蒲丰投针实验模拟
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计实验
蒲丰投针与蒙特卡罗法
班级应数12级01班
学号2012444086
姓名张旭东
蒲丰投针与蒙特卡罗法
张旭东2012444086
(重庆科技学院数学与应用数学,重庆沙坪坝)
【摘要】通过设计一个投针实验使这个事件的概率和未知量π有关,然后通过重复实验,以频率估计概率,即可求得未知参数π的近似解。这种方法称为随机模拟法,也称为蒙特卡罗法。一般来说,实验次数越多所得的近似值就越接近真值。可以利用MATLAB来大量重复地模拟所设计的随机实验。
【关键词】随机模拟;投针实验;重复实验
1 引言
蒲丰投针问题是由法国科学家蒲丰(Buffon)在1777年提出的,它是概率中非常有代表性的问题,它是第一个用几何形式表达概率问题的例子,其结论具有很强的理论与实际意义。蒲丰针问题的解决不仅较典型的反应了集合概率的特征及处理方法,而且还可以由此领略到从“概率土壤”上开出的一朵瑰丽的鲜花——蒙特卡洛(Monte-Carlo)方法。
蒙特卡罗(Monte Carlo)方法,也称计算机模拟方法,是一种基于“随机数”的计算方法,大数定律为近年来发展迅速的随机计算机和随机模拟方法提供了理论基础。
MATLAB是一个适合多学科,具有多种工作平台的功能强大的大型软件。MATLAB已经成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的进本教学工具,Matlab随机数发生器的种类丰富且用法简便。
本文介绍了利用随机模拟方法和大数定律的相关理论解决蒲丰投针问题计算π的近似值。
2 有关数学实验的有关基础
定理(贝努力大数定律) 设n μ是n 重贝努力实验中事件A 出现的次数,P 是事件A 每次实验中出现的概率,即P(A)=p,则对任意的
ε>0,有
3 实验
蒲丰投针问题