2016第十四届希望杯2试_五年级解析
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试).doc
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第1试)2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)一、以下每题 6 分,共 120 分 1.(6 分)计算:121 +12 . 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,, 4.(6 分)已知 a 是 1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= . 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了米. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= .【结果用小数表示】 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= . 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是度.10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC 上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是. 12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是.(注:a m 表示 m 个 a 相乘) 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= . 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是.(圆周率取 3)16.(6 分)若 2 a 3 b 5 c 7 d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被 3 整除并且小于 250 的概率是.17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午时分. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = . 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= . 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距.2016 年第十四届小学希望杯全国数学邀请赛试卷(六年级第 1 试)参考答案与试题解析一、以下每题 6 分,共 120 分 1.(6 分)计算:121+12 .【分析】把 121 看作 100+21,再两次根据乘法分配律简算即可.【解答】解:121 +12 =(100+21) +12 =100 +21 +12 =52+13 +12 =52+(13+12)=52+25 =52+21 =73.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算. 2.(6 分)将化成小数,小数部分从左到右第 2016 个数字是 5 .【分析】首先找到循环小数的循环节,用 2016 除以循环节找余数即可.【解答】解:依题意可知: = . 20163=672.那么第 2016 个数字就是 5.故答案为:5 【点评】本题考查对周期问题的理解和运用,关键是找到周期和余数,问题解决. 3.(6 分)观察下面一列数的规律,这列数从左到右第 100 个数是.,,,,【分析】分子是奇数列,分母是公差为 3 的等差数列,根据高斯求和相关公式:末项=首项+(项数﹣1)公差解答即可.【解答】解:分子:1+(100﹣1)2 =1+992 =199 分母:2+(100﹣1)3 =2+993 =299 所以,这列数从左到右第 100 个数是.故答案为:.【点评】本题考查了高斯求和相关公式:末项=首项+(项数﹣1)公差的灵活应用. 4.(6 分)已知 a 是1 到 9 中的一个数字,若循环小数 0.1 = ,则 a= 6 .【分析】0.1 化成分数是,则可得 = ,然后解关于 a 的一元二次方程即可.【解答】解:根据题意可, = 化简可得: a 2 +9a﹣90=0 (a+15)(a﹣6)=0 解得:a=﹣15(舍去),或 a=6,故答案为:6.【点评】本题考查了循环小数与分数的互化,以及因式分解. 5.(6 分)若四位数能被 13 整除,则 A+B+C 的最大值是 26 .【分析】要使 A+B+C 的最大值,最好使 A、B、C 三个字母都是数字 9,然后分 3个 9,2 个 9,1 个 9,来检验即可.【解答】解:首先考虑三个都是 9,即 =2999,检验可得 2999 不能被 13 整除;再考虑两个 9,一个 8,检验可得 2899 能被 13 整除,所以 a+b+c 的最大值为:8+9+9=26;故答案为:26.【点评】解答本题要结合数位知识和数字的特征解答. 6.(6 分)某自行车前轮的周长是 1 米,后轮的周长是 1 米,则当前轮比后轮多转 25 圈时,自行车行走了 300 米.【分析】可以先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得前轮走的圈数,再用圈数乘以后轮的周长,即可得知自行车行走的路程.【解答】解:根据分析,先求得自行车后轮走的圈数,根据题意,每一圈前轮比后轮多走:1 ﹣1 = 米,前轮比后轮多转 25 圈,即多走了 251 = ,则可以求得后轮走的圈数: =200(圈);自行车行走了:2001 =300 米.故答案是:300.【点评】本题考查了分数和百分数的应用,突破点是:先求自行车后轮走的圈数,再求行程. 7.(6 分)定义 a*b=2{ }+3{ },其中符号{x}表示 x 的小数部分,如{2.016}=0.016.那么,1.4*3.2= 3.7 .【结果用小数表示】【分析】重点理解*{}的意义【解答】解: 1.4*3.2 =2{ }+3{ } =2{0.7}+3{0.7 }=20.7+3 =1.4+2.3 =3.7 故答案是 3.7 【点评】理解新定义内容,结合分数和小数之间的转换计算比较方便. 8.(6 分)下列两个算式中,不同的字母代表不同的数字,相同的字母代表相同的数字,则 x+y+z+u= 18 .【分析】显然,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知,x 不能为 0,故 y=0,又 y﹣x=x,得 x=5,由第二个算式,两个两位数相减和为一位数,则 z=4,再由第一个算式,不难求得其它字母代表的数字,最后求和.【解答】解:根据分析,由第一个算式可知,x、y 中肯定有一个为 0,由第二个算式可知, x 不能为 0,故 y=0,又 y﹣x=x,得 x=5;由第二个算式,两个两位数相减和为一位数,则 z=4;再由第一个算式,u=9,综上,x+y+z+u=5+0+4+9=18.故答案是:18.【点评】本题考查了整数的裂项和拆分,本题突破点是:从两个算式中求得每个字母代表的数字. 9.(6 分)如图,时钟显示 9:15,此时分针与时针的夹角是 172.5 度.【分析】在 9 点整时,分针每转一个大格式是 30 度,分针每分钟转 6 度,分针与时针的夹角是330=90 度,分针每分钟比时针多转(6﹣0.5)=5.5 度的夹角,15 分后,分针每分钟比时针多转 5.515=82.5(度),所以 9 点 15 分,时钟的分针与时针的夹角是:90+82.5=172.5(度);据此解答.【解答】解:根据分析,按顺时针计算: 330=90(度),(6﹣0.5)15 =5.515 =82.5(度),90+82.5=172.5(度);答:时钟显示 9:15,此时分针与时针的夹角是 172.5 度.故答案为:172.5.【点评】本题是钟面追及问题,难点是确定分针比时针每份追及的角度;注意分针每转一个大格式是 30 度,分针每分钟转 6 度. 10.(6 分)如图,在正方形 ABCD 中,点 E 在边 AD 上,AE=3ED,点 F 在边 DC上,当 S △ BEF 最小时,S △ BEF :S 正方形 ABCD 的值是 1:8 .【分析】按题意,显然 F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF的面积最小,此时不难求得 S △ BEF :S 正方形 ABCD 的值.【解答】解:根据分析,F 点在 DC 边上运动,当 F 点运动到 D 点时,三角形 BEF 的面积最小,故如图:∵AE=3EDS △ BEF=S △ BDE== =S △ BEF : S 正方形 ABCD=1 : 8 故答案是:1:8 【点评】本题考查了三角形的面积,突破点是:利用 BEF 的面积的最小值,求得S △ BEF :S 正方形 ABCD 的值. 11.(6 分)如图,三张卡片的正面各有一个数,它们的反面分别写有质数 m,n,p,若三张卡片正反两面的两个数的和都相等,则 m+n+p 的最小值是 57 .【分析】根据题意可得,47+m=53+n=71+p,则 m=71+p﹣47,n=71+p﹣53,然后代入式子 m+n+p,讨论 p 的取值即可求出最小值.【解答】解:根据题意可得, 47+m=53+n=71+p,则 m=71+p﹣47=24+p,n=71+p﹣53=18+p,代入式子 m+n+p 可得, m+n+p =71+p﹣47+71+p﹣53+p =42+3p p=2、3、5、7 偶质数 2 不和题意舍去;当 p=3 时,n=18+p=18+3=21,21 不是质数,舍去;当 p=5 时,n=18+p=18+5=23,m=24+5=29,21、29 都是质数符合题意;所以,m+n+p 的最小值是: m+n+p =42+3p =42+35 =42+15 =57.故答案为:57.【点评】本题考查了极值问题与质数问题的综合应用,关键是统一到一个未知数上进行列举讨论.12.