【新】2019-2020山东淄博实验中学初升高自主招生数学【4套】模拟试卷【含解析】
山东省淄博市2019-2020学年中考数学一模考试卷含解析
山东省淄博市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平行四边形ABCD 中,AC 与BD 相交于O ,且AO=BD=4,AD=3,则△BOC 的周长为( )A .9B .10C .12D .142.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC=50°,则∠OAB 的度数为( )A .25°B .50°C .60°D .30°4.据调查,某班20为女同学所穿鞋子的尺码如表所示, 尺码(码) 34 35 36 37 38 人数 2 5 10 2 1则鞋子尺码的众数和中位数分别是( )A .35码,35码B .35码,36码C .36码,35码D .36码,36码5.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .106.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或108.下列四个实数中是无理数的是( )A.2.5 B.C.π D.1.4149.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-410.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.11.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a612.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.14.27的立方根为.1512-3的结果是______.16.关于x的一元二次方程220--=x x k有两个相等的实数根,则k=________.17.如图,D 、E 分别为△ABC 的边BA 、CA 延长线上的点,且DE ∥BC .如果35DE BC =,CE=16,那么AE 的长为_______18.如图,在菱形ABCD 中,AB =BD .点E 、F 分别在AB 、AD 上,且AE =DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论:①△AED ≌△DFB ;②S 四边形BCDG =3CG 2;③若AF =2DF ,则BG =6GF .其中正确的结论有_____.(填序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.20.(6分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+m≠03个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点.(1)直接写出点A 的坐标;(2)过点(03x 轴的直线l 与抛物线G 2交于B ,C 两点.①当∠BAC =90°时.求抛物线G 2的表达式;②若60°<∠BAC <120°,直接写出m 的取值范围.21.(6分)计算:﹣2212+|1﹣4sin60°| 22.(8分)先化简,再求值:x (x+1)﹣(x+1)(x ﹣1),其中x=1.23.(8分)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,求AD AB的值.24.(10分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(1)如图1,当旋转角为90°时,求BB′的长;(2)如图2,当旋转角为120°时,求点O′的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)25.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.求y与x之间的函数关系式,并写出自变量x的取值范围;求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?26.(12分)(1)计算:3tan30°+|23(13)﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣22xy yx-)÷222x yx xy-+,其中2,2﹣1.27.(12分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB=12BD=2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.2.A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形3.A【解析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故选A.4.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.5.C【解析】【分析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=12 CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BC∥DE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以△CEF的面积=12CF•CE=8;故选:C.点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.6.C【解析】解:A . 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A 选项正确;B . 等边三角形有3条对称轴,故B 选项正确;C .当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS 来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D .利用SSS .可以判定三角形全等.故D 选项正确;故选C .7.B【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x 2﹣8x+12=0,解得x 1=2,x 2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;②当1是底边时,2是腰,2+2<1,不能构成三角形.所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 8.C【解析】本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.解:A 、2.5是有理数,故选项错误;B 、是有理数,故选项错误;C 、π是无理数,故选项正确;D 、1.414是有理数,故选项错误.故选C .9.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D.10.C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.11.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.12.D【解析】【分析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B 选项图中单位长度不统一,故错误;C 选项图中无正方向,故错误;D 选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考点:一元二次方程的解.14.1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15.【解析】【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】1232333==【点睛】考点:二次根式的加减法.16.-1.【解析】【分析】根据根的判别式计算即可.【详解】解:依题意得:∵关于x 的一元二次方程220--=x x k 有两个相等的实数根,∴n =24ac b - =4-4⨯1⨯(-k )=4+4k=0解得,k=-1.故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当n =24ac b ->0时,方程有两个不相等的实数根;当n =24ac b -=0时,方程有两个相等的实数根;当n =24ac b -<0时,方程无实数根.17.1【解析】【分析】根据DE ∥BC ,得到35DE EA BC AC ==,再代入AC=11-AE ,则可求AE 长. 【详解】∵DE ∥BC , ∴DE EA BC AC=. ∵35DE BC =,CE=11, ∴3 165AE AE -=,解得AE=1. 故答案为1.【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.18.①②③【解析】【分析】(1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD ,AE=DF ,即可证得△AED ≌△DFB ,从而说明结论①正确;(2)由已知条件可证点B 、C 、D 、G 四点共圆,从而可得∠CDN=∠CBM ,如图,过点C 作CM ⊥BF 于点M ,过点C 作CN ⊥ED 于点N ,结合CB=CD 即可证得△CBM ≌△CDN ,由此可得S 四边形BCDG =S 四边形CMGN =2S △CGN ,在Rt △CGN 中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=12CG ,,由此即可求得S △CGN 2,从而可得结论②是正确的;(3)过点F 作FK ∥AB 交DE 于点K ,由此可得△DFK ∽△DAE ,△GFK ∽△GBE ,结合AF=2DF 和相似三角形的性质即可证得结论④成立.【详解】(1)∵四边形ABCD 是菱形,BD=AB ,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即结论①正确;(2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴点B、C、D、G四点共圆,∴∠CDN=∠CBM,如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四边形BCDG=S四边形CMG N=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=12CG,CN=32CG,∴S△CGN=38CG2,∴S四边形BCDG=2S△CGN,=3CG2,即结论②是正确的;(3)如下图,过点F作FK∥AB交DE于点K,∴△DFK∽△DAE,△GFK∽△GBE,∴FK DF DFAE DA DF AF==+,FG FKBG BE=,∵AF=2DF,∴13 FKAE=,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴126 FG FK FKBG BE AE===,∴BG=6FG,即结论③成立.综上所述,本题中正确的结论是:故答案为①②③点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)列表见解析;(2)这个游戏规则对双方不公平.【解析】【分析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率31 93 =;(2)这个游戏规则对双方不公平.理由如下:因为P(和为奇数)49=,P(和为偶数)59=,而4599≠,所以这个游戏规则对双方是不公平的.【点睛】本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.<<20.(1),;(2)①y=-x2+m【解析】【分析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出B 的坐标,代入即可得解;②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.【详解】(1)∵将抛物线G1:y=mx2+m≠0G2,∴抛物线G2:y=m(x2+∵点A是抛物线G2的顶点.∴点A.(2)①设抛物线对称轴与直线l交于点D,如图1所示.∵点A是抛物线顶点,∴AB=AC.∵∠BAC=90°,∴△ABC为等腰直角三角形,∴CD=AD∴点C的坐标为(.∵点C在抛物线G2上,m()2+解得:m=②依照题意画出图形,如图2所示.同理:当∠BAC=60°时,点C1;当∠BAC=120°时,点C3.∵60°<∠BAC<120°,∴点(3+1,3)在抛物线G2下方,点(3+3,3)在抛物线G2上方,∴()()22313233333233 mm⎧+-+>⎪⎨⎪+-+<⎩,解得:33m-<<-.【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.21.-1【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】解:原式=3 42341 --=423231--=﹣1.【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.22.x+1,2.【解析】【分析】先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.【详解】原式=x 2+x ﹣(x 2﹣1)=x 2+x ﹣x 2+1=x+1,当x=1时,原式=2.【点睛】本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.23.12【解析】【分析】根据翻折的性质可得∠BAC=∠EAC ,再根据矩形的对边平行可得AB ∥CD ,根据两直线平行,内错角相等可得∠DCA=∠BAC ,从而得到∠EAC=∠DCA ,设AE 与CD 相交于F ,根据等角对等边的性质可得AF=CF ,再求出DF=EF ,从而得到△ACF 和△EDF 相似,根据相似三角形得出对应边成比,设DF=3x ,FC=5x ,在Rt △ADF 中,利用勾股定理列式求出AD ,再根据矩形的对边相等求出AB ,然后代入进行计算即可得解.【详解】解:∵矩形沿直线AC 折叠,点B 落在点E 处,∴CE =BC ,∠BAC =∠CAE ,∵矩形对边AD =BC ,∴AD =CE ,设AE 、CD 相交于点F ,在△ADF 和△CEF 中,90ADF CEF AFD CFEAD CE ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ADF ≌△CEF (AAS ),∴EF =DF ,∵AB ∥CD ,∴∠BAC =∠ACF ,又∵∠BAC =∠CAE ,∴∠ACF =∠CAE ,∴AF =CF ,∴AC ∥DE ,∴△ACF ∽△DEF , ∴35EF DE CF AC ==, 设EF =3k ,CF =5k ,由勾股定理得CE =()()22534k k k -=,∴AD =BC =CE =4k , 又∵CD =DF +CF =3k +5k =8k ,∴AB =CD =8k ,∴AD :AB =(4k ):(8k )=12.【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF 和△DEF 相似是解题的关键,也是本题的难点.24.(1)2;(2)O'(92,332);(3)P'(275,635). 【解析】【分析】(1)先求出AB .利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH ,OH ,即可得出结论;(3)先确定出直线O'C 的解析式,进而确定出点P 的坐标,再利用含30度角的直角三角形的性质即可得出结论.【详解】解:(1)∵A (3,0),B (0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A ,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴22;(2)如图2,过点O'作O'H ⊥x 轴于H ,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=12AO'=32,3332,∴OH=OA+AH=92,∴O'(93322,);(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP .如图3,作A 关于y 轴的对称点C ,连接O'C 交y 轴于P ,∴O'P+AP=O'P+CP=O'C ,此时,O'P+AP 的值最小.∵点C 与点A 关于y 轴对称,∴C (﹣3,0).∵O'(9332,),∴直线O'C 的解析式为y=3x+33,令x=0,∴y=33,∴P (0,33),∴O'P'=OP=33,作P'D ⊥O'H 于D . ∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=12O'P'=3310,P'D=3O'D=910,∴DH=O'H ﹣O'D=635,O'H+P'D=275,∴P'(276355,).【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.25.(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解析】【分析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩,所以y 与x 的函数解析式为()y x 4010x 16=-+剟; (2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<Q ,∴当x 25<时,W 随x 的增大而增大,10x 16Q 剟,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.26. (1)3;(2) x ﹣y ,1.【解析】【分析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)3tan30°(13)-1-(3-π)0-(-1)2018=3×3+3-1-1,=,=3;(2)(x ﹣22xy y x-)÷222x y x xy -+, =()()()222•x x y x xy y x x y x y +-++-, =()()()()2•x y x x y xx y x y -++-=x-y ,当,-1时,原式+1=1.【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.27. (1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m .。
山东省淄博市2019-2020学年中考数学一模试卷含解析
山东省淄博市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 是定长线段,圆心O 是AB 的中点,AE 、BF 为切线,E 、F 为切点,满足AE=BF ,在»EF上取动点G ,国点G 作切线交AE 、BF 的延长线于点D 、C ,当点G 运动时,设AD=y ,BC=x ,则y 与x 所满足的函数关系式为( )A .正比例函数y=kx (k 为常数,k≠0,x >0)B .一次函数y=kx+b (k ,b 为常数,kb≠0,x >0)C .反比例函数y=k x (k 为常数,k≠0,x >0)D .二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0,x >0)2.如图,点A 、B 、C 、D 在⊙O 上,∠AOC =120°,点B 是弧AC 的中点,则∠D 的度数是( )A .60°B .35°C .30.5°D .30° 3.设0<k <2,关于x 的一次函数y=(k-2)x+2,当1≤x≤2时,y 的最小值是( )A .2k-2B .k-1C .kD .k+14.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A .12,3 B .2,1 C .24,3 D .4,35.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A .B .C .D .6.已知点M 、N 在以AB 为直径的圆O 上,∠MON=x°,∠MAN= y°, 则点(x ,y)一定在( ) A .抛物线上B .过原点的直线上C .双曲线上D .以上说法都不对 7.反比例函数y=a x (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=a x 的图象上,MC ⊥x 轴于点C ,交y=2x 的图象于点A ;MD ⊥y 轴于点D ,交y=2x的图象于点B ,当点M 在y=a x 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .38.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )A .0.3B .0.4C .0.5D .0.69.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折10.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )A .7.1×107B .0.71×10﹣6C .7.1×10﹣7D .71×10﹣811.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--12.如图,在矩形 ABCD 中,AB=2a ,AD=a ,矩形边上一动点 P 沿 A→B→C→D 的路径移动.设点 P 经过的路径长为 x ,PD2=y ,则下列能大致反映 y 与 x 的函数关系的图象是( )A .B .C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.14.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP+的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.15.