1(分析:再的值,a代入反比例函数解析式求得B 的值.k代入一次函数解析式利用待定系数法求得B,A把点1)当2(之间,故可直接写出范围.B,A的范围是在x时,直线在双曲线上方,即y>y21 10列12,利用梯形的面积是OD=m+2,2﹣BC=m,CE=3,)3,m (C,易得)n,m的坐标为(P)设点3(的坐标,根据线段的长度关系可知P的值,从而求得点m方程,可求得.PC=PE 解答: 6=6 ×=1k)由题意知1(解:2)0>x(y=反比例函数的解析式为∴,0>x∵反比例函数的图象只在第一象限,∴的图象上,y=)在3,a(B又∵,a=2∴)3,2(B∴)两点3,2(B,),61(A过x+by=k直线∵1∴∴;6的值为k,3的值为﹣k故213x+9)得出﹣1)由(2(,0>﹣即直线的函数值大于反比例函数值,,2<x<1由图象可知,此时;2<x<1的取值范围为x则.PC=PE时,=12S)当3(OBCD梯形轴,x⊥BF作B,过)n,m的坐标为(P设点B,BO=CD,OD⊥CE,OD∥BC∵,)3,2(OD=OE+ED=OE+OF=m+2 ,2﹣BC=m,CE=3,)3,m(C∴12=,即=S∴OBCD梯形mn=6 ,又m=4∴∴CE PE=,即n= .PC=PE∴此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点的点评:特点和利用待定系数法求函数解析式的方法.要灵活的利用梯形的面积公式来求得相关的线段的长度,从 11而确定关键点的坐标是解题的关键.)操作发现:1(河南)•2010(分)10(.22 E中,ABCD如图,矩形BG内部.小明将ABCD在矩形G,且点GBE△折叠后得到BE沿ABE△的中点,将AD是,你同意吗?说明理由.GF=DF,认为F于点DC延长交)问题解决:2(的值;,求DC=2DF)中的条件不变,若1保持()类比探求:3(的值.,求DC=nDF)中条件不变,若1保持(;直角三角形全等的判定;勾股定理.翻折变换(折叠问题):考点压轴题.:专题△≌EGF△,证EF)求简单的线段相等,可证线段所在的三角形全等,即连接1(分析:即可;EDF的BG,即可得到AB=BG的长,根据折叠的性质知AB、DC表示出x;进而可用BC=y,DF=x)可设2(中,根据勾股定BFC△Rt的表达式,进而可在BF,由此可求出GF=x,那么GF=DF)证得1表达式,由(的值;的比例关系,即可得到y、x理求出.)2)方法同(3(,EF)同意,连接1(解:解答:则根据翻折不变性得,EGF=∠,EF=EF,EG=AE=ED,°D=90∠,EDF△Rt≌EGF△Rt∴∴;GF=DF AD=y ,GF=x,则有BC=y,DF=x,设GF=DF)知,1)由(2(DC=2DF∵,,DC=AB=BG=2x,CF=x∴;BF=BG+GF=3x∴222222=BF+CFBC 中,BCF△Rt在,xy=2∴)3x(=+xy,即;∴AD=y ,GF=x,则有BC=y,DF=x,设GF=DF)知,1)由(3(DF•DC=n∵, x )n+1(BF=BG+GF=∴222222BC中,BCF△Rt 在y=2x∴]x)n+1(=[]x)1﹣n(+[y,即=BF+CF ,.或∴12此题考查了矩形的性质、图形的折叠变换、全等三角形的判定和性质、勾股定理的应用等重要知识,难度点评:适中.,)0,4(﹣A河南)在平面直角坐标系中,已知抛物线经过•2010(分)11(.23 )三点.0,2(C,)4,﹣0(B )求抛物线的解析式;1(为第三象限内抛物线上一动点,点M)若点2(的函数关系式,m关于S、求S的面积为AMB△,m的横坐标为M 的最大值.S并求出为顶点的O、B、Q、P上的动点,判断有几个位置能够使得点是抛物线上的动点,点x﹣y=是直线QP)若点3(的坐标.Q四边形为平行四边形,直接写出相应的点二次函数综合题.:考点压轴题.:专题2分析:,联立求解即+bx+cy=ax)三个点的坐标代入0,2(C,,)4,﹣0(B,)04(﹣A)由待定系数法将1(可;OD、MD的代数式表示m,即可用含)n,m的坐标为(2M.设点D轴的垂线,设垂足为x作M)过(、梯形AMD△的长,分别求出的面AOB△的面积和减去MDOB、梯形AMD△的面积,那么AOB△、MDOB 的最大值.S的函数关系式,根据函数的性质即可求得m、S的面积,由此可得关于AMB△积即为2,)4﹣+xx,x(P)解决此题需要充分利用平行四边形的性质求解.设3(∥PQ为边时,根据平行四边形的性质知OB,当1如图① 即可求出结论;PQ=OB.由)x,﹣x(Q,则OBP的横坐标互为相反数(若Q、P为对角线时,那么OB,当2如图②,)x的横坐标为﹣Q,则x的横坐标为2B、Q的纵坐标差的绝对值等于O、P.由)x,x(﹣Q即x,求出x﹣4﹣4=﹣+xx纵坐标差的绝对值,得的值即可.)x+4(y=a)设抛物线的解析式为1(解:解答:,)2﹣x(2﹣0()0+4(×4=a)代入得,﹣4,﹣0(B把,a=,解得)2;4﹣+xxy=,即)2﹣x()x+4(y=抛物线的解析式为:∴,)n,m点的坐标为(M,设D轴于点x⊥MD作M)过点2(2AD=m+4则,4﹣+mmn=,n﹣MD=,13S﹣+SS=S∴ABO△AMD△DMBO梯形 = 8 ﹣2m﹣2n﹣=2﹣2m)﹣4﹣+mm(×2﹣=8 2 4m ﹣m﹣=2;)0<m<4(﹣+4)m+2﹣(= .=4S∴最大值2(P)设3(.)4﹣+xx,x ,OB∥PQ为边时,根据平行四边形的性质知OB,当1如图① 的横坐标,P的横坐标等于Q∴,x﹣y=直线的解析式为又∵.)x,﹣x(Q则2(﹣Q不合题意,舍去.由此可得x=0.2±2,﹣4,﹣x=0,解得|=4)4﹣+xx﹣(x﹣|,得PQ=OB 由4 ;)2+2,2﹣2)或(﹣2﹣2,2+2)或(﹣4,,当2如图②横Q,BQ=OP=4为平行四边形则PBQO.四边形OP=4应该重合,P与A为对角线时,知BO .)4,﹣4为(Q得出x﹣y=,代入4坐标为点的坐标有四个,Q故满足题意的.)2+2,2﹣2(﹣,)2﹣2,2+2(﹣,)4﹣,4(,)4,4(﹣分别是此题主要考查了二次函数解析式的确定、图形面积的求法、二次函数最值的应用以及平行四边形的判定和点评:并且要考虑到各种情况才能做到不漏解.需要熟练掌握平行四边形的性质,题,)3(此题的难点在于性质; 1415。

八年级数学上册全册全套试卷中考真题汇编[解析版]

八年级数学上册全册全套试卷中考真题汇编[解析版]

八年级数学上册全册全套试卷中考真题汇编[解析版]一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BP t (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.如图,在△ABC 中,∠ABC 为锐角,点D 为直线BC 上一动点,以AD 为直角边且在AD 的右侧作等腰直角三角形ADE ,∠DAE =90°,AD =AE .(1)如果AB =AC ,∠BAC =90°.①当点D 在线段BC 上时,如图1,线段CE 、BD 的位置关系为___________,数量关系为___________②当点D 在线段BC 的延长线上时,如图2,①中的结论是否仍然成立,请说明理由. (2)如图3,如果AB ≠AC ,∠BAC ≠90°,点D 在线段BC 上运动.探究:当∠ACB 多少度时,CE ⊥BC ?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系;②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论.【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD .理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC ,∴∠BAD=∠CAE .又 BA=CA ,AD=AE ,∴△ABD ≌△ACE (SAS )∴∠ACE=∠B=45°且 CE=BD .∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD .故答案为垂直,相等;②都成立,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE ,在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC ,∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.3.在ABC中,AB AC=,点D在BC边上,且60,ADB E∠=︒是射线DA上一动点(不与点D重合,且DA DB≠),在射线DB上截取DF DE=,连接EF.()1当点E在线段AD上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=12∠ADB,∠AEC=12∠AEB,∴∠ADC+∠AEC=1(ADB AEB)2∠+∠=45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。

八年级上册数学 全册全套试卷中考真题汇编[解析版]

八年级上册数学 全册全套试卷中考真题汇编[解析版]

