实数混合运算
实数的混合运算与解方程
实数的混合运算与解方程
混合运算
混合运算是指在一个表达式中同时含有加法、减法、乘法和除法。
实数的混合运算是数学中常见的问题,以下是一些解决混合运
算问题的有效策略:
1. 熟悉运算符的优先级:在进行混合运算时,需要注意不同运
算符的优先级。
一般来说,先进行乘法和除法,再进行加法和减法。
如果存在括号,请先计算括号内的表达式。
2. 正确使用符号:在进行混合运算时,需要正确使用加法、减法、乘法和除法的符号。
比如,加法使用"+"号,减法使用"-"号,
乘法使用"*"号,除法使用"/"号。
3. 提取公因式:在进行混合运算时,如果表达式中有公因式,
可以通过提取公因式来简化计算。
提取公因式的基本原理是找到表
达式中的相同因子,并将其提取出来。
解方程
解方程是指找到使得方程成立的未知数的值。
解决实数的方程有以下一些常用的方法:
1. 移项法:移项法是解一元一次方程的常用方法。
通过将方程中的项移到等号的两侧,可以使方程变为等式,从而找到未知数的值。
2. 因式分解法:因式分解法适用于解对称的二次方程。
将方程进行因式分解后,可以得到两个括号,两个括号中的表达式相等,从而找到未知数的值。
3. 代入法:代入法适用于解多项式方程。
通过将已知的一个或多个值代入方程,可以缩小未知数的范围,从而找到满足方程的未知数的值。
综上所述,了解混合运算的基本策略以及解方程的常用方法,可以帮助我们有效地解决实数的混合运算和方程问题。
实数的混合运算
实数的混合运算实数是数学中的一个重要概念,是指既可以表示为有理数也可以表示为无理数的数。
在实数的运算中,混合运算是常见的运算方式之一。
混合运算是指在一个表达式中同时包含不同的运算符,包括加减乘除以及括号等。
下面是有关实数的混合运算的相关内容:一、加法运算当我们在实数中进行加法运算时,我们可以将具有相同符号的实数相加,例如正数加正数,负数加负数。
如果要进行不同符号的实数相加,那么我们需要将其转化为减法的形式进行计算。
例如,3 + (-5) = 3 - 5 = -2。
二、减法运算在实数中进行减法运算时,我们可以将减法转化为加法进行计算。
例如,3 - 5 = 3 + (-5) = -2。
需要注意的是,当我们进行实数的减法运算时,减数和被减数的符号可能不同,我们需要将其转化为加法的形式进行计算。
三、乘法运算实数的乘法运算比起加法和减法来说,更加复杂一些。
当我们进行实数的乘法运算时,我们需要注意以下几点:1.正数乘正数等于正数,负数乘负数等于正数,正数乘负数等于负数,负数乘正数等于负数。
2.当我们进行实数的乘法运算时,我们需要注意数字的大小。
例如,如果我们把0.1和0.01相乘,结果是0.001。
而如果我们把0.1和10相乘,结果是1。
3.我们可以将实数的乘法运算进行分配律、交换律和结合律等基本运算法则。
四、除法运算当我们进行实数的除法运算时,我们需要注意以下几点:1.如果我们要将一个正数除以一个正数,结果是正数;如果我们要将一个负数除以一个负数,结果也是正数。
而如果我们将一个正数除以一个负数,结果是负数;如果我们将一个负数除以一个正数,结果也是负数。
2.我们需要注意除数不可以为0,否则结果是未定义。
3.我们可以将实数的除法运算进行基本运算法则,如乘法分配律、交换律和结合律等。
以上是有关实数的混合运算的一些相关内容。
在实际应用中,我们需要根据具体情况选择合适的运算法则,以便得到正确的运算结果。
实数乘除混合运算法则
实数乘除混合运算法则乘法分配律乘法分配律是实数乘除混合运算中常用的法则之一。
它的定义如下:对于任意实数 a、b、c,乘法分配律可以表达为:a × (b +c ) = a × b + a × c这个法则说明了在乘法运算中,当一个数与一个和的结果相乘时,可以先将这个数与每个加法项分别相乘,再将这些乘积相加。
例如,假设有一个表达式 2 × ( 3 + 4 ),我们可以使用乘法分配律来计算它:2 × (3 +4 ) = 2 × 3 + 2 × 4 = 6 + 8 = 14可以看到,最终计算的结果是 14。
除法分配律除法分配律是实数乘除混合运算中的另一个重要法则。
它的定义如下:对于任意实数 a、b、c(其中a ≠ 0),除法分配律可以表达为:( b + c ) ÷ a = b ÷ a + c ÷ a这个法则说明了在除法运算中,当一个和除以一个数时,可以先将每个加法项分别除以这个数,再将这些商相加。
例如,假设有一个表达式 ( 6 + 8 ) ÷ 2,我们可以使用除法分配律来计算它:( 6 + 8 ) ÷ 2 = 6 ÷ 2 + 8 ÷ 2 = 3 + 4 = 7可以看到,最终计算的结果是 7。
以上就是实数乘除混合运算法则的主要内容。
通过应用乘法分配律和除法分配律,我们可以更方便地解决实数乘除混合运算问题,使运算过程更加简单明了。
参考文献:- 《初中数学(下)》- 《高效中学数学》。
课2-实数的混合运算
实数的混合运算实数概念:包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
基本运算:实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
知识点:1、实数的运算(1)、加法法则:同号两数相加,_______________________________________异号两数相加,___________________________________________________ 任何数与零相加等于原数。
巧记:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
(2)、减法法则:a-b=a+(-b)⇔__________________________(3)、乘法两数相乘,________________________________________;零乘以任何数都得零.即⎪⎩⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab(4)、除法)0(1≠⋅=b ba b a ⇔__________________________ (5)、乘方 ○1 个n n a aa a =⇔__________________________。
幂:__________________底数:____________________;指数______________________;如在n a 中,a 叫__________,n 叫_________________,na 读作:_____________________。
表示分数和_______的乘方时,底数要____________,以避免误解。
专题3.4实数的混合运算专项训练(40题)(浙教版)
专题3.4 实数的混合运算专项训练(40题)【浙教版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·七年级统考期中)计算√116−√614+|√3−1|−√3【答案】−134【分析】先根据算术平方根的定义,去绝对值的方法化简,再合并即可.【详解】解:原式=14−√254+√3−1−√3=14−52+√3−1−√3=14−52−1+√3−√3=−134【点睛】本题考查求一个数的算术平方根,去绝对值,实数的运算等知识,掌握相关法则和公式是解题的关键.2.(2023春·广西玉林·七年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83.【答案】√2−3【分析】先计算乘方运算,化简绝对值,求解算术平方根与立方根,再合并即可.【详解】解:原式=−1−3+√2−1+2=√2−3.【点睛】本题考查的是实数的混合运算,掌握化简绝对值,求解算术平方根与立方根是解本题的关键.3.(2023春·河南洛阳·七年级统考期末)计算:−32×2+√(−4)2+√−643.【答案】−18【分析】原式利用立方根,平方根,以及平方的定义化简即可得到结果.【详解】解:−32×2+√(−4)2+√−643=−9×2+4−4=−18【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.(2023春·四川广元·七年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|. 【答案】1【分析】先计算立方根、去绝对值、计算乘方,再计算加减即可. 【详解】解:原式=−2+2−√3+1+√3 =1.【点睛】本题主要考查实数的运算,掌握实数的运算顺序及有关运算法则是解答本题的关键. 5.(2023春·四川德阳·七年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 【答案】7−√5【分析】首先计算乘方、开方,去绝对值,然后从左向右依次计算,求出算式的值是多少即可. 【详解】解:−22+√36−√−273−|2−√5|=−4+6−(−3)−(√5−2) =−4+6+3−√5+2=7−√5.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 6.(2023春·四川泸州·七年级统考期末)计算:−32×29+√2516÷58+√−273. 【答案】−3【分析】先计算平方、开平方和开立方,再计算加减. 【详解】解:原式=−9×29+54×85+(−3) =−2+2+(−3) =−3.【点睛】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.7.(2023春·四川绵阳·七年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|.