(6 分)3 2014 +4 2015 +5 2016 的个位数字是 8 .(注:a m 表示 m 个 a 相乘)【分析】可以分别求出 3 2014 、4 2015 、5 2016 的个位数字,再求和,即可得出原式结果的个位数字.【解答】解:根据分析,先求 3 2014 的个位数字,∵3 1 =3,3 2 =9,3 3 =27,3 4 =81,3 5 =243,显然 3 n 个位数为 3、9、7、1 按周期 4 循环出现,而 3 2014 =3 503*4+ 2 ,3 2014的个位数字为 9;然后求 4 2015 的个位数字,∵4 1 =4,4 2 =16,4 3 =64,4 4 =256,45 =1024,显然 4 n 个位数为 4、6 按周期 2 循环出现,而 4 2015 =4 1007 2 + 1 ,4 2015的个位数字为 4;最后求 5 2016 的个位数字,∵5 1 =5,5 2 =25,5 3 =125,5 4 =625,显然 5 n 个位数均为 5,5 2016 的个位数字为 5, 3 2014 +4 2015 +5 2016 的个位数字=9+4+5=18,故个位数字为:8 故答案是:8.【点评】本题考查了乘积的个位数,突破点是:利用乘积个位数的周期性求得原式的个位数. 13.(6 分)一个分数,若分母减 1,化简后得,若分子加 4,化简后得,这个分数是.【分析】设原来这个分数是,若分母减去 1,就变成,这与相等,若分子加 4,这个分数就变成了,这与相等,由此列出方程进行求解,得出x 和 y 的取值,从而得出这个分数.【解答】解:设原来这个分数是,则: = 那么 3y=x﹣1 x=3y+1; =x=2y+8,则: 3y+1=2y+8 3y﹣2y=8﹣1 y=7 x=27+8=22 所以这个分数就是.故答案为:.【点评】解决本题先设出数据,根据分数的变化情况找出等量关系列出方程求解即可. 14.(6 分)如图是由 5 个相同的正方形拼接而成,其中点 B、P、C 在同一直线上,点 B、N、F 在同一条直线上,若直线 BF 左侧阴影部分的面积是直线 BF右侧阴影部分的面积的 2 倍,则 MN:NP= 1:5 .【分析】可以将图形进行分割和拼接,最后得出两个长方形的面积之比,从而线段之比不难求得.【解答】解:根据分析,设正方形的边长为a,如图,过 P 点作 PDBD 交 BD于 D,∵OF=AB,PE=DP,S △ ONF =S △ ABN ,S △ PEC =S △ BDP ,左边阴影部分的面积=S △ ONF +S 四边形 BNMG =S 四边形 ABGM ;右边阴影部分的面积=S △ ABP +S △ PEC =S 矩形 APDB ,由题意,左边阴影部分的面积=2右边阴影部分的面积,(AMAB):(APAB)=2:1AM:AP=2:1故 AP= AM=EC,FC=EF+EC=2.5a,又因 NP= FC= ,故 MN=MP﹣NP=1.5a﹣ = a,MN:NP= a: =1:5,故答案为:1:5.【点评】本题考查了三角形的面积,突破点是:利用线段的比例关系,求得面积比,再求得线段的比例. 15.(6 分)在如图所示的 1012 的网格图中,猴子 KING 的图片是由若干圆弧和线段组成,其中最大的圆的半径是 4,图中阴影部分的面积是 21.5 .(圆周率取 3)【分析】按题意,可以将猴子 KING 的图中空白部分分割,而阴影部分的面积可以用圆的面积减去中间空白部分的面积,中间空白部分由一个长方形和两个半圆,以及两个圆组成.【解答】解:由图可知,圆的直径有 8 个方格,故可得:每个小方格的边长=88=1, a 和 b 部分的面积=2 1 2 = = =4.5;c 和d 部分的面积= =4=43=12;矩形的面积=25=10;最大的圆的面积=4 2 =163=48,故阴影部分的面积=最大的圆的面积﹣a 和 b 部分的面积﹣c 和 d 部分的面积﹣c和 d 之间的矩形的面积 =48﹣4.5﹣12﹣10=21.5.故答案是:21.5.【点评】本题考查了圆的面积,突破点是:利用大圆的面积减去中间空白部分的面积即可求得阴影部分的面积. 16.(6 分)若 2 a 3 b 5 c 7d =252000,则从自然数 a、b、c、d 中任取 3 个组成三位数,这个三位数可被3 整除并且小于 250 的概率是.【分析】首先分析将数字 252000 分解质因数求出 abcd 分别代表的数字是多少,同时枚举法即可.【解答】解:首先将 252000 分解质因数为 73 2 2 5 5 3 a=5,b=2,c=3,d=1.组成三位数共有 =432=24 个.小于 250 的数字有 1 开头的数字共 123,125,132,135,152,153 共 6 种.能被 3 整除的数有 123,132,153,135.数字 2 开头的有 213,215,231,235 共 4 个.3 的倍数有 213,231 共 2 种.概率为 = 故答案为:.【点评】本题考查对概率的理解和运用,关键问题是找到组成的三位数共有多少个.问题解决. 17.(6 分)有一项工程,甲单独做需要 6 小时,乙单独做需 8 小时,丙单独做需 10 小时,上午 8 时三人同时开始,中间甲有事离开,如果到中午 12 点工程才完成,则甲离开的时间是上午 8 时 36 分.【分析】甲乙丙的工作时间知道,工作效率即可知道.乙丙的工作时间已知,工作量可求.剩余的总量就是甲的总量,甲的效率已知,可以求出甲的工作时间.【解答】解:甲乙丙的效率分别为,乙丙工作共 4 小时,()4= ,甲工作总量为:1﹣ = ,甲的工作时间: = (小时),甲工作时间为:(分),甲离开的时间为 8:36.故答案为:8:36.【点评】此题为典型的分人工程,可根据乙丙工作效率和时间求出工作总量.再根据工作总量差求出甲的总量和所求的工作时间,问题解决. 18.(6 分)已知四位数,甲、乙、丙三人的结论如下:甲:个位数字是百位数字的一半;乙:十位数字是百位数字的 1.5 倍;丙:四个数字的平均数是 4.根据上面的信息可得: = 4462 .【分析】可以根据每个人的话判断 ABCD 的值,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,再求解,分别求得ABCD 的值.【解答】解:根据分析,由甲的话可知,百位上的数字必为偶数,由三人的话可得出关系式,A+B+C+D=44A+2D+21.5D+D=16 A=16﹣6D;∵1A9,116﹣6D9 ,又∵D 为非负整数,D=2,A=16﹣62=4;综上,B=22=4,C=1.54=6,=4462 故答案是:4462.【点评】本题考查位置原则,突破点是:利用千位上的数字的取值范围,确定 A的值,再判断其它的数字. 19.(6 分)用棱长为 m 的小正方体拼成一个棱长为 12 的大正方体,现将大正方体的表面(6 个面)涂成红色,其中只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,则 m= 3 .【分析】用棱长为 m 的小正方体拼成一个棱长为 12的大正方体,则大正方体的每条棱上含有 12m 个小正方体,可设 12m=n,即大正方体的每条棱上含有 n 个小正方体,由于一面涂色的处在每个面的中间,有 6(n﹣2) 2 个,两面涂色的处在 12 条棱的中间上,有 12(n﹣2)个,根据只有一个面是红色的小正方体与只有两个面是红色的小正方体的个数相等,列方程求得n的值,进而求得 m 的值即可.【解答】解:由题意知,大正方体的每条棱上含有 12m 个小正方体,设 12m=n,即大正方体的每条棱上含有 n 个小正方体, 6(n﹣2) 2 =12(n﹣2)(n﹣2) 2 =2(n﹣2) n﹣2=2 n=4 因为 12m=4 所以 m=3 答:m=3.故答案为:3.【点评】根据立体图形的知识可知:三个面均为红色的是各顶点处的小正方体,在各棱处,除去顶点处的正方体的有两面红色,在每个面上,除去棱上的正方体都是一面红色,所有的小正方体的个数减去有红色的小正方体的个数即是没有涂色的小正方体. 20.(6 分)有一群猴子要将 A 地的桃子搬运到 B 地,每隔 3 分钟有一只猴子从A 地出发走向 B 地,全程需要 12 分钟,有一只兔子从 B 地跑步到 A 地,它出发的时候,恰有一只猴子到达 B 地,在路上它又遇到了 5 只迎面走来的猴子,继续向前到达 A 地,这时候.恰好又有一只猴子从 A 地出发,若兔子跑步的速度是 3 千米/小时,则 A、B 两地相距 300 米.【分析】首先得出兔子的速度3千米/时=50米/分钟;设猴子的速度是x 米/分钟,则 AB 相距 12x 米,从出发到达 A 地,兔子相当于碰到 6 只猴子出发,每只猴子时间相差 3 分钟,那么每两只猴子之间的路程就是 3x 米,这个路程除以猴子和兔子的速度和,就是两只猴子之间兔子需要的时间,再乘 6,就是兔子行驶的总时间;用两地之间的总路程 12x 米除以兔子的速度,也是兔子行驶的总时间,由此列出方程求出兔子行驶的时间,再乘兔子的速度,即可求出 AB之间的距离.【解答】解:3 千米/时=50 米/分设猴子的速度是 x 米/分,则: 6= 解得:x=25 1225=300(米)答:A、B 两地相距 300 米.故答案为:300 米.【点评】此题解答的关键在于分别表示出出兔子跑步的时间,再根据等量关系列出方程求解.。