正八边形的中心角为______度.16.抛物线y=3x2﹣6x+a 与x 轴只有一个公共点,则 a 的值为_____.17.若﹣4x a y+x2y b=﹣3x2y,则a+b=_____.18.在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=1455x+和x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.则A3的坐标为_______..三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在ABC∆中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG 于点G,ED DF⊥交AB于点E,连接EG、EF.求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.20.(6分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.求每台A 型电脑和B 型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)如图,一次函数y=kx+b (k 、b 为常数,k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=(n 为常数,且n≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D ,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积;(3)直接写出不等式kx+b≤的解集.22.(8分)如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D 点的坐标;二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.23.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?24.(10分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.25.(10分)如图,直线y=﹣x+2与反比例函数kyx(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.26.(12分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.27.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,由AE 与BF 为圆的切线,利用切线的性质得到AE 与EO 垂直,BF 与OF 垂直,由AE=BF ,OE=OF ,利用HL 得到直角三角形AOE 与直角BOF 全等,利用全等三角形的对应角相等得到∠A=∠B ,利用等角对等边可得出三角形QAB 为等腰三角形,由O 为底边AB 的中点,利用三线合一得到QO 垂直于AB ,得到一对直角相等,再由∠FQO 与∠OQB 为公共角,利用两对对应角相等的两三角形相似得到三角形FQO 与三角形OQB 相似,同理得到三角形EQO 与三角形OAQ 相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B ,再由切线长定理得到OD 与OC 分别为∠EOG 与∠FOG 的平分线,得到∠DOC 为∠EOF 的一半,即∠DOC=∠A=∠B ,又∠GCO=∠FCO ,得到三角形DOC 与三角形OBC 相似,同理三角形DOC 与三角形DAO 相似,进而确定出三角形OBC 与三角形DAO 相似,由相似得比例,将AD=x ,BC=y 代入,并将AO 与OB 换为AB 的一半,可得出x 与y 的乘积为定值,即y 与x 成反比例函数,即可得到正确的选项.【详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线,∴OE ⊥AE ,OF ⊥FB ,∴∠AEO=∠BFO=90°,在Rt △AEO 和Rt △BFO 中,∵{AE BF OE OF= , ∴Rt △AEO ≌Rt △BFO (HL ),∴∠A=∠B ,∴△QAB 为等腰三角形,又∵O 为AB 的中点,即AO=BO ,∴QO ⊥AB ,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO ,∴△QOF ∽△QBO ,∴∠B=∠QOF ,同理可以得到∠A=∠QOE ,∴∠QOF=∠QOE ,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=12∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴AD AO OB BC,∴AD•BC=AO•OB=14AB2,即xy=14AB2为定值,设k=14AB2,得到y=kx,则y与x满足的函数关系式为反比例函数y=kx(k为常数,k≠0,x>0).故选C.【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.2.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理. 3.A【解析】【分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.4.D【解析】【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为13,∴数据3x1,3x2,3x3,3x4,3x5的方差是13×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.5.D【解析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.考点:列表法与树状法.6.B【解析】【分析】由圆周角定理得出∠MON 与∠MAN 的关系,从而得出x 与y 的关系式,进而可得出答案.【详解】∵∠MON 与∠MAN 分别是弧MN 所对的圆心角与圆周角,∴∠MAN=12∠MON , ∴12y x , ∴点(x ,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键. 7.D【解析】【分析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a ,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确;故答案选D .考点:反比例系数的几何意义.8.C【解析】【分析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=510=0.1. 故选C .【点睛】本题考查了频数与频率,频率=频数数据总和. 9.B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.10.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7, 故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.D【解析】【分析】将各选项的点逐一代入即可判断.【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象;当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象; 当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象; 故答案为:D .【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.12.D【解析】解:(1)当0≤t≤2a 时,∵222PD AD AP =+,AP=x ,∴22y x a =+;(2)当2a <t≤3a 时,CP=2a+a ﹣x=3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t≤5a 时,PD=2a+a+2a ﹣x=5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩n ,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B 为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.【详解】解:∵菱形ABCD中,AB=4,∠C=60°,∴△ABD是等边三角形,BO=DO=2,AO=22AD DO-=23,第一次旋转的弧长=6023233ππ⨯=,∵第一、二次旋转的弧长和=233π+233π=433π,第三次旋转的弧长为:6022 1803ππ⨯=,故经过6次这样的操作菱形中心O所经过的路径总长为:2×(433π+23π)=483π+.故答案为:483π+.【点睛】本题考查菱形的性质,翻转的性质以及解直角三角形的知识.14.(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】【分析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABCV的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM 对称,连接DF交AM于点P,此时CP DP+的值最小.【详解】(Ⅰ)根据勾股定理得22345+=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABCV的角平分线,在AB 上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.15.45°【解析】【分析】运用正n边形的中心角的计算公式360n︒计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为360458︒=︒,故答案为45°.【点睛】本题考查了正n边形中心角的计算.16.3【解析】【分析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解.【详解】∵抛物线y=3x2﹣6x+a与x轴只有一个公共点,∴判别式Δ=36-12a=0,解得:a=3,故答案为3【点睛】本题考查了二次函数图象与x 轴的公共点的个数的判定方法,如果△>0,则抛物线与x 轴有两个不同的交点;如果△=0,与x 轴有一个交点;如果△<0,与x 轴无交点.17.1【解析】【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【详解】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的.18.A 3(299,44) 【解析】【分析】 设直线y=1455x +与x 轴的交点为G ,过点A 1,A 2,A 3分别作x 轴的垂线,垂足分别为D 、E 、F ,由条件可求得312A F A D A E GD GE GF ==,再根据等腰三角形可分别求得A 1D 、A 2E 、A 3F ,可得到A 1,A 2,A 3的坐标.【详解】设直线y=1455x +与x 轴的交点为G , 令y=0可解得x=-4,∴G 点坐标为(-4,0),∴OG=4,如图1,过点A 1,A 2,A 3分别作x 轴的垂线,垂足分别为D 、E 、F ,∵△A 1B 1O 为等腰直角三角形,∴A 1D=OD ,又∵点A 1在直线y=x+上, ∴=,即=,解得A 1D=1=()0,∴A 1(1,1),OB 1=2, 同理可得=,即=,解得A 2E==()1,则OE=OB 1+B 1E=,∴A 2(,),OB 2=5,同理可求得A 3F==()2,则OF=5+=, ∴A 3(,); 故答案为(,) 【点睛】本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变化规律是解题的关键,注意观察数据的变化.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证明:(1)∵BG ∥AC∴BGD CFD ∠=∠∵D 是BC 的中点∴BD CD =又∵BDG CDF ∠=∠∴△BDG ≌△CDF∴BG CF =(2)由(1)中△BDG≌△CDF∴GD=FD,BG=CF又∵ED DF⊥∴ED垂直平分DF∴EG=EF∵在△BEG中,BE+BG>GE,∴BE CF+>EF【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.20.(1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大【解析】【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m <50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得100150 ab=⎧⎨=⎩答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥3313,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,3313≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足3313≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.21.(1)y=﹣2x+1;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;【解析】【分析】(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C 的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.【详解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x轴,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴点C 坐标为(﹣4,20),∴n=xy=﹣80.∴反比例函数解析式为:y=﹣,把点A (6,0),B (0,1)代入y=kx+b 得:, 解得:.∴一次函数解析式为:y=﹣2x+1,(2)当﹣=﹣2x+1时,解得,x 1=10,x 2=﹣4,当x=10时,y=﹣8,∴点E 坐标为(10,﹣8),∴S △CDE =S △CDA +S △EDA =.(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,∴由图象得,x≥10,或﹣4≤x <0.【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式. 22.(1)y=12x 1﹣4x+6;(1)D 点的坐标为(6,0);(3)存在.当点C 的坐标为(4,1)时,△CBD 的周长最小【解析】【分析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B 三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【详解】(1)把A (1,0),B (8,6)代入212y x bx c =++,得 14202164862b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩解得:46b c =-⎧⎨=⎩ ∴二次函数的解析式为21462y x x =+﹣; (1)由2211464222y x x x =+=﹣(﹣)﹣,得 二次函数图象的顶点坐标为(4,﹣1).令y=0,得214602x x +=﹣, 解得:x 1=1,x 1=6,∴D 点的坐标为(6,0);(3)二次函数的对称轴上存在一点C ,使得CBD V 的周长最小. 连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴CBD V 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此CBD V 的周长最小.设直线AB 的解析式为y=mx+n ,把A (1,0)、B (8,6)代入y=mx+n ,得208m n m n +=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩∴直线AB 的解析式为y=x ﹣1.当x=4时,y=4﹣1=1,∴当二次函数的对称轴上点C 的坐标为(4,1)时,CBD V 的周长最小.【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.23.18 60分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算; (3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.24. (1) m≠1且m≠2-3;(2) m=-1或m=-2. 【解析】【分析】(1)由方程有两个不相等的实数根,可得△>1,列出关于m 的不等式解之可得答案;(2) 解方程,得:12x =m,2x =-3,由m 为整数,且方程的两个根均为负整数可得m 的值. 【详解】解:(1) Q △=2b -4ac=(3m-2)2+24m=(3m+2)2≥1 ∴当m≠1且m≠2-3时,方程有两个不相等实数根. (2)解方程,得:12x =m,2x =-3, Q m 为整数,且方程的两个根均为负整数, ∴m=-1或m=-2.∴m=-1或m=-2时,此方程的两个根都为负整数【点睛】本题主要考查利用一元二次方程根的情况求参数.25.(1)y =3x-;(2)P (0,2)或(-3,5);(3)M (1-,0)或(3+0). 【解析】【分析】 (1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a ,b ,最后用待定系数法求出反比例函数解析式;(2)设出点P 坐标,用三角形的面积公式求出S △ACP =12×3×|n +1|,S △BDP =12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M 坐标,表示出MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y =-x +2与反比例函数y =k x (k≠0)的图象交于A (a ,3),B (3,b )两点,∴-a +2=3,-3+2=b ,∴a =-1,b =-1,∴A (-1,3),B (3,-1),∵点A (-1,3)在反比例函数y =k x 上, ∴k =-1×3=-3,∴反比例函数解析式为y =3x -; (2)设点P (n ,-n +2),∵A (-1,3),∴C (-1,0),∵B (3,-1),∴D (3,0),∴S △ACP =12AC×|x P −x A |=12×3×|n +1|,S △BDP =12BD×|x B −x P |=12×1×|3−n|, ∵S △ACP =S △BDP , ∴12×3×|n +1|=12×1×|3−n|, ∴n =0或n =−3,∴P (0,2)或(−3,5);(3)设M (m ,0)(m >0),∵A (−1,3),B (3,−1),∴MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=(3+1)2+(−1−3)2=32,∵△MAB 是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(30)即:满足条件的M(−10)或(30).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.26.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先根据CG2=GE•GD得出CG GDGE CG=,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故FG EGBG CG=.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.试题解析:(1)∵CG2=GE•GD,∴CG GD GE CG=.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴FG EG BG CG=.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴FE EGBC CG=,∴FE•CG=EG•CB.考点:相似三角形的判定与性质.27.(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4),将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,-12m 2+32m+2)、M (m ,12m-2), 则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4, ∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m 2+m+4=52时,四边形DMQF 是平行四边形, 解得:m=-1(舍)或m=3,即m=3时,四边形DMQF 是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!。
【6套合集】山东淄博实验中学2020中考提前自主招生数学模拟试卷附解析