【答案】−45+√3【分析】根据实数的混合计算法则求解即可. 【详解】解:原式=14×(−4)÷√4925−3−|√3−2|=−56÷75−3−(2−√3)=−40−3−2+√3=−45+√3.【点睛】本题主要考查了实数的混合计算,正确计算是解题的关键. 8.(2023春·四川绵阳·七年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|【答案】−14+√2【分析】先化简各式,再进行加减运算. 【详解】解:原式=−2+3−54+1+√2−1=−14+√2.【点睛】本题考查开方运算,乘方运算,去绝对值.熟练掌握相关运算法则,是解题的关键. 9.(2023春·山东临沂·七年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√9【答案】(1)5 (2)512【分析】(1)根据算术平方根、立方根的性质化简,再计算加减即可; (2)根据乘方、绝对值、算术平方根的性质化简,再计算加减即可. 【详解】(1)解:√9+√52+√−273=3+5−3=5;(2)解:(−3)2−|−12|−√9=9−12−3=512.【点睛】本题考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减.10.(2023春·山西临汾·七年级统考期中)计算: (1)√0.04+√−83−√125;(2)−√214+√0.1253+√1−6364. 【答案】(1)−2 (2)−78【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可; (2)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. 【详解】(1)解:原式=0.2−2−15=−2(2)解:原式=−32+12+18=−78【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.11.(2023春·河南驻马店·七年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0. 【答案】(1)2−3√3;(2)x =±43【分析】(1)先计算算术平方根,立方根,化简绝对值,再合并即可; (2)把方程化为x 2=169,再利用直接平方根的含义解方程即可.【详解】(1)解:原式=4−4−2√3+2−√3=2−3√3 (2)解:∶9x 2−16=0, ∶9x 2=16, ∶x 2=169,解得:x =±43;【点睛】本题考查的是实数的混合运算,利用平方根的含义解方程,熟记平方根的含义是解本题的关键.12.(2023春·重庆彭水·七年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.【答案】(1)−√3;(2)−1【分析】(1)先根据立方根定义、算术平方根计算,再利用绝对值的代数意义化简,计算即可得到结果; (2)先将零指数幂、立方根、算术平方根、乘方计算,再进行计算即可 【详解】解:(1)√83−√16+|√3−2|=2−4+2−√3=−√3;(2)(12)0+(−2)3×18−√273×√19=1−8×18−3×13=1−1−1=−1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 13.(2023春·湖北十堰·七年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3| (2)√7(√7√7)−√83【答案】(1)7−√3 (2)6【分析】(1)先化简各式,再进行加减运算; (2)先算乘法,求立方根,再进行加减运算. 【详解】(1)解:原式=4−(−1)+2−√3=5+2−√3=7−√3;(2)原式=√7×√7+√7√72=7+1−2=6.【点睛】本题考查实数的混合运算.熟练掌握相关运算法则,正确的计算是解题的关键. 14.(2023春·湖北省直辖县级单位·七年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值. 【答案】(1)−4+√3 (2)x =3或x =−5【分析】(1)原式先化简算术平方根、立方根和绝对值,然后再进行加减运算即可即可; (2)直接运用开平方法求解方程即可.【详解】(1)解:√16+√−643−√(−3)2+|√3−1| =4−4−3+√3−1 =−4+√3; (2)(x +1)2=16, x +1=±4, ∶x =3或x =−5.【点睛】本题主要考查了实数的混合运算和运用开平方法解方程,熟练掌握算术平方根的定义是解答本题的关键.15.(2023春·天津静海·七年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√14 【答案】(1)√2 (2)−2.4【分析】(1)根据立方、立方根、实数绝对值化简后再去计算即可; (2)根据算术平方根、立方根化简后计算即可. 【详解】(1)原式=−1+√2−1+2=√2; (2)原式=0.1−2−12=−2.4.【点睛】本题考查实数的混合运算,解题的关键是先化简再去计算.16.(2023春·黑龙江哈尔滨·七年级统考期中)计算(1)8x3+125=0;(2)√−83+√(−3)2−|√3−2|.【答案】(1)−52(2)−1+√3【分析】(1)先整体求得x3,然后再根据立方根的知识求得x即可;(2)先根据立方根、算术平方根、绝对值的知识化简,然后再计算即可.【详解】(1)解:8x3+125=0,8x3=125,x3=−1258,x=−52.(2)解:√−83+√(−3)2−|√3−2|,=−2+3−2+√3,=−1+√3.【点睛】本题主要考查了立方根、算术平方根、绝对值、实数的运算等知识点,灵活运用相关运算法则是解答本题的关键.17.(2023春·广东广州·七年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.【答案】(1)6(2)132【分析】(1)分别计算化简绝对值,开立方根和开算术平方根,再按照实数加减混合运算即可.(2)分别计算开立方根、开算术平方根和实数乘除,再按照有理数加减乘除混合运算即可.【详解】(1)解:√3+|√3−2|−√−83+√(−2)2=√3+2−√3+2+2=6故答案为:6.(2)解:√81+√(−3)2×√169−√1214+√−273=9+3×43−72−3=9+4−72−3=132故答案为:132.【点睛】本题考查了实数的加减乘除混合运算,解题的关键在于熟练掌握实数的运算法则. 18.(2023春·广东汕头·七年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2| 【答案】(1)293;(2)−4−√3;【分析】(1)先分别计算算术平方根、立方根,再进行实数的加减运算即可;(2)先分别计算乘方、算术平方根、立方根和化简绝对值,再进行实数的加减运算即可;【详解】(1)解:√9−√(−5)33÷√(34)2=3−(−5)÷34=3+5×43=293;(2)(−1)2021−√9+√−83+|√3−2|=−1−3+(−2)+(2−√3)=−4−2+2−√3=−4−√3;【点睛】本题考查实数的加减运算,解题的关键是掌握立方根和绝对值相关知识.19.(2023春·山西吕梁·七年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=18 【答案】(1)−1;(2)x =±3【分析】(1)原式分别根据乘方的意义、算术平方根以及立方根的意义化简各项后,再进行加减运算即可得到结果;(2)方程两边同除以2后,再进行开平方运算即可. 【详解】解:(1)(−1)2022−(√16+√214)+√273+12 =1−(4+32)+3+12=1−4−32+3+12 =−1; (2)2x 2=18 x 2=9 x =±3.【点睛】本题主要考查了实数的混合运算以及运用平方根解方程,熟练掌握相关知识是解答本题的关键. 20.(2023春·山东临沂·七年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.【答案】(1)1−√3;(2)x 的值为7或−1【分析】(1)先计算乘方、算术平方根、立方根、化简绝对值,再计算实数的加减法即可得; (2)利用平方根解方程即可得.【详解】解:(1)原式=−1−√4−(−2)+2−√3=−1−2+2+2−√3=1−√3;(2)2(x −3)2=32, (x −3)2=16,x −3=4或x −3=−4, 解得x =7或x =−1, 所以x 的值为7或−1.【点睛】本题考查了算术平方根、立方根、实数的运算、利用平方根解方程,熟练掌握各运算法则是解题关键.21.(2023春·辽宁鞍山·七年级校联考期中)计算:(1)√273−√25+|√3−2|−(1−√3)(2)√13×(√13√13)−√273【答案】(1)−1(2)0【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可.【详解】(1)解:原式=3−5+2−√3−1+√3=−1;(2)解:原式=√13×√13−√13×√13−3=13−10−3=0.【点睛】本题主要考查了实数的混合计算,熟知相关计算法则是解题的关键.22.(2023春·重庆江津·七年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.