第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=.2.(5分)已知 a=0.5,b=,则a﹣b是的倍.3.(5分)若+++<,则自然数x的最小值为.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是时;分.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是.(π=3)10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球个.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧分钟.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2= 6 .【解答】解:3×1.3+3÷2=3.75×1.3+3×=0.375×13+3×=×13+3×=(13+3)×=16×=6故答案为:6.2.(5分)已知 a=0.5,b=,则a﹣b是的13 倍.【解答】解:(a﹣b)÷=(0.5﹣)÷=(﹣)÷=÷=13;故答案为:13.3.(5分)若+++<,则自然数x的最小值为 3 .【解答】解:+++<+++<<x>≈2.6因为x是自然数,所以x的最小值为3.答:自然数x的最小值为3.故答案为:3.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=0.48 .【解答】解:依据题意得:0.9:0.6=0.6:x0.9x=0.6×0.60.9x=0.36x=0.36÷0.9x=0.4;:=:yy=×y=÷y=0.08x+y=0.4+0.08=0.48.故答案为:0.48.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是9 时;57 分.【解答】解:由题意可知A的效率是,B的效率是,C的效率是,A工作27分钟,转换成小时单位是,A工作量是=,剩余工作总量为,三个人的效率和是,工作时间为:(小时),在8:27分再加上1.5小时是9:57分.故答案为:9:57.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为35% .【解答】解:数字1开始的质数有11,13,17数字2开始的质数有23数字3开始的数字有31,37数字5开始的质数有53共计7个质数.组成两位数的情况有1开始的后面可以是1,2,3,5,7共5种.2,3,5开始的分别有5种.计算5+5+5+5=4×5=20种%=35%故答案为:35%7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是256410 .【解答】解:依题意可知:(+)×8=整理得:=×4992;7995与4992有公因数39,可以约分.×205=×128;此时205和128互质,说明是205的倍数,是128的倍数,根据题目要求本身要为偶数,且这六个数不可以重复.当为205的2倍时满足.故答案为:2564108.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.【解答】解:依题意可知:设正方形的边长为12.正方形的面积为12×12=144.阴影的面积为:S=144﹣(12×8+4×9+3×12)=60.△BEF的面积与正方形ABCD的面积比值为60:144化简为5:12.故答案为:.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是 4.5 .(π=3)【解答】解:见上图,根据分析可得,大等腰三角形面积为:2×(2×2)÷2=4,半圆面积为:3×(2÷2)2÷2=1.5,小等腰三角形面积为:2×(2÷2)÷2=1,弓形面积为:1.5﹣1=0.5,整体阴影面积为:4+0.5=4.5,答:图中的阴影部分面积是 4.5.故答案为:4.5.10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.【解答】解:依题可知设这三个数分别为,因为,则abc=60.将60分解60=2×2×3×5,因为三个分数均为真分数,故c=3,a=5,b=4.所以最大是.综上所述最大分数是.故答案为:.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球 6 个.【解答】解:根据分析,26盒分成:26÷4=6(组)…2(个).∵任意相邻的 4 个盒子中乒乓球的个数和都是 15,所以处于位置1,5,9…25 的盒子里球的个数均为 4.最右边的盒子中有乒乓球:100﹣(15×6+4)=6(个).故答案是:612.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧150 分钟.【解答】解:根据分析,21﹣16=5,15﹣11=4,则:两段蜡烛的比为21:16=(21×4):(16×4)=84:64;18分钟后:15:11=(15×5):(11×5)=75:55,长蜡烛燃烧了:84﹣75=9份,段蜡烛也燃烧了:64﹣55=9份,每份燃烧了:18÷9=2分钟,较长的蜡烛还能燃烧:75×2=150分钟.故答案是:150.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)【解答】解:根据分析,设x的整数部分为a,a≥1;x的小数部分为b,0≤b<1,依题意:ab+a+b=2b+9,整理得:(a﹣1)(b+1)=8,∵1≤b+1<2,∴4<a﹣1≤8,且a﹣1为整数.①当a﹣1=8,即a=9,b=0,x=9;②当a﹣1=7,a=8,b=,x=;③当a﹣1=6,即a=7,b=,x=;④当a﹣1=5,即a=6,b=,x=.综上,方程的解为:x=9;x=;x=;x=.故答案是:x=9;x=;x=;x=.15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【解答】解:(1)根据题意,阿春是第1个取糖果的,因为阿美取了剩下的全部糖果,所以阿美是最后1个取糖果的;因为阿天和阿丽不能在倒数第2的位置,否则跟最后1个的个数相同,所以阿真是倒数第2个取糖果的,所以阿真是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,则倒数第2个人取:1×(÷)=2(颗)1+2+(1+2)+(1+2+3)+4=3+3+6+4=16(颗)答:这盒糖果最少有16颗.16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【解答】解法一:在离山顶 150 米处相遇时,两人的路程差为200米,甲、乙的速度比为8:7,因此甲上山路程为×8=1600,这1600米中有50米是假设继续上山的结果,因此山底到山顶的路程=1600﹣50=1550米.解法二:设甲上山的速度是x,则下山的速度是3x.乙上山的速度是y,则下山的速度是3y,山顶到山底的距离为s.,由①得,由②得,∴,∴s=1550(米),综上所述答案为1550米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:47:00;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
五年级希望杯近四年一、二试试题及答案解析
第十三届小学“希望杯”全国数学邀请赛五年级 第1试试题以下每题6分,共120分 1、计算:(2015201.520.15)________.2.015--=2、9个13相乘,积的个位数字是________.3、如果自然数a ,b ,c 除以14都余5,则a b c ++除以14,得到的余数是_______.4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,,25相减,并且都是大数减小数,则在这25个差中,偶数最多有_______个.5、如图1,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是_______厘米.图16、字母,,,,,,a b c d e f g 分别代表1至7中的一个数字,若a b c c d e c f g ++=++=++,则c 可取的值有________个.7、用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体的8个顶点处的小正方体都去掉,则此时的几何体的表面积是 平方米.8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后的第一位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这三位数是 .(π取3.14)9、循环小数0.0142857的小数部分的前2015位数字之和是 .10、如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看,分别是①、②、③,则至少需要 小正方体.11、已知a 与b 的最大公约数是4,a 与c 以及b 与c 的最小公倍数都是100,而且a 小于等于b ,则满足条件的有序自然数对(a ,b ,c )共有 组.12、从写有1、2、3、4、5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有_____个.13、两位数ab 和ba 都是质数,则ab 有 个.14、ab ,cde 分别表示两位数和三位数, 如果ab + cde =1079,则a +b +c +d +e =15、已知三位数abc ,并且a (b +c )=33,b (a +c )=40, 则这个三位数是 .16、若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体 个.17、某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成,如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是 个.18、某次考试中,11名同学的平均分经四舍五入到小数点后的第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是 分.19、有编号1,2,3,4…2015的2015盏亮着的电灯,各有一个拉线开光控制,若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有 盏.①②③20、今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同.”则小明现在岁.第十三届小学“希望杯”全国数学邀请赛 五年级 第二试试题一.填空题(每小题5分,共60分)1. 用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .【解析】首先要想让乘积最大,应该先乘数的十位尽量大,所以十位应用7、8.然后根据数字和一定,两数差越小乘积越大,可以知道83和74的差是最小的,因此乘积最大是83746142⨯=.2. 