八年级上册数学 全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,∵∠AA 1B 1=∠A 1B 1B 2+∠C ,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C ;∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;∵最小角为20°,∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m、n为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.2.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.故答案为①②④.点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.3.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______°.【答案】65【解析】如图,∵AE平分∠DAC,CE平分∠ACF,∴∠1=12∠DAC,∠2=12∠ACF,∴∠1+∠2=12(∠DAC+∠ACF),又∵∠DAC+∠ACF=(180°-∠BAC)+(180°-∠ACB)=360°-(∠BAC+∠ACB),且∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°,∴在△ACE中,∠E=180°-(∠1+∠2)=180°-115°=65°.4.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【答案】B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.5.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.【答案】45°【解析】【分析】根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.6.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)7.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°【答案】C【解析】【分析】由三角形的内角和定理,可求∠BAC=82°,又由AE是∠BAC的平分线,可求∠BAE=41°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE,问题得解.【详解】在△ABC中,∵∠ABC=34°,∠ACB=64°,∴∠BAC=180°−∠B−∠C=82°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=41°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°−∠B=56°,∴∠DAE=∠BAD −∠BAE =15°.【点睛】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.8.如图,△ABC 中,E 是 AC 的中点,延长 BC 至 D ,使 BC :CD =3:2,以 CE ,CD 为邻边做▱CDFE ,连接 AF,BE,BF ,若△ABC 的面积为 9,则阴影部分面积是( )A .6B .4C .3D .2【答案】A【解析】【分析】根据三角形中位线性质结合三角形面积去解答.【详解】 解:在ABC 中,E 是 AC 的中点,S ABC 9=, BC :CD =3:2▱CDFE 中,CD=EF 1S BCE 4.52S ABC ∴== 设BCE 的高为1h , ABC 的高为2.h11S BCE 4.52BC h ∴=⨯⨯= 13h =12:1:2h h =26h ∴=S AEF S EFB s ∴=+阴()2111122EF h h EF h =⨯⨯-+⨯⨯ 212EF h =⨯⨯ 1262=⨯⨯ 6.=【点睛】此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.9.一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是()A.x>5 B.x<7 C.2<x<12 D.1<x<6【答案】D【解析】如图所示:AB=5,AC=7,设BC=2a,AD=x,延长AD至E,使AD=DE,在△BDE与△CDA中,∵AD=DE,BD=CD,∠ADC=∠BDE,∴△BDE≌△CDA,∴AE=2x,BE=AC=7,在△ABE中,BE-AB<AE<AB+BE,即7-5<2x<7+5,∴1<x<6.故选D.10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积与△BCE的面积相等;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③B.②③④C.①③④D.①②③④【答案】A【解析】根据三角形中线的性质可得:△ABE的面积和△BCE的面积相等,故①正确,因为∠BAC=90°,所以∠AFG+∠ACF=90°,因为AD是高,所以∠DGC+∠DCG=90°,因为CF是角平分线,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因为∠DGC=∠AGF,所以∠AFG=∠AGF,故②正确,因为∠FAG+∠ABC=90°,∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因为CF是角平分线,所以∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正确,④假设BH=CH,∠ACB=30°,则∠HBC=∠HCB =15°,∠ABC=60°,所以∠ABE=60°-15°=45°,因为∠BAC=90°,所以AB=AE,因为AE=EC,所以AB=12AC,这与在直角三角形中30°所对直角边等于斜边的一半相矛盾,所以假设不成立,故④不一定正确,故选A.11.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A.20°B.35°C.40°D.45°【答案】B【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.12.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.三、八年级数学全等三角形填空题(难)13.在Rt△ABC中,∠C=90°,∠A的平分线AD分对边BD,DC的长度比为3:2,且BC =20cm,则点D到AB的距离是_____cm.【答案】8【解析】【分析】根据题意画出图形,过点D作DE⊥AB于点E,由角平分线的性质可知DE=CD,根据角平分线AD分对边BC为BD:DC=3:2,且BC=10cm即可得出结论.【详解】解:如图所示,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD.∵BD:DC=3:2,且BC=10cm,∴CD=20×25=8(cm).故答案为:8.【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.14.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.【答案】8【解析】【分析】作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠∵DE’⊥AB,∠B=60°,∴BE’=BD×1=2,2∴E点和E’点重合,∴∠EDB=30°,∴∠EDB+∠PDF=90°,∴∠EDP+∠GFD=90°=∠EDP+∠DPE,∴∠DPE=∠GFD∵∠DEP=∠FGD=90°,FD=GP,∴△EPD≌△GDF,∴FG=DE,DG=PE,∴F点运动的路径与G点运动的路径平行,即与BC平行,由图可知,当P点在E点时,G点与D点重合,∵DG=PE,∴F点运动的距离与P点运动的距离相同,∴F点运动的路径长为:AB-BE=10-2=8,故答案为8.【点睛】通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.15.AD、BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC=______.【答案】45°或135°【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据等腰直角三角形的性质即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵AD⊥BC,∴∠ABC=45°,②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∵AD⊥BC,∴∠ABD=45°,∴∠ABC=180°-45°=135°.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BD.∴∠ABC=45°,④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD.∴∠ABC=45°.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∴∠ABC=45°.综上所述:∠ABC 的度数为45°或135°.故答案为:45°或135°【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS 、AAS 、ASA 、SAS 、HL 等,注意:SAS 时,角必须是两边的夹角,SSA 和AAA 不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.16.如图,90C ∠=︒,10AC =,5BC =,AM AC ⊥,点P 和点Q 从A 点出发,分别在射线AC 和射线AM 上运动,且Q 点运动的速度是P 点运动的速度的2倍,当点P 运动至__________时,ABC △与APQ 全等.【答案】AC 中点或点P 与点C 重合【解析】分析:本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=5cm ,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC ,P 、C 重合.详解:根据三角形全等的判定方法HL 可知:①当P 运动到AP BC =的,∵90C QAP ∠=∠=︒,在Rt ABC △和Rt QPA 中,AP BC PQ AB =⎧⎨=⎩, ∴Rt ABC △≌Rt ()QPA HL ,即5AP BC ==,即P 运动到AC 的中点.②当P 运动到与C 点重合时,AP=AC ,在Rt △ABC 与Rt △QPA 中,AP AC PQ AB =⎧⎨=⎩∴Rt △QAP ≌Rt △BCA (HL ),即AP=AC=10cm ,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.故答案为:AC 中点或点P 与点C 重合.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.17.如图,已知BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,连接AD ,∠DAC=46°, ∠BDC _________【答案】44°【解析】如图,过点D 作DF ⊥BA ,交BA 的延长线于点F ,过点D 作DH ⊥AC 于点H ,过点D 作DG ⊥BA ,交BC 的延长线于点G ,∵BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,∴DF=DG=DH ,∵DH ⊥AC ,DF ⊥BA ,∴AD 平分∠CAF ,∴∠DAC=∠FAD=46°,∴∠BAC=180°-46°-46°=88°;∵BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,∴∠DCE=12ACE ∠,∠DBC=12ABC ∠, ∵∠DCE=∠BDC+∠DBC ,∠ACE=∴∠BDC+∠DBC=12(∠BAC+∠ABC),∴∠BDC=12∠BAC=00188442⨯= .18.已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm,则DC=_______【答案】2cm【解析】试题解析:解:连接AD,∵ED是AB的垂直平分线,∴BD=AD=4c m,∴∠BAD=∠B=30°,∵∠C=90°,∴∠BAC=90°-∠B=90°-30°=60°,∴∠DAC=60°-30°=30°,在Rt△ACD中,∴DC=12AD==12× 4=2c m.故答案为2c m.点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.四、八年级数学全等三角形选择题(难)19.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD 的长为()A.3 B.5 C.4 D.不确定【答案】C【解析】根据同角的余角相等求出∠ACD=∠E,再利用“角角边”证明△ACD≌△BCE,根据全等三角形对应边相等可得AD=BC,AC=BE=7,然后求解BC=AC-AB=7-3=4.故选:C.点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.20.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点【答案】B【解析】【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【详解】∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=12∠EOD,∠BOC=12∠MOE,∴∠AOB=12(∠EOD+∠MOE)=12×180°=90°,故C选项结论正确;在Rt△AOD和Rt△AOE中,AO AOAD AE=⎧⎨=⎩,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.21.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.如图,连接PS∵△APR≌△APS∴AR =AS ,∠RAP=∠PAC∴AP 垂直平分RS ,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键22.如图,AC ⊥BE 于点C ,DF ⊥BE 于点F ,且BC =EF ,如果添上一个条件后,可以直接利用“HL ”来证明△ABC ≌△DEF ,则这个条件应该是( )A .AC =DEB .AB =DEC .∠B =∠ED .∠D =∠A【答案】B【解析】在Rt △ABC 与Rt △DEF 中,直角边BC =EF ,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.23.在△ABC 中, ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,AB=18cm ,则△DBE 的周长为( )A .16cmB .8cmC .18cmD .10cm【答案】C【解析】因为 ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB ,易证△ACD≌△AED,所以AE =AC=BC ,ED=CD.△DBE 的周长=BE+DE+DB=BE+CD+DB=BE+BC=BE+AE=AB.因为AB=12,所以△DBE 的周长=12.故选C.点睛:本题主要考查了全等三角形的判定的性质及角平分线的性质定理,角的平分线上的点到角的两边的距离相等,运用这个性质,结合等腰三角形有性质,将△DBE 的周长转化为AB 的长.24.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )A.3:4B.3:5C.4:5D.2:3【答案】B【解析】如图,过点D作DE⊥AB于点E,由角平分线的性质可得出DE=CD,由全等三角形的判定定理HL得出△ADC≌△ADE,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x,则DE=x,BD=4﹣x,再根据勾股定理知DE2+BE2=BD2,即x2+22=(4﹣x)2,求出x=32,进而根据等高三角形的面积,可得出:S△ACD:S△ABD=CD:BD=12×32×3:12×32×5=3:5.故选:B.点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH ⊥AC ,垂足为H ,交AD 于M 点,过M 点作MN ⊥AB ,垂足为N ,则BM+MN 为所求的最小值,再根据AD 是∠BAC 的平分线可知MH=MN ,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH ⊥AC ,垂足为H ,交AD 于M 点,过M 点作MN ⊥AB ,垂足为N ,则BM+MN 为所求的最小值.∵AD 是∠BAC 的平分线,∴MH=MN ,∴BH 是点B 到直线AC 的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH== 5.∵BM+MN 的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.26.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.27.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.28.如图,在四边形ABCD 中,∠A +∠C =180°,E 、F 分别在BC 、CD 上,且AB =BE ,AD =DF ,M 为EF 的中点,DM =3,BM =4,则五边形ABEFD 的面积是_____.【答案】12【解析】【分析】延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.【详解】延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.29.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内两点,AD 平分∠BAC,∠EBC=∠E=60°,若BE=6cm ,DE=2cm ,则BC=_____cm .【答案】8cm.【解析】【详解】解:如图,延长ED 交BC 于M ,延长AD 交BC 于N ,作DF ∥BC ,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.30.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.六、八年级数学轴对称三角形选择题(难)31.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒【答案】C【解析】【分析】 设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.【详解】分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠, 224080P OP MON ∴∠'''=∠=⨯︒=︒,(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,100APB APO BPO ∴∠=∠+∠=︒.故选:C .【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.32.如图,等腰 Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交 AC ,AD 于E ,F ,点M 为 EF 的中点,AM 的延长线交 BC 于N ,连接 DM ,NF ,EN .下列结论:①△AFE 为等腰三角形;②△BDF ≌△ADN ;③NF 所在的直线垂直平分AB ;④DM 平分∠BMN ;⑤AE =EN =NC ;⑥AE BN EC BC=.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】D【解析】【分析】 ①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF=∠DAN ,∠BDF=∠ADN ,证△DFB ≌△DAN ,由题意可得BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确,由∠ADB=∠AMB=90°, 可知A 、B 、D 、M 四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM 平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB ≌△CAN , 继而可得AE=CN ,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得22BD BC A BC B ==,由⑤可得22AE EN EC EC ==所以⑥正确. 【详解】解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,∴∠BAD=∠CAD=∠C=45°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°, ∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE ,∴△AEF 为等腰三角形,所以①正确;∵∠BAC=90°,AC=AB ,AD ⊥BC ,∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD ,∵BE 平分∠ABC ,∴∠ABE=∠CBE= 12∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5°,∴AFE=∠BFD=∠AEB=67.5°,∴AF=AE,AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD和△NAD中,∠FBD=∠DAN ,BD=AD ,∠BDF=∠ADN ,∴△FBD≌△NAD,所以②正确;因为BF>BD=AD,所以BF AF,所以点F不在线段AB的垂直平分线上,所以③不正确∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴DM平分∠BMN ,所以④正确;在△AFB和△CNA中,∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,∴△AFB≌△CAN(ASA),∴AF=CN,∵AF=AE,∴AE=CN,∵AE=AF,FM=EM,∴AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴△ABE≌△NBE,∴∠ENB=∠EAB=90°,∴EN⊥NC.∴△ENC是等腰直角三角形,∴AE=CN=EN,所以⑤正确;∵AF=FN,所以∠FAN =∠FNA,因为∠BAD =∠FND=45°,所以∠FAN+ ∠BAD =∠FNA+∠FND,所以∠BAN =∠BNA,所以AB=BN,所以22BDBCABCB==,由⑤可知,△ENC是等腰直角三角形,AE=CN=EN,∴22 AE ENEC EC==,所以AE BNEC BC=,所以⑥正确,故选D.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.33.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.34.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】由点A、B的坐标可得到2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴2,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC 是等腰三角形的C 点有1个;②若BC=AB ,以B 为圆心,BA 为半径画弧与x 轴有2个交点,即满足△ABC 是等腰三角形的C 点有2个;③若CA=CB ,作AB 的垂直平分线与x 轴有1个交点,即满足△ABC 是等腰三角形的C 点有1个;综上所述:点C 在x 轴上,△ABC 是等腰三角形,符合条件的点C 共有4个.故选D .【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.35.如图,在△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,则△BCD 的周长为( )A .13B .15C .18D .21【答案】A【解析】 根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,得到AD=BD ,进而得出△BCD 的周长为:CD+BD+BC=AC+BC=8+5=13.故选A .点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.36.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线, ∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,。

