ASPEN PLUS的物性方法和模型

合集下载

Aspen Plus 物性方法的选择

Aspen Plus 物性方法的选择

合成气体 煤气化 煤液化 蒸汽系统,冷却剂
PR-BM,RKS-BM
PR-BM,RKS-BM PR-BM,RKS-BM,
BWR-LS STEAMNBS,STEAM-TA
A
ቤተ መጻሕፍቲ ባይዱ11
行业
用途
方法
(10)矿物和冶金 Power generation
机械加工:压碎、碾碎 、筛分‘洗涤
湿法冶金:矿物沥取
熔炉、转炉
物性方法的选择
● 91中性质方法 ● 四种类型 ● 可按行业和用途选择
A
1
1. Aspen Plus 91 种性质方法
AMINES ENRTLSA MXBONNE
C
L
APISOUR EPNRTL NRTL
B-PITZER FACT
NRTL-2
BK10
BWR-LS
BWRS
CHAOSEA
COSMOSA C
空气分离
PR-BM,RKSBM,PENGROB,RK-SOAVE
用乙二醇进行气体 脱水
用甲醇或NMP进行 酸性气吸收
克劳斯过程
PRWS,RKSWS,
PRMHV2, RKSMHV2,PSRK
,SR-POLAR
用水、氨水、胺、 胺+甲醇、碱、石灰、 热碳酸盐吸收酸性
气体
ELECNRTL
A
7
行业
用途
方法
K值计算方法
理想气体/道尔顿定律/亨利定律 理想气体/道尔顿定律(发布版本8)
②状态方程模型——13 种
表(2-1) 基于Lee方程的物性方法
物性方法代码 BWR-LS LK-PLOCK
状态方程 BWR-Starling Lee-Kesler-Pl?ck

化工模拟软件aspen plus第3章 物性方法

化工模拟软件aspen plus第3章 物性方法

BK-10
Braun K-10
石油
SOLIDS
Ideal Gas/ Raoult's law/Henry's law /solid 冶金
activity coefficients
CHAO-SEA Chao-Seader corresponding states model 石油
GRAYSON Grayson-Streed corresponding states model 石油
Electrolyte NRTL
ENRTL-HF
Electrolyte NRTL
ENRTL-HG
Electrolyte NRTL
NRTL
NRTL
NRTL-HOC
NRTL
NRTL-NTH
NRTL
NRTL-RK
NRTL
NRTL-2
NRTL (using dataset 2)
基于UNIFAC的物性方法
UNIFAC
其他物性方法
SR-POLAR
Schwartzentruber-Renon
3.2 Aspen Plus中的主要物性模型
活度系数模型
方法
液相活度系数
基于Pitzer的物性方法
PITZER
Pitzer
PITZ-HG
Pitzer
B-PITZER
Bromley-Pitzer
基于NRTL的物性方法
ELECNRTL
Wilson (using dataset 2)
WILS-HF
Wilson
WILS-GLR
Wilson (ideal gas and liquid enthalpy reference state)

利用ASPEN_PLUS_软件进行物性估算

利用ASPEN_PLUS_软件进行物性估算

利用ASPEN_PLUS_软件进行物性估算利用ASPEN PLUS 软件进行物性估算系别:生物与化学工程学院专业:化学工程与工艺班级:091611姓名:杨振学号:016109051指导老师:宋伟利用ASPEN PLUS 软件进行物性估算其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。

但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。

此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。

以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。

正文:Aspen Plus提供一套功能强大的模型分析工具,最大化工艺模型的效益:收敛分析:自动分析和建议优化的撕裂物流、流程收敛方法和计算顺序,即使是巨大的具有多个物流和信息循环的流程,收敛分析非常方便。

calculator models计算模式:包含在线FORTRAN 和Excel 模型界面。

灵敏度分析:非常方便地用表格和图形表示工艺参数随设备规定和操作条件的变化而变化。

案例研究:用不同的输入进行多个计算,比较和分析。

设计规定能力:自动计算操作条件或设备参数,满足规定的性能目标。

数据拟合:将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。

优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。

必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。

以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而10. 水溶液数据库,包括900 种离子,主要用于电解质的应用。

1. 2MD 物性的输入2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。

在ASPEN PLUS中选用的物性方法

在ASPEN PLUS中选用的物性方法

在ASPEN PLUS中选用的物性方法—Chao-Seader本设计中所选用的两种物质苯、甲苯都为烃类物质,且操作条件为Chao-Seader用来计算烃类混合物对重质烃类用此方法ASPEN PLUS中的塔设备单元操作模块1、DSTWU模块对单一进料两出料精馏塔进行简捷设计计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、给定回流比下的理论板和加料版位置。

