浙江省义乌市稠州中学2021届九年级下学期期中考试数学试题

合集下载

浙教版2021-2022学年九年级下册数学期中复习试卷 (含答案与解析)

浙教版2021-2022学年九年级下册数学期中复习试卷 (含答案与解析)

浙教版2021-2022学年九年级下册期中复习试卷数学(本试题卷共4页,满分120分,考试时间100分钟)注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定位置。

2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B铅笔或0.5毫米的黑色签字笔。

4.考试结束后,请将本试题卷和答题卡一并上交。

一.选择题(共19小题,满分57分,每小题3分)1.若3a=5b,则a:b=()A.6:5B.5:3C.5:8D.8:52.如图,已知线段AB,过点B作AB的垂线,并在垂线上取BC=AB;连接AC,以点C 为圆心,CB为半径画弧,交AC于点D;再以点A为圆心,AD为半径画弧,交AB于点P,则的值是()A.B.C.D.3.将线段比例尺改写成数值比例尺是()A.1:40B.1:400000C.1:4000000D.1:400004.如图,在△ABC中,DE∥AC,BD=6cm,DA=3cm,BE=4cm,则EC的长为()A.1cm B.2cm C.3cm D.4cm5.如图,△ABC中,DE∥BC,AD=3,BD=6,DE=2,则BC的长度为()A.4B.5C.6D.86.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为()A.B.C.D.17.已知△ABC∽△DEF,△ABC与△DEF的周长比为:1,则△DEF与△ABC的面积比为()A.1:2B.2:1C.:1D.1:8.已知△ABC∽△DEF,且相似比为2:1,若△ABC的面积是4cm²,则△DEF的面积是()A.1cm2B.2cm2C.3cm2D.4cm29.如图,已知在△ABC中,∠ACB=90°,CD⊥AB,那么下列结论错误的是()A.CA2=AD•AB B.AB•CD=AC•BCC.CB2=BD•BA D.CD2=CA•CB10.如图,为了测量水塘边C、E两点之间的距离,A处可以看到C、E两点,取AC、AE 上的B,D两点,使得BD∥CE.已知AB=10米,AC=30米,BD=15米,则CE为()米.A.30B.35C.40D.4511.如图,有一块形状为Rt△ABC的斜板余料,∠A=90°,AB=6cm,AC=8cm,要把它加工成一个形状为▱DEFG的工件,使GF在边BC上,D、E两点分别在边AB、AC上,若点D是边AB的中点,则S▱DEFG的面积为()cm2.A.10B.12C.14D.1612.在锐角三角形ABC中,∠A满足cos A=3m﹣1,则m的取值范围是()A.m>B.<m<C.<m<1D.m<13.tan45°=()A.B.C.1D.14.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα15.如图,在正方形方格纸中,每个小方格边长为1,A,B,C,D都在格点处,AB与CD 相交于点O,则sin∠BOD的值等于()A.B.C.D.16.如图,在一个8×8的正方形网格中有一个△ABC,其顶点均在正方形网格的格点上,则cos∠ACB的值为()A.B.C.D.17.如图,一艘轮船位于灯塔P的北偏东方向55°,距离灯塔为2海里的点A处.如果轮船沿正南方向航行到灯塔的正东位置,轮船航行的距离AB长是()海里.A.2B.2sin55°C.2cos55°D.2tan55°18.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑2m到A′时,梯脚B滑到B′,A'B'与地面的夹角为β,若tanα=,BB′=2m,则cosβ=()A.B.C.D.19.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=4m,则迎水坡宽度AC 的长为()A.m B.4m C.2m D.4m二.解答题(共4小题,满分63分)20.如图,在平行四边形ABCD中,点G是BC延长线上一点,AG点BD交于点E,与DC 交于点F.(1)求证:AE2=EF•EG;(2)若CG=,求△ABE与△FDE的周长之比.21.计算:(1)sin45°﹣cos60°+tan60°;(2)cos230°+sin230°﹣tan45°;(3)sin30°﹣tan30°+cos45°.22.计算:.23.学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC =12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,≈1.73.)(1)求灯杆AB的高度;(2)求CD的长度.参考答案与试题解析一.选择题(共19小题,满分57分,每小题3分)1.解:∵3a=5b,∴=,故选:B.2.解:∵BC⊥AB,∴∠ABC=90°,设AB=2a,BC=a,则AC=a,∵CD=BC=a,∴AD=AC﹣CD=(﹣1)a,∵AP=AD,∴AP=(﹣1)a,∴=.故选:A.3.解:由题意得1cm表示40km,所以数值比例尺为1:4000000.故选:C.4.解:∵DE∥AC,∴=,∵BD=6cm,DA=3cm,BE=4cm,∴=,∴EC=2(cm).故选:B.5.解:∵DE∥BC,∴△ABC∽△ADE,∴=,即=,∴BC=6.故选:C.6.解:∵AB∥CD∥EF,∴=,即=,解得,DF=,故选:C.7.解:∵△ABC∽△DEF,且△ABC与△DEF的周长比为:1,∴△ABC与△DEF的相似比为:1,∴△DEF与△ABC的周长比为1:,∴△DEF与△ABC的面积比1:2.故选:A.8.解:∵△ABC∽△DEF,相似比为2:1,∴=22=4,∵S=4cm²,△ABC∴S=1(cm2),△DEF故选:A.9.解:在△ABC中,∠ACB=90°,CD⊥AB,由射影定理得:CA2=AD•AB,A选项说法正确,不符合题意;由三角形的面积公式可知:AB•CD=AC•BC,∴AB•CD=AC•BC,B选项说法正确,不符合题意;由射影定理得:CB2=BD•BA,C选项说法正确,不符合题意;由射影定理得:CD2=DA•DB,D选项说法错误,符合题意;故选:D.10.解:∵BD∥CE,∴△ABD∽△ACE,∴AB:AC=BD:CE,∵AB=10米,AC=30米,BD=15米,∴10:30=15:CE,∴CE=45米.故选:D.11.解:过点A作AM⊥BC,交DE于点N,在Rt△ABC中,∵AB=6cm,AC=8cm,∴BC===10(cm),∵S=AB•AC=BC•AM,△ABC∴AM=,即AM==4.8(cm),∵四边形DEFG是平行四边形,∴DE∥BC.又∵点D是边AB的中点,∴DE=BC=5cm.∴DE=FG=5cm,∴△ADE∽△ABC,∴==,∴AN=MN=AM=2.4cm,∴▱DEFG的面积为:FG•MN=5×2.4=12(cm2).故选:B.12.解:根据题意得0<cos A<1,即0<3m﹣1<1,所以<m<.故选:B.13.解:tan45°=1.故选:C.14.解:∵sin B=sinα=,AC=2,∴AB==,故选:A.15.解:连接AE、EF,如图所示,则AE∥CD,∴∠FAE=∠BOD,∵每个小正方形的边长为1,则AE==,AF==2,EF==3,∵()2+(3)2=(2)2,∴△FAE是直角三角形,∠FEA=90°,∴sin∠FAE===,∴sin∠BOD=,故选:B.16.解:连接BD,如图所示:∵CD==,BD==2,BC==5,∴CD2+BD2=BC2,∴△BCD为直角三角形,∠BDC=90°,∴cos∠ACB==;故选:B.17.解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°,∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°(海里).故选:C.18.解:如图.在Rt△ABC中,∠ACB=90°,tanα=,∴可设AC=4xm,那么BC=3xm,∴AB==5xm,∴A′B′=AB=5x(m).在Rt△A′B′C中,∠A′CB′=90°,A′C=(4x﹣2)m,B′C=(3x+2)m,∴(4x﹣2)2+(3x+2)2=(5x)2,解得:x=2,∴A′C=6m,B′C=8m,A′B′=10m,∴cosβ==.故选:A.19.解:由题意:BC:AC=1:,∵BC=4m,∴AC=4m,故选:B.二.解答题(共4小题,满分63分)20.解:(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AD∥BC,∴△AEB∽△FED,△AED∽△CEB,∴=,=,∴=,∴AE2=EF•EG;(2)∵四边形ABCD为平行四边形,∴AB∥DC,AD∥BC,AB=DC,AD=BC,∴△AEB∽△FED,△ADF∽△GCF,∴=,∵CG==AD,∴=,∴DF=DC,∴==,∴△ABE与△FDE的周长之比为.21.解:(1)原式=﹣+=+;(2)原式=()2+()2﹣1=+﹣1=0;(3)原式=﹣+=﹣.22.解:原式===﹣=.23.解:(1)延长BA交CG于点E,则BE⊥CG,在Rt△ACE中,∠ACE=30°,AC=12m,∴AE=AC=×12=6(m),CE=AC•cosα=12×=6(m),在Rt△BCE中,∠BCE=60°,∴BE=CE•tan∠BCE=6×=18(m),∴AB=BE﹣AE=18﹣6=12(m);(2)在Rt△BDE中,∠BDE=27°,∴CD=DE﹣CE=﹣6≈24.9(m).。

义乌市初中数学九年级下期中测试(培优专题)(1)

义乌市初中数学九年级下期中测试(培优专题)(1)