中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=.12.(3分)不等式组的解集是.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S S;比较3月份与5月份,月份的更稳定.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.【分析】根据:a0=1(a≠0)可得结论.【解答】解:20=1,故选:B.【点评】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a6【分析】直接利用完全平方公式以及积的乘方运算法则分别判断得出答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点评】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.5.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6【分析】根据一元一次方程的解法即可求出答案.【解答】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点评】本题考查一元一次方程,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【解答】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点评】本题主要考查了折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【解答】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点评】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=2b.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2b,故答案为:2b【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)不等式组的解集是x>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=15.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是0.28.【分析】直接利用5各小组的频率之和为1,进而得出答案.【解答】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点评】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了19道题.【分析】设他做对了x道题,则小英做错了(25﹣x)道题,根据总得分=4×做对的题数﹣1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.【点评】本题考查了一元一次方程的应用,根据总得分=4×做对的题数﹣1×做错的题数列出关于x的一元一次方程是解题的关键.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是2.【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【解答】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.【分析】在▱ABCD中,AD=BC,又BE=DF,可得AF=EC,得出AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.【解答】证明:∵四边形ABCD平行四边形∴AD=BC.又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.【点评】此题主要要掌握平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解决问题的关键.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【解答】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点评】本题考查了根与系数的关系以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是3℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S<S;比较3月份与5月份,3月份的更稳定.【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃);(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定.【解答】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定,故但为<,3.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【解答】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【解答】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠F AB=60°,AB=20,∴AF=AB cos∠F AB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BC cos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【解答】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,∴直线l与x轴的交点N的坐标为(8,0).(2)连接OB,过点O作OD⊥AB,垂足为D.∴点O到直线AB的距离为线段OD的长度,∵⊙O的半径为5,∴OB=5.又∵AB=6,∴BD=AB==3.在Rt△OBD中,∵∠ODB=90°,∴OD===4.答:点O到直线AB的距离为4.(3)由(1)得N的坐标为(8,0),∴ON=8.由(2)得OD=4.方法一:∴在Rt△ODN中,DN===4.又∵∠OMD+∠MOD=90°,∠NOD+∠MOD=90°,∴∠OMD=∠NOD.∵∠ODM=∠ODN,∴Rt△OMD∽Rt△NOD,∴.∴OM=•NO=×8=.∴直线AB与y轴的交点为(0,).方法二:∴在Rt△OND中,sin∠OND==.∴∠OND=30°.∵在Rt△OMN中,tan30°=∴OM=ON•tan∠OND,∴OM=8tan30°=.∴直线AB与y轴的交点为(0,).【点评】此题考查了一次函数的综合题,考查了待定系数法和解直角三角形,三角形相似的性质和判定,同时也利用了垂径定理和勾股定理解决问题,难度适中.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)【分析】(1)通过解直角三角形可求出点A,B,C的坐标,根据点A,B,C的坐标,利用待定系数法可求出a,b,c的值;(2)求出当等腰直角△DEF的直角顶点F在y轴负半轴时点E,F的坐标,结合点B的坐标可得出将△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度可使点E与点B 重合,再结合点F的坐标即可得出平移后点F的坐标;(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,分两种情况考虑:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,则四边形Q1CR1P1是正方形,设Q1C=CR1=R1P1=P1Q1=r1,在Rt△P1R1B中通过解直角三角形BR1=r1,进而可得出BC=(+1)r1,结合BC=6可求出r1的值,由BR1=r1,结合OP1=OB﹣BP1可求出点P1的坐标,再结合点E的坐标即可得出把△DEF 沿x轴负方向(向左)平移(3﹣3)个单位长度可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,则四边形Q2CR2P2是正方形,同理,可求出点P2的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(9+3)个单位长度可使⊙E与直线AC 和BC均相切.综上,此题得解.【解答】解:(1)在Rt△ABC中,∠CAB=60°,∠ACB=90°,BC=6,∴∠ABC=30°,OC=BC•sin∠ABC=6×sin30°=3,∴点C的坐标为(0,3);在Rt△COB中,OC=3,∠OBC=30°,∴OB=OC•cot∠OBC=3×cot30°=3,∴点B的坐标为(3,0);在Rt△AOC中,OC=3,∠CAO=60°,∴AO=OC•cot∠CAO=3×cot60°=,∴点A的坐标为(﹣,0).将A(﹣,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴a=﹣,b=,c=3.(2)当等腰直角△DEF的直角顶点F在y轴负半轴时,∵DE=6,∴OE=OF=DE=×6=3,∴点F起始位置的坐标为(0,﹣3),点E起始位置的坐标为(3,0).∵点B的坐标为(3,0),∴BE=OB﹣OE=3﹣3,∴△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,∴当点E与点B重合时,点F的坐标为(3﹣3,﹣3).(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,有两种情况:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,如图③所示.∵∠ACB=90°,∴四边形Q1CR1P1是矩形.∵⊙P1与AC、BC相切于点Q1、R1,∴R1P1=P1Q1,∴矩形Q1CR1P1是正方形.设Q1C=CR1=R1P1=P1Q1=r1,∴在Rt△P1R1B中,BR1=R1P1cot∠CBA=r1cot30°=r1,∴BC=CR1+BR1=r1+r1=(+1)r1,又∵BC=6,∴(+1)r1=6,∴r1===3(﹣1)=3﹣3.∴P1B=2R1P1=2r1=2(3﹣3)=6﹣6,∴OP1=OB﹣BP1=3﹣(6﹣6)=6﹣3,∴P1的坐标为(6﹣3,0).∵OE=3,∴EP1=OE﹣OP1=3﹣(6﹣3)=3﹣3,∴把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度,可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,如图④所示.∵∠ACB=90°,∴∠R2CQ2=90°,∵⊙P2与AC、BC相切于点Q2、R2,∴矩形Q2CR2P2是正方形.设Q2C=CR2=R2P2=P2Q2=r2,∴在Rt△P2R2B中,BR2=R2P2cot∠CBA=r2cot30°=r2,∴BC=BR2﹣CR2 =r2 ﹣r2=(﹣1)r2,又∵BC=6,∴(﹣1)r2=6,∴r2===3(+1)=3+3,∴P2B=2R2P2=2r2=2(3+3)=6+6,∴OP2=BP2﹣OB=6+6﹣3=6+3,∴P2的坐标为(﹣6﹣3,0).∵OE=3,OP2=6+3,∴EP2=OE+OP2=3+(6+3)=9+3,∴把△DEF沿x轴负方向(向左)平移(9+3)个单位长度,可使⊙E与直线AC和BC均相切.综上所述,把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+3)个单位长度,可使⊙E与直线AC和BC均相切.【点评】本题考查了解直角三角形、待定系数法求二次函数解析式、等腰直角三角形、正方形的判定与性质以及平移的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出a,b,c的值;(2)利用等腰直角三角形的性质求出点E,F的坐标;(3)分两种情况求出点P的坐标(即点E移动到的位置).25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.【分析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)①根据全等三角形的性质和等腰直角三角形的判定和性质解答即可;②在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H,根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】(1)证明:∵四边形ABCD和四边形CGFE是正方形,∴CE=FE,AD=DC,∠CEF=90°,AD∥EF.∴∠1=∠2.在△AMD和△FMN中,∵∴△AMD≌△FMN(ASA)(2)答:△DEM是等腰直角三角形.由(1)得△AMD≌△FMN,∴MD=MN,AD=FN.在正方形ABCD中,∵AD=DC,∴DC=NF,又∵EC=EF,∴EC﹣DC=EF﹣NF,即ED=EN.又∵∠DEN=90°,∴△DEN是等腰直角三角形.∴EM⊥MD,ME=MD.∴△DEM是等腰直角三角形;(3)答:仍然成立.如图,在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H.在△AMD和△FMP中,∵∴△AMD≌△FMP(SAS).∴∠3=∠4,AD=PF,又∵四边形ABCD、四边形CGFE均为正方形,∴CE=FE,AD=DC,∠ADC=90°,∠CEF=∠ADC=∠EFG=∠ECG=90°.∴DC=PF.∵∠3=∠4,∴AD∥FH.∴∠H=∠ADC=90°.∵∠G=90°,∠5=∠6,∠GCH=180°﹣∠H﹣∠5,∠GFH=180°﹣∠G﹣∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE,在△DCE和△PFE中,∵∴△DCE≌△PFE(SAS).∴ED=EP,∠DEC=∠PEF,∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD,∴△DEM是等腰直角三角形.【点评】本题考查的是四边形的综合题,关键是根据正方形的性质、全等三角形的判定定理和性质定理以及等腰直角三角形的判定进行解答.中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.。
山东省淄博市2019-2020学年中考中招适应性测试卷数学试题(5)含解析
山东省淄博市2019-2020学年中考中招适应性测试卷数学试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π- B .2233π-C .233π- D .233π-2.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确的是( )A .(7+x )(5+x )×3=7×5B .(7+x )(5+x )=3×7×5C .(7+2x )(5+2x )×3=7×5 D .(7+2x )(5+2x )=3×7×5 3.下面的几何体中,主视图为圆的是( )A .B .C .D .4.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b --53,0.21,2π,180.001 ,0.20202中,无理数的个数为( )A .1B .2C .3D .46.若α,β是一元二次方程3x 2+2x -9=0的两根,则+βααβ的值是( ).A .427B .-427C .-5827D .58277.在平面直角坐标系中,位于第二象限的点是( ) A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)8.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°,则∠C 的度数是( )A .40°B .65°C .70°D .80°9.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( ) A .280×103B .28×104C .2.8×105D .0.28×10610.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π11.﹣2×(﹣5)的值是( ) A .﹣7 B .7 C .﹣10 D .1012.关于x 的一元二次方程(a ﹣1)x 2+x+a 2﹣1=0的一个根为0,则a 值为( ) A .1B .﹣1C .±1D .0二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数2y x =﹣的图象不经过第__________象限. 14.把多项式9x 3﹣x 分解因式的结果是_____.15.PA 、PB 分别切⊙O 于点A 、B ,∠PAB=60°,点C 在⊙O 上,则∠ACB 的度数为_____.16.如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADC =4,反比例函数y=kx(x >0)的图像经过点E , 则k=_______ 。
【2020-2021自招】山东淄博实验中学初升高自主招生数学模拟试卷【4套】【含解析】
第一套:满分150分2020-2021年山东淄博实验中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
山东省淄博市2019-2020学年第三次中考模拟考试数学试卷含解析
山东省淄博市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°2.下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a23.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1084.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.225.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③6.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A .CD ACB .BC AB C .BD BC D .AD AC 7.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A .B .C .D .8.﹣2018的绝对值是( )A .±2018B .﹣2018C .﹣12018D .20189.下列计算正确的是( ).A .(x+y)2=x 2+y 2B .(-12xy 2)3=-16 x 3y 6C .x 6÷x 3=x 2D .2(2)-=210.如图,Rt △AOB 中,∠AOB=90°,OA 在x 轴上,OB 在y 轴上,点A 、B 的坐标分别为(3,0),(0,1),把Rt △AOB 沿着AB 对折得到Rt △AO′B ,则点O′的坐标为( )A .3522(,) B .3322(,) C .23532(,) D .43332(,) 11.下列各式中计算正确的是( )A .x 3•x 3=2x 6B .(xy 2)3=xy 6C .(a 3)2=a 5D .t 10÷t 9=t12.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .14.已知关于x 的方程x 2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.15.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的直角顶点C 在l 1上,另两个顶点A 、B 分别在l 3、l 2上,则tanα的值是______.16.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.17.分解因式:4a 2-4a+1=______.18.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n-----=L L ______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 20.(6分)某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号 第一周3台 5台 1800元 第二周 4台 10台 3100元 (进价、售价均保持不变,利润=销售收入-进货成本)求A ,B 两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(6分)如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点A(0,1),交x 轴于点B .直线x=1交AB 于点D ,交x 轴于点E ,P 是直线x=1上一动点,且在点D 的上方,设P(1,n).求直线AB 的解析式和点B 的坐标;求△ABP 的面积(用含n 的代数式表示);当S △ABP =2时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.22.(8分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.23.(8分)如图,AB 是⊙O 直径,BC ⊥AB 于点B ,点C 是射线BC 上任意一点,过点C 作CD 切⊙O 于点D ,连接AD .求证:BC =CD ;若∠C =60°,BC =3,求AD 的长.24.(10分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.25.(10分)如图,AD是△ABC的中线,过点C作直线CF∥AD.(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.26.(12分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法27.(12分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.(2)求选出的(m,n)在二、四象限的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.【详解】如图,对图形进行点标注.∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.2.C【解析】【详解】4a;解:选项A,原式=2选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=3a故选C3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:5300万=53000000=7⨯.5.310故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为10na⨯的形式时,我们要注意两点:①a必须满足:≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n).a1104.B【解析】【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:1.故选B.【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解.5.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.6.D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.7.A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.8.D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:﹣2018的绝对值是2018,即20182018-=.故选D.数的绝对值是它的相反数,0的绝对值是0.9.D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-12xy2)3=-18x3y6,B错误;x6÷x3=x3,C错误;()22-=4=2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.10.B【解析】【分析】连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.【详解】连接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO=OBOA=3∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H⊥OA,∴3∴32,∴O′(2,32), 故选B .【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.11.D【解析】试题解析:A 、336x x x ⋅=,原式计算错误,故本选项错误; B 、()3236xy x y =, 原式计算错误,故本选项错误; C 、()236a a =,原式计算错误,故本选项错误; D 、109t t t ÷=, 原式计算正确,故本选项正确;故选D .点睛:同底数幂相除,底数不变,指数相减.12.D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0, ∵对称轴为直线02b x a =->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-2<k <12。