已知平衡级数,可以得到回流比;已知回流比,可以得出理论级数。

同时也能得到最佳进料位置和再沸器及冷凝器热负荷。

运用DSTWU能够得到回流比与理论级数关系曲线与表格。

可以利用此单元操作得到严格计算初值。

2、RadFrac模块此模块为严格多级气液分离模型,尤其适用于三相、宽沸程和窄沸程以及液相强非理想系体系,用于精确计算精馏塔、吸收塔(板式塔或填料塔)的分离能力和设备参数。

可以同时联解物料平衡、能量平衡和相平衡关系,用逐板计算法求解给定塔设备的操作结果3、DISTL模块此模块对单一进料两出料精馏塔进行简捷校核计算。

给定平衡级数、回流比和塔顶产品速率及冷凝器类型(全凝或部分冷凝),可估算出再沸器和冷凝器热负荷。

4、EXTRACT模块此模块为液液萃取模拟计算的严格模型,只用来进行校核计算。

可处理多进料、带侧线以及有加热和冷却单元的各种萃取体系。

分配系数的求取可采取活度系数法、状态方程法或内置温度关联式二元精馏是最为简单的一种精馏操作,其设计和操作计算是多元精馏计算的基础。

二元精馏的设计可采用简捷法和逐板计算法,Aspen Plus则采用Winn-Underwood-Gilliland简捷法进行设计,对应“Colums”中“DSTWU”模块。

由于简捷法的计算误差较大,所以需要用严格精馏模型对设计结果进行验证,采用“Colums”中的“RadFrac”模块。

所以本设计的单元操作也选用RadFrac模块。

ASPEN_PLUS(PRO_II)官方用户指南1-2

ASPEN_PLUS(PRO_II)官方用户指南1-2

必须对下列组分都可得到 参加化学反应的组分 用RGibbs 反应模型模拟的平衡反应中涉及的组分
常规的固体组分参考状态
常规的固体组分可能需要 l 标准固体生成热 DHSFRM l 标准固体吉布斯生成自由能 DGSFRM 在Properties Parameters Pure Component Scalar Input 页面上输入它们
ASPEN PLUS 10 版 用户指南
7-16
本页已使用福昕阅读器进行编辑。 福昕软件(C)2005-2010,版权所有, 仅供试用。 第8章 物性参数和数据
第8 章 物性参数和数据
这一章介绍怎样评估模拟中对物性参数需求 确定可以从数据库中得到的参数 并且输 入数据库中查不到的参数和数据 标题包括 l 关于参数和数据 l 确定物性参数需求 l 从数据库中检索参数 l 输入物性参数 l 使用表数据和多项式系数 l 使用物性数据包
二元交互 在Properties Parameters Binary Interaction Henry-1 (物性参数 二元交互参数 亨利-1) 表页上的Henry-1对象的Input 输入 页面上 输入亨利常数模型参数
热力学参考状态要求的参数
热力学性质的参考状态是25 和1atm理想气体状态下的各组成要素 为了计算焓 熵
检索纯组分参数
对于许多组分 ASPEN PLUS 自动从它的纯组分数据库检索纯组分参数 使用 Componets Specifications Databanks 组分规定 数据库 页面指定所要查找数据库和查找 顺序 从第一个所选数据库查不到的参数将在所选的后续数据库中查找 若输入你自己的参数值 使用Properties Parameters (物性参数)的Pure Component Scalar Input 纯组分标量 输入 和 T -Dependent Input 温度相关参数输入)页面来输入 参见 输入纯组分常数 因为内置的纯组参数是和模拟引擎放在一起的 所以在任何Parameters Pure Component Input (纯组分参数输入)页面上都不能自动出现可用的参数 用户输入的参数将取代从ASPEN PLUS 数据库检索出的参数值

ASPENPLUS10.0物性方法和模型

ASPENPLUS10.0物性方法和模型
具有相似的分子间相互作用 但是分子大小非常不同的系统在较高的压力下不相混合 对于二元系统 这些经常出现在轻组分的临界点的附近 Rowlinson and Swinton, 1982
例子有 l 甲烷和己烷或庚烷二元系统 van der Kooi, 1981;Davenport and Rowlinson, 1963;
15
l 吉布斯能的偏差
( ) ∫ Gm − Gmig
=

v ∞
p

RT V
dV

RT
ln
V V ig
+
RT (Zm
− 1)
16
l 摩尔体积 求解p T Vm 得到Vm 对于一个给定的状态方程 逸度根据方程13计算 混合物其它的热力学性质能由偏差函 数计算 l 汽相焓
H
v m
=
H
ig m
+
(H
v m

H
ig m
)
f i v = ϕiv yi P (8)
校正因子ϕiv是逸度系数 对于在中压下一个汽相 ϕiv接近于1 相同的方程可应用到液 相
f i l = ϕil xi P 9
Kohn, 1961) l 乙烷和C数为18-26的正构烷烃二元系统(Peters et al., 1986) l 二氧化碳和C数为7-20的正构烷烃二元系统(Fall et al., 1985) 不互溶的化合物分子大小差别越大 液-液和液-液-汽平衡越可能涉及重组分的固化 例如 乙烷和五环或六环烷烃则显示这个特性 碳原子数差别的增大将引起液-液分离消失 例如 在乙烷和碳原子数大于26的正构烷烃混合物中 相对固体-流体 汽或液 平衡来说 液-液分离变成了亚稳平衡(Peters et al., 1986) 状态方程方法不能处理固体