云南省中考数学试卷及答案解析()

云南省中考数学试卷及答案解析()

云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.因式分解:x2﹣1=.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录()的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这个数的和,即,求证:.云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录()的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为: =49;平均数==48.6,方差= [(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE . (1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案. 【解答】解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA , ∵AC 平分∠BAE , ∴∠OAC=∠CAE , ∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E , ∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD ,∵点C 在圆O 上,OC 为圆O 的半径, ∴CD 是圆O 的切线;(2)在Rt △AED 中,∵∠D=30°,AE=6, ∴AD=2AE=12,在Rt △OCD 中,∵∠D=30°, ∴DO=2OC=DB+OB=DB+OC , ∴DB=OB=OC=AD=4,DO=8, ∴CD===4,∴S △OCD ===8,∵∠D=30°,∠OCD=90°, ∴∠DOC=60°, ∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC ⊥DE ,解(2)的关键是求出扇形OBC 的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【分析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)(•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.21 / 21。

初三数学试卷分析及反思

初三数学试卷分析及反思

九年级数学第一学期期中考试分析及反思成伟荣本次试题题量较大,题目偏难,简单题较少,难度与中考题相当。

同时与能力考查紧密相结,每一个题仅仅是考察了学生必学必会,也就是应知应会的知识,不偏不怪,至于学生得分低,成绩差,关键是平时的知识落实不到位,这给我们提出了警示,下面就本次考试作简单分析:一、从代数方面看,一元二次方程、二次根式考察的题目比较多,也是本学期学习中的重点难点。

这就要求同学们在平时学习的时候,对相应的基本概念,基本技能多加练习。

并注意归纳总结,努力发现它们之间的联系。

二、从几何方面看,主要侧重考察相似三角形有关的一些问题。

是学习中的重点和难点。

这要求同学们对基本概念熟练掌握,对基本技能熟练运用。

在学习过程中多动动手,发挥空间想象。

三、从试卷学生得分情况看1.选择题:学生出错较多的是4、7、9、10第4、9题是关于三角函数的计算,属于超范围题目,正确率为零。

第7题考察学生对相似三角形的性质和判定的综合应用,大部分学生掌握不好。

第10题考察了学生对相似矩形的判定的应用,由于刚学过,对知识的理解不透彻,。

2.填空题:得分率低,每个题的分量都不轻,考察了学生直角坐标的确定(11题)、三角形中位线(14题)、数形结合的思想规律题(15题)。

13题属于超范围题目。

3.解答题:题目覆盖面较广,知识点较全,既有动手操作、又有动脑思考,既有形象思维(19、22),又有抽象理解(23)函数问题。

最后的综合性问题,要求同学们对学过的知识能够融会贯通,具备发散思维的习惯,数形结合的去考虑问题,解决问题。

四、对自己平时工作的反思。

反思一学期的教学总感到有许多的不足与思考。

从多次考试中发现一个严重的问题,许多学生对于比较基本的题目的掌握具有很大的问题,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,看来还需要在平时的教学中进一步落实学生练习的反馈与矫正。

2010年云南省红河州中考数学试卷(全解全析)

2010年云南省红河州中考数学试卷(全解全析)

2010年云南省红河州中考数学试卷(全解全析)一、选择题(共7小题,每小题3分,满分21分)1、(2010•红河哈尼族彝族自治州)下列计算正确的是()A、(﹣1)﹣1=1B、(﹣3)2=﹣6C、π0=1D、(﹣2)6÷(﹣2)3=(﹣2)2考点:负整数指数幂;同底数幂的除法;零指数幂。

专题:计算题。

分析:根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.解答:解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.点评:解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.2、(2010•红河哈尼族彝族自治州)不在函数图象上的点是()A、(2,6)B、(﹣2,﹣6)C、(3,4)D、(﹣3,4)考点:反比例函数图象上点的坐标特征。

分析:根据得k=xy=12,所以只要点的横坐标与纵坐标的积等于12,就在函数图象上.解答:解:A、2×6=12,不符合题意;B、﹣2×(﹣6)=12,不符合题意;QianC、3×4=12,不符合题意;D、﹣3×4=﹣12≠12,符合题意;故选D.点评:本题主要考查反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.3、(2010•红河哈尼族彝族自治州)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是()A、B、C、D、考点:简单组合体的三视图。

分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4、(2010•红河哈尼族彝族自治州)使分式有意义的x的取值是()A、x≠0B、x≠±3C、x≠﹣3D、x≠3考点:分式有意义的条件。

数学八年级上册 全册全套试卷中考真题汇编[解析版]

数学八年级上册 全册全套试卷中考真题汇编[解析版]

数学八年级上册 全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,∵∠AA 1B 1=∠A 1B 1B 2+∠C ,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C ;∴当∠B=2∠C 时,∠BAC 是△ABC 的好角;当∠B=3∠C 时,∠BAC 是△ABC 的好角; 故若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为∠B=n ∠C ;∵最小角为20°,∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m 、n 为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.2.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

2010年河北省中考数学试卷分析评价

2010年河北省中考数学试卷分析评价

2010年河北省中考数学试卷分析评价一、整体评述今年数学试题给人以耳目一新的感觉。

充分体现了课程改革所倡导的理念,在全面考查课程标准规定的义务教育阶段的数学核心内容的基础上,注重基础知识、基本能力和基本思想方法的考查,关注对数学活动过程和活动经验的考查,加强了探究性问题的设计与应用.试题关注学生的心理特征,题目起点较低,难度分布合理有序,陈述准确,表达简洁、规范,图文制作精良.试题之间相互间具有一定的校正随机测量误差功能.题目的呈现形式和内容丰富多彩,既着眼于熟悉的题型和在此基础上的演变,又着眼于情景的创新,而且注意根据考查目标的差异采用不同的呈现方式,这都有利于考生稳定发挥其真实的数学水平,对于改善初中数学教学方式与学习方式有较好的导向作用。

二、试题特点1.突出考查基础知识和基本技能,以及运用数学思想方法解决问题的能力试题紧密联系学生的学习实际,直接考查基础知识和基本技能及数学思想方法解决问题的能力,注重对数学核心内容的考查,加强了知识的有效整合,提高了试卷的概括性和综合性。