有三个自然数,它们的和是2015,两两相加的和分别是m +1,m +2011和m +2012,则m =____. 【解析】由题意可以知道(1)m +、(2011)m +、(2012)m +三者的和是三个自然数和的2倍, 因此12011201220152m m m +++++=⨯,得出2m =.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).【解析】方法一:由于8个数字中有2个不为2的偶数,这2个数不能在个位,因此可以组成的质数最多有826-=(个),经尝试可得2、3、5、7、61、89满足条件,因此最多可以组成6个质数;方法二:题目要求最多个质数,应该使一位数的质数尽量多,有2、3、5、7;剩下1、6、8、9,我们会发现6和8只要放在个位这个数就不是质数,尝试可以组成61和89这两个质数,因此最多可以组成6个质数.4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.【解析】10个人的总分是8410840⨯=(分),其他9个人的总分是84093747-=(分),因此其他9个人的平均分是747983÷=(分).5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.【解析】朝上一面的4个数字和最大是666624+++=,最小是11114+++=,最小和最大数字和之间的情况都有可能出现,因此朝上一面的4个数字和有244121-+=(种).6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.【解析】三个彼此互质的自然数乘积是665,则其中必然有一个质数是5,6655133=⨯,那么133等于另外两个质数的乘积,可以看出133719=⨯,那么知道这三个彼此互质的自然数分别是5、7、19,长方体的表面积是(57719519)2526⨯+⨯+⨯⨯=.7.大于0的自然数n 是3的倍数,3n 是5的倍数,则n 的最小值是_____.【解析】若3n 是5的倍数,那么n 也是5的倍数,由题意可以得到n 既是3的倍数,也是5的倍数,所以n 的最小值是3515⨯=.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个. 【解析】33636A ⨯=(个).9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.【解析】前7行共有135********++++++=(个)数,即第7行的最后一个数是49,那么第8行前5个数分别是50、51、52、53、54,所以从左到右第5个数是54.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.【解析】根据题意有:2牛=42羊,3羊=26兔,2兔=3鸡,所以可得: 3牛=4223÷⨯羊=63羊=26363÷⨯兔=546兔=54623÷⨯鸡=819鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).【解析】设矩形的长为a ,宽为b ,且a b ≥,根据题意可得:17a b +=,由于a 、b 均为整数,因此(a ,b )的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______. 【解析】从左到右删去奇数位上的数字,第一次删除后剩余第2,4,6,8,12k (11007k ≤)位上的数; 第二次删除后剩余第4,8,12,16,,()224503k k ≤位上的数;第n 次删除后剩余第2,22,23n n n ⨯⨯位上的数,以此类推最后剩余的一定是1021024=位上的数字(11220482015=>),102452044÷=,所以最后剩余的数字应为4.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?【解析】设甲船顺水航行x 小时,则逆水航行()3-x 小时,根据题意列方程得:()843x x =-,解得:1x =,甲船出发后顺水航行1小时后逆水航行2小时;同理可求出乙船出发后逆水航行2小时后顺水航行1小时.因此出发后的第2个小时甲、乙两船均逆水,有1小时行船方向相同.14.图中有多少个三角形?图1【解析】设最小的三角形面积为1, 图中面积为1的三角形有16个; 面积为2的三角形有44+8=24⨯(个); 面积为4的三角形有44+4=20⨯(个); 面积为8的三角形4+4=8(个); 面积为16的三角形有4个;所以共有16+24+20+8+4=72(个).cm 和5cm . 乙直角三角形的两条直角边边分别为6cm 和2cm .求图中阴影部分的面积.图2【解析】如下图所示,延长CP 与DF 垂直于F ,DF 与AH 交于E ,由于ABCD 为平行四边形,则直角三角形CFD 与甲三角形相等,直角三角形AED 与乙三角形相等,阴影部分的面积为直角三角形CFD 与直角三角形AED 面积之和减去长方形EFPH ,可得EF =5-2=3cm ,EH =8-6=2cm ,则阴影部分的面积为8×5÷2+6×2÷2-3×2=20(平方厘米).16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数. 【答案】52人【解析】由于从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,即每2个人1个周期,158能被2整除,相当于从右边起(第一个人不发苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,发香蕉的周期为3,则苹果 1 0 1 0 1 0 香蕉 0 0 1 0 0 12人均发了水果,则没发水果的一共有26×2=52(人).第十三届小学“希望杯”全国数学邀请赛五年级第二试试题一.填空题(每小题5分,共60分)1.用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .2.有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=____.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).4.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.5.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.7.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是_____.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个.9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.图中有多少个三角形?图1cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图216. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2014第十二届希望杯五年级试题1.201403165÷,余数是________。
2022年教学教材第14届希望杯五年级第2试模拟练习及参考答案配套精选卷
2021年小学第十五届“希望杯〞全国数学邀请赛五年级第2试试题一、填空题〔每题5分,共60分〕1、计算:〔+2021×—×〔+2021〕=。
2、定义:a*b=a×b+a—2b,假设3*m=17,那么m=。
3、在表1中,8位于第3行第2列,2021位于第a行第b列,那么a—b=。
4、相同的3个直角梯形的位置如图1所示,那么∠1=。
5、张超和王海在同一家文具店买同样的练习本和铅笔,张超买了5个练习本和4支铅笔,付了2021找回元;王海买了2个练习本和2支铅笔,正好7元整,那么练习本每个元。
6、数a,b,c,d的平均数是,且×a=b—=c+=×d,那么a×b×c×d=。
7、如图2,小正方形的面积是1,那么图中阴影局部的面积是。
8、将2021,2021,2021,2021,2021这五个数分别填在图3中写有“D,O,G,C,W〞的五个方格内,使得D+O+G=C+O+W,那么共有种不同的填法。
9、不为0的自然数a满足以下两个条件:〔1〕=m×m;〔2〕=n×n×n,其中m,n为自然数,那么a的最小值是。
10、如图4是一个玩具钟,当时针转一圈时分针转9圈,假设开始时两针重合,那么当两针下次重合时,时针转过的度数是。
11、假设六位数能被11和13整除,那么两位数=。
12、甲、乙、丙三人相互比拟各自的糖果数。
甲说:“我有13颗,比乙少3颗,比丙多1颗。
〞乙说:“我不是最少的,丙和我相差4颗,甲有11颗。
〞丙说:“我比甲少,甲有10颗,乙比甲多2颗。
〞如果每人说的三句话中都有一句话是错的,那么糖果数最少的人有颗糖果。
二、解答题〔每题15分,共60分〕每题都要写出推算过程。
13、自然数a,b,c分别是某个长方体的长、宽、高的值,假设两位数,,满足+=79,求这长方体的体积的最大值?14、李老师带着学生参观科技馆,学生人数是5的倍数,根据规定,教师、学生按票价的一半收费,且恰好每个人所付的票价为整数,共付了1599元,问:〔1〕这个班有多少名学生?〔2〕规定的票价是每人多少元?15、如下列图,ABCD是长方形,AEFG是正方形,假设AB=6,AD=4,S△ADE=2,求S△ABG?16、某天爸爸开车送小红到距学校1000米的地方后,让她步行去学校,结果小红这天从家到学校用了分钟,假设小红骑自行车从家到学校需40分钟,她平均每分钟步行80米,骑自行车比爸爸开车平均每分钟慢800米,求小红家到学校的距离?2021年小学第十五届“希望杯〞全国数学邀请赛五年级第2试答案解析一、填空题〔每题5分,共60分〕1、答案:解析:【考察目标】小数的简便计算。
2016年希望杯五年级决赛模拟最后5套题
2.如图 1,当 n=1 时,图中有 1 个圆,当 n=2 时,图中有 7 个圆;当 n=3 时,图中有 19 个圆;……。按此规律,当 n=5,图中有 个圆.