ASPEN物性系统

ASPEN物性系统

ASPEN物性系统Aspen Plus具有最完备的物性系统物性模型和数据是得到精确可靠的模拟结果的关键。

人们普遍认为 Aspen Plus 具有最适用于工业、且最完备的物性系统。

许多公司为了使其物性计算方法标准化而采用 Aspen Plus的物性系统,并与其自身的工程计算软件相结合。

二、Aspen Plus 的物性系统包括:2.1 一套完整的基于状态方程和活度系数方法的物性模型用户可在流程的不同部分选用不同的物性模型。

兹将 Aspen Plus 中的物性模型列举如下:2.1.1 状态方程(共有 20 多种模型)ASME 水蒸汽表关联式 ASME 水蒸汽表关联式理想气体模型 BWR-Lee-Starling 模型Hayden-O’Connell 模型(具有气相缔合) HF 模型(气相水理想性)Lee Kesler 模型 MHV2 混合规则Lee Kesler Plocker 模型(具有气相缔合) NBS/NRC 蒸汽表Nothnagel 模型 Peng Robinson 模型Peng Robinson Boston Math 水-碳氢物体系模型 Peng Robinson MHV2 模型Peng Robinson Wong-Sandler 模型 Predictive SRK 模型PSRK 混合规则 Redlich Kwong 模型Redlich Kwong ASPEN 模型 Redlich Kwong Soave 模型Redlich Kwong Soave Wong Sandler 模型 Redlich Kwong Soave MHV2 模型RK-Sovae Alpha 函数 Schwartzentruber-Renon 模型Helgeson 状态方程(电解质比热及焓计算)2.1.2 活度系数模型扩展的 Scatchard Hildebrand 方程 NRTL 局部组成电解质方程MSA 电解质方程 NRTL 方程 Pitzer 电解质方程Chien Null 模型 Redlich-Kister 模型三后缀 Margules 模型 VanLaar 方程Wilson 方程 UNIFAC 方法Dortmund 改进 UNIFAC Lyngby 改进 UNIQUAC 方法Brornley Pitzer 活及系数模型多项式活度系数模型理想流体模型2.1.3 摩尔体积模型用于石油馏分的 API 液体体积模型Brelvi O’Connell 偏摩尔液体体积模型多项式固体体积模型Cheuh Prausnitz/Rackett 压缩液体体积模型 Campbell Thodos 液体体积模型COSTALD 饱和和压缩液体体积模型 Clark 电解质液体体积模型Debye Huckel 电解质液体体积模型 Cavett 饱和液体体积模型Rackett 饱和液体体积模型表数据输入2.1.4 蒸发潜热模型DIPPR/Watson/IK-CAPE 方程 Clausius Clapeyron 方程2.1.5 焓、自由能、熵模型Cavett 饱和液体和水蒸汽表液体模型Criss Cobble 电解质液体焓模型综合固体升华模型多项式固体升华模型多项式固体模型改进的多项式固体模型 DIPPR 比热模型BARIN 方程改进的 Watson 方程多项式固体熔化热模型Yen Alexander 液体和气体模型汽化热模型表数据输入Yen Alexander 水蒸汽表气体模型2.1.6 蒸汽压模型扩展的 Antoine 液体模型C avett 液体模型改进的多项式模型表数据输入 Antoine 固体模型2.1.7 气液平衡比模型API SOUR 模型 Kent Eisenberg 模型改进的多项式模型表数据输入2.1.8 Henry 常数模型改进的多项式模型表数据输入2.1.9 复合固体密度模型综合广义的密度模型IGT 干燥固体模型2.1.10 复合固体焓模型Boie 关联式Chang Jirapongphan Boston 关联式温度的三次方程 Dulong 关联式综合焓模型 Grummel 和 Davis 关联式基于燃烧热的关联式 Kirov 关联式2.1.11 热导率模型Chung Lee Starling 液体和气体模型IAPS 水的液体和气体模型多项式固体模型 Sato Riedel 液体模型Stiel Thodos 高压气体模型TRAPP 液体和气体模型Wassiljewa Mason Saxena 低压气体模型表数据输入2.1.12 表面张力模型石油馏分的 API 模型Hakim Steinberg Stiel 模型水的 IAPS 模型表数据输入 Onsager Samaras 模型2.1.13 粘度模型Chapman Enskog Brokaw 低压气体模型Chung Lee Starling 液体和气体模型Dean Stiel 高压气体模型水的 IAPS 液体和气体模型API 液体粘度模型Letsou Stiel 高温液体模型Lucas 气体模型改进的 Andrade 液体模型TRAPP 液体和气体模型表数据输入 Andrade/DIPPR 模型2.1.14 扩散系数模型Chapman Enskog/Wilke Lee 低压气体模型Dawson Khoury Kobayashi 高压气体模型Wilke Chang 表数据输入2.2 Aspen Plus 数据库包括24000多种纯组分的物性数据及下列数据库1、纯组分数据库,包括 5000 种化合物的参数。