一、选择题1.(0分)[ID:11125]如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)2.(0分)[ID:11121]如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.√33B.12C.√22D.√323.(0分)[ID:11118]已知线段a、b,求作线段x,使22bxa,正确的作法是()A.B.C .D .4.(0分)[ID :11111]如图所示,在△ABC 中, cos B =22,sin C =35,BC =7,则△ABC 的面积是( )A .212B .12C .14D .215.(0分)[ID :11104]如图,在△ABC 中,DE ∥BC ,12AD DB =,DE=4,则BC 的长是( )A .8B .10C .11D .126.(0分)[ID :11101]下列判断中,不正确的有( ) A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似 7.(0分)[ID :11100]若37a b =,则b aa -等于( ) A .34B .43C .73D .378.(0分)[ID :11085]如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A.2 B.3 C.4 D.59.(0分)[ID:11083]如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是()A.1:3B.1:4C.1:6D.1:910.(0分)[ID:11072]下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:911.(0分)[ID:11068]在ABC中,点D,E分别在边AB,AC上,:1:2AD BD=,那么下列条件中能够判断//DE BC的是( )A.12DEBC=B.31DEBC=C.12AEAC=D.31AEAC=12.(0分)[ID:11061]如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.15B.25C.215D.813.(0分)[ID:11045]如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.14.(0分)[ID:11039]在反比例函数4yx的图象中,阴影部分的面积不等于4的是()A.B. C.D.15.(0分)[ID:11059]如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A.423B.22C.823D.32二、填空题16.(0分)[ID:11187]若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____.17.(0分)[ID:11151]如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.(0分)[ID:11137]已知AB∥CD,AD与BC相交于点O.若BOOC=23,AD=10,则AO=____.19.(0分)[ID :11219]在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且∠AOB=60°,反比例函数y=kx(k>0)在第一象限内过点A ,且与BC 交于点F .当F 为BC 的中点,且S △AOF =123时,OA 的长为__________.20.(0分)[ID :11198]把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.21.(0分)[ID :11197]若a b =34,则a b b+=__________. 22.(0分)[ID :11193]一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.23.(0分)[ID :11192]如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE =,联结AE 交BD 于点F ,若BFE ∆的面积为2,则AFD ∆的面积为______.24.(0分)[ID :11175]近视眼镜的度数(y 度)与镜片焦距(x 米)呈反比例,其函数关系式为120.y x=如果近似眼镜镜片的焦距0.3x =米,那么近视眼镜的度数y 为______. 25.(0分)[ID :11222]如果a c eb d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____.三、解答题26.(0分)[ID :11299]如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF是⊙O的切线;(2)若,且,求⊙O的半径与线段的长.27.(0分)[ID:11281]某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:V(千米/小2030405060时)T(小时)0.60.40.30.250.2(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.28.(0分)[ID:11271]如图,锐角三角形ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)证明:ACD ABE∽.(2)若将D,E连接起来,则AED与ABC能相似吗?说说你的理由.29.(0分)[ID:11234]如图,E为□ABCD的边CD延长线上的一点,连结BE交AC于点O,交AD于点F,求证:BO EO FO BO.30.(0分)[ID:11272]如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=3 4 .(1)求证:ΔADM∽ΔBMN;(2)求∠DMN的度数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.C4.A5.D6.B7.B8.C9.A10.B11.D12.C13.C14.B15.C二、填空题16.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-217.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形A EOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=218.【解析】∵AB∥CD解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键19.8【解析】分析:过点A作AH⊥OB于点H过点F作FM⊥OB于点M设OA=x在由已知易得:AH=OH=由此可得S△AOH=由点F是平行四边形AOBC的BC边上的中点可得BF=BM=FM=由此可得S△B20.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影21.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键22.6【解析】符合条件的最多情况为:即最多为2+2+2=623.18【解析】【分析】根据求得BC=3BE再由平行四边形得到AD∥BC判定△ADF∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE∵四边形AB CD是平行四边形∴AD24.400【解析】分析:把代入即可算出y的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.2.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=12.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.3.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.4.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.5.D解析:D【解析】【分析】根据ADDB=12,可得ADAB=13,再根据DE∥BC,可得DEBC=ADAB;接下来根据DE=4,结合上步分析即可求出BC的长.【详解】∵ADDB=12,∴ADAB=13,∵在△ABC中,DE∥BC,∴DEBC=ADAB=13.∵DE=4,∴BC=3DE=12.故答案选D.【点睛】本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.6.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选B.【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.7.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.8.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.9.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.10.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.11.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.12.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=22=15OC OH,∴CD=2CH=215.故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键13.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.14.B解析:B【解析】【分析】 根据反比例函数k y x=中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=4;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=4. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 15.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒=3,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴DE=BD•tan30°=33=3,∴AE=AD-DE=42824233-=, 故选C.【点睛】 本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键. 二、填空题16.﹣2【解析】∵反比例函数y=-6x 的图象过点A (m3)∴3=-6m 解得=-2解析:﹣2【解析】∵反比例函数y =−6x 的图象过点A (m ,3),∴3=−6m ,解得=−2. 17.2【解析】【分析】【详解】如图过A 点作AE ⊥y 轴垂足为E ∵点A 在双曲线上∴四边形AEOD 的面积为1∵点B 在双曲线上且AB ∥x 轴∴四边形BEOC 的面积为3∴四边形ABCD 为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线1y=x 上,∴四边形AEOD 的面积为1 ∵点B 在双曲线3y=x上,且AB ∥x 轴,∴四边形BEOC 的面积为3 ∴四边形ABCD 为矩形,则它的面积为3-1=218.【解析】∵AB ∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 19.8【解析】分析:过点A 作AH⊥OB 于点H 过点F 作FM⊥OB 于点M 设OA=x 在由已知易得:AH=OH=由此可得S△AOH=由点F 是平行四边形AOBC 的BC 边上的中点可得BF=BM=FM=由此可得S△B解析:8【解析】分析:过点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,在由已知易得:,OH=12x ,由此可得S △AOH 2x 由点F 是平行四边形AOBC 的BC 边上的中点,可得BF=12x ,BM=14x ,FM=x ,由此可得S △BMF 2x ,由S △OAF =可得S △OBF =S △OMF =2x +,由点A 、F 都在反比例函数k y x =的图象上可得S △AOH =S △BMF ,由此即可列出关于x 的方程,解方程即可求得OA 的值. 详解:如下图,点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,∵四边形AOBC 是平行四边形,∠AOB=60°,点F 是BC 的中点,S △OAF =∴,OH=12x ,BF=12x ,∠FBM=60°,S △OBF =∴S △AOH =28x ,BM=14x ,FM=4x ,∴S △BMF =232x ,∴S △OMF =2x , ∵由点A 、F 都在反比例函数k y x =的图象上, ∴S △AOH =S △BMF ,2=2x , 化简得:23192x =,解得:1288x x ==-,(不合题意,舍去),∴OA=8.故答案为:8.点睛:本题是一道考查“反比例函数的图象和性质及平行四边形的性质”的综合题,熟记“反比例函数的图象和性质及平行四边形的性质”是解答本题的关键.20.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC 即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF ∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.21.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b ∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键 解析:74 【解析】 【分析】 由比例的性质即可解答此题.【详解】∵34a b =, ∴a=34b , ∴a b b +=3744b b b b b+= , 故答案为74【点睛】 此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.22.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=623.18【解析】【分析】根据求得BC=3BE 再由平行四边形得到AD ∥BC 判定△AD F ∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE ∵四边形ABCD 是平行四边形∴AD解析:18【解析】【分析】根据2EC BE =求得BC=3BE,再由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF,再根据相似三角形的面积的比等于相似比的平方求得结果.【详解】∵2EC BE =,∴BC=3BE,∵四边形ABCD 是平行四边形,∴AD ∥BC,AD=BC,∴△ADF ∽△EBF,∴AD=3BE,∴AFD ∆的面积=9S △EBF =18,【点睛】此题考查相似三角形的判定与性质,由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF 是解题的关键,再求得对应边的关系AD=3BE,即可求得AFD ∆的面积. 24.400【解析】分析:把代入即可算出y 的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单解析:400【解析】分析:把0.3x =代入120y x =,即可算出y 的值. 详解:把0.3x =代入120x, 400y =,故答案为400.点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.25.3【解析】∵=k ∴a=bkc=dke=fk ∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】 ∵a c e b d f===k ,∴a=bk,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题26.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】【分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长.【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6. 27.(1)v=12t;(2)若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)平均速度v 的取值范围是24<v <40【解析】【分析】 (1)根据表格中数据,可知v 是t 的反比例函数,设v=k t ,利用待定系数法求出k 即可;(2)根据时间t=13小时,求出速度,即可判断; (3)根据自变量的取值范围,求出函数值的取值范围即可.【详解】(1)根据表格中数据,可知v=k t , ∵v=20时,t=0.6,∴k=20×0.6=12, ∴v=12t(t≥0.2). (2)∵1﹣16-12=13, ∴t=13时,v=1213=36>32, ∴若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)∵0.3<t <0.5,∴24<v <40,答:平均速度v 的取值范围是24<v <40.【点睛】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.28.(1)见解析;(2)能,理由见解析.【解析】【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;(2)根据第一问可得到AD :AE=AC :AB ,有一组公共角∠A ,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】()1证明:ACD ABE ∽.证明:∵CD ,BE 分别是AB ,AC 边上的高,∴90ADC AEB ∠=∠=.∵A A ∠=∠,∴ACD ABE ∽.()2若将D ,E 连接起来,则AED 与ABC 能相似吗?说说你的理由.∵ACD ABE ∽,∴::AD AE AC AB =.∴AD:AC=AE:AB∵A A ∠=∠,∴AED ABC ∽.【点睛】 考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.29.见解析【解析】【分析】由AB ∥CD 得△AOB ∽△COE ,有OE :OB=OC :OA ;由AD ∥BC 得△AOF ∽△COB ,有OB :OF=OC :OA ,进而解答.【详解】∵AB ∥CD ,∴△AOB ∽△COE .∴OE :OB=OC :OA ;∵AD ∥BC ,∴△AOF ∽△COB .∴OB :OF=OC :OA .∴OB :OF=OE :OB , 即:BO EO FO BO= 【点睛】 本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.30.(1)见解析;(2)90°【解析】【分析】(1)根据43AD MB =,43AM BN =,即可推出AD AM MB BN=,再加上∠A=∠B=90°,就可以得出△ADM ∽△BMN ; (2)由△ADM ∽△BMN 就可以得出∠ADM=∠BMN ,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,从而得出∠DMN 的度数.【详解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵43ADMB=,14334AMBN==∴AD AM MB BN=又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【点睛】本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,解答时证明△ADM∽△BMN是解答的关键.。

浙江省2021九年级下学期数学期中考试试卷(II)卷

浙江省2021九年级下学期数学期中考试试卷(II)卷

浙江省2021九年级下学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一5的绝对值是A . 5B .C .D . -52. (2分)股市有风险,投资需谨慎。