【答案】(1)13;(2)5+√3【分析】(1)根据幂的运算法则,根式性质,立方根的定义直接计算即可得到答案;(2)根据根式的性质,立方根的定义直接计算即可得到答案;【详解】(1)解:原式=−16×(−1)+2−5=16+2−5=13;(2)解:原式=2×12−2+√3+9+(−3)=1−2+√3+9−3=5+√3;【点睛】本题考查根式的性质,立方根的定义,幂的运算,解题的关键是熟练掌握√a 2=|a | ,√a 33=a . 23.(2023春·山东聊城·七年级统考期中)计算: (1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.0083【答案】(1)14 (2)2.65【分析】(1)先计算负整数指数幂、立方根、算术平方根,再根据实数的混合计算法则求解即可; (2)先计算零指数幂、算术平方根及立方根,再根据实数的混合计算法则求解即可. 【详解】(1)解:原式=14−1+(2+4)÷6=14−1+6÷6 =14−1+1 =14;(2)解:原式=1+1.1−(−322)−0.2=1+1.1−(−34)−0.2=1+1.1+34−0.2=2.65.【点睛】本题主要考查了实数的混合计算,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键. 24.(2023春·四川德阳·七年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 【答案】(1)−7 (2)1【分析】(1)先分别求解算术平方根、立方根,然后进行乘除运算,最后进行减法运算即可;(2)先分别求解立方根,乘方,绝对值,然后进行加减运算即可. 【详解】(1)解:√(−3)2×(−13)−√273÷√14=3×(−13)−3÷12=−1−6=−7;(2)解:√−83−√2+(√3)2+|1−√2|−(−1)2023=−2−√2+3+√2−1−(−1) =−2+3−1+1−√2+√2=1.【点睛】本题考查了算术平方根、立方根,乘方,绝对值,实数的混合运算.解题的关键在于正确的运算. 25.(2023春·河北唐山·七年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2; 【答案】(1)2−√3 (2)0【分析】(1)先计算平方、立方根,去绝对值符号,再进行加减运算; (2)先计算开平方,有理数的乘方,再进行乘法运算,最后进行加减运算. 【详解】(1)解:原式=2−3+(−√3+3)=2−3−√3+3=2−√3;(2)解:原式=3×2+10−16=6+10−16=0.【点睛】本题考查了实数的混合运算,平方、平方根、立方根,绝对值的性质,有理数的乘方,熟练掌握运算法则及运算顺序是解题的关键.26.(2023春·浙江宁波·七年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017;(2)(−3)2÷(−23)+(−2)3×(−32).【答案】(1)0 (2)−32【分析】(1)分别根据算术平方根的定义,绝对值的性质,立方根的定义计算出各数,再根据实数的加减法则进行计算;(2)先算乘方,再算乘除,最后算加减即可. 【详解】(1)解:原式=2+2−3−1 =0;(2)解:原式=9÷(−23)+(−8)×(−32)=9×(−32)+12=−272+12 =−32.【点睛】本题考查的是实数的运算,熟知实数混合运算的法则是解题的关键. 27.(2023春·广东广州·七年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19). 【答案】(1)6 (2)0【分析】(1)原式利用乘方的意义,平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,立方根定义,以及乘法法则计算即可得到结果. 【详解】(1)解:原式=5+3+(−2)=8−2=6; (2)解:原式=(−8)×18−3×(−13)=−1+1=0.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 28.(2023春·河南鹤壁·七年级校考期中)计算:(1)√14+√−83−11−√21;(2)0.1252022×(−8)2023. 【答案】(1)−1212−√21 (2)−8【分析】(1)根据算术平方根、立方根定义先化简,再利用实数加减运算法则计算即可得到答案; (2)先将小数化为分数,再利用积的乘方运算的逆运算求解即可得到答案. 【详解】(1)解:√14+√−83−11−√21=12−2−11−√21 =−112−11−√21=−1212−√21;(2)解:0.1252022×(−8)2023=(18)2022×(−8)2023=[18×(−8)]2022×(−8) =(−1)2022×(−8)=−8.【点睛】本题考查实数混合运算,涉及算术平方根、立方根、实数加减运算、分数与小数互化、积的乘方运算的逆运算等知识,熟练掌握相关运算法则是解决问题的关键.29.(2023春·山东枣庄·七年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.【答案】(1)113+√5;(2)x =−53【分析】(1)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可. (2)根据立方根的含义和求法,求出x +1的值,进而求出x 的值即可. 【详解】解:(1)√16−√19+√273−|3−√5| =4−13+3−(3−√5)=4−13+3−3+√5=113+√5.(2)∵(x +1)3=−827, ∴x +1=−23, 解得:x =−53.【点睛】此题主要考查了立方根的含义和求法,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.30.(2023春·天津河北·七年级统考期中)(1)计算:√0.04+√−83−√14+2;(2)求下式中x 的值: 4(x +5)2=16. 【答案】(1)−0.3;(2)x =−7或x =−3【分析】(1)首先进行开平方和开立方运算,再进行有理数的加减即可求解;(2)首先求出(x +5)2的值,然后根据平方根的定义求出x +5的值,进而求出x 的值即可. 【详解】解:(1)√0.04+√−83−√14+2 =0.2+(−2)−12+2 =−0.3;(2)4(x +5)2=16, 即(x +5)2=4,∴x +5=−2或x +5=2, 解得x =−7或x =−3.【点睛】此题主要考查了平方根、立方根的定义,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 31.(2023春·黑龙江牡丹江·七年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−273【答案】(1)2 (2)92【分析】(1)根据立方根定义、平方根的性质、绝对值的意义等计算即可; (2)根据立方根、算术平方根的定义计算即可. 【详解】(1)解:√−83−√3+(√5)2+|1−√3| =−2−√3+5+√3−1 =2;(2)解:√36+√214+√−273=6+32−3=92.【点睛】本题考查了实数的混合运算,掌握立方根、算术平方根的定义等是解题的关键. 32.(2023春·湖北十堰·七年级统考期中)计算: (1)√−8273×√14−√(−2)2; (2)√3−√25+|√3−3|+√1−63643.【答案】(1)−213 (2)−74【分析】(1)先利用立方根,算术平方根的性质化简,再进行计算; (2)先利用立方根,算术平方根、绝对值的性质化简,再进行计算. 【详解】(1)解:原式=−23×12−√4=−13−2=−213;(2)解:原式=√3−5+3−√3+√1643=−2+14=−74.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.33.(2023春·云南红河·七年级校考期中)计算(1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|【答案】(1)5(2)1【分析】(1)先化简根式再计算(2)先化简再进行实数的混合运算(1)解:原式=5−3+3=5(2)解:原式=√5−2+3−√7+√7−√5=1【点睛】本题考查了根式的化简,去绝对值运算,熟练掌握运算法则是解题关键.34.(2023春·江苏泰州·七年级校考期中)计算或解方程:(1)8(x−1)3=−1258;(2)3(x−1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.【答案】(1)x=−14(2)x=1±√5(3)1【分析】(1)利用立方根解方程即可;(2)移项,利用平方根解方程即可;(3)先化简各式,再加减运算即可.【详解】(1)解:8(x−1)3=−1258,∶(x −1)3=−12564∶x −1=√−125643=−54,∶x =−14;(2)解:3(x −1)2−15=0, ∶3(x −1)2=15, ∶(x −1)2=5, ∶x −1=±√5, ∶x =1±√5;(3)原式=−1×2+|3−5|+32−0.5=−2+|−2|+32−12=−2+2+32−12=1.【点睛】本题考查利用平方根和立方根解方程,实数的混合运算.熟练掌握相关运算法则,正确计算,是解题的关键.35.(2023春·北京西城·七年级北京市回民学校校考期中)按要求计算下列各题 (1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根; (3)已知4x 2=25,求x 的值; (4)已知(x +1)2=1,求x 的值. 