ASPENPLUS第1章

ASPENPLUS第1章

第1章ASPEN PLUS 性质方法概述 ....................................................................................... 1-1 热力学性质方法................................................................................................................... 1-1 状态方程方法............................................................................................................... 1-2活度系数方法............................................................................................................... 1-7状态方程模型..............................................................................................................1-15活度系数模型..............................................................................................................1-22传递性质方法..............................................................................................................1-23非常规组分焓计算......................................................................................................1-25脚注..............................................................................................................................1-26第1章ASPEN PLUS 性质方法概述所有的单元操作模型都需要性质计算而生成结果。

ASPEN第二讲 物性方法

ASPEN第二讲 物性方法

2.3 物性方法的选择
系统提供了三种组分类型,化学系统、烃类系统以及特殊系统,这
里选择烃类系统
2.3 物性方法的选择
选择完成后,系统提示用户是否含有石油产品的数据分析或是虚
拟组分,点击No
2.3 物性方法的选择
系统给用户提供几种物性方法作为参考
2.3 物性方法的选择
常见化工体系的物性方法推荐
以上题中的丙烯、苯和异丙苯为例: 点击菜单栏Tools下的Property Method Selection Assistant,启动帮助系统
2.3 物性方法的选择
系统提供了两种方法,可以通过组分类型或是化工过程的类型进行 选择。以指定组分类型为例,选择第一项,Specify component type
2.4 定义物性集
物性集是多个物性的集合,用户可以给物性集指定名称,在一个应用 中使用物性时只需引用物性集的名称。 在General with Metric units模板中,系统默认物性集如下图所示:
2.4 定义物性集
物性集设定
若是物性参数不存在上述物性集中,则需要设置新的物性参数集,
比如若需要查看物流的pH值,则需要点击Ne烯、苯以及异丙苯体系为例,分析体系为非极性体系,考虑 到为真实物系,可以选择PENG-ROB、RK-SOAVE、PR-BM、RKSBM等物性方法
2.3 物性方法的选择
帮助系统
Aspen Plus为用户提供了选择物性方法的帮助系统,系统会根据组 分的性质或者化工处理过程的特点为用户推荐不同类型的物性方法


过程模拟必须选择合适的热力学模型
在使用模拟软件进行流程模拟时,用户定义了一个流程以 后,模拟软件一般会自行处理流程结构分析和模拟算法方 面的问题,而热力学模型的选择则需要用户作决定。流程 模拟中几乎所有的单元操作模型都需要热力学性质的计算 ,迄今为止,还没有任何一个热力学模型能适用于所有的 物系和所有的过程。流程模拟中要用到多个热力学模型, 热力学模型的恰当选择和正确使用决定着计算结果的准确 性、可靠性和模拟成功与否。 选取方法 由物系特点及操作温度、压力经验选取 由帮助系统进行选择

利用ASPEN PLUS 软件进行物性估算

利用ASPEN PLUS 软件进行物性估算

利用ASPEN PLUS 软件进行物性估算Aspen Plus 是一款功能十分强大的工艺模拟软件, 对有机化工、无机化工、电化学、石油化工等各领域的各种单元操作均可模拟。

其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。

但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。

此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。

以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。

为了成功估算2MD 的物性, 首先要向AspenPlus 软件提供必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。

以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而进一步计算所需的其它各种物性。

1. 2MD 物性的输入2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。

其分子结构如下:已知的其它物数据: 分子量102.13; 沸点(1atm):110°C; 密度(25°C):0.98kg/m3; 粘度(25°C):0.603cp; 标准生成热(25°C):- 363.02kJ/mol; 标准熵(25°C):303J/(mol〃K); 表面张力(25°C):24.93dyn/cm。