例1.(原卷第1题)例2.(原卷第13题)例3.(原卷第14题)例5.(原卷第16题).例6.(原卷第19题)解方程:.评析例1和例2分别直接考查有理数乘法和相反数的概念;例3将数轴和矩形进行巧妙整合,考查学生将边长转化为简单运算的能力,这样既避免了对知识、法则的死记硬背,同时又能够考查学生对所学数轴的灵活运用;例4以平行四边形为素材,借助角平分线直接考查菱形的性质;例5考查的是对一元二次方程解的意义的理解和运用乘法公式进行整式的化简与求值;例6则是考查解最基本的分式方程的技能,也是我省多年来首次直接考查方程的解法。

以上各题所考查的内容,知识覆盖面大,图形简洁,结论清晰,充分体现试题的基础性,题目既相互独立,又相互联系,和谐统一,这种直接考查基础知识与基本技能的考法有效提高了考查结果的效度和信度.例7.(原卷第21题)评析本题以学生在学校学习活动中常见的英语口语竞赛问题为素材,以双图(条形统计图+扇形统计图)加一表(表格)的形式交叉呈现数据。

2010年云南省德宏州中考数学试卷及答案

2010年云南省德宏州中考数学试卷及答案

2010年云南省德宏州中考数学试卷一、选择题(共7小题,每小题3分,满分21分)1.(2010•德宏州)在1、﹣2、﹣5.5、0、、、3.14中,负数的个数为()A.3个B.4个C.5个D.6个2.(2010•德宏州)如图是某几何体的三种视图,则该几何体是()A.圆柱 B.圆台 C.圆锥 D.直棱柱3.(2010•德宏州)已知a<b,下列式子正确的是()A.a+3>b+3 B.a﹣3<b﹣3 C.﹣3a<﹣3b D.4.(2010•德宏州)单项式7ab2c3的次数是()A.3 B.5 C.6 D.75.(2010•德宏州)一元二次方程x2﹣4=0的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x1=,x2=﹣6.(2010•德宏州)已知某个一次函数图象经过第二、三、四象限,点A(x1,y1)、B(x2,y2)是这个函数图象上的两点.若x1<x2,则()A.y1>y2B.y1≤y2C.y1<y2D.y1≤y27.(2010•德宏州)如图,在△ABC中,E、F分别是AB、AC的中点.若△ABC的面积是8,则四边形BCEF的面积是()A.4 B.5 C.6 D.7个二、填空题(共8小题,每小题3分,满分24分)8.(2010•德宏州)|﹣5|=_________.9.(2010•德宏州)在轴对称图形中,对应点的连线段被_________垂直平分.10.(2010•德宏州)在命题“同位角相等,两直线平行”中,题设是:_________.11.(2010•德宏州)已知在反比例函数的图象的每一支上,y随x增大而增大,则k_________0(填“>”或“<”)12.(2010•德宏州)不等式组的整数解是_________.13.(2010•德宏州)近年来,德宏州城镇居民人均可支配收入持续增长,2009年城镇居民人均可支配收入12558元.数字12558用科学记数法可表示为_________(结果保留两个有效数字).14.(2010•德宏州)已知圆锥的高是4,母线长是5,则该圆锥的侧面积与全面积的比为_________.15.(2010•德宏州)观察下面的数的规律:1+2,2+3,4+4,8+5,16+6,…,照此规律,第n个数是_________.(用含字母n的式子表示)三、解答题(共8小题,满分0分)16.(2010•德宏州)(1)计算:.(2)先化简,再求值:,其中.17.(2010•德宏州)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度.(1)画出将△ABC向下平移5个单位长度得到的△A1B1C1;(2)画出△ABC关于y轴对称的△A2B2C2;(3)写出A、A2的坐标.18.(2010•德宏州)如图,在平行四边形ABCD中,O是其对角线AC的中点,EF过点O.(1)求证:∠OEA=∠OFC;(2)求证:BE=DF.19.(2010•德宏州)某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?20.(2010•德宏州)某地区2009年共有7661名学生参加中考.为了调查该地区中考数学成绩的情况,从中抽取200名学生的数学成绩(成绩取整数),整理后绘制成以下统计图.(1)抽取的样本容量是_________;(2)补全条形统计图;(3)根据抽取样本的条形统计图,估计该地区中考数学成绩在哪个分数段的人数最多?21.(2010•德宏州)小明与小华一起玩抽卡片游戏.在两个不透明的口袋中,分别装有形状、大小、质地等完全相同的三张卡片;甲口袋中的卡片标号分别为1,2,3;乙口袋中的卡片标号分别为4,5,6.分别从每个口袋中随机抽取一张卡片.(1)用列举法(列表法或树状图)表示抽出的卡片标号的所有可能出现结果;(2)抽出的两张卡片上标号之积大于10的概率是多少?(3)规定抽出的两张卡片上的标号之积大于10,小明获胜;否则,小华获胜.请你判断这个游戏规则对两人是否公平,并说明理由.22.(2010•德宏州)如图,小岛A在港口P的南偏西45°方向,距离港口70海里处.甲船从A出发,沿AP方向以每小时20海里的速度驶向港口P;乙船从港口P出发,沿着南偏东60°方向,以每小时15海里的速度驶离港口.若两船同时出发.(1)甲船出发x小时,与港口P是距离是多少海里(用含x的式子表示)?(2)几小时后两船与港口P的距离相等?(3)当乙船在甲船的正东方向时,船体发生了故障不能继续航行,此时,乙船向甲船发出求救信号.问甲船以现有航速赶去救援,需几小时才能到达出事地点(不考虑其它影响航速的因素)?(最后结果精确到0.1)(参考数据:)23.(2010•德宏州)已知二次函数y=x2+bx+c图象的对称轴是直线x=2,且过点A(0,3).(1)求b、c的值;(2)求出该二次函数图象与x轴的交点B、C的坐标;(3)如果某个一次函数图象经过坐标原点O和该二次函数图象的顶点M.问在这个一次函数图象上是否存在点P,使得△PBC是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2010年云南省德宏州中考数学试卷参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.(2010•德宏州)在1、﹣2、﹣5.5、0、、、3.14中,负数的个数为()A.3个B.4个C.5个D.6个考点:正数和负数。