【答案】(1)√2 (2)4(3)x 1=52,x 2=−52(4)x 1=0,x 2=−2【分析】(1)先根据绝对值、算术平方根、立方根的知识化简,然后再结束即可;(2)先根据算术平方根的非负性求得a 、b 的值,然后再代入(a −b )2求出其算术平方根即可; (3)先求出x 2,然后再运用平方根解方程即可解答;(4)运用平方根解方程即可解答.【详解】(1)解:|1−√2|−√(−2)2+√273, =√2−1−2+3, =√2.(2)解:∶√a −1+√b −5=0, ∶a −1=0,b −5=0, ∶a =1,b =5,∶(a −b )2=(1−5)2=16, ∶(a −b )2的算术平方根是4. (3)解:4x 2=25, x 2=254,∶x 1=52,x 2=−52. (4)解:(x +1)2=1, x +1=±1, ∶x 1=0,x 2=−2.【点睛】本题主要考查了实数的混合运算、算术平方根的非负性、立方根、运用平方根解方程等知识点,灵活运用相关知识成为解答本题的关键.36.(2023春·浙江宁波·七年级校联考期中)计算: (1)−2+(−7)−3+8;(2)−12021+(12−13)×|−6|÷22; (3)(14−23−56)×(−12); (4)−23+√−273−(−2)2÷√1681.【答案】(1)−4 (2)−34 (3)15 (4)−20【分析】(1)先将减法运算变成加法,再计算求解; (2)先计算乘方、绝对值和括号里面的,再计算加法; (3)先运用乘法分配律,再计算加减运算;(4)先计算乘方、立方根和平方根,再计算除法,最后计算加减. 【详解】(1)−2+(−7)−3+8=−2−7−3+8=−4;(2)−12021+(12−13)×|−6|÷22=−1+16×6×14=−1+14=−34;(3)(14−23−56)×(−12)=−14×12+23×12+56×12=−3+8+10=15;(4)−23+√−273−(−2)2÷√1681=−8−3−4×94=−11−9=−20.【点睛】此题考查了有理数的混合运算,以及实数混合运算的能力,关键是能准确确定运算顺序和方法. 37.(2023春·山东德州·七年级统考期中)计算: (1) −22−(√−38+8)÷√(−6)2−|√7−3|(2)√−1253−√279+√−(−14)3+√8273(3)(3x+2)2=16 (4)12(2x −1)3=−4 【答案】(1)−8+√7(2)−478(3)x=−2或x=23(4)x=−12【分析】(1)根据乘方计算、求算术平方根、立方根、绝对值化简即可;(2)根据求算术平方根、立方根进行计算即可;(3)根据求平方根进行解方程即可;(4)根据求立方根进行解方程即可.【详解】(1)解:原式=−4−(−2+8)÷6−(3−√7)=−4−1−3+√7=−8+√7;(2)解:原式=−5−53+√164+23=−5−1+18=−478;(3)解:由(3x+2)2=16,得:3x+2=−4或3x+2=4解得:x=−2或x=23;∴方程的解为x=−2或x=23;(4)解:由12(2x−1)3=−4,得:(2x−1)3=−82x−1=−2x=−12.【点睛】本题考查实数的混合运算及根据平方根和立方根解方程,解题的关键是熟练掌握乘方计算、求算术平方根、立方根、绝对值化简、根据平方根和立方根解方程,本题的易错点是根据平方根解方程时需考虑求一个正数的平方根应有两个互为相反数的解.38.(2023春·浙江绍兴·七年级校考期中)计算:(1)|−8|+32+(−12)−32 (2)2×(−5)−(−3)÷34 (3)√81+√−273+√(−23)2−14 (4)22+(−2)2+√19+(−1)2019 【答案】(1)−4(2)−6(3)523(4)713【分析】(1)先算绝对值和去括号,再算加减;(2)先算乘除,再算加法;(3)先算立方根,算术平方根和乘方,再算加减;(4)先算乘方和算术平方根,再算加减.【详解】(1)|−8|+32+(−12)−32=8+32−12−32=−4(2)2×(−5)−(−3)÷34=−10+4=−6(3)√81+√−273+√(−23)2−14 =9+(−3)+23−1 =523(4)22+(−2)2+√19+(−1)2019=4+4+13−1=71 3【点睛】本题主要考查了实数的混合运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.39.(2023春·山东东营·七年级统考期末)(1)计算∶√144−(2022−π)0+√(−3)2∶√259+√−125273+|√2−2|(2)解方程∶(x+2)2=25∶(x−1)3=27【答案】(1)∶14;∶2−√2;(2)∶x=3或−7;∶x=4【分析】(1)∶利用算术平方根的意义,零指数幂的意义即可求解;∶利用算术平方根,立方根的意义和绝对值的意义化简运算即可;(2)∶利用平方根的意义解答即可;∶利用立方根的意义解答即可.【详解】解:(1)∶√144−(2022−π)0+√(−3)2=12−1+3=14;∶√259+√−125273+|√2−2|=53+(−53)+2−√2=2−√2;(2)∶(x+2)2=25∴x+2=±5,∴x=3或−7;∶(x−1)3=27∴x−1=3∴x=4【点睛】本题主要考查了实数的运算,算术平方根的意义,立方根的意义,熟练掌握实数运算法则与性质是解题的关键40.(2023春·江苏·七年级期中)计算(1)√16−√−83+√−1273 (2)√3(√3√3) (3)|3−√2|−|√2−π|−√(−3)2(4)9(x +1)2−16=0(解方程) 【答案】(1)523(2)2(3)6−π (4)x =13或x =−73【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可;(3)根据实数的混合计算法则求解即可;(4)根据求平方根的方法解方程即可.【详解】(1)解:原式=4−(−2)+(−13)=4+2−13 =523; (2)解:原式=√3×√3−√3√3=3−1=2;(3)解:原式=3−√2−(π−√2)−(−3)=3−√2−π+√2+3=6−π;(4)解:∶9(x +1)2−16=0,∶9(x +1)2=16,∶(x +1)2=169,∶x +1=43或x +1=−43, ∶x =13或x =−73.【点睛】本题主要考查了实数的混合计算,求平方根的方法解方程,熟知相关计算法则是解题的关键.。
实数的混合运算
(算法多样)计算
先用规律 1 1 1 5 5 = = = 5 5 5 5 5
1 5
先用分数性质 1 1 5 = = 5 5 5 5 5 = 25 5
(算法多样)计算
先用规律 1 = 18 1 18 1
1 18
1 2 2 = = = 6 3 2 3 2 2
先用分数性质 1 18 = 1 2 = 18 2 2 = 36 2 6
实数的混合运算
复习
• 求64的算术平方根: 64 8 • 求64的平方根: 64 8 • 求64的立方根: 64 4
3
10
a (其中a 0) a (其中a 0)
3
10
3
10
a
• • • •
正数、负数、0 算术平方根、平方根、立方根 混合运算最基本 0)
用分数性质 把分母变成一个开得尽方的数
实数的加减
3 2 2 2 5 2
2 3 5
×
√
2 2 2 2
×
48 16 48 = 16 = 3
计算:算法多样
• 根据题目本身,自由选择算法 • 宗旨:有道理 简单 快捷
(算法多样)计算
先去掉分母里面的根号
9 18
9 9 18 3 18 9 2 2 = = = = 18 18 2 18 18 18
先用规律求商 9 9 1 1 2 = = = = 18 2 2 18 2
积的算术平方根,等于算术平方根的积
a b ab (其中a 0,b 0) a a (其中a 0,b 0) b b
商的算术平方根,等于算术平方根的商
a a (其中a 0,b 0) b b
48 (算法多样)计算 16 先开方 先用规律求商
实数混合运算(人教版)(含答案)
实数混合运算(人教版)一、单选题(共15道,每道6分)1.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数的混合运算2.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数的混合运算3.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实数的混合运算4.计算的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数的混合运算5.计算的结果是( )A.30B.90C.20D.6答案:A解题思路:试题难度:三颗星知识点:实数的混合运算6.计算:=( )A. B.C.2D.6答案:B解题思路:试题难度:三颗星知识点:实数的混合运算7.计算:=( )A. B.C. D.0答案:B解题思路:试题难度:三颗星知识点:实数的混合运算8.计算:=( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:实数的混合运算9.计算:=( )A.10B.4C.0D.6答案:B解题思路:试题难度:三颗星知识点:实数的混合运算10.计算:=( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数的混合运算11.计算:=( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实数的混合运算12.计算:=( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实数的混合运算13.关于的方程的解为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平方根的意义14.关于的方程的解为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:立方根的意义15.关于的方程的解为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:平方根的意义。