因为采用基团贡献法来估算2MD 的物性, 所以在properties 中选用UNIFCA 为计算方法, 然后输入分子结构。

ASPEN_PLUS(PRO_II)官方用户指南1-2

ASPEN_PLUS(PRO_II)官方用户指南1-2

得到 影响模型的物性列表 模型用来计算一种以上的物 性 例如状态方程 模型选项代码 选项代码用来规定特殊的计算选项
非常规组分的物性方法
非常规组分仅有的计算物性是焓和密度 下表列出了可采用的模型 对这些模型的详细 说明参见 ASPEN PLUS 物性方法和模型 第三章 这个表显示了一般的模型 物性 ENTHALPY DENSITY 模型 ENTHGEN DNSTYGEN 属性要求 GENANAL GENANAL
DENSITY
非常规组分的表格式模型是:
7-15
ASPEN PLUS 10 版 用户指南
第 7 章 物性方法
本页已使用福昕阅读器进行编辑。 福昕软件(C)2005-2010,版权所有, 仅供试用。
模型 ENTHLTAB DNSTYTAB
物性 ENTHALPY DENSITY
规定非常规组分模型
规定用来计算非常规组分物性的模型: 1. 从 Data 菜单 单击 Properties 2. 双击 Advanced 文件夹 3. 选择 NC-Props 窗口 4. 在 Property Methods 页的 Component 列表框中 选择一个组分 5. 规定焓和密度模型 ASPEN PLUS 自动的给你规定的模型填充需要的组分属性
数据
确定模拟要求的物性数据
依据模拟的类型 你的模型将需要不同的参数 下面章节描述一些基本性质计算要求的 参数 这些计算是 l 质量和能量平衡模拟 l 亨利定律 l 热力学参考状态 为了得到有意义的结果 许多状态方程和活度系数模型需要二元参数 若想根据所选性 质方法确定需要的参数 对于你选择的每种物性方法 参见 ASPEN PLUS 物性方法和模 型 中的 物性方法表
检索纯组分参数

AspenPlus介绍

AspenPlus介绍

Aspen Plus介绍(物性数据库)Aspen Plus ---生产装置设计、稳态模拟与优化大型通用流程模拟系统Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院〔MIT〕组织会战,开发新型第三代流程模拟软件。

该工程称为“过程工程先进系统〞(Advanced System for Process Engineering,简称ASPEN〕,并于1981年底完成。

1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。

该软件经过20多年来不断地改良、扩大与提高,已先后推出了十多个版本,成为举世公认标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业及著名工程公司都是Aspen Plus用户。

它以严格机理模型与先进技术赢得广阔用户信赖,它具有以下特性:ASPEN PLUS有一个公认跟踪记录,在一个工艺过程制造整个生命周期中提供巨大经济效益,制造生命周期包括从研究与开发经过工程到生产。

ASPEN PLUS使用最新软件工程技术通过它Microsoft Windows 图形界面与交互式客户-效劳器模拟构造使得工程生产力最大。

ASPEN PLUS拥有准确模拟范围广泛实际应用所需工程能力,这些实际应用包括从炼油到非理想化学系统到含电解质与固体工艺过程。

ASPEN PLUS是AspenTech集成聪明制造系统技术一个核心局部,该技术能在你公司整个过程工程根本设施范围内捕获过程专业知识并充分利用。

在实际应用中,ASPEN PLUS可以帮助工程师解决快速闪蒸计算、设计一个新工艺过程、查找一个原油加工装置故障或者优化一个乙烯全装置操作等工程与操作关键问。

Aspen Plus功能Aspen Plus AspenTech工程套装软件(AES)一个成员,它是一套非常完整产品,特别对整个工厂、企业工程流程工程实践与优化与自动化有着非常重要促进作用。

第3章Aspen物性方法资料

第3章Aspen物性方法资料

BWR-LS
BWR Lee-Starling
LK-PLOCK
Lee-Kesler-Plöcker
基于PR方程的物性方法
PR-BM
Peng-Robinson with Boston-Mathias alpha function
PRWS
Peng-Robinson with Wong-Sandler mixing rules
UNIFAC
UNIF-DMD
Dortmund-modified UNIFAC
UNIF-HOC
UNIFAC
UNIF-LBY
Lyngby-modified UNIFAC
UNIF-LL
UNIFAC for liquid-liquid systems
汽相逸度系数
Redlich-Kwong-Soave Redlich-Kwong-Soave Redlich-Kwong-Soave
RKSMHV2
Redlich-Kwong-Soave with modified Huron-Vidal mixing rules
RK-ASPEN
Redlich-Kwong-ASPEN
RK-SOAVE
Redlich-Kwong-Soave
RKS-BM
Redlich-Kwong-Soave with Boston-Mathias alpha function
第3章 物性方法
物性方法
3.1 Aspen Plus数据库 3.2 Aspen Plus中的主要物性模型 3.3 物性方法的选择 3.4 定义物性集 3.5 物性分析 3.6 物性估算 3.7 物性数据回归 3.8 电解质组分
3.1 Aspen Plus数据库