图1 3. 一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3.若用这个自然数除以 6,得余数 . 4.分母不大于 60,分子小于 6 的最简真分数有 个.
图1 3.用{x}来表示数 x 的小数部分,[x]表示数 x 的整数部分.如:{2.3}=0.3, . [2.3]=2.若 a+[b]=15.3,{a}+b=7.8,则 a= ,b= 4. 1012010 252010 的末两位数是
.
5.将 1 到 10 这 10 个自然数排成一行,使得每相邻的 3 个数的和都是 3 的倍数,有 种排法. 6.一个十位数字是 0 的三位数,等于它的个位数字之和的 67 倍,交换这个三位数的个 位数字和百位数字,得到的新三位数是它的各位数字之和的 倍. 7. 某商店每月计划销售 900 台电脑,在 5 月 1 日至 7 日黄金周期间,商店开展促销活 动.但 5 月的销售计划增加了 30%,已知黄金周中平均每天销售了 54 台,则该商店在 5 月 的后 24 天平均每天至少销售 台才能完成本月销售计划. 8.有三个质数 x,y,z,若 x+y=z,则三个质数中最小的数是 .
2016 广州希望杯备考群 293133729
广州为然教研部
是 166 平方厘米,则三角形 ADG 的面积是________平方厘米.
11.若 5 个连续的自然数的乘积是 95040,则这 5 个连续自然数中间的一个数是 12.用 5 种不同的颜色给一个正方体涂色,要求相邻的面异色,共有 涂色方法. 种不同的
二、解答题 要求写出推算过程 13.小明绕操场跑一圈用 5 分钟,妈妈绕操场跑一圈用 3 分钟. (1)如果小明和妈妈从同一起点同时同向出发,几分钟后两人再次同时到达起点? 此时妈妈和小明各跑了几圈? (2)如果小明和妈妈从同一起点同时同向出发,几分钟后妈妈第一次追上小明? (3)如果小明和妈妈从同一起点同时反向出发,几分钟后两人第四次相遇?
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
(答案解析)2016年第十四届希望杯初赛四年级真题解析
5.图 3 由 5×4 边长为 1 的小正方形组成,其中阴影部分的面积是________.
1
2厘米
3厘米
图3
【答案】11 【解析】阴影部分可以凑成 11 个小正方形,所以面积为 11. 6、一个工厂电表的示数是 52222 千瓦,若干天后,电表的示数(五位数)中又出现 4 个相同的数 字,那么该工厂在这些天内至少又用了_________千瓦的电。 【答案】333 【解析】原来的电表有 1 个 5 和 4 个 2.下一次出现 4 个相同的数字是 52555 千瓦。 那么,该工厂在这些天用了 52555 – 52222 =333(千瓦) 7、已知碳素笔每支 1 元 8 角,笔记本每个 3 元 5 角,文具盒每个 4 元 2 角,晶晶买这 3 种文具刚 好用了 20 元,则她买了________ 个笔记本。 【答案】4 个 【解析】笔:1.8 元 文具盒:4.2 元 笔记本:3.5 元 由于最后总价是个整数,所以容易得出两点①笔和文具盒成对出现②笔记本的个数为偶数个 试数:若有两个笔记本(共 7 元)则还有 20-7=13 元的笔和文具盒,一对笔跟文具盒为 1.8+4.2=6 (元),13÷6 不能得到整数,故此种情况排除。 若有四个笔记本(共 14 元),则还有 20-14=6(元)的笔跟文具盒,刚好一对笔跟文具盒就是 6 元,故符合题意。所以一共有 4 个笔记本。 8、一个除法算式,若被除数比除数大 2016,商是 15,余数是 0,则被除数是_________ 【答案】2160 【解析】此题考查差倍问题。被除数跟除数的差为 2016,商是 15,说明被除数是除数的 15 倍。根 据差倍问题公式可知:被除数=2016÷(15-1)×15=2160 9.若一个长方形的长减少 3 厘米,宽增加 2 厘米,,得到一个和原长方形面积相等的正方形,则原 长方形的周长是_______厘米。 【答案】26 【解析】 设正方形的边长为χ 厘米,则长方形的宽为(χ -2)厘米。 根据两个阴影部分的面积相等得到 2χ =3(χ -2) χ =6 所以长方形的宽为 4 厘米,长为 9 厘米, 周长:(4+9)×2=26(厘米)
小学希望杯全国数学邀请赛五年级一试试卷解析
2015年小学“希望杯”全国数学邀请赛五年级二试试卷解析1、计算:2015201.520.152.015--=解:原式=20152.015-201.52.015-20.152.015=1000-100-10=8902、9个13相乘,积的个位数字是。
解:13连乘积的个位数字的规律和3连乘积的个位数字的规律一样:31的个位数字是3,32的个位数字是9,33的个位数字是7,34的个位数字是1,35的个位数字是3,……,按3、9、7、1四个数字一周期循环。
9÷4=2 (1)所以,9个13相乘,积的个位数字是33、如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是。
解:设a=14x+5,b=14y+5, c=14z+5.(a+b+c)÷14=[(14x+5)+(14y+5)+(14z+5)]÷14=[14(x+y+z)]÷14+(5+5+5)÷14=(x+y+z)+15÷14所以,得到的余数是1。
4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有个。
解:本题要讨论的问题是:将1到25这25个数随意排成一行后,然后将它们依次和1,2,3,…,25相减,所得到的差数,偶数最多有多少个。
①、如果打乱顺序后,恰好是一奇一偶的排下去,则是:奇数-奇数=偶数,偶数-偶数=偶数所以,最多25个偶数;②、如果打乱顺序后,恰好是一偶一奇的排列,则是:偶数-奇数=奇数,奇数-偶数=奇数,此时结果是偶数的可能性是0;所以,偶数最多有25个.5、如图l,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是厘米。
解:(16+8+82+822)×2=(16+8+4+2)×2=60(厘米)所以,这个图形的周长是60(厘米)6.字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=e+f +g,则c可取的值有个。
全国小学五年级“希望杯”奥数试题解析(邀请赛第二试)
希望杯5年级2试一、填空题(每题5分,共计60分)(2010年第8届希望杯5年级2试第1题,5分)计算:587÷26.8×19×2.68÷58.7×1.9=( )。
【分析】58726.819 2.6858.7 1.9÷⨯⨯÷⨯58719 2.68 1.926.858.719 1.936.1⨯⨯⨯=⨯=⨯=(2010年第8届希望杯5年级2试第2题)在下面两个小数的小数部分数字的上方加上表示循环节的一个或两个点,使不等式成立。
0.285〈27〈0.285 【分析】由于20.2857147=,因此有两种答案:20.2850.2857<<或20.2850.2857<<(2010年第8届希望杯5年级2试第3题)3、如图,在长500米、宽300米的长方形广场的外围,每隔2.5米摆放一盆花,现要改为每隔2米摆放一盆花,并且广场的4个顶点处的花盆不动,则需增加___盆花;在重新摆放花盆时,共有___盆花不用挪动。
【分析】封闭图形上的植树问题,棵树与间隔数相等。
由于周长为(500300)21600+⨯=米,从而原先的摆了1600 2.5640÷=盆,后来摆了16002800÷= 盆, 需要增加800640160-=盆。
2与2.5的最小公倍数为10,因此不需要移动的有160010160÷=盆。
(2010年第8届希望杯5年级2试第4题)4、一只蚂蚁站在1号位置上,它第1次跳1步,到达2号位置;第2次跳2步,到达4号位置;第3次跳3步,到达1号位置…..第n 次跳n 步,当蚂蚱沿着顺时针跳了100次时,到达___号位置。
654321分析:共跳了123...1005050++++=次,每6次跳回原地,50506841...4÷=,因此相当于跳了4次 从1开始跳4次到达5号位置。
(2010年第8届希望杯5年级2试第5题)5、5年级的平均身高是149厘米,女生的平均身高是144厘米,全班同学的平均身高是147厘米,则五年级的男生人数是女生人数的__倍。