实数的运算计算题30道
实数的运算计算题30道一、加法运算1. 计算:√(2)+3√(2)- 解析:因为被加数和加数都是同类二次根式(二次根式的被开方数相同),所以可以直接将系数相加。
√(2)+3√(2)=(1 + 3)√(2)=4√(2)。
2. 计算:(-2)+5- 解析:这是简单的有理数加法,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|5|>| - 2|,所以(-2)+5 = 5-2=3。
3. 计算:√(5)+(-√(5))- 解析:互为相反数的两个数相加得0,√(5)与-√(5)互为相反数,所以√(5)+(-√(5)) = 0。
二、减法运算4. 计算:5 - √(3)-(3-√(3))- 解析:先去括号,括号前是减号,去括号后括号里的各项要变号。
则原式=5-√(3)-3 +√(3),然后再合并同类项,-√(3)+√(3)=0,5 - 3=2,所以结果为2。
5. 计算:7-(-2)- 解析:减去一个数等于加上这个数的相反数,所以7-(-2)=7 + 2=9。
6. 计算:√(8)-√(2)- 解析:先将√(8)化简为2√(2),则原式=2√(2)-√(2)=(2 - 1)√(2)=√(2)。
三、乘法运算7. 计算:2√(3)×√(6)- 解析:根据二次根式乘法法则√(a)×√(b)=√(ab),则2√(3)×√(6)=2√(3×6)=2√(18),再将√(18)化简为3√(2),所以2√(18)=2×3√(2)=6√(2)。
8. 计算:(-3)×5- 解析:两数相乘,异号得负,所以(-3)×5=-15。
9. 计算:√(5)×√(5)- 解析:根据二次根式乘法法则,√(5)×√(5)=√(5×5)=√(25) = 5。
四、除法运算10. 计算:(√(12))/(√(3))- 解析:根据二次根式除法法则(√(a))/(√(b))=√(frac{a){b}}(b≠0),则(√(12))/(√(3))=√(frac{12){3}}=√(4)=2。
专题05实数的混合运算(计算题专项训练)(浙教版)(原卷版)
专题05 实数的混合运算1.(2023春·北京朝阳·七年级校考阶段练习)计算:(1)√83+√0+√14(2)2√2+|√2−√3|(3)√0.04−√(−2)2+|√3−2|+√32.(2023春·天津东丽·七年级统考期中)计算:(1)(−12)2+√−83+|1−√9|; (2)4√3−2(√2−√3).3.(2023春·天津南开·七年级统考期中)计算:(1)3√3−|√3−√5|;(2)√−83−√(−12)2+√0.04.4.(2022秋·浙江·七年级专题练习)计算:(1)√49+√9+16−√144(2)√2163−√−3−383×√4005.(2022秋·浙江·七年级专题练习)计算:(1)√0.25−√−273+√(−14)2;(2)|√3−√2|+|√3−2|−|√2−1|.6.(2023春·江苏南通·七年级如皋市实验初中校考阶段练习)计算:(1)√−8273×√14−√(−2)2; (2)√3−√25+|√3−3|+√1−63643.7.(2022春·黑龙江牡丹江·七年级校考期中)计算:(1)√−83−√3+(√5)2+|1−√3|(2)√36+√214+√−2738.(2022·全国·七年级专题练习)计算(1)−12+√643−(−2)×√9;(2)√81+√−273+√(−23)2(3)√(−5)2−|2−√2|−√−273+(−√3)29.(2023春·全国·七年级专题练习)计算:(1)(−1)2021+|−√3|+√83−√16.(2)−12−√273+|1−√2|.10.(2023春·河北唐山·七年级统考期中)计算:(1)(√2)2−√273+|√3−3|;(2)√9×√4+√102−(−4)2;11.(2022秋·浙江·七年级专题练习)计算:(1)−12+√−273−2×√9;(2)2(√3−1)−|√3−2|+√643.12.(2023春·四川泸州·七年级统考期中)计算:(1)√(−2)2+√−273+2√14.(2)(−1)2017×(−3)−|√3−3|+√16.13.(2023春·重庆江津·七年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.14.(2023春·山东滨州·七年级统考期中)计算:(1)(−1)2023+√−273+|−√3|+√16;(2)√(−3)2−|2−√6|+2√6;15.(2023春·四川德阳·七年级四川省德阳市第二中学校校考期中)计算:(1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)202316.(2023春·广东汕头·七年级校考期中)计算(1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2|17.(2022春·浙江台州·七年级台州市书生中学校考阶段练习)计算:(1)9×(﹣23)+√4+|﹣3|(2)√0.04+√−83+√14+|√3−2|+√318.(2022春·广东广州·七年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.19.(2023春·七年级课时练习)计算:(1)−√−83+√1253+√(−2)2;(2)|7−√2|−|√2−π|−√(−7)2;(3)√1+√−273−√14+√0.1253+√1−6364;(4)−42+√16−√(−3)33−|√2−2|.20.(2023春·广西钦州·七年级校考阶段练习)计算:(1)|1−√2|+|√2−√3|+|√3−2|+|2−√5|;(2)(−2)3×√(−4)2+√(−4)33×(−12)2−√273; (3)|√−183|−(√0.1253)3+√6.25−|√1273|−1。
专题3.3 实数的混合运算专项训练(60题)(教师版)-2023年七年级上册数学举一反三系列(浙教版
专题3.3 实数的混合运算专项训练(60题)【浙教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况!一.解答题(共60小题)1.(2024春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.【分析】利用绝对值的意义,实数的乘方法则和立方根的意义解答即可.【解答】解:原式=√3−1+2−√3+9﹣4=6.2.(2024春•永城市期末)计算:√−273−√925+|√643−√49|.【分析】首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:√−273−√925+|√643−√49| =﹣3−35+|4﹣7| =﹣3−35+|﹣3| =﹣3−35+3=−35.3.(2024春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23. 【分析】利用算术平方根和立方根的意义化简运算即可.【解答】解:原式=√94−√49+√643 =32−7+4 =−32.4.(2024春•合阳县期末)计算:√36−√(−3)2+√−83×√14.【分析】先计算平方根、立方根,再计算乘法,后计算加减.【解答】解:√36−√(−3)2+√−83×√14=6−3+(−2)×12 =6﹣3﹣1=2.5.(2024春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3.【分析】先计算开平方、开立方、立方和绝对值,后计算加减.【解答】解:√4+|√3−3|−√−273+(−2)3=2+3−√3+3﹣8=−√3.6.(2024春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|.【分析】根据二次根式的加减运算法则以及绝对值的性质即可求出答案.【解答】解:原式=6﹣3﹣5﹣(2−√2)=﹣2﹣2+√2=﹣4+√2.7.(2024春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|. 【分析】先计算开立方、开平方和绝对值,后计算加减.【解答】解:√−273−√19+√3+|√3−√9| =﹣3−13+√3+3−√3=−13.8.(2024春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).【分析】首先计算开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|√3−2|+√100×√0.0643−√3(√3−1)=2−√3+10×0.4﹣3+√3=2−√3+4﹣3+√3=3.9.(2024春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.【分析】利用绝对值的意义,算术平方根的意义,立方根的意义和二次根式的性质化简运算即可.【解答】解:原式=√3−1+54−(−14)+2 =√3−1+54+14+2 √3−1+32+2=√3+52. 