ASPEN Plus培训教程 第二讲 组分、物性及物性计算模型

ASPEN Plus培训教程 第二讲 组分、物性及物性计算模型
CAPD基础 第二讲
Components,Properties & Property Models
组分、物性及物性计算模型
物性计算方法和模型 (1)
Aspen Plus提供了丰富的物性计算 方法与模型,我们必须根据物系特点和 温度、压力条件适当选用。可以利用 Tools 菜单下的 Property Method Selection Assistant 工具帮助我们缩小适用方法的 范围。 Aspen Plus的在线帮助也可以提供 有用的详细信息。
物性计算方法和模型 (2)
亨利组分 (1)
在操作条件下表现为不凝性气体的 组分被称为亨利组分(Henry Components), 其在液相中的溶解度用亨利定律描述。 亨 利 组 分 在 Components 大 类 下 的 Henry Comp子类目录里创建一个对象来定 义 , 同 时 还 需 在 Properties 大 类 下 的 Parameters 子类下的 Binary Interaction 目录 下的 Henry-1 对象中输入亨利系数的温度 关联系数(从数据库里调用)。
亨利组分 (2)
亨利组分 (3)
电解质组分 (1)
如果系统包含水和在水中会发生
电离的电解质 (Electrolytes) ,我们则需
利用电解质向导 (Elec Wizard) 来帮助我
们生成可能发生的各种电离反应和生成
的各种电解质组分。
电解质组分 (2)
电解质组分 (3)
电解质向导分四个步骤操作: 1、定义基本组分和定义反应生成选项; 2、从生成物清单中删除不需要的成分 和反应式; 3、选择电解质计算的模拟表达方式; 4、审定物性方法设置和调整自动生成 的亨利组分和反应式。 完成后软件会自动引导你从数据库中调 取所需的物性参数。

Aspen_Plus推荐使用的物性计算方法

Aspen_Plus推荐使用的物性计算方法

Aspen_Plus推荐使⽤的物性计算⽅法做模拟的时候物性⽅法的选择是⼗分关键的,选择的⼗分正确关系着运⾏后的结果。

是⼀个难点,⾼难点,⽽此内容与化⼯热⼒学关系⼗分紧密。

⾸先要明⽩什么是物性⽅法?⽐如我们做⼀个很简单的化⼯过程计算,⼀股100C,1atm的⽔-⼄醇(1:1的摩尔⽐,1kmol/h)的物料经过⼀个换热器后冷却到了80C,0.9atm,问如分别下值是多少?1.⼊⼝物料的密度,汽相分率。

2.换热器的负荷。

3.出⼝物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。

以上的值怎么计算出来?好,我们来假设进出⼝的物料全是理想⽓体,完全符合理想⽓体的⾏为,则其密度可以使⽤PV=nRT计算出来。

并且汽相分率全为1,即该物料是完全⽓体。

由于理想⽓体的焓与压⼒⽆关,则换热器的负荷可以根据⽔和⼄醇的定压热熔计算出来。

在此例当中,描述理想⽓体⾏为的若⼲⽅程,⽐如涉及⾄少如下2个⽅程:1.pv=nRT,2.dH=CpdT. 这就是⼀种物性⽅法(aspen plus中称为ideal property method)。

简单的说,物性⽅法就是计算物流物理性质的⼀套⽅程,⼀种物性⽅法包含了若⼲的物理化学计算公式。

当然这例⼦选这种物性⽅法显然运⾏结果是错误的,举这个例⼦主要是让⼤家对物性⽅法有个概念。

对于⽔-⼄醇体系在此两种温度压⼒下,如果当作理想⽓体来处理,其误差是⽐较⼤的,尤其对于液相。

按照理想⽓体处理的话,冷却后仍然为⽓体,不应当有液相出现。

那么应该如何计算呢?想要准确的计算这⼀过程需要很多复杂的⽅程,⽽这些⽅程如果需要我们⽤户去⼀个个选择出来,则是⼀件相当⿇烦的⼯作,并且很容易出错。

好在模拟软件已经帮我做了这⼀步,这就是物性⽅法。

对于本例,我们对汽相⽤了状态⽅程,srk,液相⽤了活度系数⽅程(nrtl,wilson,等等),在aspen plus中将此种⽅法叫做活度系数法。

如果你选择nrtl⽅程,就称为nrtl⽅法,wilson⽅程就成为wilson物性⽅法(wilson property method)。

ASPEN物性方法选择

ASPEN物性方法选择

压力?
BK10
真空
BK10 IDEAL
如何选择热力学方法(3)
• 对非极性或弱极性物系,可采用状态方程法。该法利用状态方程计算 所需的全部性质和汽液平衡常数。
• 极性物系,采用状态方程与活度系数方程相结合的组合法,即汽相采 用状态方程法,液相逸度采用活度系数法计算,液相的其它性质采用 状态方程或经验关联式法。
2.1.1物性模型
2.1.2状态方程模型 用于气相和液相处于理想状态的体系(如减压 体系、低压下的同分异构体系)
• 1、IDEAL理用于想炼油状应态用它性能用质于原方油法塔、减压塔和乙烯装置的部分工艺过程 • 2、用于石油混合物的性质方法:BK10、CHAO-
SEA、GRAYSON • 3、针用于对气石体加油工、调炼油整及的化工状应用态。(方如程气体性加工质装方置、法原油:塔及P乙E烯N装G置)-
过程工业推荐使用的热力学方法
过程工业推荐使用的热力学方法
Galen J. Suppes选择方法
• 有机物水溶液:NRTL • 醇类:Wilson • 醇、酚:Wilson • 醇、酮、醚: Wilson or Margules • C4-C18 烃:Wilson • 芳香族: Wilson or Margules
ROB、RK-SOAVE
• 4、用处理于高温高、压高压烃以及应接近用临的界点状的体态系(方如程气体性管线质传输方或法超临:界抽B提W) RLS、LK-PLOCK、PR-BM、RKS-BM
• 5P、RM计 气灵算 体H活干高V燥温的2、、、甲高和醇压P脱、预R硫接W测及近超临S性临界、界点的萃混P合取状S物)R态及K在方高、压程R下性的K液-质A-液S分方P离法E的N体:系、。(如乙二醇 RKSMHV2、RKSWS、SR-POLAR