截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示为()A . 9.5×106B . 9.5×107C . 9.5×108D . 9.5×1093. (2分) (2020七上·郯城期末) 如果一个多项式与另一多项式m2﹣2m+3的和是多项式3m2+m﹣1,则这个多项式是()A . 2m2+3m﹣4B . 3m2+3m﹣1C . 3m2+m﹣4D . 2m2+3m﹣14. (2分) (2019八上·北流期中) 下列图案中,是利用轴对称设计的图案的有()A .B .C .D .5. (2分)(2012·深圳) 如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A . 120°B . 180°C . 240°D . 300°6. (2分) (2019八下·高密期末) 下列属于最简二次根式的是()A .B .C .D .7. (2分) (2017七下·东营期末) 化简: =()A . 0B . 1C . xD .8. (2分) (2016八上·盐城期末) 如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A . 3B . 4C . 5D . 69. (2分) (2019九上·海宁开学考) 如图,在△ABC中,点D,E分别在AB,AC上,∠ADE=∠C,如果AE=4,△ADE的面积为5,四边形的面积为15,那么AB的长为().A . 8B .C . 6D .10. (2分) (2016九上·相城期末) 二次函数,当时,随的增大而减小;当时,随的增大而增大,则当时,的值为()A . 8B . 0C . 3D . -8二、填空题 (共7题;共8分)11. (1分) (2018七上·利川期末) 分解因式:2a3+8a2b+8ab2=________.12. (1分)(2018·南京模拟) 如图,在△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠CBD=16°,则∠BAC=________°.13. (1分) (2021九上·涟源期末) 如图,是上的三点,则,则________度.14. (1分) (2021九下·南宁开学考) 若关于的方程的一个根为1,则的值为________.15. (1分) (2019八下·恩施期末) 一次函数与的图象如图,则的解集是________.16. (2分)(2021·长宁模拟) 某直角三角形的周长为15,斜边长为7,该直角三角形的面积是________.17. (1分) (2019九上·潮南期末) 定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则3*8=________.三、解答题 (共10题;共88分)18. (5分)(2020·南通模拟) 解方程:(1) x2﹣8x+1=0(2)(3)解不等式组: .19. (10分) (2018九上·白云期中) 如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点,并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20. (5分) (2017八上·林甸期末) 一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?21. (5分) (2021九上·长兴期末) 某兴趣小组借助无人飞机航拍校园,如图,无人飞机从处平行飞行至处需10秒,在地面处同一方向上分别测得处的仰角为,处的仰角为,已知无人飞机的飞行速度为5米/秒,求这架无人飞机的飞行高度(结果保留根号).22. (6分)(2017·广陵模拟) 在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个(记为A1 , A2 , A3),黑球2个(记为B1 , B2).(1)若先从袋中取出m(m>0)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:①若A为必然事件,则m的值为________②若A为随机事件,则m的取值为________(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用树状图或列表法求这个事件的概率.23. (7分)(2017·枣阳模拟) 为了解学生的艺术特长发展情况,某校音乐决定围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了________名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为________.扇形统计图中喜欢“戏曲”部分扇形的圆心角为________度.(2)请你补全条形统计图.(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.24. (10分)(2019·河池) 在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y= 过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y= 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△C MN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y= 与AD交于点P.当△AEP为等腰三角形时,求m的值.25. (10分) (2019八下·杭锦旗期中) 如图,在直角坐标系中,点A在x轴上,且A(4,0),点B在y轴上,且B(0,4).(1)求线段AB的长;(2)若点E在线段AB上,OE⊥OF,且OE=OF,求AE+AF的值;(3)在(2)的条件下,过O作OM⊥EF,交AB于M,试确定线段BE、EM、AM之间的数量关系?并证明你的结论.26. (15分) (2021九下·广西期中) 如图,在中,,以为直径的交于点D,连接,过点D作,垂足为M,、的延长线交于点N.(1)求证:是的切线;(2)求证;(3)若,求的直径.27. (15分)(2019·恩施) 如图,抛物线的图象经过点C(0,-2),顶点D的坐标为(1,),与轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,)是轴上一动点,当为何值时,的值最小.并求出这个最小值.(4)点C关于轴的对称点为H,当取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF 是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共10题;共88分)答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:答案:27-1、答案:27-3、考点:解析:。

稠中九年级数学期中试题卷

稠中九年级数学期中试题卷

义乌市稠州中学教育集团九年级数学综合检测试题卷温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!全卷共4页,有3大题,24小题. 满分为120分.请将班级、姓名、学号写在试卷左上角.一、选择题(每小题3分,共30分)1. 抛物线()31-2+=x y 的顶点坐标是 ( )A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3) 2. 把ad bc =写成比例式,不正确...的是 ( ) A.a cb d = B .a d bc = C .b ad c = D .b da c= 3.如图,C 是⊙O 上一点,O 是圆心.若∠AOB =70°,则∠ACB 的度数为( ) A.70B.30C.35D.4504. 两个相似三角形的面积比是9:16,则这两个三角形的相似比是 ( ) A. 9:16 B. 3:4 C.9:4 D.3:165.如图⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A.4B.6C.7D.86. 已知),1(1y -,),2(2y -,),4(3y -是抛物线m x x y +--=822上的点,则( ) )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y << 7. 一个点到圆的最小距离为4,最大距离为9,则该圆的半径..是 ( ) A. 5 或13 B. 2.5 C. 6.5 D. 2.5 或6.58. 一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是 ( )A.12 B. 13 C. 14 D. 169. 给出下列一些命题:①直径相等的圆是等圆;②弦是直径;③圆上的任意两点都能将圆分成一条劣弧和一条优弧;④一个圆有且只有一条直径;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

【浙教版】初三数学下期中试卷(附答案)(1)

【浙教版】初三数学下期中试卷(附答案)(1)