10.(2024春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√81+√−273−√(−2)2+|−√3|=9+(﹣3)﹣2+√3=9﹣3﹣2+√3=4+√3.11.(2024春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=﹣3+2−√3+4+2√3=3+√3.12.(2024春•定南县期末)计算:√2783−√254−√3(√3−√3).【分析】直接利用立方根的性质以及二次根式的性质、二次根式的乘法运算法则分别化简,进而得出答案. 【解答】解:原式=32−54−3+1 =−74.13.(2024春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2024.【分析】根据立方根、绝对值和有理数的乘法分别化简,再计算即可.【解答】解:原式=2﹣3+√3−(√3−2)+3+1=2﹣3+√3−√3+2+3+1=5.14.(2024春•华阴市期末)计算:√9−(﹣1)2024−√−83+|2−√6|.【分析】先算乘方和开方,再化简绝对值,最后算加减.【解答】解:原式=3﹣1﹣(﹣2)+√6−2=3﹣1+2+√6−2=2+√6.15.(2024春•剑阁县期末)计算:﹣12024+√16×(−3)2+(−6)÷√−83.【分析】先利用乘方,立方根,算术平方根进行运算,再进行实数的混合运算求解.【解答】解:原式=﹣1+4×9+(﹣6)÷(﹣2)=﹣1+36+3=38.16.(2024春•镜湖区校级期末)计算:﹣12024+√25−|1−√2|+√−83−√(−3)2.【分析】原式利用乘方的意义,算术平方根、立方根定义,绝对值的代数意义,以及二次根式性质计算即可求出值.【解答】解:原式=﹣1+5﹣(√2−1)﹣2﹣3=﹣1+5−√2+1﹣2﹣3=−√2.17.(2024春•朝天区期末)计算:|52−√9|+(﹣1)2024−√273+√(−6)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|52−√9|+(﹣1)2024−√273+√(−6)2=12+1﹣3+6=92.18.(2024春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:√25−|1−√2|+√−273−√(−3)2=5−√2+1+(−3)−3=5−√2+1−3−3=−√2.19.(2024春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣2+3−√5−2+√5=3.20.(2024春•谷城县期末)计算:|√3−2|−√−83+√3×(√3√3)−√16.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案. 【解答】解:原式=2−√3+2+3+1﹣4 =4−√3.21.(2024春•平邑县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.【分析】(1)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案;(2)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:(1)原式=−2−√3+5+√3−1=2;(2)原式=−8+1−√2−(−3)×3=−8+1−√2+9 =2−√2.22.(2024春•费县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)﹣23﹣|1−√2|−√−273×√(−3)2.【分析】(1)原式利用立方根定义,二次根式性质,以及绝对值的代数意义计算即可求出值;(2)原式利用乘方的意义,绝对值的代数意义,以及立方根,二次根式性质计算求出值.【解答】解:(1)原式=﹣2−√3+5+√3−1=2;(2)原式=﹣8﹣(√2−1)﹣(﹣3)×3 =﹣8−√2+1+9 =2−√2.23.(2024春•西平县期末)计算:(1)√183+√(−2)2+√14; (2)﹣12+√4+√−273+|√3−1|.【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)√183+√(−2)2+√14 =12+2+12 =3.(2)﹣12+√4+√−273+|√3−1|=﹣1+2+(﹣3)+(√3−1)=﹣1+2+(﹣3)+√3−1=√3−3.24.(2024春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x 的值:(x +2)3=−1258.【分析】(1)根据乘方运算、绝对值的性质以及二次根式的加减运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=﹣1+√5−2﹣3=﹣6+√5.(2)(x +2)3=−1258,x +2=−52,x =−92. 25.(2024春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x 的值,2(x +3)3+54=0.【分析】(1)根据求立方根、绝对值的意义、实数的运算法则等知识直接计算即可;(2)利用立方根的含义求解x +3,再求解x 即可.【解答】解:(1)√81+√−273+√(−2)2+|√3−2|;=9+(−3)+2+2−√3=10−√3;(2)2(x +3)3+54=0,变形得(x +3)3=﹣27,即有x +3=﹣3,则x =﹣6.26.(2024春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.【分析】(1)利用立方根、去绝对值、算术平方根、去括号定义求解即可.(2)利用数的平方、算术平方根、去绝对值化简求值即可.【解答】解:(1)原式=﹣2+3−√3+3+√3=4;(2)原式=4×14+2−√2+√2 =1+2=3.27.(2024春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2024.【分析】(1)直接利用二次根式的性质、立方根的性质、绝对值的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质、立方根的性质、有理数的乘方运算法则分别化简,进而合并得出答案.【解答】解:(1)原式=2√2+5+2﹣(2−√2)=2√2+5+2﹣2+√2=3√2+5;(2)原式=32−4+23+1=−56. 28.(2024春•新市区期末)计算:(1)√0.25−√−273+√(−14)2;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)根据算术平方根、立方根的性质化简,再计算即可;(2)根据绝对值的性质化简,再合并即可.【解答】解:(1)原式=0.5+3+14=334;(2)原式=(√3−√2)﹣(√3−2)﹣(√2−1)=√3−√2−√3+2−√2+1=3﹣2√2.29.(2024春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:(1)原式=2+2+4+5=13;(2)原式=2−√3−12+3+√3+12=5.30.(2024春•博兴县期末)计算:(1)√1−89−√643+√−1273;(2)√2.56−√0.2163+|1−√2|.【分析】(1)原式利用算术平方根及立方根定义计算即可求出值;(2)原式利用算术平方根,立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:(1)原式=√19−√643+√−1273=13−4−13=﹣4;(2)原式=1.6﹣0.6+√2−1 =√2.31.(2024春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273; (2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简每一个绝对值,然后再进行计算即可解答.【解答】解:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273=﹣8×4+(﹣4)+14−3 =﹣32﹣4+14−3=﹣3834; (2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|=√2−1+√3−√2+2−√3+√5−2=√5−1.32.(2024春•忠县期末)计算:(1)√32+√−273+√49; (2)−14×√4+|√9−5|+√214+√−0.1253.【分析】(1)利用算术平方根,立方根的意义化简运算即可;(2)注意各项的符号和运算法则.【解答】解:(1)原式=3﹣3+23=23,(2)原式=﹣1×2+5﹣3+32−12 =﹣2+5﹣3+1=1.33.(2024春•天津期末)计算:(1)求式子中x 的值:√x 2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.【分析】(1)利用立方根的意义和平方根的意义解答即可;(2)利用二次根式的性质,立方根的意义,绝对值的意义解答即可.【解答】解:(1)∵√x2−243=1,∴x2﹣24=1,∴x2=25.∴x=±5.(2)原式=√3+3﹣(﹣2)﹣(2−√3)=√3+3+2﹣2+√3=3+2√3.34.