ASPEN PLUS的物性方法和模型

ASPEN PLUS的物性方法和模型

汽相状态方程
理想气体定律 Redlich-Kwong
Redlich-Kwong-Soave
Nothnagel Hayden-O Connell HF状态方程
如何选择热力学方法
热力学模型选择方法
对非极性或弱极性物系,可采用状态方程法。 该法利用状态方程计算所需的全部性质和汽 液平衡常数。
2.自学预习的习惯 自学是获取知识的主要途径。就学习过程而言,教师只是 引路人,学生是学习的真正主体,学习中的大量问题,主要* 自己去解决。
阅读是自学的一种主要形式,通过阅读教科书,可以独立 领会知识,把握概念本质内涵,分析知识前后联系,反复推敲, 理解教材,深化知识,形成能力。学习层次越高,自学的意义 越重要,目前我国的高考为选拔有学习潜能的学生,对考生的 自学能力有较高的要求。
物性推算(1)
输入化合物组份
输入已知的物性
物您的下载 特赠送精品文章
《良好学习习惯的养成教育》
祝你学习进步,学业有成。
请删除本文章后使用本学习课件, 感谢支持。
世界上最可怕的力量是习惯,世界上最宝贵的 财富也是习惯。一个班级, 一个企业,一个国家, 一个民族是如此,对于人的一生,更是如此。生 而为人,每个人都需要踏踏实实地做人,而良好 的做人习惯正是帮助我们构建成功人生所必需 的。
Margules for C4-C18 hydrocarbons, Wilson for aromatics Wilson or Margules
物性的查询
运行tool中的检索参数结果
参数的输入
参数回归
已知实验数据(如蒸汽压) 演示
已知平衡数据(T-XY)回归wilson参数 2参数模型,回归Aij,Aji,Bij,Bji 演示

物性估算模型aspenplus入门

物性估算模型aspenplus入门
第 6 页
关联式参数
物性 ANTOIN 蒸汽压关联式参数 理想气体热容关联式参数 WASTON 关联式参数 RACKETT 液体容积方程关联式 CAVETT 综合方程参数 CAVETT 综合关联式参数 SEALCHASD-HILDEBRNUD 方程参数 标准液体容积方程参数 水溶解度方程参数 AUDRADE 液体年度关联式参数 代号 PLXANT CPIG DHVLWT RKTZRA DHLCAT PLCAVT VLCVT1 VLSTD WATSOL MULAND 参数个数 9 11 5 1 1 4 1 3 5 5
物性估算模型 ASPEN PLUS 入门
汤吉海 2006 年 8 月
第三章
ASPEN PLUS 的物性数据库及其应用
3. 1 基础物性数据库 3. 2 物性预测模型 3. 3 物性估算系统 3. 4 实验数据处理系统(模型参数回归)
第 2 页
3.1 基础物性数据库
A SPEN PLU S 物性数据库的数据包括离子种类 、二元交互参数、离子反应所需数据等。共 含 5000 个纯组分、 40000 个二元交互参 数、 5000 个二元混合物及与 250000 多个混 合物实验数据的 D ETH ERM 数据库接口和与 I nhouse (内部)数据库接口。 系统数据库 用户数据库
第 7 页
功能团参数
物性 UNIFAC 方程功能团的 Q 参数 UNIFAC 方程功能团的 P 参数 UNIFAC 方程功能团的相互作用参数 代号 GMUFQ GMUFP GMUFB
第 8 页
3.2 ASPEN PLUS 的物性方法和模型
类别 详细内容 状态方程模型 活度系数模型 蒸汽压和液体逸度模型 汽化热模型 摩尔体积和密度模型 热容模型 溶解度关联模型 其它 粘度模型 导热系数模型 扩散系数模型 表面张力模型 一般焓和密度模型 煤和焦碳的焓和密度模型

Aspen_Plus推荐使用的物性计算方法

Aspen_Plus推荐使用的物性计算方法

首先要明白什么是物性方法比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,,问如分别下值是多少1.入口物料的密度,汽相分率。

2.换热器的负荷。

3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。

以上的值怎么计算出来好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。

并且汽相分率全为1,即该物料是完全气体。

由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。

在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:=nRT,=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。