一、选择题1.二次函数2(0)y ax bx c a =++≠的图象如图,给出下列四个结论:①20ac b -<;②320b c +<;③()m am b b a ++≤;④22()a c b +<;其中正确结论的个数有( )A .1B .2C .3D .42.已知二次函数y =ax 2+bx +c 的图象开口向上(如图),它与x 轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c <0;②b <0;③4a ﹣2b +c >0.其中正确的有( )A .3个B .2个C .1个D .0个3.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个4.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--5.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+B .23(-5)1y x =-C .23(5)1y x =+-D .23(5)1y x =++6.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .3 7.下列不等式成立的是( )A .sin60°<sin45°<sin30°B .cos30°<cos45°<cos60°C .tan60°<tan45°<tan30°D .sin30°<cos45°<tan60°8.尚本步同学家住“3D 魔幻城市”——重庆,他决定用所学知识测量自己居住的单元楼的高度.如图,小尚同学从单元楼CD 的底端D 点出发,沿直线步行42米到达E 点,在沿坡度i=1:0.75的斜坡EF 行走20米到达F 点,最后沿直线步行30米到达隔壁大厦的底端B 点,小尚从 B 点乘直行电梯上行到顶端A 点,从A 点观测到单元顶楼C 的仰角为28º,从点A 观测到单元楼底端的俯角为37 º,若A 、B 、C 、D 、E 、F 在同一平面内,且D 、E 和F 、B 分别在通一水平线上,则单元楼CD 的高度约为( )(结果精确到0.1米,参考数据:sin 28 º≈0.47,cos28 º≈0.88,tan28 º≈0.53,sin37 º≈0.6,cos37 º≈0.8,tan37 º≈0.75)A .79.0米B .107.5米C .112.6米D .123.5米 9.在RtΔABC 中,若∠C=90°,cosA=35,则sinA 的值为( ) A .35 B .45 C .34 D .5410.在Rt ABC 中,90,2,6C AC AB ∠=︒==,则下列结论正确的是( )A .1sin 3A =B .2cos 4B =C .tan 22A =D .22tan 3B = 11.如图,四边形ABCD 中,∠B =∠C =90°,CD =2米,BC =5米,5sin 13A =,则AB =( )A .8米B .10米C .12米D .14米12.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡与水平地面夹角的正切值等于( )A .513B .1213C .512D .1312二、填空题13.二次函数y =x 2+2x ﹣4的图象的对称轴是_____,顶点坐标是_____.14.计算机可以帮助我们又快又准地画出函数的图像.用“几何画板”软件画出的函数2(3)y x x =-和3y x =-的图像如图所示.若m ,n 分别满足方程2(3)1x x -=和31x -=根据图像可知m ,n 的大小关系是___________.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.已知A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y =x 2﹣3x 上的三点,则y 1,y 2,y 3的大小关系为____.(用“<”符号连接)17.如图,在平面直角坐标系中,点B 在第一象限,BA x ⊥轴于点A ,反比例函数()0k y x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y x =的对称点'C 的坐标为()()1,1n n ≠,若OAB 的面积为4.则下列结论:①2n =;②4k =;③不等式k x x <的解集是2x >;④tan 2ABO ,其中正确结论的序号是________.18.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A C D →→以1/cm s 的速度运动到点D 停止.设点P 的运动时间为(),x s PAB 的面积为()2y cm .表示y 与x 的函数关系的图象如图2所示,则a 的值为________________________.19.如图,在△ABC 中,∠BAC =90°,AB =AC =5,将△ABC 折叠,使点B 落在AC 边上的点D 处,EF 为折痕,若sin ∠CFD 的值为23,则BE =_____.20.在Rt ABC ∆中,90A ∠=︒,3AB =,4BC =则cos B =______.三、解答题21.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .22.突如其来的新冠疫情影响了某商场经济效益,在复工复产时对某商品价格进行了调整,每件的售价比进价多8元,8件的进价相当于6的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.(1)该商品的售价和进价分别是多少元?(2)在进价不变的条件下,若每天所得的销售利润为2160元时,且销量尽可能大,该商品应涨价多少元?(3)在进价不变的条件下,商场的营销部在调控价格方面,提出了每件商品的利润至少为25元的方案.则在此方案下,涨价多少元时每天的利润最大?最大利润是多少? 23.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?24.计算:20210+|﹣2sin60°.25.如图,已知甲、乙两栋楼的楼间距AB 30=米,小明在甲楼的楼下A 点处测得乙楼的楼顶点C 的仰角为63.5°(1)求乙楼的高BC .(参考数据:sin63.50.89︒≈,cos63.50.45︒≈,tan63.52︒≈)(2)小明发现在甲楼的中间外墙有一巨幅广告DE ,为了测量巨幅广告的宽度DE ,小明先在乙楼的楼底B 点测得点E 的仰角为45°,然后小明到楼顶点C 处,测得点D 的俯角为30°,根据小明测量的数据,请你帮助小明计算巨幅广告的宽度DE (结果保留根号)26.如图,某大楼的顶部竖有一块广告牌CD,小李在距离大楼底部15米的山坡坡脚A 处测得广告牌底部D的仰角为60°,沿坡面AB向上走10米到B处测得广告牌顶部C的仰i=角为45°,已知山坡AB的坡度1:3求:(1)点B距水平面AE的高度BH(2)广告牌CD的高度(测角器的高度忽略不计,结果精确到0.1米)参考数据:≈≈3 1.7322 1.414【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【详解】解:∵抛物线开口向下,所以a<0,与y 轴交于正半轴,所以c >0,∴ac<0,∵b²≥0,∴20ac b -<,∴①正确;∵把x=1代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵-2b a-=-1, ∴b=2a , ∴3b+2c <0,∴②正确;∵抛物线的对称轴是直线x=-1,∴y=a-b+c 的值最大,即把x=m 代入得:y=am 2+bm+c≤a -b+c ,∴am 2+bm+b≤a ,即m (am+b )+b≤a ,∴③正确;∵a+b+c <0,a-b+c >0,∴(a+c+b )(a+c-b )<0,则(a+c )2-b 2<0,即(a+c )2<b 2,故④正确;故选:D .【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax 2+bx+c=0的解的方法,同时注意特殊点的运用.2.A解析:A【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2b a -=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断.【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方,∴c <0,所以①正确;∵抛物线开口向上,∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0),∴抛物线的对称轴为直线x =1,即2b a-=1,∴b =﹣2a <0,所以②正确;∵由图象可知,当x =﹣2时,y >0,∴4a ﹣2b +c >0,所以③正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.3.D解析:D【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论.【详解】解:∵抛物线的开口向下,∴a <0. ∵02b a-<, ∴b <0. ∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确.则其中正确的有3个,为①②③.故选:D .【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.4.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =--- 即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.5.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 6.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.7.D解析:D【分析】根据特殊角三角函数值,可得答案.【详解】解:A、sin60°=32,sin45°=22,sin30°=12,故A不成立;B、cos30°=3,cos45°=22,cos60°=12,故B不成立;C、tan60°=3,tan45°=1,tan30°=3,故C不成立;D、sin30°=12,cos45°=22,tan60°=3,故D成立;故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题的关键.8.B解析:B【分析】作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,解直角三角形求出CK、AH即可解决问题.【详解】解:作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,如图,则四边形AKDH是矩形,∴AK=DH,KD=AH,∵140.753EG GF == ∴设EG=4x ,则FG=3x ,由勾股定理得,222EG FG EF +=∵EF=20m∴22169400x x +=解得,=4x (负值舍去)∴EG=16m ,FG=12m∵DE=42m ,BF=30m∴DH=DE+FG+BF=84m ,∴AK=84m ;在Rt △ADH 中,∠ADH=37°∴tan37°=AH DH, ∴AH=DH×tan37°=84×0.75=63(m )同理,在Rt △AKC 中,∠KAC=28°∴tan28°=CK AK, ∴CK=AK×tan28°=84×0.53=44.52(m )∴CD=CK+DK=63+44.52=107.5≈107.5(m)故选:B【点睛】本题考查解直角三角形-仰角俯角问题,坡度坡角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.9.B解析:B【分析】根据正弦和余弦的平方和等于1求解.【详解】解:∵()()22sin cos 1A A +=,∴4sin 5A ===, 故选B .【点睛】本题考查锐角三角函数的性质,熟练掌握正弦函数与余弦函数的平方和等于1的性质是解题关键. 10.C解析:C【分析】根据勾股定理求出BC =【详解】∵在Rt ABC 中,90C ∠=︒,2AC =,6AB =, ∴BC =∴sin BC A AB ===,故A 错误;cos sin 3B A ==,故B 错误;tan 2===BC A AC C 正确;tan===AC B BC ,故D 错误; 故选:C .【点睛】本题主要考查了解直角三角形,结合勾股定理进行计算是解题的关键.11.D解析:D【分析】过点D 作DE ⊥AB 于E ,得到四边形DEBC 是矩形,得到BE=DC=2米,DE=BC=5米,根据5sin 13A =,求得AD=13米,根据勾股定理求出AE=12米,即可得到答案. 【详解】过点D 作DE ⊥AB 于E ,∴∠DEB=∠B =∠C =90°,∴四边形DEBC 是矩形,∴BE=DC=2米,DE=BC=5米, ∵5sin 13A =, ∴513DE AD =, ∴AD=13米,∴12=米,∴AB=AE+BE=12+2=14米,故选:D ..【点睛】此题考查矩形的判定及性质,勾股定理,锐角三角函数,正确引出辅助线构建直角三角形解决问题是解题的关键.12.C解析:C【分析】如图(见解析),先利用勾股定理求出AC 的长,再根据正切三角函数的定义即可得.