2010年数学中考试卷及答案

2010年数学中考试卷及答案

南京市2010年初中毕业生学业考试数 学一、选择题(本大题共有6小题,每小题2分,共12分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应位置.......上) 1.-3的倒数是A .-3B .3C .- 13D .132.计算a 3·a 4的结果是A .a 6B .a 7C .a 8D .a 12 3.如图,下列各数中,数轴点A 表示的可能是A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根4.甲各蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 5.如图,在平面直角坐标系中,菱形OABC 的顶点C 的坐标是(3,4),则顶点A 、B 的坐标分别是A .(4,0)、(7,4)B .(5,0)、(8,4)C .(4,0)、(7,4)D .(5,0)、(8,4) 6.,如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x的变化而变化,那么表示y 与x 之间的函数关系的图象大致为二、填空题(本大题共10个小题,每小题2分,共20分.不需写出解答过程,请把正确答案直接填写在答题卡相应位置上)7. -2的绝对值的结果是__________.8. 函数y = 1x -1中,自变量x 的取值范围是__________.9. 南京地铁2号线(含东延线)、1号线南延线开通后,南京地铁总里程约为85 000m ,将85 000用科学记数法表示为__________.10.如图,O 是直线l 上一点,∠AOB =100°,则∠1+∠2=__________°. 11.计算2a ·8a (a ≥0)的结果是__________.12.若反比例函数的图象经过点(-2, -1),则这个函数的图象位于第__________象限. 13则这两人5次射击命中的环数的平均数甲x =乙x =8,方差S 甲2___ S 乙2(填“>”、“<”或“=”) 14.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点.若两圆的半径分别为3cm和5cm ,则AB 的长为__________ cm .15.如图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A ’OB ’,旋转角为α(0°<α<180°).若∠AOB =30°,∠BCA ’=40°,则∠α=__________°.16.如图,AB ⊥BC ,AB =BC =2cm ,OA⌒ 与OC ⌒ 关于点O 中心对称,则AB 、BC 、CO ⌒ 、OA ⌒ 所围成的图形的面积是________cm 2.三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组⎩⎨⎧=+=+.52,42y x y x18.(6分)计算(1a - 1b )÷a 2-b 2ab19.(6分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对这三种水果7天的销售量进行了统计,统计结果如图所示.(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克.则这7天销售额最大的小果品种是( ) A .西瓜 B .苹果 C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?A B (第21题)第23题20.(7分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC 为10m ,测角仪的高度CD为1.5m ,测得树顶A 的仰角为33°,求树的高度AB .(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABC ≌△BAD .求证:(1)OA =OB ;(2)AB ∥CD .22.(7分)已知点A (1,1)在二次函数y =x 2-2ax -b 的图象上 (1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 23.(9分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖在,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖文案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1数.2.结合转盘简述获奖方式,不需说明理由.)第25题第26题’ C ’ 24.(8分)甲车从A 地出发以60km/h 的速度沿公路匀速行驶,0.5h 后,乙车也从A 地发出,以80km/h的速度沿该公路与甲车同向匀速行驶求乙车出发后几小时追上甲车. 请建立一次函数关系........解决上述问题. 25.(8分)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB =45°,BC ∥AD ,CD ∥AB . (1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为1,求图中阴影部分的面积(结果保留π).26.(8分)学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件 (1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地,你可以得到“满足________________或_________________,两个直角三角形相似”; (2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到“满足__________的两个直角三角形相似”.请你结合下列所给图形,写出已知,并完成说理过程.已知:如图,_________________________________.求证:Rt △ABC ∽Rt △A ’B ’C ’ .27.(8分)某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一性清仓,清仓时单价为40元.设第二个月单价降低x 元. (1)填表(不需化简):第28题(2)如果批发商希望通过销售这批T 恤获利9 000元,那么第二个月的单价应是多少元?28.(8分)如图,正方形ABCD 的边长是2,M 是AD 的中点.点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连接EG 、FG . (1)设AE =x 时,△EGF 的面积为y .求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)P 是MG 的中点,请直接写出点P 运动路线的长.南京市2010年初中数学毕业生学业考试数 学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. C 2. B 3. C 4. B 5. D 6.(2010江苏南京,6,2分)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y随他与点A之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图象大致为( )【分析】由生活经验知:当小亮走到路灯的正下方时,此时影长为0,因此可排除选项C 、D ;在确定答案是选项A 或B 上感觉不好下手.设小亮身高为a ,路灯C 到路面的距离为h ,点A 到路灯正下方的距离为b ,如图,由中心投影得a y hb x y=-+,整理得a ab y x h ah a=-+--,因此答案为A .【答案】A【涉及知识点】函数的图象、中心投影【点评】本题考查函数的图象函数的图象、中心投影,解决此类问题的关键是抓住横轴与纵轴的意义.由于此类问题抽象性较强,因此经常出现在各地中考试卷选择题的最后一题,具有一定的区分度.7. 2 8. x ≠1 9. 8.5×104 10. 80 11. 4a 12.一、三 13.> 14. 8 15.(2010江苏南京,1,2分)如图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A/OB /,旋转角为α(0°<α<180°).若∠AOB =30°,∠BCA /=40°,则∠α=_____°.【分析】根据圆心角的意义得∠BOA /=2∠BCA /=80°,所以∠α=∠AOB +∠BOA /=30°+80° =110°.【答案】110【涉及知识点】圆心角16.(2010江苏南京,16,2分)如图,AB ⊥BC ,AB =BC =2 cm ,OA 与OC 关于点O中心对称,则AB 、BC 、CO 、OA 所围成的图形的面积是_____ cm 2.【分析】连接AC ,根据中心对称的意义,将“AB 、BC 、CO 、OA 所围成的图形的面积”转化为求直角三角形ABC的面积,由AB =BC =2 cm 得S △ABC =2 cm 2.【答案】217.原方程组的解为12x y ==⎧⎨⎩. 18. 1()a b -+.19.【答案】(1)A;(2)140÷7×30=600(千克).答:估计一个月该水果店可销售苹果600千克.20.(2010江苏南京,20,7分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【分析】观察图形发现可过点D作DE⊥AB,构造直角三角形ADE,由tan∠ADE=AEDE得AE=DE·tan∠ADE≈10×0.65=6.5,因此AB=AE+BE=AE+CD=6.5+1.5=8m.【答案】如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=AE DE,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8 m.21.(2010江苏南京,21,7分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.【答案】(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD.又∵OA=OB,∴∠OCD=∠ODC.∵∠AOB=∠COD,∠CAB=1802AOB-∠,∠ACD=1802COD-∠,∴∠CAB=∠ACD,∴AB∥CD.22.(2010江苏南京,22,7分)已知点A(1,1)在二次函数y=x2-2ax+b的图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.【分析】(1)根据题意得1=1-2a+b,所以b=2a;(2)由题意知方程x2-2ax+b=0有两个相等的实数根,所以所以4a2-4b=0,由(1)b=2a得4a2-8a=0,解得a=0,或a=2.进而分类可求得该二次函数的图象的顶点坐标.【答案】(1)因为点A(1,1)在二次函数y=x2-2ax+b的图象上,所以1=1-2a+b,可得b=2a.(2)根据题意,方程x2-2ax+b=0有两个相等的实数根,所以4a2-4b=4a2-8a=0,解得a=0,或a=2.当a=0时,y=x2,这个二次函数的顶点坐标为(0,0);当a=2时,y=x2-4x+4,这个二次函数的顶点坐标为(2,0).所以,这个二次函数的顶点坐标为(0,0)或(2,0).23.(2010江苏南京,23,9分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你交转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1.在用文字说明和扇形的圆心角的度数.2.结合转盘简述获奖方式,不需说明理由.)【分析】(1)是否符合要求是指该数学老师设计的方案能否体现“10%得大奖,90%得小奖”的厂家意图,因此可将数学老师的方案用排列法或画树状图的方法得到概率.如用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=110.即顾客获得大奖的概率为10%,获得小奖的概率为90%.数学老师设计的方案符合要求;(2)本题求解方法不唯一,画图时只需将该转盘(圆)平均分为10份,某种颜色占1份,另一种颜色占9分.顾客购买该型号电视机时获得一次转动转盘的机会,指向1份颜色获得大奖,指向9份颜色获得小奖即可.【答案】(1)该抽奖方案符合厂家的设奖要求.分别用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=110.即顾客获得大奖的概率为10%,获得小奖的概率为90%.(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36°的扇形区域涂上黄色,其余的区域涂上白色.顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.24.(2010江苏南京,24,8分)甲车从A地出发以60km/h的速度沿公路匀速行驶,0.5h后,乙车也从A 地出发,以80km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发几小时追上甲车.请建立一次函数关系........解决上述问题.【分析】乙车出发几小时追上甲车是指两车行驶路程相等或在平面直角坐标系两条直线交点的意义,因此设乙车出发xh后,甲、乙两车离A地的路程分别是y1km、y2km,得y1=60x+30,y2=80x.当乙车追上甲车时,y1= y2,即60x+30=80x.解得x=1.5h.【答案】本题答案不唯一,下列解法供参考.设乙车出发xh后,甲、乙两车离A地的路程分别是y1km、y2km.根据题意,得y1=60(x+0.5)=60x+30,y2=80x.当乙车追上甲车时,y1= y2,即60x+30=80x.解这个方程得x=1.5(h).答:乙车出发1.5h追上甲车.25.【答案】(1)直线CD与⊙O相切.如图,连接OD.∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°.∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD.又∵点D在⊙O上,直线CD与⊙O相切.(2)∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=2.∴S 梯形OBCD=()(12)13222 OB CD OD++⨯==,∴图中阴影部分的面积为S梯形OBCD-S扇形OBD= 313212424ππ-⨯=-.【点评】圆这部分难度在新课标中有较大幅度的减小,考查的知识点集中在圆心角与圆周角、垂径定理、圆与直线、圆与圆的位置关系以及的有关圆的计算等方面,考查难度中等.本题考查圆与直线的位置、圆的计算等知识点,解决与切线相关的问题时,连接圆心与切点的半径是常用的辅导线.26.(2010江苏南京,26,8分)学习《图形的相似》后,我们可以探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可以得到“满足_____,或_____,两个直角三角形相似”;(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到满足_____两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.已知:如图,_____.试说明Rt△ABC∽Rt△A/B/C/.【分析】(1)我们知道:两个三角形只要满足两个角对应相等,则这两个三角形相似.由于两个直角三角形的中的直角相等是问题的隐含条件,因此只需再有一个锐角对应相等即可判定它们相似.类比“两直角边对应相等,两个直角三角形全等”可知“两直角对应成比例时” 两个直角三角形相似;(2)HL 是判定两个直角三角形全等的特殊方法,类比全等可得:斜边和一条直角边对应成比例的两个直角三角形相似.说理时可从全等是相似的特例入手,利用参数法,设两个直角三角形对应边的比值为k ,进而转化为三角形相似的判定条件获解.【答案】(1)一个锐角对应相等,两直角对应成比例; (2)斜边和一条直角边对应成比例. 在Rt △ABC 和Rt △A /B /C /中,∠C =∠C /=90°,////AB ACA B A C=. 解法一:设////AB ACA B A C==k ,则AB = k A /B /,AC = k A /C /. 在Rt △ABC 和Rt △A /B /C /中,//BC k B C===,∴//////AB AC BCA B A C B C==, ∴Rt △ABC ∽Rt △A /B /C /.解法二:如图,假设AB >A /B /,在AB 上截取AB //= A /B /,过点B //作B //C //⊥AC ,垂足为C //.∵∠C =∠AC //B //,∴BC ∥B //C //,∴Rt △ABC ∽Rt △A /B //C //,////AC ABAC AB=. ∵AB //= A /B /,∴////AC ABAC A B=. 又∵////AB AC A B A C =,∴//AC AC=//AC A C ,∴AC //=A /C /. ∵AB //= A /B /,∠C =∠AC //B //=90°,∴Rt△AB//C//≌Rt△A/B/C/,∴Rt△ABC∽Rt△A/B/C/.【点评】本题从教材中的直角三角形全等为背景,利用全等是相似的特例进行类比构造问题,根在教材,根在课堂,考在思想,考在方法,是一首难得的好题.解决此类问题通常需要认真阅读问题,在此基础上运用类比思想,结合相关知识进行求解.【推荐指数】★★★★27.(2010江苏南京,27,8分)某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?【答案】(1)80-x,200+10x,800-200-(200+10x);(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000.整理,得x2-20x+100=0,解这个方程得x1= x2=10,当x=10时,80-x=70>50.答:第二个月的单价应是70元.28.(2010江苏南京,28,8分)如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,并填写自变量x的取值范围;(2)P是MG的中点,请直接写出点P运动路线的长.【分析】(1)欲求y关于x的函数关系式,即△EGF的面积,观察图形发现S△EGF=12EF·MG,由条件AM=DM及正方形的性质可得△AME≌△DMF,所以EF=2EM,因此求出面积的关键是求出MG.结合图形发现过点M作MN⊥BC,垂足为N可得Rt△AME∽Rt△NMG,进而运用相似三角形的性质得到MG的长,问题获解;(2)如图,P1P2(P1是P起始位置,P2是P终止位置.)是点P运动的路线,由Rt △ABM∽Rt△P1P2M,AB=2AM,得P1P2=2MP1=2.G1【答案】(1)当点E与点A重合时,x=0,y=12×2×2=2;当点E与点A不重合时,0<x≤2.在正方形ABCD中,∠A=∠ADC=90°,∴∠MDF=90°,∴∠A=∠MDF.∵AM=DM,∠AMF=∠DMF,∴△A M E≌△DMF,∴ME=MF.在Rt△AME中,AE=x,AM=1,MEEF=2MF过点M作MN⊥BC,垂足为N(如图).则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM.∴∠AME+∠EMN=90°.∵∠EMG=90°,∴∠GMN+∠EMN=90°,∴∠AME=∠GMN,∴Rt△AME∽Rt△NMG,∴AM MENM MG=,即12MEMG=,∴MG=2ME∴y=12EF·MG=12×x2+2,∴y =2x2+2,其中0≤x≤2.(2)点P运动路线的长为2.【点评】本题是一道以动点为背景求函数关系式的面积问题,添加恰当的辅导线构造相似三角形求MG的长是问题(1)的求解关键.由于此类问题综合多个知识点进行考查,再加学生对运动性问题的分析往往是难以“动中求静”,因此,近年来各地多以运动问题作为中考数学试卷的压轴题.。