(2024春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).【分析】(1)利用有理数的乘方法则,立方根的意义和平方根的意义化简计算即可;(2)利用二次根式的性质解答即可.【解答】解:(1)原式=﹣8×18−3×(−13)=﹣1﹣(﹣1)=0;(2)原式=3√3+9﹣3√3=9.35.(2024春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).【分析】先计算开方及绝对值,再合并即可.【解答】解:(1)原式=2+34−2=34;(2)原式=0.5+3−√5−5+√5=﹣1.5.36.(2024春•綦江区期末)计算.(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2024.【分析】(1)原式利用乘方的意义,绝对值的代数意义,以及算术平方根、立方根定义计算即可求出值;(2)原式利用算术平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:(1)原式=﹣1+2√2+3﹣2=2√2;(2)原式=3+3−√5−4+1=3−√5.37.(2024春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;(2)求x 的值:(x +1)3=−278.【分析】(1)先计算√(−1)23、√(−2)2,再化简绝对值,最后加减.(2)利用立方根的意义求出x .【解答】解:(1)原式=√13+|1−√2|+√4=1+√2−1+2=√2+2;(2)x +1=−√2783, x =−32−1,x =−52.38.(2024春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273+√(−3)2−√−13.【分析】(1)先化去绝对值号,再加减;(2)先求出27、﹣1的立方根及(﹣3)2的算术平方根,再加减.【解答】解:(1)原式=√6−√2+√2−1﹣3+√6=2√6−4;(2)原式=3+3+1=7.39.(2024春•河北区校级期中)计算:3(2)√3(√3−1)+|√2−√3|.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√16−√273+(√13)2+√(−1)33 =4﹣3+13+(﹣1)=13.(2)√3(√3−1)+|√2−√3|=√3×√3−√3+(√3−√2)=3−√3+√3−√2=3−√2.40.(2024春•西城区校级期中)(1)计算:√81+√−273+√(−23)2; (2)计算:4√3−2(1+√3)+|2−√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√81+√−273+√(−23)2=9+(﹣3)+23 =9﹣3+23 =203;(2)4√3−2(1+√3)+|2−√2|=4√3−2﹣2√3+2−√2=2√3−√2.41.(2024春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3;2【分析】(1)根据二次根式的性质,绝对值的性质,立方根的性质进行计算便可;(2)根据二次根式的性质,立方根的性质进行计算便可.【解答】解:(1)原式=94+√7−2−√−183=94+√7−2+12 =√7+34;(2)原式=6×12−3+10 =3﹣3+10=10.42.(2024春•海淀区校级期中)计算:(1)√25+√−643−|2−√5|+√(−3)2;(2)√2(2+√2)﹣2√2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘法,再算加减,即可解答.【解答】解:(1)√25+√−643−|2−√5|+√(−3)2=5+(﹣4)−√5+2+3=5﹣4−√5+2+3=6−√5;(2)√2(2+√2)﹣2√2=2√2+2﹣2√2=2.43.(2024春•洛龙区期中)计算和解方程:(1)√0.04+√−83−√14+|√3−2|+2√3; (2)2(1﹣x )2=8.【分析】(1)根据二次根式的性质,立方根的性质,绝对值的性质,合并同类二次根式的法则进行计算便可;(2)运用直接开平方法解方程便可.【解答】解:(1)原式=0.2﹣2−12+2−√3+2√3=﹣0.3+√3;(2)(1﹣x)2=4,1﹣x=±2,∴x1=﹣1,x2=3.44.(2024春•随州期中)计算下列各式:①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|【分析】(1)利用算术平方根和立方根计算即可.(2)先利用绝对值的定义去绝对值,再合并运算.【解答】解:①√(−1)2+√14×(−2)2−√−643=1+12×4﹣(﹣4)=1+2+4=7.②|√3−√2|+|√3−√2|−|√2−1|=√3−√2+√3−√2−(√2−1)=√3−√2+√3−√2−√2+1=(√3+√3)−(√2+√2+√2)+1=2√3−3√2+1.45.(2024春•老河口市月考)计算(1)√16+√149−√−(−4);(2)√52−42−√62+82+√(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√16+√149−√−(−4)=4+17−2=157;(2)√52−42−√62+82+√(−2)2=3﹣10+2=﹣5.46.(2024春•渝北区月考)计算:(1)√−83−√9+(−1)2021+(−√2)2;(2)(−3)2+2×(√2−1)−|−2√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√−83−√9+(−1)2021+(−√2)2=﹣2﹣3+(﹣1)+2=﹣4;(2)(−3)2+2×(√2−1)−|−2√2|=9+2√2−2﹣2√2=7.47.(2024春•崇义县期中)计算:(1)√4+|﹣2|+√−643+(﹣1)2024;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√4+|﹣2|+√−643+(﹣1)2024=2+2﹣4+1=1;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2=3+5+7+2√2÷2=15+√2.48.(2024春•黄石期中)计算:(1)﹣(12)2−√2516−√−83;(2)|√2−√3|+|1−√2|+√3−(﹣1)2024.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)﹣(12)2−√2516−√−83=−14−54−(﹣2) =−32+2=12.(2)|√2−√3|+|1−√2|+√3−(﹣1)2024=√3−√2+(√2−1)+√3−(﹣1)=√3−√2+√2−1+√3+1=2√3.49.(2024春•渑池县期中)计算:(1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.【分析】(1)首先计算开方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开立方和绝对值,然后计算除法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√214−√0.09+√(−3)2=32−0.3+3=4.2.(2)−43÷(−32)−√−83−(1−√9)+|1−√2|=﹣64÷(﹣32)﹣(﹣2)﹣1+3+(√2−1)=2+2﹣1+3+√2−1=5+√2.50.(2024春•江北区校级月考)计算:(1)√0.2163−√1916+5×√1100; (2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.【分析】(1)首先计算开平方和开立方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解(1)√0.2163−√1916+5×√1100=0.6−54+5×110=35−54+12=−320.(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2=√2−(﹣2)+(2−√3)+9+9=√2+2+2−√3+9+9=√2−√3+22.51.(2024春•三台县月考)计算.(1)﹣12024+√(−2)2−√643×√−27643+|√3−2|; (2)13(x ﹣2)2−427=0.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先求出(x ﹣2)2的值;然后根据平方根的含义和求法,求出x ﹣2的值,进而求出x 的值即可.【解答】解:(1)﹣12024+√(−2)2−√643×√−27643+|√3−2| =﹣1+2﹣4×(−34)+(2−√3)=﹣1+2+3+2−√3=6−√3.(2)∵13(x ﹣2)2−427=0,∴(x ﹣2)2=49, ∴x ﹣2=−23或x ﹣2=23,解得:x =43或x =83.52.(2024春•天门校级月考)计算(1)|√5−2|+√25+√(−2)2+√−273;(2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2.【分析】(1)原式利用绝对值的代数意义,算术平方根、立方根性质计算即可求出值;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可求出值.