【详解】如图,由题意得:130,50,90,AB m BC m C A ==∠=︒∠是斜坡与水平地面的夹角, 由勾股定理得:22120AC AB BC m =-=, 则505tan 12012BC A AC ===, 即这个斜坡与水平地面夹角的正切值等于512, 故选:C .【点睛】本题考查了勾股定理、正切,熟练掌握正切三角函数的定义是解题关键.二、填空题13.直线x =﹣1(﹣1﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x2+2x ﹣4=(x+1)2﹣5∴该函数图象的对称轴是直线x =﹣1顶点坐标为(﹣1﹣5)故答案为:直线x =﹣1(﹣1﹣5)【解析:直线x =﹣1 (﹣1,﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x 2+2x ﹣4=(x +1)2﹣5,∴该函数图象的对称轴是直线x =﹣1,顶点坐标为(﹣1,﹣5),故答案为:直线x =﹣1,(﹣1,﹣5).【点睛】本题主要考查了二次函数对称轴和顶点坐标的求解,准确计算是解题的关键.14.【分析】利用函数图象通过确定函数和的图象与直线的交点位置可得到m 与n 的大小【详解】解:方程的解为函数的图象与直线的交点的横坐标的解为一次函数与直线的交点的横坐标如图由图象得故答案为:【点睛】本题考查 解析:m n <【分析】利用函数图象,通过确定函数2(3)y x x =-和3y x =-的图象与直线1y =的交点位置可得到m 与n 的大小.【详解】解:方程2(3)1x x -=的解为函数2(3)y x x =-的图象与直线1y =的交点的横坐标,31x -=的解为一次函数3y x =-与直线1y =的交点的横坐标,如图,由图象得m n <.故答案为:m n <.【点睛】本题考查了函数图象的应用,会利用图象的交点的坐标表示方程或方程组的解是解题的关键.15.③④【分析】利用数形结合思想从抛物线的开口与坐标轴的交点对称轴等方面着手分析判断即可【详解】解:∵抛物线的开口向下对称轴在原点的右边与y 轴交于正半轴∴a <0b >0c >0∴abc <0∴结论①错误;∵抛解析:③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0, ∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x当p <0时,()()120<--p m x m x∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.y2<y1<y3【分析】根据二次函数的解析式得出图象的开口向上对称轴是直线x=根据x >时y 随x 的增大而增大即可得出答案【详解】解:∵y=x2﹣3x ∴图象的开口向上对称轴是直线x=∵A (0y1)B (1解析:y 2<y 1<y 3【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=32,根据x >32时,y 随x 的增大而增大,即可得出答案.【详解】解:∵y=x 2﹣3x ,∴图象的开口向上,对称轴是直线x=32. ∵A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y=x 2﹣3x 上的三点,且0<1<32<4, ∴y 2<y 1<y 3.故答案为:y 2<y 1<y 3.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.17.②④【分析】根据对称性求出C 点坐标进而得OA 与AB 的长度再根据已知三角形的面积列出n 的方程求得n 进而用待定系数法求得k 再利用相关性质即可判断【详解】解:∵点C 关于直线y=x 的对称点C 的坐标为(1n ) 解析:②④【分析】根据对称性求出C 点坐标,进而得OA 与AB 的长度,再根据已知三角形的面积列出n 的方程求得n ,进而用待定系数法求得k ,再利用相关性质即可判断.【详解】解:∵点C 关于直线y=x 的对称点C'的坐标为(1,n )(n≠1),∴C (n ,1),∴OA=n ,AC=1,∴AB=2AC=2,∵△OAB 的面积为4, ∴12n×2=4, 解得,n=4,故①不正确;∴C (4,1),B (4,1),∴k=4×1=4,故②正确; 解方程组4y x y x =⎧⎪⎨=⎪⎩,得:22x y =⎧⎨=⎩(负值已舍), ∴直线y=x 反比例函数(0)k y x x=>的图象的交点为(2,2),观察图象,不等式k x x<的解集是02x <<,故③不正确; ∵B (4,1),∴OA=4,AB=2, ∴tan ABO 2OA AB∠==,故④正确; 故答案为:②④.【点睛】 本题是反比例函数图象与一次函数图象的交点问题,主要考查了一次函数与反比例函数的性质,对称性质,正切函数等,关键是根据对称求得C 点坐标及由三角形的面积列出方程.18.【分析】由函数图像可得:当时此时面积最大可得当时重合可得如图过作于求解再求解再利用列方程解方程可得答案【详解】解:由函数图像可得:当时重合此时面积最大当时重合如图过作于菱形经检验:符合题意故答案为: 43 【分析】由函数图像可得:当4x s =时,=PAB S a ,此时面积最大,可得=4AC , 当4x a =+时,,P D 重合,可得,AB CD a == 如图,过C 作CK AB ⊥于,K 求解2,CK = 再求解30CAK ∠=︒,30BCK ∠=︒, 再利用cos ,CK BCK BC ∠= 列方程,解方程可得答案. 【详解】解:由函数图像可得:当4x s =时,,P C 重合,=PAB S a ,此时面积最大,14=4AC ∴=⨯,当4x a =+时,,P D 重合,()144,AB CD a a ∴==⨯+-=如图,过C 作CK AB ⊥于,K1,2a CK a ∴= 2,CK ∴=1sin ,2CK CAK CA ∴∠== 30CAK ∴∠=︒,60ACK ∴∠=︒,菱形ABCD ,,30,AB BC a BCA BAC ∴==∠=∠=︒603030BCK ∴∠=︒-︒=︒,cos ,CK BCK BC ∠=23cos30,2a ∴=︒= 34,a =43a ∴= 经检验:33a =故答案为:433【点睛】 本题考查的是从函数图像中获取信息,菱形的性质,锐角三角函数的运用,掌握以上知识是解题的关键.19.3【分析】由题意得△BEF ≌△DEF 故∠EDF=∠B ;由三角形的外角性质即可解决【详解】解:∵在△ABC 中∠BAC=90°AB=AC=5∴∠B=∠C 设BE=x ∵AB=5∴AE=AB-BE=5-x ∵将解析:3【分析】由题意得△BEF ≌△DEF ,故∠EDF=∠B ;由三角形的外角性质,即可解决.【详解】解:∵在△ABC 中,∠BAC=90°,AB=AC=5,∴∠B=∠C ,设BE=x ,∵AB=5∴AE=AB-BE=5-x ,∵将△ABC 折叠,使点B 落在AC 边上的点D 处,∴△BEF ≌△DEF∴BE=DE=5-x ,∠B=∠EDF=∠C∵∠ADE+∠EDF=∠C+∠DFC∴∠ADE=∠DFC∴sin ∠CFD=sin ∠ADE=523AE x DE x -==, 解得,x=3,即,BE=3故答案为:3【点睛】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形外角性质等知识来解决问题. 20.【分析】根据题意画出图形进而得出cosB=求出即可【详解】解:∵∠A=90°AB=3BC=4则cosB==故答案为:【点睛】本题考查了锐角三角函数的定义正确把握锐角三角函数关系是解题的关键解析:34【分析】根据题意画出图形,进而得出cosB=AB BC求出即可. 【详解】解:∵∠A=90°,AB=3,BC=4, 则cosB=AB BC =34. 故答案为:34.【点睛】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.三、解答题21.(1)见解析;(2)()2,3-,21x -≤≤ 【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可. 【详解】 (1)由题意得: x ··· -3 -2 -1 0 1 ··· y··343···1由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =, 当2x =-时,()213y =--+=, ∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤. 【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.22.(1)商品的售价32元,进价为24元;(2)每件商品应涨价4元;(3)按照方案要求,涨价17元时的销售利润最大,最大利润为2875元. 【分析】(1)根据题目,设出未知数,列出二元一次方程组即可解答; (2)根据题目:利润=每件利润×销售数量,列出一元二次方程求解;(3)利用二次函数的性质,以及一元一次不等式,即可求出答案. 【详解】解:(1)该商品的售价x 元,进价为y 元,由题意得:868x y x y =+⎧⎨=⎩,解得:3224x y =⎧⎨=⎩,∴商品的售价32元,进价为24元.(2)设每件商品涨价m 元,由题意得:(3224)(2005)2160m m +--=.25(16)28802160m ∴--+=,解得:128m =,24m =. 使销量尽可能大,128m ∴=不合题意,舍去,答:每件商品应涨价4元.(3)设销售该商品获得的利润为w 元,涨价m 元,25(16)2880w m ∴=--+每件商品的利润至少为25元,即每件的售价应涨价:322425m +-≥,解得:17m ≥,50a =-<,∴当17m =时,利润最大,最大利润为25(1716)28802875w =--+=元.∴按照方案要求,涨价17元时的销售利润最大,最大利润为2875元.【点睛】本题主要考查了二次函数的应用,二次函数的性质,二元一次方程组的应用,一元二次方程的应用,熟练掌握实际问题模型是解答此题的关键. 23.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得; (2)在(1)的基础上分段表示利润,讨论最值. 【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得321276m m =-,解得12m =-,当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +. 当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭,∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+, ∵280>,∴W 随x 的增大而增大, ∴当30x =时,952W =最大. ∵968952>,∴当18x =时,968W =最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键. 24.1 【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案. 【详解】解:原式=12×2=1=1. 【点睛】本题主要考查了实数的混合运算,结合特殊角三角函数中、零指数幂计算是解题的关键.25.(1)乙楼的高为BC 为60米;(2)巨幅广告的宽度DE 为( 【分析】(1)在Rt △ABC 中,由tan ∠BAC=BCAB,得到BC 的值. (2)在图中的两个直角三角形,Rt △ABE ,Rt △DFC ,利用45°,30°角的正切值,分别求出AE ,DF 的长,再得到DE 的长度. 【详解】(1)在Rt △ABC 中, ∵tan ∠BAC=BCAB, ∴BC=AB·tan ∠BAC=30×2 =60(米), 答:乙楼的高为BC 为60米.(2)如图,过点C 作CF ⊥AD ,交AD 的延长线于F ,在Rt △ABE 中,∵∠AEB=90°-∠ABE=90°-45°=45°, ∴∠AEB=∠ABE , ∴AE=AB=30 (米), 在Rt △DFC 中, ∵tan ∠FCD=DFCF, ∴DF=CF·tan ∠33 ∴33 答:巨幅广告的宽度DE 为(3 【点睛】本题考查解直角三角形,以及仰角,俯角的定义,解题的关键是利用仰角,俯角构造直角三角形并解直角三角形. 26.(1)5米;(2)2.7米 【分析】(1)根据题意得3tan 3BAH i ∠===,进而可得∠BAH=30°,然后根据三角函数可求解;(2)由(1)及三角函数可得53AH =153DE =米,过点B 作BF CE ⊥于F ,进而可得()5315CF BF ==米,()1535DF =米,然后问题可求解. 【详解】解:(1)由题意得:AB=10米,山坡AB 的坡度3i =在Rt ABH 中,3tan 33BAH i ∠===, 30BAH ∴∠=︒,1sin 10sin 301052BH AB BAH ∴=⋅∠=⨯︒=⨯=(米);(2)由(1)可得:在Rt ABH 中,3cos 10cos3010532AH AB BAH =⋅∠=⨯︒=⨯=(米), 在Rt AED △中,由∠DAE=60°得tan 3DEDAE AE∠==, ∴DE AE =×tan 153153DAE ∠=⨯=(米), 如图过点B 作BF CE ⊥于F ,则()5315BF AH AE =+=米, ()1535DF DE EF ∴=-=米, ()5315CF BF ==米,()5315153520103 2.7CD CF DF ∴=-=-=-≈(米)答:广告牌CD 的高度改为2.7米. 【点睛】本题主要考查解直角三角形,熟练掌握解直角三角形是解题的关键.。