双柏县独田中学2010年中考数学模拟试题(含答案)

双柏县独田中学2010年中考数学模拟试题(含答案)

俯视图左视图主视图双柏县独田中学2010年中考数学模拟试卷独田中学 罗琴( 全卷共三个大题,共24个小题;满分:120分;考试时间:120分钟 )注意:1.本卷为试题卷,考生必须在答题卷上作答,答案应书写在答题卷相应位置;在试卷、草稿纸上答题无效.2.考试结束后,请将试卷和答题卷一并交回. 3.考生可将学习计算器代入考场.一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.下列运算正确的是A .–(–2)=2B .–22 = 4C .– | –3|=3 D= –22.树叶上有许多气孔,在阳光下这些气孔一面排出氧气和蒸腾水分子,一面吸入二氧化碳.一个气孔在一秒钟吸进2500000000000个二氧化碳分子,这个数用科学记数法表示为A .2.5×1010B .2.5×1011C .2.5×1012D .25×1011 3.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是A .正方体B .长方体C .三棱柱D .圆柱4.函数y =x 的取值范围是A .12x >B .12x ≥ C .12x < D .12x ≠5.某公园对“十·一”黄金周七天假期的游客人数进行了统计,如下表:其中平均数和中位数分别是:A .1.5和2.2B .2.2和3.8C .2和2.2D .2.2和2LEDCBAEDCBA6.如图,AD ∥BC ,点E 在BD 的延长线上,若∠ADE=145°,则∠DBC 的度数是A .145°B .50°C .45°D .35° 7.⊙01与⊙02外切,且它们的半径分别是方程2430x x -+=的两根,则两圆的圆心距为A .2B .3C .4D .58.如图,在直线L 上依次摆放着三个正方形,已知中间斜放置的正方形的面积是6,则正放置的两个正方形的面积之和为 A .6B .5C .D .36二、填空题(本大题共7个小题,每小题3分,满分21分) 9.–5的相反数是 . 10.如图,点P 是反比例函数1y x=-(x<0)上的一点,PD ⊥x 轴于点D ,PC ⊥y 轴于点C ,则S 矩形PDOC 等于 . 11.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若DE=3, 则BC= .12.一个多边形的内角和与外角和之比为9∶2,则这个多边形的边数为 .13.已知一组数为:1,34,5,716, 925… 用代数式表式第n 个数为 . 14.请选择一组..你喜欢的a 、b 、c 的值,使二次函数y=ax 2+bx+c (a≠0)同时..满足下列条件:①开口向下;②当x <1时,y 随x 的增大而增大,当x >1时,y 随x 的增大而减小,这样的函数关系式可以是 . 15.如图,在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折至△AGE ,那么△AGE 四边形AECD 重叠部分的面积是____________.OFEDCBA三、解答题(本大题共9个小题,满分75分)16.(6分)先化简,再求值35(2)22x xx x+÷+---,其中3x=17.(6分)如图:在平行四边形ABCD中,E,F分别是AB,CD上的点,且AE=CF,连结EF交BD于O点,则BD与EF互相平分吗? 请说明理由.18.(7分)为落实云南省“减负提质”的文件精神,了解学生每天做作业的时间情况,某中学对学生进行随机抽样调查,并分类如下:根据调查结果绘制了两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)把图①补充完整;(2)A部分的人数所占的百分比;(3)D部分的人数所占百分比对应的扇形圆心角的度数;(4)若该校有2000名学生,请你估计平均每天做作业时间在2小时以下的人数,并就这些信息谈谈自己的想法.19.(8分)如图,已知反比例函数的图象经过A 、B 两点,A 点的坐标为(1,–3),B 点的纵坐标为–1,直线BC 经过X 轴上的点C (2,0)(1)求反比例函数的解析式;(2)求直线BC 与坐标轴围成的三角形的面积.20.(8分)将正面分别标有数字7、8、9,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机抽取一张,求抽取的数字为奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,用树状图或列表法说明一共可以组成哪些两位数?在这些两位数中,能被7整除的数的概率是多少?21.(7分)去年,汶川地区发生特大地震,造成当地重大经济损失.在“情系灾区”捐款活动中,某同学对甲、乙两班情况进行统计,得到三条信息: (1)甲班共捐款300元,乙班共捐232元; (2)甲班比乙班多2人;(3)乙班平均每人捐款数是甲班平均每人捐款数的45;请你根据以上信息,求出甲班平均每人捐款多少元?D22.(8分)如图,甲楼在乙楼的南面,它们的设计高度是若干层,每层高均为3米,冬天太阳光与水平面的夹角为30°. (1)若要求甲楼和乙楼的设计高度均为6层,且冬天甲楼的影子不能落在乙楼上,那么,建筑时两楼之间的距离BD 至少为多少米(结果保留根号)?(2)由于受空间的限制,甲楼和乙楼的距离BD=21米,若仍要求冬天甲楼的影子不能落在乙楼上,那么,设计甲楼时,最高应建几层?23.(12分)如图,在平面直角坐标系中,直线L :y x =是第一、三象限的角平分线. (1)观察与探究:由图易知:A (0,2)关于直线L 的对称点A '的坐标为(2,0);B (5,3)关于直线L 的对称点'B 的坐标为(3,5);请在图中标出C (–6,1)关于直线L 的对称点C '的位置,并写出它的坐标:C ' .(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线L 的对称点P '的坐标为 .(不必证明)(3)运用与拓广: 已知M (3,–2)、N (–1,– 4),试在直线L 上确定一点Q ,使点Q 到M 、N 两点的距离之和最小,并求出Q 点坐标.24.(13分)如图,在平面直角坐标系中,点M 在X 轴上,⊙M 与Y 轴相切于O 点,过点A (2,0)作⊙M 的切线,切点为B 点,已知:1sin 2BAM ∠=.(1)求⊙M 的半径r ; (2)求点B 的坐标;(3)若抛物线c bx ax y ++=2经过点A 、B 、M 三点,求此抛物线的解析式;(4)在y 轴上是否存在点C ,使△ABC 为直角三角形,若存在,请求出C 点的坐标,若不存在,请说明理由.4321OFEDCBA双柏县独田中学2010年中考数学模拟试卷参 考 答 案一、1.A 2.C 3.C 4.B 5.C 6. D 7. C 8.A 二、 9.5, 10.1,11.6,12.11,13.221n n-,14.223y x x =-++(答案不唯一,符合0,2a b a <=-即可) 15.2三、16.(6分)解:原式=234522x x x x +--÷-- ……1分 =322(3)(3)x x x x x +-⨯-+- ……2分=13x - ……4分 当3x =133x ==-- ……6分17.(6分)证明:ABCD 中AB ∥CD ,AB=CD , 且AE=CF ……1分 ∴ BE=DF ∠1=∠2,∠3=∠4∴ △BOE ≌△DOF ……4分 ∴ OD=OB ,OE=OF即 EF 、BD 相互平分. ……6分18.(7分) 解:(1)如图100人 ……2分 (2)5% ……3分 (3)108° ……5分(4)100人,想法不唯一,合理即可给分. ……7分19. (7分)解(1)设xk y =∵ A (1,-3)在反比例函数的图象上∴ 13k=- k =-3 ∴ xy 3-= …… 2分(2)点B 在反比例函数图象上,旦纵坐标为-1∴ x31-=- x =3∴ B (3,-1) ……3分设直线BC 的解析式为 y k xb=+ 则⎩⎨⎧=-=⇒⎩⎨⎧+=+=-212031b k b k b k∴2y x =-+ ……6分∴ 直线2y x =-+与Y 轴交于(0,2)点∴S △COD =12222⨯⨯=……7分20. (8分)解(1)抽到奇数的概率为P (奇数)=23 ……2分(2)列表:……6分所以,一共可以组成6个两位数:87,97,78,98,79,89.在这些数字中, 只有98能被7整除,所以P =16……8分D21.(8分)解:设乙班有x 人,则甲班有(2)x +人,根据题意得 ……1分232300452x x +=⨯ ……5分解得: 58x = , 260x +=检验知,58x =是原方程的解. .....6分 ∴300560= ……7分 答:甲班平均每人捐款5元. ……8分22.(8分)解:(1)在Rt △ABD中,18tan30BD =⋅= ……2分 (2)设甲楼最高应建X 层, 有: 03tan3021x ≤ ……5分∴4.04x ≤≈∴ 4x = ……7分 答:甲楼高应建4层. ……8分23.(12分)解(1)C ' (1,-6) . ……2分 (2) (b ,a ) ……4分 (3) 直线L 的解析式为y x =作点N 关于L 的对称点N /(-4,-1),设直线MN 的解析式为y kx b =+ ……7分 则 -1=-4k+b-2=3k+bk=17- b=117-∴ 11177y x =-- ……10分解方程组 y x =11177y x =--得 x=y=118-∴直线L 上的点Q 1111(,)88--符合条件. ……12分25.(13分)解:(1)连结BM ∵AB 与⊙M 相切于B 点 ∴AB ⊥MB Rt △ABM 中∵ sin ∠BAM=12 ∴∠BAM=30º∴ 21=+oA r r212=+r r r=2 ……2分(2) 过B 作BE ⊥x 轴于E 点 则 ∠MBE=∠MAB=30º ∴ 11122ME BM OM === ∴ OE=1 BE=33=ME∴ B (-1,3) ……4分(3)∵抛物线径过A (2.0),B (-1.3),M (-2.0)三点, 设 ()()21x x x x a y --= 则 (2)(2)y a x x =-+ 把 B )3,1(-代入得:(12)(12)a =---+∴a =-∴(2)(2)3y x x =--+=334332+-x ……8分 (4)存在设C (o ,m )是y 轴上任意点,过B 作BF ⊥y 轴于F 点。