(3份试卷汇总)2019-2020学年山东省淄博市中考数学考试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边3.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③4.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE 的度数为()A.31°B.28°C.62°D.56°5.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)6.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x > 7.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA .1B .2C .3D .48.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤9.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C 3D .310.若10,则实数a 在数轴上对应的点的大致位置是( )A.点E B.点F C.点G D.点H二、填空题(本题包括8个小题)11.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.12.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.13.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.14.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.15.如果某数的一个平方根是﹣5,那么这个数是_____.16.函数y1x-x的取值范围是________.17.若a2+3=2b,则a3﹣2ab+3a=_____.18.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.三、解答题(本题包括8个小题)19.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?20.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.21.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?22.(8分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.23.(8分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k 的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.24.(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.25.(10分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.26.(12分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用2.C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.3.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.4.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE 的度数.【详解】解:∵四边形ABCD 为矩形,∴AD ∥BC ,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD ∥BC ,∴∠CBD=∠FDB=28°,∵矩形ABCD 沿对角线BD 折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D .【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.C【解析】【分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A 、B 、D 三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C 选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.6.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.7.C【解析】【分析】由题意得到DA′=DA ,EA′=EA ,经分析判断得到阴影部分的周长等于△ABC 的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA ,∴阴影部分的周长=DA′+EA′+DB +CE +BG +GF +CF=(DA +BD)+(BG +GF +CF)+(AE +CE)=AB +BC +AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.8.C【解析】【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确.故所有正确结论的序号是①②③⑤.故选C9.D【解析】【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.10.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】解:∵∴3<4,∵,∴3<a <4,故选:C .【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.二、填空题(本题包括8个小题)11.2【解析】【详解】解:这组数据的平均数为2, 有16(2+2+0-2+x+2)=2, 可求得x=2.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,其平均数即中位数是(2+2)÷2=2.故答案是:2.12.π﹣1.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.13.250π【解析】【分析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.【详解】该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr 2h=π×52×10=250π(立方单位).答:立体图形的体积为250π立方单位.故答案为250π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.14.2【解析】【详解】试题分析:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得, 2πr=0208161π⨯,解得r=2cm . 考点:圆锥侧面展开扇形与底面圆之间的关系.15.25【解析】【分析】利用平方根定义即可求出这个数.【详解】设这个数是x (x≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.16.x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1 -x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键. 17.1【解析】【分析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.18.m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.故答案为m>1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.三、解答题(本题包括8个小题)19.(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人).点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.20.(1)14;(2)16.【解析】【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率=212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A 或B的结果数目m,求出概率.21.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.23.(1)32(2)1(3)①②③【解析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.24.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122=.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.25.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.26.树高为5.5 米【解析】【分析】根据两角相等的两个三角形相似,可得△DEF∽△DCB ,利用相似三角形的对边成比例,可得DE EF DC CB=,代入数据计算即得BC的长,由AB=AC+BC ,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴DE EFDC CB=,∵DE=0.4m,EF=0.2m,CD=8m,∴0.40.28CB=,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .1122.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是63.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C .3D .34.若直线y=kx+b 图象如图所示,则直线y=−bx+k 的图象大致是( )A .B .C .D .5.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x 个零件,依题意下面所列方程正确的是( )A .2402008x x =-B .2402008x x=+C.2402008x x=+D.2402008x x=-6.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°7.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.258.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)9.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.10.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1二、填空题(本题包括8个小题)11.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.12.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y=﹣4x图象上的两个点,则y 1与y 2的大小关系为__________.13.分解因式a 3﹣6a 2+9a=_________________.14.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 15.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =_____.16.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a (不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b ,则点(a,b )在直线11+22y x =图象上的概率为__. 17.计算:cos 245°-tan30°sin60°=______. 18.分解因式:229ax ay -= ____________. 三、解答题(本题包括8个小题)19.(6分)实践:如图△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC 的平分线,交BC 于点O.以O 为圆心,OC 为半径作圆.综合运用:在你所作的图中,AB 与⊙O 的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.20.(6分)如果a 2+2a-1=0,求代数式24()2a a a a -⋅-的值.21.(6分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.22.(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?23.(8分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.24.(10分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.25.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.26.(12分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21.126故答案为C . 【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键. 2.D 【解析】 【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案. 【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A 选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B 选项不符合题意, 掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C 选项不符合题意, 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D 选项符合题意, 故选D. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键. 3.D 【解析】 【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D. 【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大. 4.A 【解析】 【分析】。
山东省淄博市2019-2020学年中考数学模拟试题(2)含解析
山东省淄博市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A .∠ABC =∠ADC ,∠BAD =∠BCDB .AB =BCC .AB =CD ,AD =BCD .∠DAB+∠BCD =180°2.点M (1,2)关于y 轴对称点的坐标为( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)3.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示sinα的值,错误的是( )A .CDBCB .ACABC .ADACD .CDAC4.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .25B .5 C .2D .125.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h6.如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF为折痕,则sin∠BED的值是()A.53B.35C.222D.237.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h的值为( )A.3﹣6或1+6B.3﹣6或3+6C.3+6或1﹣6D.1﹣6或1+68.满足不等式组21010xx-≤⎧⎨+>⎩的整数解是()A.﹣2 B.﹣1 C.0 D.19.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c 10.下列各式属于最简二次根式的有()A.8B.21x+C.3y D.1 211.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣312.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数10 20 30 501015182433450 “和为7”出现频数2 7 10 16 30 46 59 8111150 “和为7”出现频率0.20.350.330.320.30.30.330.340.330.33 如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33 B.0.34 C.0.20 D.0.35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.14.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.15.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).16.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.17.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.18.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD 的相似比为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.20.(6分)已知:a是﹣2的相反数,b是﹣2的倒数,则(1)a=_____,b=_____;(2)求代数式a2b+ab的值.21.(6分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.22.(8分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.23.(8分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?24.(10分)计算:3﹣2)0+(13)﹣1+4cos30°﹣|412|25.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.26.(12分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.7527.