希望杯五年级考试范围
希望杯五年级考试范围一、小数的四则运算。
1. 加减法。
- 小数点对齐,按照整数加减法的法则进行计算,然后在得数里对齐横线上的小数点,点上小数点。
- 例如:3.25+1.75 = 5.00,5.6 - 3.4 = 2.2。
2. 乘除法。
- 乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
- 例如:2.5×1.2 = 3.0(这里25×12 = 300,因数共有两位小数,所以积是3.0)。
- 除法:除数是整数时,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;除数是小数时,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足),然后按照除数是整数的除法进行计算。
- 例如:3.6÷1.2 = 3,5.6÷0.7 = 8。
二、简单的几何图形。
1. 三角形。
- 三角形的分类:按角分有锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角);按边分有等边三角形(三条边相等)、等腰三角形(两条边相等)和不等边三角形。
- 三角形的内角和是180^∘。
例如:已知一个三角形的两个角分别是30^∘和60^∘,则第三个角是180^∘-30^∘-60^∘=90^∘,这个三角形是直角三角形。
- 三角形的面积公式:S=(1)/(2)ah(a表示底边长,h表示这条底边对应的高)。
例如:一个三角形底边长为4厘米,高为3厘米,其面积S=(1)/(2)×4×3 = 6平方厘米。
2. 四边形。
- 平行四边形:两组对边分别平行的四边形。
平行四边形的面积公式S = ah (a表示底边长,h表示这条底边对应的高)。
例如:平行四边形底边长5厘米,高4厘米,面积S = 5×4=20平方厘米。
- 长方形:四个角都是直角的平行四边形。
面积公式S = ab(a表示长,b表示宽),周长公式C=2(a + b)。
第十四届小学“希望杯”全国数学邀请赛培训题五年级.docx
2016年第十四届小学“希望杯”全国数学邀请赛培训题(五年级)1、计算:2015+201.5+20.15+985+98.5+9.85的值。
2、201.5×2016.2016-201.6×2015.2015。
..3、(0.45+0.2) ÷1.2×11。
4、计算:0.875×0.8+0.75×0.4+0.5×0.2。
5、定义A&B=A×A÷B,求3&(2&1)的值。
6、定义新运算○+,它的运算规则是:a ○+b =a ×b +2a,求2.5○+9.6。
7、规定:a △b =(b -0.2a)(a -0.2b ),a □b =ab -a +b,求5△(4□3)的值。
8、在下面的每个方框中填入符号“+”,“-”,“×”,“÷”中的一个,且每个符号恰用一次,使计算结果最小。
300□9□7□5□39、a ,b ,c 都是质数,若a +b =13,b +c =28,求a ,b ,c 的乘积。
10、若两个自然数的乘积是75,且这两个自然数的差小于15,求这两个数和的个位数字。
11、A 、B 都是自然数,A >B ,且A ×B =2016,求A -B 的最大值。
12、有6个连续的奇数,其中最大的奇数是最小的奇数的3倍,求这6个奇数的和。
13、有一个两位数,在它的两个数字中间添加2个0,所得到的数是原来数的56倍,求原来的两位数。
14、有一个四位数,在它的某位数字的前面添上一个小数点后,再和原来的四位数相加得2036.16,求这个四位数。
15、已知两个自然数的乘积是2016,这两个数的最小公倍数是168,求这两个数的最大公约数。
16、两个数的最大公约数和最小公倍数分别是4和80,求这两个数。
17、2016的约数中,偶数有多少个?18、有6个数排成一列,从第2个数起每个数都是前一个数的2倍,且6个数的和是78.75,求第2个数。
2016年第十四届小学希望杯全国数学邀请赛六年级第2试试题及答案
2016年第十四届小学六年级“希望杯”全国数学邀请赛第2试一、填空题8、如图3,在正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC。
则△BEF的面积与正方形ABCD的面积比值为______。
9、图4是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图4中的阴影部分面积是_______。
(π=3)10、已知三个最简真分数的分母分别是6,15和20,它们的乘积是1/30,则在这三个最简真分数中,最大的数是_____________.11、将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球________个.12、两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧__________分钟.二、解答题,每题都要写出推算过程.13、如图5所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.13、阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的2/3.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16、甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.1462参考答案12345678 61330.489,577/202564105/12 9101112131415164.55/6615091,42033/5,22/3,57/7,94,161550。
五年级希望杯数学竞赛题目
五年级希望杯数学竞赛题目一、题目与解析。
1. 计算:0.125×0.25×0.5×64- 解析:- 把64分解成8×4×2。
- 原式=(0.125×8)×(0.25×4)×(0.5×2)。
- 因为0.125×8 = 1,0.25×4=1,0.5×2 = 1。
- 所以结果为1×1×1 = 1。
2. 计算:(1.25+1.25+1.25+1.25)×25×8- 解析:- 括号里1.25+1.25+1.25+1.25 = 1.25×4。
- 原式=(1.25×4)×25×8。
- 根据乘法交换律和结合律,先算4×25 = 100,1.25×8 = 10。
- 结果为100×10 = 1000。
3. 一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?- 解析:- 这个数加上2就能被5、6、7整除。
- 5、6、7的最小公倍数为5×6×7=210。
- 所以这个数最小是210 - 2 = 208。
4. 有一个自然数,用它分别去除63,90,130都有余数,三个余数的和为25。
这三个余数中最大的一个是多少?- 解析:- 设这个自然数为x,设除63的余数为a,除90的余数为b,除130的余数为c。
- 则63 = k_1x + a,90=k_2x + b,130 = k_3x + c。
- 已知a + b + c = 25。
- 那么63+90 + 130-(a + b + c)=(k_1 + k_2 + k_3)x。
- 即63+90+130 - 25=(k_1 + k_2 + k_3)x。
- 计算得258=(k_1 + k_2 + k_3)x。
- 把258分解因数:258 = 2×3×43。
(答案解析)2016年第十四届希望杯初赛五年级真题解析
10.两个数的最大公约数和最小公倍数分别是 3 和 135,则这两个数的差最小是 【答案:12】 【解析】
。
135=3×5×3×3,差最小,两个数最接近,所以一个数是 3×5=15,另一个数是 3×3× 3=27,差是 27-15=12
11. 14 袋糖果每袋的平均重量经四舍五入到小数点后一位等于 90.2 克,若每袋糖果的重量 都是整数,则这 14 袋糖果的总重量是 【答案:1263】 【解析】依题有:90.15<平均量<90.24,所以 90.15×14<总重量<90.24×14,即 1262.1<总重量<1263.36,所以总重量=1263. 克.