八年级上册数学 全册全套试卷中考真题汇编[解析版]

八年级上册数学 全册全套试卷中考真题汇编[解析版]

八年级上册数学全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.2.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.3.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.【答案】2∠A=∠1+∠2【解析】【分析】根据∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2),即2∠A=∠1+∠2.故答案为:2∠A=∠1+∠2.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.4.如果一个n边形的内角和是1440°,那么n=__.【答案】10【解析】∵n边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.5.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为_____.【答案】10°【解析】【分析】根据直角三角形两锐角互余求出∠B,根据翻折变换的性质可得∠CA′D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵折叠后点A落在边CB上A′处,∴∠CA′D=∠A=50°,由三角形的外角性质得,∠A′DB=∠CA′D﹣∠B=50°﹣40°=10°.故答案为:10°.【点睛】本题考查了翻折变换,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,翻折前后对应边相等,对应角相等.6.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)7.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形ABCD内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG的面积为()A.7B.8C.9D.10【答案】B【解析】分析:连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边形DHOG.详解:连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=7,S四边形BFOE=9,S四边形CGOF=10,∴7+10=9+S四边形DHOG,解得,S四边形DHOG=8.故选B.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.8.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【答案】D【解析】【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n ,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D .【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.9.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】【分析】【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.10.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1440°,n﹣2=6,n=8.故这个多边形的边数为8.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.11.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.12.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.三、八年级数学全等三角形填空题(难)13.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】34【解析】【分析】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB=90°,最后利用勾股定理求出BD的长度即可.【详解】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,∴CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,∵等边△ABC,∴∠ACP+∠PCB=60°,∴∠ECB+∠PCB=60°,即∠ECP=60°,∴△ECP为等边三角形,∴∠CPE=∠CEP=60°,PE=6,∴∠DEB=90°,∵∠APC=150°,∠APD=30°,∴∠DPC=120°,∴∠DPE=180°,即D、P、E三点共线,∴ED=3+7=10,∴BD=22=234.DE BE故答案为234.【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.14.如图,Rt△ABC中,∠ACB=90°,AC=BC,CF交AB于E,BD⊥CF,AF⊥CF,则下列结论:①∠ACF=∠CBD②BD=FC③FC=FD+AF④AE=DC中,正确的结论是____________(填正确结论的编号)【答案】①②③【解析】【分析】根据同角的余角相等,可得到结论①,再证明△ACF≌△CBD,然后根据全等三角形的性质判断结论②、③、④即可.【详解】解:∵BD⊥CF,AF⊥CF,∴∠BDC=∠AFC=90°,∵∠ACB=90°,∴∠ACF+∠BCD=∠CBD+∠BCD=90°,∴∠ACF=∠CBD,故①正确;在△ACF和△CBD中,BDC AFCACF CBDAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBD,∴BD=FC,CD=AF,故结论②正确∴FC=FD+CD=FD+AF,故结论③正确,∵在Rt△AEF中,AE>AF,∴AE>CD,故结论④错误.综上所述,正确的结论是:①②③.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握判定方法及全等的性质是解题的关键.15.已知在△ABC中,AD是BC边上的中线,若AB=10,AC=4,则AD的取值范围是_____.【答案】3<AD<7【解析】【分析】连接AD并延长到点E,使DE=DA,连接BE,利用SAS证得△BDE≌△CDA,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE的取值范围,进而求出AD的取值范围.【详解】如图,连接AD并延长到点E,使DE=DA,连接BE,∵在△ABC中,AD是BC边上的中线∴BD=CD在△BDE和△CDA中BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△CDA (SAS )∴BE=CA=4在△ABE 中,AB+BE>AE ,且AB ﹣BE <AE∵AB=10,AC=4,∴6<AE <14∴3<AD <7故答案为3<AD <7【点睛】本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.16.已知在△ABC 中,两边AB 、AC 的中垂线,分别交BC 于E 、G .若BC =12,EG =2,则△AEG 的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE =BE ,CG =AG ,分两种情况讨论:①DE 和FG 的交点在△ABC 内,②DE 和FG 的交点在△ABC 外.【详解】∵DE ,FG 分别是△ABC 的AB ,AC 边的垂直平分线,∴AE =BE ,CG =AG .分两种情况讨论: ①当DE 和FG 的交点在△ABC 内时,如图1.∵BC =12,GE =2,∴AE +AG =BE +CG =12+2=14,△AGE 的周长是AG +AE +EG =14+2=16. ②当DE 和FG 的交点在△ABC 外时,如图2,△AGE 的周长是AG +AE +EG = BE +CG+EG =BC =12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.17.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________【答案】23或43.【解析】【分析】过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.【详解】如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE ,∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°, ∴∠F 1DF 2=∠ABC=60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2, ∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°, ∴∠CDF 1=180°-∠BCD=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中,1212DF DF CDF CDF CD CD ⎧⎪∠∠⎨⎪⎩=== , ∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×60°=30°, 又∵BD=6,∴BE=12×6÷cos30°=3÷3=23, ∴BF 1=BF 2=BF 1+F 1F 2=23+23=43,故BF 的长为23或43.故答案为:23或43.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F 有两个.18.如图,△ABC 与△DEF 为等边三角形,其边长分别为a ,b ,则△AEF 的周长为___________.【答案】a+b【解析】先根据全等三角形的判定AAS 判定△AEF≌△BFD,得出AE=BF ,从而得出△AEF 的周长=AF+AE+EF=AF+BF+EF=a+b .故答案为:a+b四、八年级数学全等三角形选择题(难)19.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④【答案】A【解析】【分析】根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC,∴∠BAF=∠CAE;在△AFB与△AEC中,AF AEBAF CAEAB AC⎧⎪∠∠⎨⎪⎩===,∴△AFB≌△AEC(SAS),∴BF=CE;∠ABF=∠ACE,∴A、F、B、C四点共圆,∴∠BFC=∠BAC=∠EAF;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.20.下列命题中的假命题是( )A .等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等B .等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等C .等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等D .直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等【答案】D【解析】【分析】根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.【详解】解:A 、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;B 、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;C 、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;D 、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,故答案为D .【点睛】本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.21.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )A .①②B .①③④C .①②③D .①②④【答案】D【解析】①∵F 是AD 的中点,∴AF=FD , ∵在?ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,∠A=∠FDMAF=DF∠AFE=∠DFM,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.故正确的有:①②④.故选D.22.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.23.如图所示,在Rt ABC∆中,E为斜边AB的中点,ED AB⊥,且:1:7CAD BAD∠∠=,则BAC∠=( )A.70B.45C.60D.48【答案】D【解析】根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°.故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.24.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加的一个条件是( )A .AC=BDB .AC=BC C .BE=CED .AE=DE【答案】A【解析】 由AB=DC ,BC 是公共边,即可得要证△ABC≌△DCB,可利用SSS ,即再增加AC=DB 即可. 故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS ,SAS ,ASA ,AAS ,HL ,确定条件即可,此题为开放题,只要答案符合判定定理即可.五、八年级数学轴对称三角形填空题(难)25.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3 故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.26.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】延长AB至F,使BF=CN,连接DF.∵BD=CD,且∠BDC=140°,∴∠BCD=∠DBC=20°.∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠DBA=∠DCA=90°.在Rt△BDF和Rt△CND中,∵BF=CN,∠DBA=∠DCA,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.∵∠MDN=70°,∴∠BDM+∠CDN=70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.27.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。