【浙教版】九年级数学下期中试卷附答案(1)

【浙教版】九年级数学下期中试卷附答案(1)

一、选择题1.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,在下列六个结论中:①20a b -<;②0abc <;③0a b c ++<;④0a b c -+>;⑤420a b c ++>;⑥240b ac -<.其中正确的个数有( )A .1个B .2个C .3个D .4个2.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( )A .18m >B .1m >-C .118m -<<D .1m 18<< 3.如图,已知ABC 中,,120,3AC BC ACB AB =∠=︒=,点D 为边AB 上一点,过点D 作//DE AC ,交BC 于点E ,过点E 作EF DE ⊥,交AB 于点F .设,AD x DEF =的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .4.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()4,0,其对称轴为直线1x =,结合图像给出下列结论:①0b <;②420a b c -+>;③当2x >时,y 随x 的增大而增大;④所以正确关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个5.如图,抛物线2y ax bx c =++的对称轴是直线1x =-,下列结论:①0abc >;②240b ac -≥;③80a c +<;④5320a b c -+<,正确的有( )A .1个B .2个C .3个D .4个6.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A.5个B.4个C.3个D.2个7.如图,在△ABC中,AD是BC上的高,tan∠B=cos∠DAC,若sin C=1213,BC=12,求AD的长()A.13 B.12 C.8 D.无法判断8.近日,重庆观音桥步行街惊现震撼的裸眼3D未来城市,超清LED巨幕,成功吸引了广大市民络绎不绝的前来打卡,一时间刷爆朋友圈.萱萱想了解该LED屏GH的高度,进行了实地测量,她从大楼底部E点沿水平直线步行30米到达自动扶梯底端D点,在D点用仪器测得屏幕下端点H的仰角为36°.然后她再沿着i=4:3长度为40米的自动扶梯到达扶梯顶端C点,又沿水平直线行走了40米到达B点,在B点测得屏幕上端点G的仰角为50°(A,B,C,D,E,H,G在同一个平面内,且B,C和A,D,E分别在同一水平线上),则该LED屏GH的高度约为()(结果精确到 0.1,参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin50°≈0 .77,tan50°≈1.19)A .122.0 米B .122.9米C .111.0米D .111.9米 9.如图,在ABC 中,AD 平分BAC ∠,//DE AC 交AB 于点E ,//DF AB 交AC 于点F ,且AD 交EF 于点O ,若8AF EF ==,则sin DAC ∠的值为( )A .13B .32C .12D .2210.如图,AC 垂直于AB ,P 为线段AC 上的动点,F 为PD 的中点, 2.8m =AC ,2.4m =PD , 1.2m =CF ,15∠=︒DPE .若90PEB ∠=︒,65∠=︒EBA ,则AP 的长约为( )(参考数据:sin650.91︒≈,cos650.42,sin500.77,cos500.64︒≈︒≈︒≈)A .1.2B .1.3mC .1.5mD .2.0m 11.如图,已知ABC 中,30CAB B ∠=∠=︒,23AB =,点D 在BC 边上,把ABC 沿AD 翻折使AB 与AC 重合,得AB D ',则ABC 与AB D '重叠部分的面积为( )A .332-B .312- C .33- D .336- 12.在ABC 中,90C ∠=︒,tan 2A =,则sin A 的值是( ) A .23 B .13 C .255 D .55 二、填空题13.如图,二次函数2y ax bx c =++的图象与x 轴交于点()3,0A ,()1,0B -.若42P a b =+,Q a b =+,则P ,Q 的大小关系是__________(填“>”或“<”或“=”).14.抛物线y =a (x ﹣2)(x ﹣2a)(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____. 15.抛物线24y x x c =-++向右平移一个单位得到的抛物线恰好经过原点,则c =_____.16.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__. 17.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A C D →→以1/cm s 的速度运动到点D 停止.设点P 的运动时间为(),x s PAB 的面积为()2y cm .表示y 与x 的函数关系的图象如图2所示,则a 的值为________________________.18.如图,在Rt ABC 中,∠ACB=90°,AC=3,BC=4,CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_________19.若21cos 302A tanB -+-=,那么ABC 的形状是_____. 20.如图,在平面直角坐标系中,直线l 与x 轴交于点B 1,与y 轴交点于D ,且OB 1=1,∠ODB 1=60°,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,……依次进行下去,则点A 2020的横坐标是_____.三、解答题21.已知二次函数22y x x m =++的图象与x 轴有且只有一个公共点. (1)求该二次函数的图象的顶点坐标;(2)若()1,Pn y ,()22,Q n y +是该二次函数的图象上的两点,且12y y >,求实数n 的取值范围.22.如图,在平面直角坐标系中,二次函数25y ax bx =++的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,//CD x 轴交抛物线于点D .已知点A 的横坐标为1-,4CD =.(1)求该二次函数的表达式.(2)已知点E 在抛物线上且位于直线CD 的上方,//EF CD 交抛物线于点F (点F 在点E 的右侧),FG x ⊥轴于点G ,交CD 于点H ,4EF HD =,求点E 的坐标.23.如图1,在矩形ABCD 中,8AB =,6AD =,沿对角线AC 剪开,再把ACD △沿AB 方向平移得到图2,其中A D '交AC 于E ,A C ''交BC 于F .(1)在图2中,除ABC 与C DA ''△外,指出图中全等三角形(不能添加辅助线和字母)并选择一对加以证明;(2)设AA x '=.①当x 为何值时,四边形A ECF '是菱形?②设四边形A ECF '的面积为y ,求y 与x 的关系式,并求出y 最大值.24.如图,某渔船在完成捕捞作业后准备返回港口C ,途经某海域A 处时,港口C 的工作人员监测到点A 在南偏东30方向上,另一港口B 的工作人员监测到点A 在正西方向上.已知港口C 在港口B 的北偏西60︒方向,且B 、C 两地相距120海里.(1)求出此时点A 到港口C 的距离(计算结果保留根号);(2)若该渔船从A 处沿AC 方向向港口C 驶去,当到达点A '时,测得港口B 在A '的南偏东75︒的方向上,求此时渔船的航行距离(计算结果保留根号).25.如图,甲、乙两座建筑物的水平距离BC 为34 m ,从甲建筑物的顶部A 处测得乙建筑物的顶部D 处的俯角为48°,测得乙建筑物的底部C 处的俯角为58°,求乙建筑物的高度CD .(结果精确到0.1m .参考数据:sin 48°≈0.74, cos 48°≈0.67,tan 48°≈1.11,sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)26.如图在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象交于第二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为()6,n .线段5OA =,E 为x 轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式;(2)求AOB 的面积;【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象判断1,-1,2所对应的y 的值,进而对所得结论进行判断.【详解】 解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0,∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确;④当x=-1时,y=a -b+c <0,④错误;⑤当x=2时,y=4a+2b+c <0,⑤错误;⑥∵图象与x 轴无交点,∴b 2-4ac <0,⑥正确;故正确的有①②③⑥,共4个.故选:D .【点睛】此题主要考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键. 2.A解析:A【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围.【详解】解:设()()2121m x x y m m +--+=, ∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中, 1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质. 3.B解析:B【分析】过点C 作CG ⊥AB ,求出CG 、AC ,证明△ACB ∽△DEB ,求出DE ,再根据直角三角形的性质求出EF ,根据三角形面积公式得到y 关于x 的函数表达式,从而判断图像.【详解】解:∵AC=BC ,∠ACB=120°,∴∠A=∠B=30°,过点C 作CG ⊥AB ,则AG=BG=12AB=32,AC=2CG ,则, ∵DE ∥AC ,∴△ACB ∽△DEB ,∴AC AB DE BD =,即33DE x=-,解得:DE=()333x -, ∵∠DEF=90°,∠EDF=∠A=30°,∴EF=3=33x -, ∴y=S △DEF =12DE EF ⨯⨯=()3313233x x --⨯⨯=()23318x -, 可得:当0<x <3时,图像为抛物线,y 随x 的增大而减小,选项B 中的图像最合适,故选B .【点睛】本题考查了相似三角形的判定和性质,以及直角三角形的性质,二次函数,解题的关键是通过相似三角形的性质得到线段的长,从而得到二次函数表达式.4.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与x 轴y 轴的交点,综合判断即可.【详解】解:抛物线开口向上,因此a >0,抛物线的对称轴为x=-2b a=1,所以0b <,所以①正确;抛物线的对称轴为x=1,与x 轴的一个交点为(4,0),则另一个交点(-2,0),于是4a-2b+c=0,所以②不正确;x >1时,y 随x 的增大而增大,所以③正确;抛物线与x 轴有两个不同的交点,因此一元二次方程20ax bx c ++=有两个不相等的实数根,所以④正确;综上所述,正确的结论有①③④.故答案为:C .【点睛】本题考查二次函数的图形和性质,掌握二次函数的图形和系数之间的关系是正确判断的前提. 5.B解析:B【分析】首先根据函数图像分别判断出a 、b 、c 的符号判断结论①;再利用与x 轴交点的个数得出24b ac -的正负判断结论②;利用对称轴以及当2x =时函数值的正负判断结论③;利用当1x =-和2x =-时的函数值的正负来判断结论④.【详解】结论①由抛物线开口方向向上可得0a >;对称轴在y 轴左侧可得a 、b 符号相同,即0b >;函数图像与y 轴交于负半轴,可得0c <;由此可知0abc <,故①错误. 结论②由函数图像与x 轴有两个交点可得240b ac ->,故②正确.结论③由函数图像可知抛物线对称轴为1x =-,所以12b a-=-,整理可得2b a =;当2x =时,420a b c ++>,将2b a =代入420a b c ++>可得,80a c +>,故③错误. 结论④由函数图像可知当2x =-时,420a b c -+<,当1x =-时,0a b c -+<,所以532(42)()0a b c a b c a b c -+=-++-+<,故④正确.综上所述,本题正确结论为②④,共2个.故选B.【点睛】本题主要考查二次函数的系数与图像的关系,关键在利用函数中当1x =-、2x =-和1x =-时的函数值的大小来判断③④结论的对错.6.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a , ()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- , ∵ ()21a -≥0,由图象得:1a ≠ , ∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.7.C解析:C【分析】 根据12sin 13AD C AC ==,可设AD =12x ,由勾股定理可求出DC ,利用tan ∠B =cos ∠DAC 可求出BD =13x ,利用BC =12,求出x ,进而求解.【详解】 在Rt △ADC 中,12sin 13AD C AC ==, 设AD =12x ,则AC =13x , ∴5DC x ==,∵cos ∠DAC =sin C =1213, ∴tan B =1213, 在Rt △ABD 中,∵tan B 1213AD BD ==,∴BD =13x , ∴13x +5x =12,解得23x =, ∴AD =12x =8.故选C .【点睛】 本题考查解直角三角形,熟练掌握正切,正弦和余弦的定义是解题的关键.8.A解析:A【分析】作CM ⊥AE 于M ,设射线BC 交GE 于N ,则CN=ME=DM+DE ,CM=NE=NH+EH ,由三角函数定义求出EH=21.9米,由坡度求出DM=24米,NE=CM=32米,得出CN=54米,BN=94米,再由三角函数定义求出GN≈111.86米,得出GE=143.86米,即可得出答案.【详解】解:作CM ⊥AE 于M ,设射线BC 交GE 于N ,如图所示:则CN=ME=DM+DE ,CM=NE=NH+EH ,由题意得:∠GBN=50°,BC=DC=40米,DE=30米,∠EDH=36°,∵tan ∠EDH EH DE=, ∴EH=DE×tan ∠EDH≈30×0.73=21.9(米),∵DC 的坡度为4:3CM DM =, ∴4325NE CM DC ===米,3245MD DC ==米, ∴CN=ME=DM+DE=24+30=54(米),∴BN=BC+CN=40+54=94(米),∵tan ∠GBN GN BN=, ∴GN=BN×tan ∠GBN≈94×1.19≈111.86(米),∴GE=GN+NE=111.86+32=143.86(米),∴GH=GE-EH=143.86-21.9≈121.96≈122.0 (米);故选:A .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,能借助仰角构造直角三角形,利用三角函数解直角三角形是解题的关键.9.C解析:C【分析】先证明四边形AEDF 是平行四边形,在根据题意得到四边形AEDF 是菱形,即可得到结果;【详解】由题意://DE AC ,//DF AB ,即//DE AF ,//DF EA ,∴四边形AEDF 是平行四边形,又∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∵//AE DF ,∴BAD ADF ∠=∠,∴DAF FDA ∠=∠,∴FA FD =,∴四边形AEDF 是菱形,∴EF AD ⊥,且O 为EF 的中点,8EF =,∴4OF =,∴在Rt △OAF 中,41sin 82OF DAF AF ∠===; ∴1sin 2DAC ∠=; 故答案选C .【点睛】本题主要考查了菱形的判定与性质,结合三角函数计算是解题的关键. 10.B解析:B【分析】过点F 作FG ⊥AC 于点G ,根据题意,∠BEP=90°,根据四边形内角和定理可得∠CPF 的度数,再根据锐角三角函数即可求出CP 的长,进而可得AP 的长.【详解】解:如图,过点F 作FG ⊥AC 于点G ,根据题意可知:∠BEP=90°,∠B=65°,∵AC ⊥AB∴∠A=90°,∴∠EPA=360°-90°-90°-65°=115°,∵∠DPE=15°,∴∠APD=130°,∴∠CPF=50°,∵F 为PD 的中点,∴DF=PF=12PD=1.2,∴CF=PF=1.2,∴CP=2PG=2×PF•cos50°≈2×1.2×0.64≈1.54,∴AP=AC-PC=2.8-1.54≈1.3(m).故选:B.【点睛】本题考查了解直角三角形的应用,借助辅助线构造直角三角形,并结合图形利用三角函数解直角三角形是关键.11.A解析:A【分析】首先过点D作DE⊥AB′于点E,过点C作CF⊥AB,由△ABC中,∠CAB=∠B=30°,AB=23,利用等腰三角形的性质,即可求得AC的长,又由折叠的性质,易得∠CDB′=90°,∠B′=30°,B′C=AB′−AC=23−2,继而求得CD与B′D的长,然后求得高DE的长,继而求得答案.