【八年级】八年级数学上册第12章一次函数课题综合实践一次函数模型的应用学案新版沪科版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】八年级
课题:综合实践一次函数模型的应用
【学习目标】
1.学会运用函数这种数学模型来解决生活和生产中的实际问题,增强数学应用意识;
2.能结合对函数关系的分析,尝试对变量的变化规律进行初步预测.
【学习重点】
建立一次函数模型,结合对函数关系的分析,对变量的变化规律作初步预测.
【学习难点】
建立函数模型
.
行为提示:
点燃激情,引发学生思考本节课学什么.
行为提示:
教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.情景导入生成问题
问题导入:
1.下列数据是弹簧挂重物后的长度记录,测出弹簧长度y与重物质量x之间的函数关系式为y=0.5x+12,挂重30千克时,弹簧长度为27cm.
重物质量/kg0 1 2 3 4 …30 …
弹簧长度/cm12 12.5 13 13.5 14 ……
2.如何从表格中观察出两个变量间是否为一次函数?
答:每两个相邻的函数值的差与对应两个自变量值的差比值总相等,即可判定为一次函数.
自学互研生成能力
阅读教材P57~P59的内容,回答下列问题:
建立两个变量之间的函数模型,需要哪几个步骤?
答:1.将实验得到的数据在直角坐标系中描出;2.观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式;3.进行检验;4.应用这个函数模型解决问题.
方法指导:
用函数值的差与对应自变量的差的比值是否相等,可判断是否为一次函数,此法不必说明道理,学生记住即可.
说明:
建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量(如:本例中自变量为第x 个图形,因变量为棋子的个数y);第二步:在直角坐标系中画出函数图象[如:第一个点的坐标为(1,4),依此类推可得到一系列的点的坐标];第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.
提示:
仿例3中根据表格中的数据结合点所在的位置共线可判断此函数是一次函数,然后用待定系数法求解析式,从而解决问题.
行为提示:
教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(或按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.范例:已知部分鞋子的型号“码”数与鞋子长度“cm”之间存在一种换算关系如下:
(1)通过画图、观察,猜想这种换算规律可能用哪种函数关系去模拟;
(2)设鞋子的长度为xcm,“码”数为y,试写出y与x之间的函数表达式;
(3)小刚平时穿39码的鞋子,那么他鞋长多少厘米?
(4)据说篮球巨人姚明的鞋长31cm,那么他穿多大码的鞋?
解:(1)一次函数,∵=2,=2,可知其为一次函数关系;
(2)设y=kx+b(k≠0),代入x=15,y=20;x=20,y=30,可求得函数解析式为y=2x-10;(3)24.5cm;
(4)52码.
仿例1:问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2015个图形共有多少枚棋子?
解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13),依次连接以上各点,所有的点在一条直线上.设直线解析式为y=kx+b,把(1,4)、(2,7)两点坐标代入得解得所以y=3x+1.验证:当x=3时,y=10.所以,另外一点也在这条直线上.当x=2015时,y=3×2015+1=6046.即第2015个图形有6046枚棋子.
仿例3:某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
(1)在直角坐标系中描出相应的点;
(2)猜测y(件)与x(元)之间的函数关系;
(3)当销售价定为28元时,求每日的销售成本.
解:(1)描点画图,如图所示;(2)由图象猜测y与x之间的函数关系为一次函数关系.设一次函数解析式为y=kx+b,则解得∴一次函数解析式为y=-x+40,将其余各点代入验证均适合.所以,所求一次函数的解析式为y=-x+40;(3)当x=28时,y=-28+40=12.∴所获销售成本为(28-10)×12=216(元).销售价定为28元时,每日的销售成本是216元.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一次函数模型的应用
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书
【课后检测】见学生用书
课后反思查漏补缺
1.收获:___________________________________________________________________
2.存在困惑:___________________________________________________________
此文档是由网络收集并进行重新排版整理.word可编辑版本!