云南省红河州个旧市中考数学二模试卷

云南省红河州个旧市中考数学二模试卷

云南省红河州个旧市中考数学二模试卷一、填空题:本大题共6小题,每小题3分,共18分.1.(3分)﹣2017的相反数是.2.(3分)如果式子有意义,那么x的取值范围是.3.(3分)如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD 于点G,若∠EFG=52°,则∠EGF=.4.(3分)分解因式:x3﹣16x=.5.(3分)如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为.6.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,解答下列问题:3+32+33+34+…+32017的末位数字是.二、选择题:本大题共8小题,每小题只有一个正确选项,每小题4分,共32分.7.(4分)寨卡病毒是一种通过蚊虫进行传播的虫媒病毒,其直径约为0.0000021cm.将数据0.0000021用科学记数法表示为()A.2.1×10﹣7B.2.1×107C.2.1×10﹣6D.2.1×1068.(4分)不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B.C.D.9.(4分)如图所示,该几何体的俯视图是()A.B.C.D.10.(4分)下列运算正确的是()A.x6÷x2=x3B.=2C.(x+2y)2=x2+2xy+4y2D.﹣=11.(4分)关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根12.(4分)下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.某班7名女生的体重(单位:kg)分别是35,37,38,40,42,42,74,这组数据的众数是74C.从2000名学生中选200名学生进行抽样调查,样本容量为2000D.一组数据3,6,6,7,9的中位数是613.(4分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC =4,则四边形OCED的周长为()A.4B.8C.10D.1214.(4分)如图,矩形OABC的顶点A、C坐标分别是(8,0),(0,4),反比例函数y=(x>0)的图象过对角线的交点P并且与AB、BC分别交于D、E两点,连接OD、OE、DE,则△ODE的面积为()A.14B.12C.15D.8三、解答题:本大题共9小题,共70分.15.(6分)先化简,再求值:(﹣)•,其中x=﹣2.16.(6分)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.17.(8分)初中学生对待学习的态度一直是教育工作者极为关注的一个问题.为此市教育局对本市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:喜欢;B级:不太喜欢;C级:不喜欢),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近80000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?18.(7分)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A (2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.19.(7分)如图,有3张不透明的卡片,除正面写有不同的数字外,其他均相同,将这3张卡片背面向上洗匀,从中随机抽取一张,记下数字后放回;重新洗匀后再从中随机抽取一张,将抽取的第一张、第二张卡片上的数字分别作为十位数字和个位数字组成两位数.(1)请用画树状图(或列表)的方法列出这个两位数所有可能的数值;(2)求这个两位数能被3整除的概率.20.(7分)为给人们的生活带来方便,兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离(结果保留整数).(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.(8分)在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?22.(9分)已知:如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,经过B、D两点的⊙O交AB于点E,交BC于点F,EB为⊙O的直径.(1)求证:AC是⊙O的切线;(2)当BC=2,cos∠ABC=时,求⊙O的半径.23.(12分)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,P A=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.云南省红河州个旧市中考数学二模试卷参考答案一、填空题:本大题共6小题,每小题3分,共18分.1.2017;2.x≥;3.64°;4.x(x+4)(x﹣4);5.cm;6.3;二、选择题:本大题共8小题,每小题只有一个正确选项,每小题4分,共32分.7.C;8.D;9.A;10.D;11.D;12.D;13.B;14.C;三、解答题:本大题共9小题,共70分.15.;16.;17.200;18.;19.;20.;21.;22.;23.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(共7小题,每小题3分,满分21分)1、(2010?红河哈尼族彝族自治州)下列计算正确的是()A、(﹣1)﹣1=1B、(﹣3)2=﹣6C、π0=1D、(﹣2)6÷(﹣2)3=(﹣2)2考点:负整数指数幂;同底数幂的除法;零指数幂。

专题:计算题。

分析:根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.解答:解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.点评:解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.2、(2010?红河哈尼族彝族自治州)不在函数图象上的点是()A、(2,6)B、(﹣2,﹣6)C、(3,4)D、(﹣3,4)2010年云南省红河州中考数学试卷(全解全析)Qianword整理版学习参考资料考点:反比例函数图象上点的坐标特征。

分析:根据得k=xy=12,所以只要点的横坐标与纵坐标的积等于12,就在函数图象上.解答:解:A、2×6=12,不符合题意;B、﹣2×(﹣6)=12,不符合题意;C、3×4=12,不符合题意;D、﹣3×4=﹣12≠12,符合题意;故选D.点评:本题主要考查反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.3、(2010?红河哈尼族彝族自治州)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是()A、 B、C、 D、考点:简单组合体的三视图。

分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4、(2010?红河哈尼族彝族自治州)使分式有意义的x的取值是()A、x≠0B、x≠±3C、x≠﹣3D、x≠3考点:分式有意义的条件。

分析:要使分式有意义,分式的分母不能为0.解答:解:∵3﹣x≠0,∴x≠3.故选D.word整理版学习参考资料点评:解此类问题,只要令分式中分母不等于0,求得字母的值即可.5、(2010?红河哈尼族彝族自治州)下列命题错误的是()A、四边形内角和等于外角和B、相似多边形的面积比等于相似比C、点P(1,2)关于原点对称的点的坐标为(﹣1,﹣2)D、三角形的中位线平行于第三边,且等于第三边的一半考点:相似多边形的性质;三角形中位线定理;多边形内角与外角;命题与定理;关于原点对称的点的坐标。

分析:根据四边形内角和与外角和定理,相似多边形的性质,关于原点对称的点的坐标特征及三角形的中位线定理作答.解答:解:A、四边形的内角和和外角和都是360°,正确;B、相似多边形的面积比等于相似比的平方,错误;C、点关于原点对称的点的横纵坐标均变为原来的相反数,故正确;D、根据三角形中位线定理可知,D选项正确,故正确.故选B.点评:本题主要考查了四边形内角和与外角和定理,相似多边形的性质,关于原点对称的点的坐标特征及三角形的中位线定理.6、(2010?红河哈尼族彝族自治州)如果3x2n﹣1y m与﹣5x m y3是同类项,则m和n的取值是()A、3和﹣2B、﹣3和2C、3和2D、﹣3和﹣2 考点:同类项;解二元一次方程组。

分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m、n的方程组,求出m、n 的值.解答:解:由题意,得,解得.故选C.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.7、(2010?红河哈尼族彝族自治州)如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD 于点E,若∠AOD=60°,则∠DBC的度数为()word整理版学习参考资料A、30°B、40°C、50°D、60°考点:圆周角定理;垂径定理。

分析:欲求∠DBC,又已知一圆心角,可利用圆周角与圆心角的关系求解.解答:解:∵⊙O的直径BD⊥AC,∴;(垂径定理)∴∠DBC=∠AOD=30°;(等弧所对的圆周角是圆心角的一半)故选A.点评:本题考查垂弦定理、圆心角、圆周角的应用能力.二、填空题(共8小题,每小题3分,满分24分)8、(2010?红河哈尼族彝族自治州)﹣的相反数是考点:相反数。

分析:求一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣的相反数是﹣(﹣)=.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.9、(2010?红河哈尼族彝族自治州)四次测试小丽每分钟做仰卧起坐的次数分别为:50、45、48、47,这组数据的中位数为考点:中位数。

分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:从小到大排列此数据为:45,47,48,50,出于中间的有两个数47和48,平均为47.5,所以这组数据的中位数为47.5.故填47.5.点评:本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌word整理版学习参考资料握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10、(2010?红河哈尼族彝族自治州)红河州初中毕业生参加今年中考的学生数约是36600人,这个数用科学记数法可表示为考点:科学记数法—表示较大的数。

专题:应用题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:36 600用科学记数法可表示为3.66×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、(2010?红河哈尼族彝族自治州)如图,D、E分别是AB、AC上的点,若∠A=70°,∠B=60°,DE∥BC.则∠AED的度数是度.考点:三角形内角和定理;平行线的性质。

专题:计算题。

分析:首先根据三角形的内角和定理求得∠C的度数,再根据平行线的性质即可求得∠AED的度数.解答:解:∵∠A=70°,∠B=60°,∴∠C=50°.∵DE∥BC,∴∠AED=∠C=50°.点评:此题综合考查了三角形的内角和定理和平行线的性质.12、(2010?红河哈尼族彝族自治州)已知一次函数y=﹣3x+2,它的图象不经过第象限.考点:一次函数的性质。

分析:根据一次函数的性质容易得出结论.解答:解:因为解析式y=﹣3x+2中,﹣3<0,2>0,图象过一、二、四象限,故图象不经word整理版学习参考资料过第三象限.点评:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13、(2010?红河哈尼族彝族自治州)计算:+2sin60°=考点:特殊角的三角函数值;二次根式的加减法。

分析:先将化为最简二次根式,再合并同类二次根式即可,注意sin60??.解答:解:原式=2+2×=2+=3.点评:此题考查了二次根式的加减运算以及特殊角的三角函数值,合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14、(2010?红河哈尼族彝族自治州)已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为度.考点:圆锥的计算。

分析:易得圆锥的底面周长,也就是侧面展开图的扇形的弧长,利用弧长公式即可求得侧面展开图的圆心角.解答:解:圆锥的底面周长=4π,∴=4π,解得n=120°.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15、(2010?红河哈尼族彝族自治州)如图,在图(1)中,A1、B1、C1分别是△ABC 的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有个.考点:平行四边形的判定;三角形中位线定理。

word整理版学习参考资料专题:规律型。

分析:根据平行四边形的判断定理:一组对边平行且相等的四边形是平行四边形.在图(1)中,有3个平行四边形;在图(2)中,有6个平行四边形;…按此规律,则第n 个图形中平行四边形的个数共有3n个.解答:解:在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1C1∥AB1A1B1∥BC1A1C1∥B1C A1C1=AB1A1B1=BC1A1C1=B1C,∴四边形A1B1AC1、A1B1C1B、A1C1B1C是平行四边形,共有3个.在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,同理可证:四边形A1B1AC1、A1B1C1B、A1C1B1C、A2B2C2B1、A2B2A1C2、A2C2B2C1是平行四边形,共有6个.…按此规律,则第n个图形中平行四边形的个数共有3n个.点评:本题考查了平行四边形的判定:一组对边平行且相等的四边形是平行四边形.由特殊到一般,善于从中找出规律是关键.三、解答题(共8小题,满分75分)16、(2010?红河哈尼族彝族自治州)先化简再求值:.选一个使原代数式有意义的数代入求值.考点:分式的化简求值。

专题:开放型。

分析:先根据分式的运算法则把原式化简,再选一个使原代数式有意义的数代入求值即可.解答:解:原式==,=,=.当a=1时,(a的取值不唯一,只要a≠2、﹣3即可)word整理版学习参考资料原式=.点评:此题答案不唯一,只需使分式有意义即可.17、(2010?红河哈尼族彝族自治州)如图,一架飞机在空中P处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的正上方C处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)考点:解直角三角形的应用-仰角俯角问题。

相关文档
最新文档