【详解】过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,23AB=∴AC=BC,AF=123∴AC=AF÷cos∠CAB33,由折叠的性质得:AB′=23AB=∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′−AC=3−2,∴CD=12B′C31,B′D=B′C•cos∠B′=(32)33∴DE=•CD B DB C''(33)323322=-∴S阴影=12AC•DE=1233-33-故选:A.【点睛】此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.12.C解析:C【分析】由tanA=BC AC=2,设BC=2x ,可得AC=x ,Rt △ABC 中利用勾股定理算出,然后利用三角函数在直角三角形中的定义,可算出sinA 的值.【详解】解:由tanA=BC AC=2,设BC=2x ,则AC=x , ∵Rt △ABC 中,∠C=90°,∴根据勾股定理,得==,因此,sinA=5BC AB == 故选:C .【点睛】本题已知正切值,求同角的正弦值.着重考查了勾股定理、三角函数的定义等知识,属于基础题. 二、填空题13.【分析】把AB 坐标代入求出代入PQ 进行判断即可【详解】解:将代入∴∴∴∴∵二次函数的图象开口向下∴∴∴故答案为:【点睛】此题主要考查了二次函数的图象与性质求出是解答此题的关键解析:Q P >【分析】把A 、B 坐标代入2y ax bx c =++求出2b a =-,代入P ,Q 进行判断即可.【详解】解:将()3,0A ,()1,0B -代入2y ax bx c =++, ∴0930a b c a b c =++⎧⎨=-+⎩∴93a b a b +=-∴2b a =-∴42=440P a b a a =+-=,=2Q a b a a a =+-=-∵二次函数的图象开口向下∴0a <∴0a ->∴Q P >故答案为:Q P >【点睛】此题主要考查了二次函数的图象与性质,求出2b a =-是解答此题的关键.14.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由 解析:-1【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a ==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值.【详解】解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭, 解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫ ⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a =+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数,∴1a =±,当1a =时,y=0(不符合题意,舍去);当1a =-时,y=4,(符合题意)∴1a =-;故答案为-1.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.15.5【分析】先根据平移的规律得出平移后的解析式再根据二次函数图象上的点的特点即可得到关于c 的方程解方程即可【详解】抛物线解析式为:向右平移一个单位得到的抛物线为:抛物线恰好经过原点解得c=5故答案为: 解析:5【分析】先根据平移的规律得出平移后的解析式,再根据二次函数图象上的点的特点即可得到关于c 的方程,解方程即可.【详解】抛物线解析式为:224(2)4y x x c x c =-++=--++,向右平移一个单位得到的抛物线为:2(3)4y x c =--++,抛物线恰好经过原点, ∴20(03)4c =--++,解得c=5.故答案为:5【点睛】本题考查的是二次函数图象与几何变换,二次函数的性质以及二次函数图象上的点的坐标的特征,图象上的点的坐标适合解析式.16.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式. 17.【分析】由函数图像可得:当时此时面积最大可得当时重合可得如图过作于求解再求解再利用列方程解方程可得答案【详解】解:由函数图像可得:当时重合此时面积最大当时重合如图过作于菱形经检验:符合题意故答案为:解析:3【分析】由函数图像可得:当4x s =时,=PAB S a ,此时面积最大,可得=4AC , 当4x a =+时,,P D 重合,可得,AB CD a == 如图,过C 作CK AB ⊥于,K 求解2,CK = 再求解30CAK ∠=︒,30BCK ∠=︒, 再利用cos ,CK BCK BC ∠= 列方程,解方程可得答案. 【详解】解:由函数图像可得:当4x s =时,,P C 重合,=PAB S a ,此时面积最大,14=4AC ∴=⨯,当4x a =+时,,P D 重合,()144,AB CD a a ∴==⨯+-=如图,过C 作CK AB ⊥于,K1,2a CK a ∴= 2,CK ∴=1sin ,2CK CAK CA ∴∠== 30CAK ∴∠=︒, 60ACK ∴∠=︒,菱形ABCD ,,30,AB BC a BCA BAC ∴==∠=∠=︒603030BCK ∴∠=︒-︒=︒,cos ,CK BCK BC ∠=23cos30,2a ∴=︒= 34,a =43a ∴= 经检验:33a =故答案为:433【点睛】本题考查的是从函数图像中获取信息,菱形的性质,锐角三角函数的运用,掌握以上知识是解题的关键.18.【分析】如图过点F作FH⊥AC于H首先证明设FH=2kAH=3k根据tan∠FCH=构建方程求解即可【详解】解:如图过点F作FH⊥AC于H 在Rt△ABC中∵∠ACB=90°AC=3BC=4∴AB=解析:54 85【分析】如图,过点F作FH⊥AC于H.首先证明23FHAH=,设FH=2k,AH=3k,根据tan∠FCH=FH ADCH CD=,构建方程求解即可.【详解】解:如图,过点F作FH⊥AC于H.在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,∴222243CB AC+=+,∵CD⊥AB,∴S△ABC=12•AC•BC=12•AB•CD,∴CD=125,2222123()5AC CD-=-=95,∵FH∥EC,∴FH AHEC AC=,∵EC=EB=2,∴23FHAH=,设FH=2k,AH=3k,CH=3-3k,∵tan∠FCH=FH ADCH CD=,∴92512335kk=-,∴k=917, ∴FH=1817,CH=3-2717=2417,∴=3017, ∴DF=1230517-=5485, 故答案为5485. 【点睛】 本题考查了解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题.19.锐角三角形【分析】根据二次根式和绝对值的非负数性质及特殊角的三角函数值可求出∠A 和∠B 的度数然后根据三角形内角和求出∠C 的度数即可得到答案【详解】∵∴cos2A-=0tan-=0∴cosA=(负值舍解析:锐角三角形【分析】根据二次根式和绝对值的非负数性质及特殊角的三角函数值可求出∠A 和∠B 的度数,然后根据三角形内角和求出∠C 的度数,即可得到答案.【详解】∵0tanB =, ∴cos2A-12=0,,∴cosA=, ∴∠A=45°,∠B=60°,∴∠C=180°-45°-60°=75°,∴△ABC 是锐角三角形,故答案为:锐角三角形【点睛】本题考查了特殊角的三角函数值及非负数性质的应用,熟练掌握非负数的性质,熟记特殊角的三角函数值是解题关键.20.【分析】观察图形找到图形变化的规律利用规律求解即可【详解】解:∵OB1=1∠ODB1=60°∴OD =B1(10)∠OB1D =30°∴D (0)如图所示过A1作A1A ⊥OB1于A 则OA =OB1=即A1的解析:2020212- 【分析】观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:∵OB 1=1,∠ODB 1=60°,∴OD=11tan OB ODB =∠,B 1(1,0),∠OB 1D =30°, ∴D (0, 如图所示,过A 1作A 1A ⊥OB 1于A ,则OA =12OB 1=12, 即A 1的横坐标为12=1212-, 由题可得∠A 1B 2B 1=∠OB 1D =30°,∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=1, 即A 2的横坐标为12+1=32=2212-, 过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2, 即A 3的横坐标为12+1+2=72=3212-, 同理可得,A 4的横坐标为12+1+2+4=152=4212-, 由此可得,A n 的横坐标为212n -, ∴点A 2020的横坐标是2020212-, 故答案为:2020212-.【点睛】本题主要考查平面直角坐标系点的坐标规律及特殊三角函数值,关键是根据题意及三角函数值得到点的坐标规律即可.三、解答题21.(1)顶点坐标为()1,0-;(2)2n <-【分析】(1)利用配方法将二次函数解析式变形为顶点式,再利用图象与x 轴有且只有一个公共点,则顶点的纵坐标为0,故函数图象的顶点坐标为(-1,0),(2)将n ,n+2代入二次函数解析式即可得出n 的取值范围.【详解】解:(1)()22211y x x m x m =++=++-,对称轴1x =-∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0.∴函数图象的顶点坐标为()1,0-(2)∵()1,P n y ,()22,Q n y +是该二次函数的图象上的两点,且12y y >,()()22212221n n n n ++>++++,化简整理得,480n +<,∴2n <-,∴实数n 的取值范围是2n <-.【点睛】本题考查了二次函数的性质及解不等式,利用数形结合思想解题是关键.22.(1)245y x x =-++;(2)265,39E ⎛⎫ ⎪⎝⎭【分析】(1)根据抛物线的对称性,可得22b a-=,把()1,0A -代入函数解析式,进而即可得到答案;(2)设点()2,45F m m m -++,则4HD m =-,24EF m =-,结合4EF HD =,列出方程,即可得到答案.【详解】(1)∵4CD =,由对称性得:抛物线对称轴为:直线22b x a=-=, 把()1,0A -代入得,50a b -+=, 解得:14a b =-⎧⎨=⎩, ∴二次函数的表达式为:245y x x =-++;(2)设点()2,45F m m m -++,则4HD m =-, 由二次函数图象的对称性可得:()2224EF m m =-=-,∵4EF HD =,∴()2444m m -=-,解得103m =, ∴8243EF m =-=, ∴42233E x =-=.把23E x =代入,得2226545339E y ⎛⎫=-+⨯+= ⎪⎝⎭. ∴265,39E ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像和性质,掌握待定系数法,二次函数图像的对称性以及函数图像上点的坐标特征,是解题的关键.23.(1)AA E C CF ''△≌△,A BF CDE '△≌△;证明见解析 (2)①5 ②23(4)124y x =--+;12 【分析】 (1)根据矩形的性质、全等三角形的判定定理证明;(2)①设A′E=a ,A′F=b ,根据相似三角形的性质用x 表示出a 、b ,根据菱形的判定定理列出方程,解方程即可;②根据三角形的面积公式求出y 关于x 的二次函数解析式,根据二次函数的性质计算即可.【详解】解:(1)△AA′E ≌△C′CF ,△A′BF ≌△CDE ,由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∴AA′=CC′,∵AB ∥CD ,∴∠BA′F=∠C′,由题意得,∠BA′F=∠A ,∴∠A=∠C′,在△AA′E 和△C′CF 中,A C AA C CAA E C CF ∠∠'⎧⎪''⎨⎪∠'∠'⎩===, ∴△AA′E ≌△C′CF (ASA );由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∠B=∠D=90゜,DA′=CB ,DA′//CB ,由△AA′E ≌△C′CF ,得,A′E=FC∵四边形A′DCF 是平行四边形,∴A′F=EC ,∴Rt △A′BF ≌△CDE ;(2)①设A ′E=a ,A′F=b ,在Rt △ABC 中,8AB =,6AD =,∠B=90゜∴10AC ===∵A′F ∥AC , ∴A F BA AC BA ''=,即8108b x -=, 解得,4054x b -=, 同理68a x =, 解得,34a x =, 当A′E=A′F 时,四边形A′ECF 是菱形, ∴4054x -=34x , 解得,x=5,∴当x=5时,四边形A′ECF 是菱形; ②3(8)4y A E A B x x ''=⨯=-,即364y x x =-+. 23(4)124y x =--+,y 的最大值为12. 【点睛】本题考查的是四边形的综合题,矩形的性质、相似三角形的判定和性质、全等三角形的判定和性质、二次函数的解析式的确定以及二次函数的最值的求法,掌握相关的判定定理和性质定理是解题的关键.24.(1)此时点A 到港口C 的距离为403海里;(2)此时该渔船的航行距离为(60203)-海里.【分析】(1)延长BA ,过点C 作CD ⊥BA 延长线与点D ,由直角三角形的性质和锐角三角函数的定义求出AC 即可;(2)过点A′作A′N ⊥BC 于点N ,由(1)得:CD=60海里,403AC =海里,证出A′B 平分∠CBA ,得A'E=A'N ,设AA′=x ,则AE=12AA',A'N=A′E=3AE=3x ,证出A'C=2A'N=3x ,由题意得出方程,解方程即可.【详解】(1)如图所示:延长BA ,过点C 作CD BA ⊥延长线与点D ,由题意可得:30CBD ∠=︒,120BC =海里,则6201CD BC ==海里, 3cos cos30CD ACD AC ∠==︒= 即603AC =403AC ∴=即此时点A 到港口C 的距离为3(2)过点A′作A′N ⊥BC 于点N ,如图:由(1)得:CD=60海里,3∵A'E ∥CD ,∴∠AA'E=∠ACD=30°,∴∠BA′A=45°,∵∠BA'E=75°,∴∠ABA'=15°,∴∠2=15°=∠ABA',即A′B 平分∠CBA ,∴A'E=A'N ,设AA′=x,则AE=12AA',A'N=A′E=3AE=32x,∵∠1=60°-30°=30°,A'N⊥BC,∴A'C=2A'N=3x,∵A'C+AA'=AC,∴3x+x=403,解得:x=60-203,∴AA'=(60-203)海里,答:此时渔船的航行距离为(60-203)海里.答:此时该渔船的航行距离为(60203)海里.【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.25.乙建筑物的高度CD约为16.7米【分析】作AE⊥CD交CD的延长线于点E,根据正切的定义分别求出CE、DE,结合图形计算即可.【详解】解:如图,作AE⊥CD交CD的延长线于点E,则四边形ABCE是矩形,∴AE=BC=34m,在Rt△ACE中,tan∠CAE=CE AE,∴CE=AE•tan58°≈34×1.60=54.4(m)在Rt△ADE中,tan∠DAE=DE AE,∴DE=AE•tan48°≈34×1.11=37.74(m)∴CD=CE﹣DE=54.4﹣37.74=16.66≈16.7(m)答:乙建筑物的高度CD约为16.7m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.26.(1)12 yx =-,223y x=-+;(2)9【分析】(1)过点A作AH⊥x轴于H点,由4sin5AHACEAO∠==,OA=5,根据正弦的定义可求出AH,再根据勾股定理得到OH,即得到A点坐标(-3,4),把A(-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B(6,n)代入,确定点B点坐标,然后把A点和B点坐标代入y=kx+b(k≠0),求出k和b.(2)先令y=0,求出C点坐标,得到OC的长,然后根据AOB BOC AOCS S S=+计算△AOB的面积即可.【详解】解:(1)过A作AH x⊥轴交x轴于H,∴4sin5AHACEAO∠==,5OA=,∴4AH=,∴223OH OA AH,∴()3,4A-,将()3,4A-代入myx=,得12=-m,∴反比例函数的解析式为12yx=-,将()6,B n代入12yx=-,得2n=-,∴()6,2B-,将()3,4A-和()6,2B-分别代入()0y kx b k=+≠,得3462k bk b-+=⎧⎨+=-⎩,解得232kb⎧=-⎪⎨⎪=⎩,∴直线解析式:223y x =-+; (2)在直线223y x =-+中,令0y =,则有2203x -+=,解得3x =, ∴()3,0C ,即3OC =, ∴13462AOC S =⨯⨯=△; 同理3BOC S =△,则9AOB BOC AOC S S S =+=△△△.【点睛】本题考查了反比例函数的综合运用.关键是作x 轴的垂线,解直角三角形求A 点坐标,用待定系数法求直线,双曲线的解析式.。