平方米.
15. 有一个三位数 A,在它的某位数字的前面填上小数点后得到数 B,若 A-B=478.8,则 A= . 【答案:532】 【解析】差倍问题:478.8÷(10-1)=53.2,53.2×10=532.
16. 商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的 3 倍. 如果每天卖出 30 个西 瓜和 20 个柚子,3 天后,西瓜个数比柚子个数的 4 倍少 26,则商店里原有 【答案:176】 【解析】解:设柚子是 x 个,则西瓜是 3x 个,有 3x-90+26=4(x-60),得 x=176. 个柚子.
17. 已知 a,b,c 是 Байду номын сангаас 个彼此不同的质数,若 a b c 37 ,则 a b c 最大是
. 4
【答案:32】 【解析】根据奇偶分析,a,b,c 中一定有一数为 2,若 a 为 2,则 b=7,c=5,差最大为 6;若 c=2,则 a=31,b=3,最大为 31+3-2=32.
18. 李双骑车以 320 米/分钟的速度从 A 地驶向 B 地,途中因自行车故障推车继续向前步行 5 分钟到距 B 地 1800 米的某地修车,15 分钟后以原来骑车速度的 1.5 倍继续向前驶向 B 地,到达 B 地时,比预计时间多用 17 分钟,则李双推车步行的速度是 【答案:72】 米/分钟.
2016第十四届希望杯2试_五年级解析
3/5
资料下载、家长交流、信息分享权威论坛:
左斜侧方圆圈中数之和. M 12 3 5 7 81
12 3 81 40 2
12 1680 1692
11. 一堆珍珠共 6468 颗, 若每次取相同的质数颗, 若干次后刚好取完, 不同的取法有 a 种; 若每次取相同的奇数颗,若干次后刚好取完,不同的取法有 b 种,则 a b _________. 【答案】16 【考点】分解质因数 【解析】 6468 2 2 7 7 3 11 ,其中质数有:2、3、7、11,即取法有 4 种, a 4 ;其 中奇数有: 1、 3、 7、 11、3 7 、3 11 、7 7 、7 11 、3 7 7 、3 7 11 、7 7 11 、 3 7 7 11 ,即取法有 12 种, b 12 ;所以, a b 4 12 16 .
【答案】0.25 【考点】计算 【解析】 10 2 0.3 0.3 0.04 0.04 0.05
10 2 0.3 0.3 0.04 0.04 0.05 10 2 0.05
0.25
2.
小磊买 3 块橡皮, 5 支铅笔需付 10.6 元.若他买同品种的 4 块橡皮, 4 支铅笔需付 12 元, 则一块橡皮的价格是_________元. 【答案】2.2 元 【考点】消去问题 【解析】 3 橡+5 铅=10.6 元 4 橡+4 铅=12 元 橡+铅=3 元 橡-铅=1.4 元 橡皮: 3 1.4 2 2.2 (元)
小书灯家长社区整理发布 让家长无忧·让学习无忧
4பைடு நூலகம்5
资料下载、家长交流、信息分享权威论坛:
上海希望杯五年级真题答案详解
第十四届“走进美妙的数学花园”上海决赛试题解析(五年级组)一、 填空题(每小题8分,共40分)1. 计算2244668=1335577⨯⨯⨯⨯⨯⨯ 。
(写成小数形式,精确到小数点后两位。
)知识点:计算,近似值——————————————————————————————————————————————— 同类型题目:2015例题6:1111111111111111223348484949⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯-⨯+⨯-⨯⨯+⨯-⨯+⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ———————————————————————————————————————————————2. 1角硬币的正面与反面如图所示,拿三个1角硬币一起投掷一次,得到两个正面一个反面的概率为 。
知识点:概率问题,排列组合类型解析:三个硬币投掷一次,每个硬币都有正反两种情况,所以一共2228⨯⨯=种,两个正面一个反面的可能有133C =种,概率为:3388÷=。
——————————————————————————————————————————————— 难度系数:☆☆———————————————————————————————————————————————3. 大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数。
比如,6的所有因数为1,2,3,6,1236=12+++6就是最小的完美数。
是否存在无限多个完美数的问题至今仍然是困扰人类的难题之一。
研究完美数可以从计算自然数的所有因数之和开始,8128的所有因数之和为 。
知识点:数论,约数和———————————————————————————————————————————————同类型题目:2015例题7:360有( )个约数,所有约数的和是( )。
——————————————————————————————————————————————— 解析:分解质因数为:681282222221272127=⨯⨯⨯⨯⨯⨯=⨯;约数和为:012345601(2222222)(127127)1248163264112716256++++++⨯+=++++++⨯+=()()。
2016年小学五年级希望杯全国数学邀请赛试题(第二试)(含解析)
得分
二、解答题
12.小磊买3块橡皮,5支铅笔需付10.6元;若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是________________元。
13.张强骑车从公交车的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟。若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?
和差基本公式:(和+差)÷2=较大数,(和—差)÷2=较大数。
1——100这100个数的和是:1+2+3+4+……+100=5050;
剩下的98个数的和是:50×98=4900,则去掉的两个偶数的和是:5050—4900=150;差是2,有和差公式可知这两个数分别为:
(150+2)÷2=76;(150—2)÷2=74,所以这两个数的乘积是:76×74=5624。
14.如图4,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,求五边形EFGHI的面积。
15.定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1。若[5a—0.9]=3a+0.7,求a的值。
16.有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
一、填空题
1.10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=________________。
2.将1.41的小数点向右移动两位,得a,则a—1.41的整数部分是________________。
3.定义:m n=m×m—n×n,则2 4—4 6—6 8—8 10—……—98 100=________________。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a 的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由上表可知,不同的余数之和为: 1 2 3 4 5 15 .
小书灯家长社区整理发布 让家长无忧·让学习无忧 2/5
资料下载、家长交流、信息分享权威论坛:
8.
图 2 是某几何体从正面和左面看到的图形, 若该几何体是由若干个棱长为 1 的正方体垒 成的,则这个几何体的体积最小是____________.
16. 有 4 个书店共订 400 本《数理天地》 杂志,每个书店订了至少 98 本,至多 101 本,问: 共有多少种不同的订法? 【答案】31 【考点】计数 【解析】 (1)四个书店都订 100 本,有 1 种情况; (2)四个书店分别订 101、101、100、98 本,有 6 2=12 (种); (3)四个书店分别订 101、101、99、99 本,有 6 1=6 (种); (4)四个书店分别订 101、100、100、99 本,有 6 2=12 (种); 共有 1 12 6 12 31 种.
10. 根据图 3 所示的规律,推知 M ____________.
3 12
5 15
7 20
9 27 图3
11 36
……
47
81 M
……
【答案】1692 【考点】找规律,等差数列 【解析】通过观察可知:从第 2 个小正方形开始,每个小正方形中的数等于左侧小正方形和
小书灯家长社区整理发布 让家长无忧·让学习无忧
从正面看 图2
从左面看
【答案】6 【考点】三视图 【解析】要使堆积体体积最小,立体图如下(构造不唯一) ,这个几何体的体积最小是
111 6 6 .