(12分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【详解】解:Q 四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则 AE AF =(两纸条相同,纸条宽度相同); Q 平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).ABC ADC ∠=∠∴,BAD BCD ∠=∠(菱形的对角相等),故A 正确; AB CD =,AD BC =(平行四边形的对边相等),故C 正确; 如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确. 故选:D . 【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”. 2.A 【解析】 【分析】关于y 轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数. 【详解】点M (1,2)关于y 轴对称点的坐标为(-1,2) 【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键. 3.D 【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案. 【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°, ∴∠ACD=∠B=α,A 、在Rt △BCD 中,si nα=CDBC ,故A 正确,不符合题意; B 、在Rt △ABC 中,sinα=ACAB ,故B 正确,不符合题意;C 、在Rt △ACD 中,sinα=ADAC,故C 正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.D【解析】【分析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=2142 ADBD==故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.5.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.6.B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.7.C【解析】【详解】∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:6或6(舍);②若1≤x≤3<h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:6或6(舍).综上,h的值为6或6,点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键. 8.C 【解析】 【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可. 【详解】21010x x -≤⎧⎨+⎩①>② ∵解不等式①得:x≤0.5, 解不等式②得:x >-1, ∴不等式组的解集为-1<x≤0.5, ∴不等式组的整数解为0, 故选C . 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键. 9.C 【解析】 【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可. 【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|, ∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c , 故答案为a+c . 故选A . 10.B 【解析】 【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可. 【详解】A=A 选项错误;C选项:3y y y=,故不是最简二次根式,故本选项错误;D选项:11222=,故不是最简二次根式,故D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.11.D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.12.A【解析】【分析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC==.故答案是:【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.1.【解析】【分析】由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF =54°,即可得出∠DCF的度数.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=12×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=12×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案为1.【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.15.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型16.2.【解析】【分析】把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m是方程2x2﹣3x﹣2=0的一个根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.17.32或94【解析】【详解】①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=32,∴AP=32;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴AD ABAP BC=,∴AP=AD BCABg=334⨯=94.故答案为32或94.18.3:1.【解析】∵△AOB与△COD关于点O成位似图形,∴△AOB∽△COD,则△AOB与△COD的相似比为OB:OD=3:1,故答案为3:1 (或34).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为73.(3)当a=5时,D、O、C、B四点共圆.【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=32a+,AO=a,OD=3a,代入求得顶点C(32a+,-232a-⎛⎫⎪⎝⎭),从而得PB=3-32a+=32a-,PC=232a-⎛⎫⎪⎝⎭;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得233322a aa a=--⎛⎫⎪⎝⎭,解得:a= 3(舍去);②△AOD∽△CPB,根据相似三角形性质得233322a aaa=--⎛⎫⎪⎝⎭,解得:a1=3(舍),a2=73;(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(32,32a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)∵y=(x-a)(x-3)(0<a<3)与x轴交于点A、B(点A在点B的左侧),∴A(a,0),B(3,0),当x=0时,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=32a+,AO=a,OD=3a,当x=32a+时,y=-232a-⎛⎫⎪⎝⎭,∴C(32a+,-232a-⎛⎫⎪⎝⎭),∴PB=3-32a+=32a-,PC=232a-⎛⎫⎪⎝⎭,①当△AOD∽△BPC时,∴AO ODBP PC=,即233322a aa a=--⎛⎫⎪⎝⎭,解得:a= 3(舍去);②△AOD∽△CPB,∴AO ODCP PB=,即233322a aaa=--⎛⎫⎪⎝⎭,解得:a1=3(舍),a2=73.综上所述:a的值为73;(3)能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(32,32a),若点C 也在此圆上, ∴MC=MB ,∴222223333333222222a a a a ⎡⎤+-⎛⎫⎛⎫⎛⎫⎛⎫-++=-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ ,化简得:a 4-14a 2+45=0, ∴(a 2-5)(a 2-9)=0, ∴a 2=5或a 2=9,∴a 1=5,a 2=-5,a 3=3(舍),a 4=-3(舍), ∵0<a<3, ∴a=5,∴当a=5时,D 、O 、C 、B 四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键. 20.2 ﹣12【解析】试题分析:()1利用相反数和倒数的定义即可得出.()2先因式分解,再代入求出即可.试题解析:()1a Q 是2-的相反数,b 是2-的倒数,12,.2a b ∴==()2当12,2a b ==时,21(1)2(21)32a b ab ab a ⎛⎫+=+=⨯-⨯+=- ⎪⎝⎭. 点睛:只有符号不同的两个数互为相反数. 乘积为1的两个数互为倒数. 21.(1),;(2)点的坐标为;(3)点的坐标为和【解析】 【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.22.(1)①30°②见解析(2)BD2+CE2=DE2(321【解析】【分析】(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,AF AEDAF DAE AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴55 BM,FM322==∵BD=4,∴DM=BD﹣BM=32,根据勾股定理得,22DF FM DM21=+=∴DE=DF21,故答案为21.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.23.(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】【分析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m 的最大值为2.答:购进1本文学书后最多还能购进2本科普书. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 24.4 【解析】 【分析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案. 【详解】2)0+(13)﹣1+4cos30°﹣|4|=1+3+4×2﹣(4﹣【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 25.(1)32;(2)1. 【解析】 【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH =KD =x ,得出AK =12﹣x ,EF =32(12﹣x ),再根据S =32x (12﹣x )=﹣32(x ﹣6)2+1,可得当x =6时,S 有最大值为1.【详解】解:(1)∵△AEF ∽△ABC , ∴EF AKBC AD=, ∵边BC 长为18,高AD 长为12, ∴EF BC AK AD ==32; (2)∵EH =KD =x ,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.26.景点A与B之间的距离大约为280米【解析】【分析】由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC 和BC的长.【详解】解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,由题意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景点A与B之间的距离大约为280米.【点睛】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27.(1)60°;(2)证明略;(3)8 3【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.。
(4份试卷汇总)2019-2020学年山东省淄博市第三次中考模拟考试数学试卷
2019-2020学年数学中考模拟试卷一、选择题1.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )A.6π﹣932B.6π﹣93C.12π﹣932D.42.下列函数中,自变量x的取值范围是x>3的是()A.y=B.y=C.y=D.y=3.抛物线y=ax2+bx+c交x轴于A(-1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD是等腰直角三角形时,则a=12;其中正确的有()个.A.4B.3C.2D.14.下列计算正确的是( )A.a³+a²=a5,B.a³a²=a5,C.(-2a²)³=-6a6,D.a3÷a-2=a.5.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A.正视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大6.如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°7.如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA、AB于点M、N,再以M、N为圆心,大于12MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P .若△OPA 与△OAB 相似,则点P 的坐标为( )A .(1,0)B .(3,0)C .(233,0) D .(23,0)8.给出一种运算:对于函数y =x n ,规定y'=n×x n ﹣1.若函数y =x 4,则有y'=4×x 3,已知函数y =x 3,则方程y'=6x 的解是( ) A .x =2 B .x =3C .x 1=0,x 2=2D .x =﹣29.一元二次方程经过配方后可变形为( )A. B. C.D.10.关于x 、y 的方程组239x y mx y m +=⎧⎨-=⎩的解是方程3x+2y =34的一组解,那么m 的值是( )A .﹣2B .﹣1C .1D .211.下列计算正确的是( )A .b 5∙ b 5=2 b 5B .(a- b)5 ·(b - a)4=( a - b)9C .a +2 a 2=3 a 3D .(an-1)3= a3n-112.如图,已知顶点为(﹣3,﹣6)的抛物线y =ax 2+bx+c 经过点(﹣1,﹣4),则下列结论中错误的是( )A .b 2>4acB .ax 2+bx+c≥﹣6C .关于x 的一元二次方程ax 2+bx+c =﹣4的两根分别为﹣5和﹣1 D .若点(﹣2,m ),(﹣5,n )在抛物线上,则m >n 二、填空题13.一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为_____________. 14.计算:|﹣3=_____.15.若一次函数3y kx =+(k 为常数,0k ≠),y 随x 的增大而减小,则k 的值可以是_______(写出一个即可). 16.计算:1623ax x x-+--=_____. 17.在矩形ABCD 中,AD =12,E 是AB 边上的点,AE =5,点P 在AD 边上,将△AEP 沿FP 折叠,使得点A 落在点A′的位置,如图,当A′与点D 的距离最短时,△A′PD 的面积为_____.18.将一副三角尺如图所示叠放在一起,若AB =4cm ,则阴影部分的面积是_____cm 2.三、解答题 19.计算:(1)(a+2)(a ﹣3)﹣a (a ﹣1)(2)2249726926a a a a a --÷-+++20.化简:2232122444x x x x x x x x x +-+⎛⎫-÷⎪--+-⎝⎭. 21.将分别标有数字1,6,8的三张卡片(卡片除所标注数字外其他均相同)洗匀后,背面朝上放在桌面上.(1)随机抽取一张卡片,抽到的卡片所标数字是偶数的概率为 ;(2)随机抽取一张卡片,将卡片上标有的数字作为十位上的数字(不放回),再随机抽取一张卡片,将卡片上标有的数字作为个位上的数字,用列表或画树状图的方法求组成的两位数恰好是“68”的概率. 22.永康市某校在课改中,开设的选修课有:篮球,足球,排球,羽毛球,乒乓球,学生可根据自己的爱好选修一门,李老师对九(1)班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班共有学生 人,并补全条形统计图; (2)求“篮球”所在扇形圆心角的度数;(3)九(1)班班委4人中,甲选修篮球,乙和丙选修足球,丁选修排球,从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人中恰好为1人选修篮球,1人选修足球的概率. 23.如图,在平面直角坐标系中,A (0,1),B (4,2),C (2,0). (1)将△ABC 沿y 轴翻折得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕着点(﹣1,﹣1)旋转180°得到△A 2B 2C 2,画出△A 2B 2C 2;(3)线段B 2C 2可以看成是线段B 1C 1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为 .24.如图①,②分别是某款篮球架的实物图和示意图,已知支架AB 的长为2.3m ,支架AB 与地面的夹角∠BAC =70°,BE 的长为1.5m ,篮板部支架BD 与水平支架BE 的夹角为46°,BC 、DE 垂直于地面,求篮板顶端D 到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)25.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B B B B C C C D D BD13.55.210-⨯ 14315.-1(答案不唯一)16.22731556ax x ax x x --+-+ 17.40318.2 三、解答题19.(1)-6(2)83a - 【解析】 【分析】(1)根据整式的混合运算顺序和运算法则计算可得; (2)先计算除法,再计算减法即可得. 【详解】(1)原式=a 2﹣a ﹣6﹣a 2+a =﹣6;(2)原式=2(+7)(7)2(3)2(3)7a a a a a -+⋅-+-=2(+7)2(3)33a a a a +-++=83a +.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.42x x -- 【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【详解】 原式=221(2)(2)[](2)(2)2x x x x x x x x x +-+--⋅--+=2224(2)(2)1x x x x x x x --+-⋅-=42x x --. 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解答本题的关键. 21.(1)23 ;(2)16. 【解析】 【分析】(1)直接利用概率公式计算可得;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,注意做到不重不漏;再根据树状图分析求得抽取到的两位数恰好是18的情况,再根据概率公式求出该事件的概率即可. 【详解】(1)随机抽取一张卡片,抽到的卡片所标数字是偶数的概率为23, 故答案为:23; (2)画树状图如下:∵不放回,∴能组成的两位数有16,18,61,68,81,86,由上述树状图知:所有可能出现的结果共有6种,恰好是68的有1种,所以组成的两位数恰好是“68”的概率为16.【点睛】此题考查的是用列表法或树状图法求概率的知识.列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题是放回实验还是不放回实验是解题的关键.22.(1)50,图形见解析;(2)72°;(3)1 3【解析】【分析】(1)用排球的人数除以它所占的百分比即可得到全班人数,用总人数减去其它选课的人数求出乒乓球的人数,从而补全统计图;(2)用篮球的所占百分比乘以360°即可得到在扇形统计图中“篮球”对应扇形的圆心角的度数;(3)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.【详解】(1)该班共有学生125024%=(人),乒乓球有50﹣10﹣12﹣9﹣5=14(人),补图如下:故答案为:50;(2)1036072 50︒︒⨯=;(3)根据题意画图如下:用A表示篮球,用B表示足球,用C表示排球;共有12种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占4种,所以选出的2人恰好1人选修篮球,1人选修足球的概率所求的概率为41123P==.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图与扇形统计图.23.(1)详见解析;(2)详见解析;(3)(﹣2,﹣2).【解析】【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P点坐标即可.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).故答案为(﹣2,﹣2).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.篮板顶端D到地面的距离约为3.7m.【解析】【分析】延长AC、DE交于点F,则四边形BCFE为矩形,根据sin∠BAC=BCAB,求EF,根据tan∠DBE=DEBE,求DE,再求DF即可.