【解答】解:(1)原式=√5−2+5+2﹣3=√5+2;(2)原式=﹣1﹣(﹣8)×18−3×13+2÷2 =﹣1+1﹣1+1=0.53.(2024春•铁锋区期中)计算(1)√22−√214+√78−13−√−13; (2)|−√2|﹣(√3−√2)﹣|√3−2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)√22−√214+√78−13−√−13=2−32−12+1=1;(2)|−√2|﹣(√3−√2)﹣|√3−2|=√2−√3+√2−(2−√3)=2√2−2.54.(2024春•涪城区校级期中)计算:(1)√49−√−643−(√2)2+√1+916; (2)√(−5)2−|√3−2|+|√5−3|+|−√5|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=7+4﹣2+54 =1014;(2)原式=5﹣(2−√3)+3−√5+√5=5﹣2+√3+3−√5+√5=6+√3.55.(•苏州期中)计算下列各题.(1)√0.16+√0.49−√0.81;(2)﹣16√0.25−4√1−653;(3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.【分析】(1)、(2)根据数的开方法则分别计算出各数,再根据实数的加减法则进行计算即可;(3)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(4)先根据数的开方法则及0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣4×(﹣4)=﹣8+16=8;(3)原式=73−43+512=1712;(4)原式=0.3×10﹣2=3﹣2=1.56.(2024春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x是﹣27的立方根,y是13的算术平方根,求x+y2+6的平方根.【分析】(1)直接利用二次根式的性质以及立方根的定义、绝对值的性质分别化简,进而合并得出答案;(2)直接利用立方根的定义以及算术平方根的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:(1)原式=2﹣5+2−√3+√3=﹣1;(2)∵x是﹣27的立方根,∴x=﹣3,∵y是13的算术平方根,∴y=√13,∴x+y2+6=﹣3+13+6=16,∴x+y2+6的平方根为:±4.57.(2024春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a+5的一个平方根是﹣3,−14b﹣a的立方根是﹣2,求√a+√b的值.【分析】(1)利用算术平方根的意义立方根的意义,绝对值的意义和二次根式的性质化简运算即可;(2)利用平方根和立方根的意义求得a,b的值,再将a,b的值代入计算即可.【解答】解:(1)原式=32−12−(3−√2)+2=1﹣3+√2+2=√2;(2)∵实数a+5的一个平方根是﹣3,∴a+5=9,∴a =4.∵−14b ﹣a 的立方根是﹣2, ∴−14b ﹣a =﹣8,∴−14b ﹣4=﹣8, ∴b =16.∴√a +√b=√4+√16=2+4=6.58.(2024春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +c+d 5+e 2+√f 3的值.【分析】根据相反数,倒数,以及绝对值的意义求出c +d ,ab 及e 的值,代入计算即可.【解答】解:由题意可知:ab =1,c +d =0,e =±√2,f =64,∴e 2=(±√2)2=2,√f 3=√643=4,∴12ab +c+d 5+e 2+√f 3=12+0+2+4=612. 59.(2024春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√x −2−√x +10y +√245y 3的值.【分析】根据平方根的定义,以及立方根的定义即可求得x ,y 的值,然后代入所求的代数式化简求值即可.【解答】解:∵(x ﹣7)2=121,∴x ﹣7=±11,则x =18或﹣4,又∵x ﹣2>0,即x >2.则x =18.∵(y +1)3=﹣0.064,∴y +1=﹣0.4,∴y =﹣1.4.则√x −2−√x +10y +√245y 3=√18−2−√18−10×1.4−√245×1.43=4﹣2﹣7=﹣560.(2024春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|; (2)解方程:25x 2﹣36=0;(3)已知√x +1+|y −2|=0,且√1−2z 3与√3z −53互为相反数,求yz ﹣x 的平方根.【分析】(1)利用算术平方根的意义,立方根的意义,二次根式的性质和绝对值的意义解答即可;(2)利用平方根的意义解答即可;(3)利用非负数的意义和相反数的意义求得x ,y ,z 的值,再将x ,y ,z 的值代入解答即可.【解答】解:(1)原式=12−(﹣0.5)+4﹣6=12+0.5+4﹣6 =﹣1;(2)25x 2﹣36=0,∴x 2=3625. ∴x 是3625的平方根,∴x =±65.(3)∵√x +1+|y −2|=0,√x +1≥0,|y ﹣2|≥0,∴x +1=0,y ﹣2=0.∴x =﹣1,y =2.∵√1−2z 3与√3z −53互为相反数,∴1﹣2z +3z ﹣5=0.解得:z =4.∴yz ﹣x =8﹣(﹣1)=9.∵9的平方根为±3,∴yz ﹣x 的平方根为±3.。
实数的混合运算ppt课件
2)零除以任何非零的数为零.
2)负数的奇次幂为负,偶次幂为正.
3)除以一个数就是乘以这个数的倒
数;
我们学过的实数的 运算律: 加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
下列算式中有哪几种运算? 应该按照怎样的顺序计算?
计算下列各题:
(1)-5+(-15)= (2)-30-(-15)= (3)4×(-8)×25= (4)-27÷(-3)= (5)-23= (6) 25 的平方根=
实数的加法法则
1)同号两数的相加,取加数符号,并把绝对值相加;
2)绝对值不等异号两数相加,取绝对值较大数的符号,
并用较大绝对值减去较小绝对值;
3)互为相反数的两数相加和为零;
4)零与任何数相加仍得这个数.
实数的减法法则 减去一个数就是加上这个数的相反数.
实数的乘法法则
1)两数相乘同号得正,异号得负,并把绝对值相乘; 2)零与任何数相乘都得零.
实数的除法法则
实数的乘方符号法则
1)两数相除同号得正,异号得负;
并把绝对值相除;
1)正数的任何次幂都是正数;
ቤተ መጻሕፍቲ ባይዱ
5. 适当运用运算律使运算简
…
便.
1、2×(-3)3-4×(-3)+15 2、-10+8÷(-2)2-(-4)×(-3) 3、(-8÷23)-(-8÷2)3 4、2+10÷52 ×(-0.5)-1
5、-9+5×(-6)-(-4)2÷(-8) 6、-3-[-5+(1-0.2)÷(-2)] 7、-14-×[ 2-(-3)2 ] 8、(-52)×(-1)5+27÷(-3)×(-1)4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1、3
1-的相反数是 、倒数是 ,37-的相反数是 ,-3的倒数是 。
2、()20.7-的平方根是 ,-125的立方根是 ,81的算术平方根是 ,3的平方根是 ,-64的立方根是_______,(-3)2
的算术平方根是 , 9
4的平方根是__________。
3、绝对值最小的实数是____________。
4、实数-3
1,5, 2.236,-3216,2-π,0.2020020002…, 0.23,1-2,sin300,cos600中无理数有______个。
5、—3+2= ,(—3)×2= ,28⨯= ,28-= ,
2)2(1-+-= , = , 0123⎛⎫- ⎪⎝⎭
= 。
6、=-2)4( ,=-33)6( , 2)196(= ,32-= ,38-= 。
7、若2b +5的立方根,则a = ,b = 。
8、一个数的立方根等于这个数本身, 这个数是_____________。
9、某数的平方根是2a -3和3a -22, 则这个数是____________。
10、如果一个实数的平方根与它的立方根相等,则这个数是___________。
11、将长度为3cm 的线段向上平移20cm ,所得线段的长度是___________。
12、在“党”“在”“我”“心”“中”五个汉字中,旋转180o 后不变的字是___________,
在字母“X”、“V”、“Z”、“H”中绕某点旋转(旋转度数不超过180)后不能与原图形重合的是_________。
二、计算题
1、
2+32—52 2、 6(61-6) 3、
4、 5、()01232822-+---- 6、11|1|()2---+2(-3)
7、|23- | + |23-|- |12- | 8、()0
1232
822-+----
三、解答题
1、若92+-y x 与|x+y -3|互为相反数, 则x=__________, y=__________。
2、若,x y 为实数,且20x +=,则2010()x y +的值为___________。
3、某中学为了解全校的耗电情况,抽查了10天全校每天的耗电量,数据如下表(单位:度):
度数(单位:度) 20 33 12 15 20 20
天数(单位:天) 1 1 2 3 1 2
请写出上表中数据的众数、中位数、平均数、加权平均数、标准差S 。