9.
正方形 A、B、C、D 的边长依次是 15, b ,10, d ( b,d 都是自然数),若它们的面积 满足 S A SB SC SD ,则 b d ___________.
1 100 50 2 5050 现和: 50 100 2 =4900
相差: 5050 4900 150 ,因此去掉的两个偶数的和为 150,差为 2. 这两个数分别为: 150 2 2=76 , 150 2 2=74 , 两数的乘积为: 74 76=5624 .
小书灯家长社区整理发布
让家长无忧·让学习无忧
5/5
二、解答题(每小题 15 分,共 60 分.)每题都要写出推算过程. 13. 张强骑车从公交车的 A 站出发,沿着公交路线骑行,每分钟行 250 米.一段时间后,一 辆公交车也从 A 站出发,每分钟行 450 米,并且每行驶 6 分钟需靠站停 1 分钟.若这辆 公交车出发 15 分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是 多少米? 【答案】2100 【考点】追及问题 【解析】 从公交车出发到公交车追上小强的时间内, 公交车比小强多行得的路程就是小强已 经骑过的路程. 公交车每行驶 6 分钟停 1 分钟,实际共行 15 2 13 (分钟), 公交车实际行驶路程: 450 13=5850 (米), 张强骑车行驶路程: 250 15=3750 (米),
3/5
资料下载、家长交流、信息分享权威论坛:
左斜侧方圆圈中数之和. M 12 3 5 7 81
12 3 81 40 2
12 1680 1692
11. 一堆珍珠共 6468 颗, 若每次取相同的质数颗, 若干次后刚好取完, 不同的取法有 a 种; 若每次取相同的奇数颗,若干次后刚好取完,不同的取法有 b 种,则 a b _________. 【答案】16 【考点】分解质因数 【解析】 6468 2 2 7 7 3 11 ,其中质数有:2、3、7、11,即取法有 4 种, a 4 ;其 中奇数有: 1、 3、 7、 11、3 7 、3 11 、7 7 、7 11 、3 7 7 、3 7 11 、7 7 11 、 3 7 7 11 ,即取法有 12 种, b 12 ;所以, a b 4 12 16 .
6.
如图 1, 四边形 ABCD 是正方形,ABGF 和 FGCD 都是长方形, 点 E 在 AB 上,EC 交 FG 于点 M .若 AB 6 , ECF 的面积是 12,则 BCM 的面积是_________.
A F E M B G
D
C 图1
【答案】6 【考点】等积变型与一半模型 【解析】将 B 点平移到 E 点位置,△ EFM 与△ BMG 面积和是长方形 AFGB 面积的一半, △ FCM 与△ MCG 面积和也是长方形 FDCG 面积的一半.
12. 若 A 是质数,并且 A 4,A 6,A 12,A 18 也是质数,则 A __________. 【答案】23 【考点】质数 【解析】设 A 18 为 B ,这五个数依次为: B、B 6、B 12、B 14、B 18 质数的末位只能为 1、2、3、5、7、9; (2、5 只有在为一位数时是质数) B 的末位为 1 时, B 14 的末位为 5,不是质数,不符题意; B 的末位为 2 时, B 6 的末位为 8,不是质数,不符题意; B 的末位为 3 时, B 12 的末位为 5,不是质数,不符题意; B 的末位为 5 时,五个数都可为质数,符合题意; B 的末位为 7 时, B 18 的末位为 5,不是质数,不符题意; B 的末位为 9 时, B 6 的末位为不是质数,不符题意; B 末位为 5 且为质数, B 只能为本身, B=5 A 18=5 , A 23 .
3. 将 1.41 的小数点向右移动两位,得 a ,则 a 1.41 的整数部分是__________. 【答案】139 【考点】小数点的移动 【解析】将 1.41 的小数向右移两位得 141,所以 a 141 , a 1.41 141 1.41 139.59 . 所以, a 1.41 的整数部分是 139.
小书灯家长社区整理发布 让家长无忧·让学习无忧
4/5
资料下载、家长交流、信息分享权威论坛:
公交车比张强骑车多行 5850 3750=2100 (米). 所以,该公交车出发的时候,张强已经骑过的距离是 2100 米.
14. 如图 4,水平方向和竖直方向上相邻两点之间的距离都是 m ,若四边形 ABCD 的面积是 23,则五边形 EFGHI 的面积是________.
资料下载、家长交流、信息分享权威论坛:
第十四届小学“希望杯”全国数学邀请赛 五年级
一、填空题(每小题 5 分,共 60 分) 1.
10 2 0.3 0.3 0.04 0.04 0.05 = ___________.
第 2 试试题解析
F
E I D H G C A B
图4
【答案】28 【考点】格点图形的面积 【解析】格点多边形面积=多边形一周的格点数÷2+多边形内部格点数 1 四边形 ABCD 的面积是: 5 2 10 1 m2 23 , m2 2 . 四边形 EFGHI 的面积是: 6 2 12 1 m2 14 2=28 .
15. 定义: a 表示不超过数 a 的最大自然数, 如 0.6 0 ,1.25 1 .若 5a 0.9 3a 0.7 , 求 a 的值. 【答案】1.1 【考点】取整,枚举 【解析】 3a 0.7 5a 0.9 3a 1.7 , 0.8 a 1.3 3a 0.7 是整数,所以 a 1.1
4. 定义: m n m m n n ,则 2 4 4 6 6 8 8 10 【答案】9972 【考点】定义新运算 【解析】 2 4 4 6 6 8 8 10 98 100
98 100 _______.
2 2 4 4 4 4 6 6100 2 2 4 4 4 4 6 6 6 6 8 8 98 98 100 100 2 2 4 4 4 4 100 100 10000 4 16 16 9972
SEFM SFCM SBMG SMCG SECF SBCM 66 2 18
SBCM 18 12 6 .
7. 在一个除法算式中, 被除数是 12, 除数小于 12, 则可能出现的不同的余数之和是______. 【答案】15 【考点】整除,枚举 【解析】除数的取值范围: 1 11 ;首先排除除数是 12 的因数(1、2、3、4、6). 再枚举: 除数 余数 5 2 7 5 8 4 9 3 10 2 11 1
【答案】13 或 15 【考点】平方数 【解析】 152 b2 102 d 2 ,得 b2 d 2 125 . 12 =1 ,22 =4 ,32 =9 ,42 =16 ,52 =25 ,62 =36 ,72 =49 ,82 =64 ,92 =81 ,102 =100 , 112 =121 , 122 =144 . 其中: 22 112 =125 , 52 102 =125 . 所以, b d 13 或 15 .
让家长无忧·让学习无忧 1/5
小书灯家长社区整理发布
资料下载、家长交流、信息分享权威论坛:
5.
从 1 100 这 100 个自然数中去掉两个相邻的偶数,剩下的数的平均数是 50,则所去掉 的两个数的乘积是_______. 【答案】5624 【考点】等差数列 【解析】原和: 1 2 3 4 5 6 7 8 99 100
【答案】0.25 【考点】计算 【解析】 10 2 0.3 0.3 0.04 0.04 0.05
10 2 0.3 0.3 0.04 0.04 0.05 10 2 0.05
0.25
2.
小磊买 3 块橡皮, 5 支铅笔需付 10.6 元.若他买同品种的 4 块橡皮, 4 支铅笔需付 12 元, 则一块橡皮的价格是_________元. 【答案】2.2 元 【考点】消去问题 【解析】 3 橡+5 铅=10.6 元 4 橡+4 铅=12 元 橡+铅=3 元 橡-铅=1.4 元 橡皮: 3 1.4 2 2.2 (元)