【详解】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=BC AB,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=DE BE,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.【点睛】本题考查的是解直角三角形的应用,掌握正切、正弦的概念、熟记锐角三角函数的定义是解题的关键.25.(1)袋子中白球有2个;(2)见解析,59 .【解析】【分析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:213xx=+,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x个,根据题意得:213xx=+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.2019-2020学年数学中考模拟试卷一、选择题1.不等式组51132xx x ->-⎧⎪⎨-≥⎪⎩的所有整数解的和为( )A .13B .15C .16D .212.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其扣,徐以杓酌油沥之,自钱孔入,而钱不湿.因曰:‘我亦无他,唯手熟尔.’”可见技能都能透过反复苦练而达至熟能生巧之境的.若铜钱是直径为4cm 的圆,中间有边长为1cm 的正方形孔,你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为( )A.13B.14C.1πD.14π3.2019年3月份,雷州市市区一周空气质量报告中某项污染指数的数据是35,32,33,35,36,33,35,则这组数据的众数是( ) A .36B .35C .33D .324.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下: ①分别以点DE 为圆心,大于DE 的长为半径作弧两弧交于F ; ②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ; ④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A.①②③④B.④③①②C.②④③①D.④③②①5.不等式组20215x x -⎧⎨-⎩>< 的解是( )A .x >2B .x <3C .2<x <3D .2<x <66.如图,平行四边形纸片ABCD ,CD=5,BC=2,∠A=60°,将纸片折叠,使点A 落在射线AD 上(记为点A′),折痕与AB 交于点P ,设AP 的长为x ,折叠后纸片重叠部分的面积为y ,可以表示y 与x 之间关系的大致图象是( )A.B.C.D.7.已知一个圆锥的底面半径为5cm,高为11cm,则这个圆锥的侧面积为( )A.511πcm2B.30πcm2C.65πcm2D.85πcm28.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8 B.16 C.24 D.329.如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数为( )A.60°B.120°C.72°D.108°10.如图,在△ABC中,AC和BC的垂直平分线l1和l2分别交AB于点D、E,若AD=3,DE=4,EB=5,则S△ABC等于( )A.36 B.24 C.18 D.1211.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是()A.(﹣3,﹣1)B.(1,1)C.(3,2)D.(4,3)12.如图,在等边三角形ABC中,AE=CD,CE与BD相交于点G,EF⊥BD于点F,若EF=4,则EG的长为()A .338B .833C .334D .8二、填空题13.将从1开始的连续自然数按以下规律排列: 第1行 1 第2行 2 3 4 第3行 9 8 7 6 5 第4行 10 11 12 13 14 15 16 第5行252423222120191817L 则2019在第________行.14.图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图乙中的直角三角形继续作下去,那么OA 1,OA 2,…,OA 25这些线段中有___条线段的长度为正整数.15.若二次根式35a +是最简二次根式,则最小的正整数=______ 16.分解因式:22416a b -= . 17.在△ABC 中,AB=2,AC=3,cos ∠ACB=223,则∠ABC 的大小为________度. 18.()2456x x -+=化成一般形式是____________,其中一次项系数是___________ 三、解答题19.如图,等腰三角形ABC 的腰长为4,底为6,求它的顶角的度数(结果精确到1°)20.计算或化简:(1)2cos45°﹣(﹣30821+(2)先化简,再求值:(31x -﹣x ﹣1)÷2221x x x --+,其中x 2;21.计算:(1)()-21-3.14--124cos303π⎛⎫++︒ ⎪⎝⎭; (2)x 2-4x=-322.如图,在矩形ABCD 中,对角线BD 的垂直平分线EF 交BD 于点O ,交AD 于点E ,交BC 于点F ,连接BE 、DF .(1)求证:四边形BFDE 是菱形;(2)若AB =3,AD =6,求菱形BFDE 的面积.23.实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中C 类女生有 名,D 类男生有 名;将上面的条形统计图补充完整; (2)计算扇形统计图中D 所占的圆心角是 ;(3)为了共同进步,张老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.在平面直角坐标系xOy 中,抛物线y=ax 2-2ax-3a (a≠0)顶点为P ,且该抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax 2-2ax-3a 顶点P 的坐标(用含a 的代数式表示); (2)如果抛物线y=ax 2-3ax-3a 经过(1,3). ①求a 的值;②在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线y=ax 2-2ax-3a 在“G 区域”内有4个整点,直接写出a 的取值范围.25.为了增强学生的环保意识,某校团委组织了一次“环保知识”考试,考题共10题考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)“答对10题”所对应扇形的心角为_____; (2)通过计算补全条形统计图;(3)若该校共有2000名学生参加这次“环保知识”考试,请你估计该校答对不少于8题的学生人数.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D B B C C B D D C DB13. 14.5 15.216.4(a+2b)(a -2b) 17.30或15018.214210x x -+= , -14 三、解答题19.等腰三角形ABC 的顶角是97° 【解析】 【分析】根据题意,作出合适的辅助线,然后利用等腰三角形的性质和锐角三角函数可以求得等腰三角形ABC 的顶角的度数. 【详解】作AD ⊥BC 于点D ,如图所示,∵等腰三角形ABC 的腰长为4,底为6, ∴AB =4,BC =6, ∴BD =3, ∴sin ∠BAD =34BD AB =,∴∠BAD≈48.6°,∴∠BAC =2∠BAD =97.2°≈97°, 即等腰三角形ABC 的顶角是97°. 【点睛】本题考查解直角三角形、等腰三角形的性质、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.20.(1)-2(2)﹣x 2﹣x+2 【解析】 【分析】(1)依次计算三角函数、零指数幂、二次根式,然后计算加减法; (2)先算括号里的,然后算除法. 【详解】(1﹣﹣1﹣﹣1﹣2; (2)(31x -﹣x ﹣1)÷2221x x x --+=231()11x x x ----÷22(1)x x --=2(2)(2)(1)12x x x x x -+--⋅-- =﹣(x+2)(x ﹣1) =﹣x 2﹣x+2当x)2+2=﹣+2 【点睛】本题考查了分式的化简,熟练掌握分式混合运算法则是解题的关键. 21.(1)10;(2)x 1=1,x 2=3. 【解析】 【分析】(1)原式第一项利用零指数幂法则计算,第二项运用负整数指数幂运算法则进行计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果; (2)方程移项后,运用因式分解法求解即可. 【详解】(1)1410=+=原式 (2) ∵x 2-4x=-3 ∴x 2-4x+3=0 ∴(x-1)(x-3)=0 ∴x 1=1,x 2=3 【点睛】此题考查了实数的运算和运用因式分解法解一元二次方程,熟练掌握运算法则是解本题的关键. 22.(1)见解析;(2)454【解析】【分析】(1)根据矩形性质求出AD∥BC,推出∠EDO=∠FBO,由ASA证明△DEO≌△BFO,推出OE=OF,得出平行四边形BEDF,即可推出菱形BEDF;(2)设AE=x,DE=6-x,得到BE=6-x,根据勾股定理得到DE=6-x=154,根据菱形的面积公式即可得到结论.【详解】(1)解:(1)四边形BEDF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在△DEO和△BFO中,EDO FBO BO DOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DEO≌△BFO(ASA),∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形;(2)设AE=x,DE=6-x,∴BE=6-x,∵∠A=90°,∴AE2+AB2=BE2,∴x2+32=(6-x)2,∴x=9 4∴DE=6-x=15 4∴菱形BFDE的面积=ED·AB=454.【点睛】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,全等三角形的判定与性质,勾股定理等知识;熟练掌握矩形的性质,证明四边形是菱形是解决问题的关键.23.(1)2;1;(2)36°;(3)P(一男一女)=12.【解析】【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数(2)用D的人数除以总人数再乘360°即可得到D的圆心角;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案【详解】(1)3÷15%=20,20×25%=5.女生:5-3=21-25%-50%-15%=10%20×10%=2,男生:2-1=1故答案为:,2,1(2)从图中得到D的人数为2人,总人数为20,236020⨯°=36°(3)画出树状图(或列表)∴共有6种等可能结果,其中一男一女的有3种,故P(一男一女)=31 62 =【点睛】此题考查条形统计图,扇形统计图,列表法,解题关键在于看懂图中数据24.(1)顶点P的坐标为(1,-4a).(2)①a=-34.②“G区域”有6个整数点.(3)a的取值范围为-23≤a<-12或12<a≤23.【解析】【分析】(1)利用配方法将抛物线的解析式变形为顶点式,由此即可得出顶点P的坐标;(2)将点(1,3)代入抛物线解析式中,即可求出a值,再分析当x=0、1、2时,在“G区域”内整数点的坐标,由此即可得出结论;(3)分a<0及a>0两种情况考虑,依照题意画出图形,结合图形找出关于a的不等式组,解之即可得出结论.【详解】解:(1)∵y=ax2-2ax-3a=a(x+1)(x-3)=a(x-1)2-4a,∴顶点P的坐标为(1,-4a).(2)∵抛物线y=a(x+1)(x-3)经过(1,3),∴3=a(1+1)(1-3),解得:a=-34.当y=-34(x+1)(x-3)=0时,x1=-1,x2=3,∴点A(-1,0),点B(3,0).当x=0时,y=-34(x+1)(x-3)=94,∴(0,1)、(0,2)两个整数点在“G区域”;当x=1时,y=-34(x+1)(x-3)=3, ∴(1,1)、(1,2)两个整数点在“G 区域”; 当x=2时,y=-34(x+1)(x-3)=94,∴(2,1)、(2,2)两个整数点在“G 区域”. 综上所述:此时“G 区域”有6个整数点. (3)当x=0时,y=a (x+1)(x-3)=-3a , ∴抛物线与y 轴的交点坐标为(0,-3a ). 当a <0时,如图1所示, 此时有{24332a a <-≤-≤, 解得:-23≤a<-12; 当a >0时,如图2所示, 此时有{34232a a -≤-<--≥-, 解得:12<a≤23. 综上所述,如果G 区域中仅有4个整数点时,则a 的取值范围为-23≤a<-12或12<a≤23.【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)利用配方法将抛物线解析式变形为顶点式;(2)利用二次函数图象上点的坐标特征,寻找“G 区域”内整数点的个数;(3)依照题意,画出图形,观察图形找出关于a 的一元一次不等式组.25.(1)108°;(2)见解析;(3)1480人. 【解析】 【分析】(1)先得出总人数,进而利用圆心角的计算解答即可; (2)得出D 的人数,画出图形即可; (3)根据用样本估计总体解答即可. 【详解】解:(1)总人数=(5+8+12+15)÷(1﹣20%)=50,“答对10题”所对应扇形的心角为15360108 50︒︒⨯=;故答案为:108°(2))“答对9题”的人数=50×20%=10,补全条形统计图如图:(3)2000×121015148050++=,所以估计该校答对不少于8题的学生人数为1480人.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( ) A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4)2.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,12AO DO BO CO ==,则容器的内径是( )A.5cmB.10cmC.15cmD.20cm3.如图,在平面直角坐标系中,矩形ABCD 的面积为定值,它的对称中心恰与原点重合,且AB ∥y 轴,CD 交x 轴于点M ,过原点的直线EF 分别交AD 、BC 边于点E 、F ,以EF 为一边作矩形EFGH ,并使EF 的对边GH 所在直线过点M ,若点A 的横坐标逐渐增大,图中矩形EFGH 的面积的大小变化情况是( )A.一直减小B.一直不变C.先减小后增大D.先增大后减小4.将函数y =x 2﹣2x (x≥0)的图象沿y 轴翻折得到一个新的图象,前后两个图象其实就是函数y =x 2﹣2|x|的图象,关于x 的方程x 2﹣2|x|=a ,在﹣2<x <2的范围内恰有两个实数根时,a 的值为( ) A.1B.0C.D.﹣15.2018年10月24日港珠澳大桥正式通车.港珠澳大桥是在“一国两制”框架下,粤港澳三地首次合作共建的超大型基础设施项目,总投资约480亿元,大桥全长55000米,主体工程集合了桥、岛、隧三部分.隧道两端的东西两个海中人工岛,犹如“伶仃双贝”熠熠生辉,寓意三地同心的青州航道桥,形似中华白海豚的江海直达航道桥,以及扬帆起航的九洲航道桥,也是伶仃洋上别致的风景.将数据480亿用科学记数法表示为( )A .848010⨯B .94810⨯C .104.810⨯D .110.4810⨯6.如图,在平面直角坐标系中,Rt △AOB 的边OA 在y 轴上,OB 在x 轴上,反比例函数y =kx(k≠0)与斜边AB 交于点C 、D ,连接OD ,若AC :CD =2:3,S △OBD =72,则k 的值为( )A .4B .5C .6D .77.已知二次函数y =ax 2+bx+c 的图象如图所示,在以下四个结论中,正确的是( )A.abc >0B.4a+2b+c <0C.a ﹣b+c >0D.a+b >0 8.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是( ) A .6B .8C .9D .109.如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB =110°,则∠α=( )A .70°B .110°C .120°D .140°10.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是( )A .AE >BEB .»AD =»BCC .∠D =12∠AEC D .△ADE ∽△CBE11.为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x 及其方差s 2如表所示:甲 乙 丙 丁 x12″33 15″29 10″26 10″26 S 21.11.61.31.1如果从中选拔一名学生去参赛,应派( )去. A .甲B .乙C .丙D .丁12.下列运算正确的是( ) A .235a a a += B .235(2)2a a -=- C .236a a a ⋅=D .624a a a ÷=二、填空题13.如图,在O e 中,»»AB AC =,若40AOB ∠=︒,点D 在O e 上,连结CD 、AD ,则ADC ∠=_____︒.14.已知a 2+1=3a ,则代数式a+1a的值为 . 15.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是_____.16.因式分解:8a 3﹣2ab 2=_____.17.边长为a 、b 的长方形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.18.在平面直角坐标系中,把过原点,平分第一、三象限的直线向右平移3个单位后,其函数解析式为________. 三、解答题19.如图,已知二次函数y =ax 2+bx+c (a≠0)的图象经过A (﹣1,0),B (4,0),C (0,2)三点.(1)求该二次函数的解析式;(2)设点D 是在x 轴上方的二次函数图象上的点,且△DAB 的面积为5,求出所有满足条件的点D 的坐标;(3)能否在抛物线上找点P,使∠APB=90°?若能,请直接写出所有满足条件的点P;若不能,请说明理由.20.如图所示,P是⊙O外一点,PA是⊙的切线,A是切点,B是⊙O上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=BQ•OQ;(3)设∠P=α,若tanɑ=34,AQ=3,求AB的长.21.解不等式组211,? 331xx x①②+-⎧⎨+-⎩……请结合题意填空,完成本题的解答。
山东淄博实验中学2020中考提前自主招生数学模拟试卷(9套)附解析
中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。
【6套合集】山东淄博实验中学2020中考提前自主招生数学模拟试卷附解析
【6套合集】山东淄博实验中学2020中考提前自主招生数学模拟试卷附解析中学自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°18.(6分)先化简,后求值:(x﹣)÷,其中x=2.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D (保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m 的值为;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b (b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠F DM <90°,连接DM,MF,当S四边形DFHM:S 四边形ABCD=3:4时,求动点M经过的弧长.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000亿=9×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是2【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可.【解答】解:A、2的相反数是﹣2,错误;B、2的绝对值是2,正确;C、2的倒数是,错误;D、2的平方根是±,错误;故选:B.【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答.4.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a,符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.【解答】解:由数轴可得:﹣2<x≤1,故选:D.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°【分析】利用平行线的性质即可求得∠C的度数,根据圆周角定理:同弧所对的圆周角等于圆心角的一半求得∠O的度数,再利用三角形的外角的性质即可求解.【解答】解:∵OC∥AB,∴∠C=∠A=20°,又∵∠O=2∠A=40°,∴∠1=∠O+∠C=20°+40°=60°.故选:D.【点评】本题考查了圆周角定理与平行线的性质定理,正确利用圆周角定理求得∠O的度数是关键.8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式可得答案.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中点(a,b)在第二象限的有2种结果,所以点(a,b)在第二象限的概率为=,故选:B.【点评】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.3【分析】如图,作AE⊥x轴于E.根据tan∠AOE==,构建方程即可解决问题.【解答】解:如图,作AE⊥x轴于E.。
山东省淄博市2019-2020学年中考数学四月模拟试卷含解析