简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。

当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。

对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。

按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。

那么应该如何计算呢想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。

好在模拟软件已经帮我做了这一步,这就是物性方法。

对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。

如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。

在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。

物性方法选择2021推选

物性方法选择2021推选
计算高温、高压、接近临界点混合物及在高压下的液-液分离的体系。(如乙二醇 气体干燥、甲醇脱硫及超临界萃取)
液体活度系数性质方法
液体活度系数模型
NRTL UNIFAC UNIQUAC VAN
LAAR WILSON
汽相状态方程
理想气体定律 Redlich-Kwong
Redlich-Kwong-Soave
2.6物性推算(1)
输入化合物组份
输入已知的物性
精品课件!
极性物系,采用状态方程与活度系数方程相结合的组合法,即汽相采用状态方程法,液相逸度采用活度系数法计算,液相的其它性质 采用状态方程或经验关联式法。 已知实验数据(如蒸汽压) (如乙二醇气体干燥、甲醇脱硫及超临界萃取) 3、针对石油调整的状态方程性质方法:PENG-ROB、RK-SOAVE 如何选择热力学方法(1) 如何选择热力学方法(3) 处理高温、高压以及接近临界点的体系(如气体管线传输或超临界抽提) 有机物水溶液:NRTL 已知实验数据(如蒸汽压) 有机物水溶液:NRTL 用于炼油应用它能用于原油塔、减压塔和乙烯装置的部分工艺过程 用于炼油应用它能用于原油塔、减压塔和乙烯装置的部分工艺过程 对非极性或弱极性物系,可采用状态方程法。 WILSON NRTL UNIQUAC和它们的变化等等 (如气体加工装置、原油塔及乙烯装置)
Nothnagel Hayden-O Connell HF状态方程
如何选择热力学方法(1)
如何选择热力学方法(2)
极性 极性?
非极性
非电解质
WILSON NRTL UNIQUAC和它们的 变化等等
电解质? 电解质
ELECNRTL
真实 真实或虚拟?
虚拟&真实
PENG-ROB RK-SOAVE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ASPEN PLUS的物性方法和模型
路漫漫其悠远
少壮不努力,老大徒悲伤
3.1 ASPEN PLUS的物性方法和模型
类别 热力学性模型
传递性质模型 非常规固体性质模型
详细内容
状态方程模型 活度系数模型 蒸汽压和液体逸度模型 汽化热模型 摩尔体积和密度模型 热容模型 溶解度关联模型 其它
粘度模型 导热系数模型 扩散系数模型 表面张力模型
极性物系,采用状态方程与活度系数方程相 结合的组合法,即汽相采用状态方程法,液 相逸度采用活度系数法计算,液相的其它性 质采用状态方程或经验关联式法。
过程工业推荐使用的热力学方法
Galen J. Suppes选择方法
for aqueous organics, NRTL for alcohols, Wilson for alcohols and phenols, Wilson for alcohols, ketones, and ethers Wilson or
5、灵活的和预测性的状态方程性质方法: PRM计算H高温V、高2压、、接P近临R界W点混S合物、及在P高S压下R的K液-、液分离R的K体系-。A(S如P乙二E醇N、 RKS气M体干燥H、V甲醇2脱、硫及超R临K界萃S取W) S、SR-POLAR
液体活度系数性质方法
液体活度系数模型
NRTL UNIFAC UNIQUA
3、针对石油调整的状态方程性质方法: PENG-ROB、RK-SOAVE 用于气体加工、炼油及化工应用。(如气体加工装置、原油塔及乙烯装置)
4、用于高压烃应用的状态方程性质方法: BW处R理高-温L、S高、压以及L接K近-临P界点L的O体系C(K如气、体管P线R传输-或B超M临界、抽提)RKS-BM
物性推算(1)
输入化合物组份
输入已知的物性
Margules for C4-C18 hydrocarbons, Wilson for aromatics Wilson or Margules
物性的查询
运行tool中的检索参数结果
参数的输入
参数回归
已知实验数据(如蒸汽压) 演示
已知平衡数据(T-XY)回归wilson参数 2参数模型,回归Aij,Aji,Bij,Bji 演示
C VAN
LAAR WILSON
汽相状态方程
理想气体定律 Redlich-Kwong
Redlich-KwongSoave
Nothnagel Hayden-O
Connell HF状态方程
如何选择热力学方法
热力学模型选择方法
对非极性或弱极性物系,可采用状态方程法。 该法利用状态方程计算所需的全部性质和汽 液平衡常数。
一般焓和密度模型 煤和焦碳的焓和密度模型
物性模型
状态方程模型
1、IDEAL理想状态性质方法用于气相和液相处于理想状态的体系(如 减压体系、低压下的同分异构体系)
2、用于石油混合物的性质方法:BK10、 CHAO-SEA、GRAYSON 用于炼油应用它能用于原油塔、减压塔和乙烯装置的部分工艺过程
相关文档
最新文档