山东省淄博市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中,∠1与∠2互为邻补角的是( )A.B.C.D.2.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.3.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.112a b ab+=D.(a2b)3=a5b34.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE 为半径作扇形EAB,π取3,则阴影部分的面积为()A.1324﹣4 B.72﹣4 C.6﹣524D.325-5.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则»AE的弧长为()A .2π B .π C .32π D .36.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AEDB EC= B .AB ACAD AE= C .AC ECAB DB= D .AD DEDB BC= 7.已知二次函数2 45y x x =-++的图象如图所示,若()1 3A y -,,()()2301B y C y ,,,是这个函数图象上的三点,则123y y y ,,的大小关系是( )A .123 y y y <<B .213 y y y <<C .312 y y y <<D .132y y y <<8.下列四个数表示在数轴上,它们对应的点中,离原点最远的是( ) A .﹣2B .﹣1C .0D .19.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表: 年龄(岁) 12 13 14 15 人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( ) A .13、15、14B .14、15、14C .13.5、15、14D .15、15、1510.若x >y ,则下列式子错误的是( ) A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y>3311.如图,小明将一张长为20cm ,宽为15cm 的长方形纸(AE >DE )剪去了一角,量得AB =3cm ,CD =4cm ,则剪去的直角三角形的斜边长为( )A .5cmB .12cmC .16cmD .20cm12.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )A .①B .②C .③D .④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.使得分式值242x x -+为零的x 的值是_________;14.已知二次函数f(x)=x 2-3x+1,那么f(2)=_________.15.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.16.已知一组数据1,2,0,﹣1,x ,1的平均数是1,则这组数据的中位数为_____. 17.一元二次方程x 2﹣4=0的解是._________18.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.20.(6分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A 市投资“改水工程”的年平均增长率;从2008年到2010年,A 市三年共投资“改水工程”多少万元?21.(6分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元) 星期一二 三 四 五 每股涨跌(元) +2 ﹣1.4+0.9﹣1.8+0.5根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?22.(8分)如图,已知反比例函数y=kx(x>0)的图象与一次函数y=﹣12x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=kx(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.23.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.24.(10分)先化简222211(1)11x x xxx x-+-÷-+--,然后从﹣5<x<3的范围内选取一个合适的整数作为x的值代入求值.25.(10分)计算:33.14 3.1412cos45π⎛⎫-+÷+-⎪⎪⎝⎭o()()12009211-+-+-.26.(12分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).27.(12分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP 交⊙O 于点Q ,过Q 作⊙O 的切线交射线OA 于点E .(1)如图①,点P 在线段OA 上,若∠OBQ=15°,求∠AQE 的大小; (2)如图②,点P 在OA 的延长线上,若∠OBQ=65°,求∠AQE 的大小.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是. 故选D . 2.B 【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B . 3.B 【解析】 【分析】由整数指数幂和分式的运算的法则计算可得答案. 【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a ba b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B. 【点睛】 幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数) (2)幂的乘方:()m n mn a a =(m 、n 都是正整数) (3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n) (5)零次幂:01a =(a≠0) (6) 负整数次幂: 1pp a a-=(a≠0, p 是正整数). 4.A 【解析】∵O 的直径AB=2, ∴∠C=90°,∵C 是弧AB 的中点,∴»»AC BC=, ∴AC=BC ,∴∠CAB=∠CBA=45°,∵AE ,BE 分别平分∠BAC 和∠ABC , ∴∠EAB=∠EBA=22.5°, ∴∠AEB=180°−12(∠BAC+∠CBA)=135°, 连接EO ,∵∠EAB=∠EBA , ∴EA=EB , ∵OA=OB , ∴EO ⊥AB ,∴EO 为Rt △ABC 内切圆半径, ∴S △ABC =12(AB+AC+BC)⋅EO=12AC ⋅BC ,∴−1,∴AE 2=AO 2+EO 2=12−1)2,∴扇形EAB 的面积=135(4360π-=9(24-,△ABE 的面积=12AB ⋅−1,∴弓形AB 的面积=扇形EAB 的面积−△ABE 的面积=224-,∴阴影部分的面积=12O 的面积−弓形AB 的面积=32−(224-)=4−4,故选:A. 5.B 【解析】∵四边形AECD 是平行四边形, ∴AE=CD , ∵AB=BE=CD=3, ∴AB=BE=AE ,∴△ABE 是等边三角形, ∴∠B=60°, ∴AE u u u r的弧长=6023360ππ⨯⨯=.故选B. 6.D 【解析】 【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论. 【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D . 【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.【分析】先求出二次函数的对称轴,结合二次函数的增减性即可判断. 【详解】解:二次函数245y x x =-++的对称轴为直线422(1)x =-=⨯-,∵抛物线开口向下,∴当2x <时,y 随x 增大而增大, ∵301-<<,∴123y y y << 故答案为:A . 【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性. 8.A 【解析】 【分析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解. 【详解】 ∵|-1|=1,|-1|=1, ∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1. 故选A . 【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想. 9.B 【解析】 【分析】根据加权平均数、众数、中位数的计算方法求解即可. 【详解】122134146158=142468x ⨯+⨯+⨯+⨯=+++,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.本题考查了平均数、众数与中位数的意义.数据x1、x2、……、x n的加权平均数:112212............n nnw x w x w xxw w w+++=+++(其中w1、w2、……、w n分别为x1、x2、……、x n的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.10.B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.11.D【解析】【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行【解析】 【分析】根据题意得到原几何体的主视图,结合主视图选择. 【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可. 故取走的正方体是①. 故选A . 【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2 【解析】 【分析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可. 【详解】解:要使分式有意义则20x +≠ ,即2x ≠- 要使分式为零,则240x -= ,即2x =± 综上可得2x = 故答案为2 【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0. 14.-1 【解析】 【分析】根据二次函数的性质将x=2代入二次函数解析式中即可. 【详解】Q f(x)=x 2-3x+1∴ f(2)= 22-3⨯2+1=-1.故答案为-1.。
山东省淄博市2019-2020学年中考数学四模试卷含解析
山东省淄博市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()A.中位数相等B.平均数不同C.A组数据方差更大D.B组数据方差更大2.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.673.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D4.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x45.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A.b2>4ac B.ax2+bx+c≤6C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=06.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个7.正比例函数y =2kx 的图象如图所示,则y =(k -2)x +1-k 的图象大致是( )A .B .C .D .8.下列计算中,正确的是( )A .a•3a=4a 2B .2a+3a=5a 2C .(ab )3=a 3b 3D .7a 3÷14a 2=2a9.在平面直角坐标系中,点(-1,-2)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F.已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .811.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x 名同学,则根据题意列出的方程是( )A .x(x+1)=132B .x(x-1)=132C .x(x+1)=132×12 D .x(x-1)=132×212.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.14.若a是方程2320x x--=的根,则2526a a+-=_____.15.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.16.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则mn=______17.分解因式2x2+4x+2=__________.18.计算2211xx x---的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.20.(6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?21.(6分)观察下列算式:① 1 × 3 - 22 =" 3" - 4 = -1② 2 × 4 - 32 =" 8" - 9 = -1③3 × 5 - 42 =" 15" - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.22.(8分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB 成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)23.(8分)一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率.24.(10分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.25.(10分)2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元. 26.(12分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.27.(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;∴两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键. 2.B【解析】【分析】【详解】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以DE AD AE DF BF BD==,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以332x a a x y a y a-==-整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,4455x ay a==,即45 CE CF=故选B.【点睛】本题考查相似三角形的判定及性质.3.B1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.4.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4 ,正确,故选D.5.C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac -f ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a =-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.6.B【解析】【分析】根据二次函数的图象与性质判断即可.【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误;②Q 对称轴为直线x=-1,12b a∴-=-,即b=2a,所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y >1,即: 4a+2b+c >1,故⑤正确.故正确选项有③④⑤,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.7.B【解析】试题解析:由图象可知,正比函数y=2kx 的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k 图象经过一、二、四象限,故选B.8.C【解析】【分析】根据同底数幂的运算法则进行判断即可.【详解】解:A 、a•3a=3a 2,故原选项计算错误;B 、2a+3a=5a ,故原选项计算错误;C 、(ab )3=a 3b 3,故原选项计算正确;D 、7a 3÷14a 2=12a ,故原选项计算错误; 故选C .【点睛】本题考点:同底数幂的混合运算.9.C【解析】:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C 10.C【解析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.11.B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.12.B【解析】【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】【详解】解:∵正六边形ABCDEF 的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF 的长=3×6﹣3﹣3═12,∴扇形AFB (阴影部分)的面积=12×12×3=1. 故答案为1.【点睛】本题考查正多边形和圆;扇形面积的计算.14.1【解析】【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1.故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.小李.【解析】【分析】【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新故答案为:小李.16.15 +【解析】【分析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=5n n ±,∵m>0,n>0,∴m=52n n,∴15 mn+=故答案为152+.此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC 扫过的面积是解题的关键,是一道中等难度的题目.17.2(x+1)2。
山东省淄博市2019-2020学年中考数学考前模拟卷(4)含解析
山东省淄博市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将函数21(3)12y x =++的图象沿y 轴向上平移得到一条新函数的图象,其中点A (-4,m ),B (-1,n ),平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A . 21(3)22y x =+- B . 21(3)72y x =++ C . 21325y x =+-() D . 21342y x =++() 2.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩3.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .04.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( ) A . B . C .D .5.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.6.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE 为半径作扇形EAB,π取3,则阴影部分的面积为()A.1324﹣4 B.72﹣4 C.6﹣524D.3257.估算18的值是在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间8.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4 C.2:3 D.4:99.下列各式中计算正确的是()A.x3•x3=2x6B.(xy2)3=xy6C.(a3)2=a5D.t10÷t9=t10.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.11.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=2512.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.14.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.15.若分式的值为0,则a的值是.16.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.17.计算(+1)(-1)的结果为_____.18.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次共抽查了八年级学生多少人;(2)请直接将条形统计图补充完整;(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?20.(6分)如图,抛物线y=﹣x 2+bx+c 与x 轴交于A ,B 两点(A 在B 的左侧),其中点B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)将抛物线向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线上且在x 轴上方的任一点,点Q 在直线l :x=﹣3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.21.(6分)在平面直角坐标系xOy 中,点C 是二次函数y =mx 2+4mx +4m +1的图象的顶点,一次函数y =x +4的图象与x 轴、y 轴分别交于点A 、B .(1)请你求出点A 、B 、C 的坐标;(2)若二次函数y =mx 2+4mx +4m +1与线段AB 恰有一个公共点,求m 的取值范围.22.(8分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 在x 轴的正半轴上,90OAB ∠=︒且65OA AB OB OC ===,,.(1)求点A 和点B 的坐标;(2)点P 是线段OB 上的一个动点(点P 不与点O B 、重合) ,以每秒1个单位的速度由点O 向点B 运动,过点P 的直线a 与y 轴平行,直线a 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R ,设点P .运动时间为t ,线段QR 的长度为m ,已知4t =时,直线a 恰好过点C .①当03t <<时,求m 关于t 的函数关系式;②点P 出发时点E 也从点B 出发,以每秒1个单位的速度向点O 运动,点P 停止时点E 也停止.设QRE V 的面积为S ,求S 与t 的函数关系式;③直接写出②中S 的最大值是 .23.(8分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点, (1)求证:△ACE ≌△BCD ;(2)若DE=13,BD=12,求线段AB 的长.24.(10分)如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求AD DB 的值.25.(10分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.26.(12分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a 元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x 取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.27.(12分)某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45o ,再往建筑物的方向前进6米到达D 处,测得仰角为60o ,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:过A 作AC ∥x 轴,交B′B 的延长线于点C ,过A′作A′D ∥x 轴,交B′B 的于点D ,则C (-1,m ),AC=-1-(-1)=3,根据平移的性质以及曲线段AB 扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.详解:过A 作AC ∥x 轴,交B′B 的延长线于点C ,过A′作A′D ∥x 轴,交B′B 的于点D ,则C (-1,m ),∴AC=-1-(-1)=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴矩形ACD A′的面积等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函数的图是将函数y=1 2(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,∴新图象的函数表达式是y=12(x-2)2+1+3=12(x-2)2+1.故选D.点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.2.B【解析】【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.3.C【解析】【分析】根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】 解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 4.B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.5.B【解析】【分析】首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.6.A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴»»,AC BC∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=12(AB+AC+BC)⋅EO=12AC⋅BC,∴2−1,∴AE2=AO2+EO2=122−1)22,∴扇形EAB的面积135(422)π-9(22)-△ABE的面积=12AB⋅2−1,∴弓形AB的面积=扇形EAB的面积−△ABE的面积22132-,∴阴影部分的面积=12O的面积−弓形AB的面积=32−(221324-)=1324−4,故选:A.7.C【解析】【分析】161825,推出4185,即可得出答案.【详解】161825,∴4185,∴18的值是在4和5之间.故选:C .【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出16<18<25,题目比较好,难度不大.8.A【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==V V , 故选A.点睛:角平分线上的点到角两边的距离相等.9.D【解析】试题解析:A 、336x x x ⋅=,原式计算错误,故本选项错误; B 、()3236xy x y =, 原式计算错误,故本选项错误; C 、()236a a =,原式计算错误,故本选项错误; D 、109t t t ÷=, 原式计算正确,故本选项正确;故选D .点睛:同底数幂相除,底数不变,指数相减.10.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 不正确;B 、既是轴对称图形,又是中心对称图形,故B 正确;C、是轴对称图形,不是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识. 11.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.12.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】【分析】将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.【详解】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值为-1.故答案为-1.【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.14.6【解析】【分析】本题可根据比例线段进行求解.【详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000, =600000cm=6km.即x=1250000故答案为6.【点睛】本题主要考查比例尺和比例线段的相关知识.15.1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式的值为0,∴,解得a=1.考点:分式的值为零的条件.16.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴AB=()()2234x x +=5x ,∵AB=20m ,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i lα==. 17.1【解析】【分析】利用平方差公式进行计算即可.【详解】原式=()2﹣1 =2﹣1=1,故答案为:1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.18.1【解析】【分析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答.【详解】解:()20420÷÷2020%=÷100=只.故答案为:1.【点睛】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.【解析】【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【详解】(1)本次共抽查了八年级学生是:30÷20%=150人; 故答案为150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=1.(3)人均阅读时间在1~1.5小时对应的圆心角度数是:45 360108150︒⨯=︒;故答案为108;(4)75455000040000150+⨯=(人),答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】【分析】(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b 的值,可得抛物线L的表达式;(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC 内(包括△OBC的边界)时h的取值范围.(3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,通过证明△BNP≌△PMQ求解即可.【详解】(1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,9303b cc-++=⎧⎨=⎩解得:23 bc=⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D,∵点B(3,0),点C(0,3).易得BC的解析式为:y=﹣x+3,当x=1时,y=2,如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范围是2≤h≤4;(3)设P(m,﹣m2+2m+3),如图2,△PQB是等腰直角三角形,且PQ=PB,过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(图3)或m2=1,∴P(1,4)或(0,3).【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.21.(1)A(-4,0)和B(0,4);(2)34m<<或14m-≤<【解析】【分析】(1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;(2)分m>0与m<0两种情况求出m的范围即可.【详解】解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,∴抛物线顶点坐标为C (-2,1),对于y =x +4,令x =0,得到y =4;y =0,得到x =-4,直线y =x +4与x 轴、y 轴交点坐标分别为A (-4,0)和B (0,4);(2)把x =-4代入抛物线解析式得:y =4m +1,①当m >0时,y =4m +1>0,说明抛物线的对称轴左侧总与线段AB 有交点,∴只需要抛物线右侧与线段AB 无交点即可,如图1所示,只需要当x =0时,抛物线的函数值y =4m +1<4,即34m <, 则当304m <<时,抛物线与线段AB 只有一个交点; ②当m <0时,如图2所示,只需y =4m +1≥0即可,解得:104m -≤<, 综上,当304m <<或104m -≤<时,抛物线与线段AB 只有一个交点. 【点睛】此题考查了抛物线与x 轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键.22.(1)()()3,3 , 6,0A B ;(2)①74m t =;②当0 3t <<时,S 272144t t =+;当34t <<时, S 21271844t t =-+-;当416≤<时, S 25454522t t =-+-;③458. 【解析】【分析】 (1)根据等腰直角三角形的性质即可解决问题;(2)首先求出直线OA 、AB 、OC 、BC 的解析式.①求出R 、Q 的坐标,利用两点间距离公式即可解决问题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;【详解】解:(1)由题意OAB V 是等腰直角三角形,6OB =Q()()3,3 , 6,0A B ∴(2) ()()3,3 , 6,0A B Q ,∴线直OA 的解析式为y x =,直线AB 的解析式6y x =-+4t ∴=时,直线a 恰好过点 , 5C OC =.()4,3C ∴-,∴直线OC 的解析式为34y x =-,直线BC 的解析式为392y x =- ①当03t <<时,(),Q t t ,3,4R t t ⎛⎫-⎪⎝⎭ 3744m t t t ∴=+= ②当0 3t <<时,()11762224S PE QR t t =⋅=⋅-⋅272144t t =+ 当34t <<时, ()113266224S PE QR t t t ⎛⎫=⋅=⋅-⋅-++ ⎪⎝⎭21271844t t =-+- 当416≤<时, ()1132669222S PE QR t t t ⎛⎫=⋅=⋅-⋅-+++ ⎪⎝⎭25454522t t =-+- ③当03t <<时,227217363444216S t t x ⎛⎫=-+=--+ ⎪⎝⎭Q , 32t ∴=时, S 的最大值为6316. 当34t <<时,2221271271271818444244S t t t ⎛⎫∴=-+-=--+⨯- ⎪⎝⎭. 4t ∴=时, S 的值最大,最大值为5. 当416≤<时,2254559454522228S t t t ⎛⎫=-+-=--+ ⎪⎝⎭, 92t ∴=时, S 的最大值为458, 综上所述,最大值为458故答案为458.【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.23.(3)证明见解析; (3)AB=3.【解析】【分析】(3)由等腰直角三角形得出AC=BC ,CE=CD ,∠ACB=∠ECD=90°,得出∠BCD=∠ACE ,根据SAS 推出△ACE ≌△BCD 即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt △AED 中,由勾股定理求出DE 即可.【详解】证明:(3)如图,∵△ACB 与△ECD 都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=221312-=5,∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.24.(1)10(2)35 ADBD=.【解析】【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=34AEBE=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:2231+10;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=52,∵tan∠DBF=34DFBF=,∴DF=158,在Rt△BFD中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭=258,∴AD=5﹣258=158,则35 ADBD=.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.25.(1)520千米;(2)300千米/时.【解析】试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时依题意有:5204002.5x x-=3 解得:x=120经检验:x=120分式方程的解且符合题意高铁平均速度:2.5×120=300千米/时答:高铁平均速度为2.5×120=300千米/时.考点:分式方程的应用.26.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x ﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x x y x x x ≤≤⎧⎨≤≤⎩(,为整数)=(,为整数) (2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W 1=4400×120×(1﹣8%)﹣a=485760﹣a (元),按照方案二所交房款为:W 2=4400×120×(1﹣10%)=475200(元),当W 1>W 2时,即485760﹣a >475200,解得:0<a <10560,当W 1<W 2时,即485760﹣a <475200,解得:a >10560,∴当0<a <10560时,方案二合算;当a >10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.27.14.2米;【解析】【分析】Rt △ADB 中用AB 表示出BD 、Rt △ACB 中用AB 表示出BC ,根据CD=BC-BD 可得关于AB 的方程,解方程可得.【详解】设AB x =米∵∠C=45°∴在Rt ABC V 中,BC AB x ==米,60ADB ∠=o Q ,又6CD =Q 米,∴在Rt ADB V 中Tan ∠ADB=AB BD , Tan60°=6x x -解得)114.2x =≈米 答,建筑物的高度为14.2米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一套:满分120分2020-2021年山东淄博实验中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
(1)求抛物线的解析式;(2)如图2,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中点E 的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为直线PQ 上的一动点,则x 轴上师范存在一点H ,使D 、G 、H 、F 四点所围成的四边形周长最小。
若存在,求出这个最小值及点G 、H 的坐标;若不存在,请说明理由。
(3)如图3,在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作MN ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD 。
若存在,求出点T 的坐标;若不存在,请说明理由。
图1ABxyO DC图2 ABx yODCPQEF 图3ABxyO DC2020-2021年山东淄博实验中学初升高自主招生数学模拟卷答案解析第一套一、选择题1.【考点】函数的图象.【分析】由题得:出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选C.2.【考点】新定义和阅读理解型问题;点的坐标;命题与定理;反证法的应用.【分析】根据新定义,对各选项逐一分析作出判断:(1)若A(1,2),B(2,–1),则. 命题正确. (2)设C,若,即,∴. ∴A=C. 命题正确.(2)用反证法,设A(1,2),B(2,–1),由(1)知,取C,,即有,但A C. 命题错误.(4)设C,对任意点A、B、C,均有成立. 命题正确.综上所述,正确命题为(1),(2)(4),共3个.故选C. 3.解:∵AB 是半圆直径, ∴AO=OD , ∴∠OAD=∠ADO ,∵AD 平分∠CAB 交弧BC 于点D , ∴∠CAD=∠DAO=21∠CAB , ∴∠CAD=∠ADO , ∴AC ∥OD ,故①正确. 由题意得,OD=R ,AC=2R , ∵OE :CE=OD :AC=22, ∴OE ≠CE ,故②错误;∵∠OED=∠AOE+∠OAE=90°+22.5°=112.5°,∠AOD=90°+45°=135°,∴∠OED ≠∠AOD ,∴△ODE 与△ADO 不相似,故③错误; ∵AD 平分∠CAB 交弧BC 于点D ,∴∠CAD=21×45°=22.5°,∴∠COD=45°, ∵AB 是半圆直径,∴OC=OD ,∴∠OCD=∠ODC=67.5° ∵∠CAD=∠ADO=22.5°(已证),∴∠CDE=∠ODC ﹣∠ADO=67.5°﹣22.5°=45°, ∴△CED ∽△CDO ,∴CO CD =CDCE,1AB•CE,∴CD2=CO•CE=2∴2CD2=CE•AB,故④正确.综上可得①④正确.故选:D.4.【考点】双动点问题;等腰直角三角形的判定和性质;矩形的性质;三角形中位线定理;全等、相似判定和性质;勾股定理;旋转的应用. 【分析】①∵在△ABC中,∠ACB=90º,AC=BC=1,∴.故结论①正确.②如答图1,当点E与点B重合时,点F与点M重合,∴MH是△ABC的中位线.∴.故结论②正确.③如答图2,将△ACF顺时针旋转90°至△BCN,连接EN,则.∵∠ECF=45°,∴.∴.∴.∵△ABC是等腰直角三角形,∴△AGF和△BHE都是等腰直角三角形.∴.∴根据勾股定理,得,即.∴.故结论③错误.④∵由题意知,四边形CHNG是矩形,∴MG∥BC,MH∥CG.∴,即.∴.又∵,,∴.∴.∴∵.故结论④正确.综上所述,正确结论为①②④.故选C.5.【考点】阅读理解型问题;分类思想的应用.【分析】将各选项分别代入程序进行验证即可得出结论:A. ∵,∴4,2,1是该循环的数;B. ∵,∴2,1,4是该循环的数;C. ∵,∴1,4,2是该循环的数;D. ∵,∴2,4,1不是该循环的数.故选D.6. 【答案】A.【考点】矩形的性质;切线的性质;正方形的判定和性质;切线长定理;勾股定理;方程思想的应用.【分析】如答图,连接,则根据矩形和切线的性质知,四边形都是正方形.∵AB=4,∴.∵AD=5,∴.设GM=NM=x,则.在中,由勾股定理得:,即,解得,.∴.故选A.二、填空题7.【答案】210。
【考点】分类归纳(图形的变化类)。
【分析】由图可知:第一个阴影部分的面积=22-12,第二个阴影部分的面积=42-32,第三个图形的面积=62-52由此类推,第十个阴影部分的面积=202—192,因此,图中阴影部分的面积为:(22-1)+(42-32)+…+(202-192)=(2+1)(2-1)+(4+3)(4-3)+…+(20+19)(20-19)=1+2+3+4+…+19+20=210。
8.【答案】9。
【考点】一次函数的图象,直线与圆相切的性质,直角三角形的性质,相似三角形的判定和性质。