浙江金华义乌市稠州中学2021-2022学年九年级下学期第一次月考数学试卷(PDF版含答案)

浙江金华义乌市稠州中学2021-2022学年九年级下学期第一次月考数学试卷(PDF版含答案)

九年级数学学科独立作业一、单选题(10小题)1.下列各数中,比-1大的数是( )A. 23−B. 25− C. 1 D. -3 2.下列运算中,正确的是( ) A .(﹣m )6÷(﹣m )3=﹣m 3 B .(﹣a 3)2=﹣a 6 C .(xy 2)2=xy 4 D .a 2•a 3=a 63.根据世界卫生组织的统计,截止10月28日,全球新冠确诊病例累计超过4430万,用科学记数法表示这一数据是( ) A .4.43×107 B .0.443×108 C .44.3×106 D .4.43×108 4.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整数解是( )A .﹣1,0,1,2B .0,1,2C .1,2D .﹣1,0,15.一副三角板按如图所示的位置摆放,若BC ∥DE ,则∠1的度数是( ) A .65° B .70° C .75° D .80°6.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型(如图所示)摆出相同姿势,才能穿墙而过,否则会被推入水池.类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )A .B .C .D .7.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为( )米. A .20cos 100B .100cos20°C .020sin 100D .100sin20° 8.已知三个实数a ,b ,c 满足a +b +c ≠0,a 2+b 2=c 2,a 2=b 2+c 2,则关于x 的一元二次方程ax 2+bx +c =0的解的情况为( )A .无实数根B .有实数根C .有两个不相等的实数根D .有两个相等的实数根9.如图,点P ,Q ,R 分别在等边△ABC 的三边上,且AP =BQ =CR ,过点P ,Q ,R 分别作BC ,CA ,AB 边的垂线,得到△DEF .若要求△DEF 的面积,则只需知道( ) A .AB 的长 B .DP 的长 C .BP 的长 D .AP 的长10. 如图,正方形ABCD 边长为2,BM ,DN 分别是正方形的两个外角的平分线,点P ,Q 分别是平分线BM ,DN 上的点,且满足∠P AQ =45°,连接PQ ,PC ,CQ .则下列结论:①BP •DQ =3.6 ②∠QAD =∠APB ,③∠PCQ =135°④BP 2+DQ 2=PQ 2,其中正确的有( ) A .4个 B .3个 C .2个 D .1个xOAMNy二.填空题(6小题)11.因式分解:3x2−27=.12.已知圆锥的侧面积为π36,底面半径为4,则该圆锥的母线等于.13.如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是.14.如图,一次函数3y kx=+分别与x,y轴交于点N,M,与反比例函数xy3=(x>0)的图象交于点A,若点M把AN分成2:3两部分时,则k=.15.五巧板是一种类似七巧板的智力玩具,它是由一个正方形按如图1方式分割而成,其中图形①是正方形,小明发现可以将五巧板拼搭成如图2所示的“三角形”与“飞机”模型.在“飞机”模型中宽与高的比值hl=.16.如图,在Rt△ABC中,∠ACB=90°,sin∠BAC=32,点D在AB的延长线上,BD=BC,AE平分∠BAC 交CD于点E. 若AE=25,则点A到直线CD的距离AH为,BD的长为.三.解答题(8小题)17.(1)计算:|﹣3|﹣12+2sin30°+(﹣1)2021.(2)解分式方程:xxxx−−=−−+211232.18.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:△ABE≌△DF A;(2)如果AD=10,AB=6,求sin∠EDF的值.19.某市需要新建一批公交车候车厅,设计师设计了一种产品(如图①),产品示意图的侧面如图②所示,其中支柱DC长为2.1m,且支柱DC垂直于地面DG,顶棚横梁AE长为1.5m,BC为镶接柱,镶接柱与支柱的夹角∠BCD=150°,与顶棚横梁的夹角∠ABC=135°,要求使得横梁一端点E在支柱DC的延长线上,此时经测量得镶接点B与点E的距离为0.35m(参考数据:≈1.41,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,结果精确到0.1m).(1)求EC的长;(2)求点A到地面DG的距离.(第16题)HEB DAC(第15题)20.垫球是排球队常规训练的重要项目之一,也是我市初中体育学业水平考试的一个选考项目.下列图表(1)一班五名学生的测试成绩的众数是,二班五名学生的测试成绩的中位数是.(2)请你在图中补全二班五名学生的垫球测试成绩的折线统计图.从题中的信息,估计班的垫球成绩要稳定.(3)把前三次对应序号下一班学生的垫球测试成绩减去二班学生垫球测试成绩,分别可得到数字3、0、﹣1,从这三个数中任意选取两个数组成有序数对(x,y),请用列表法或画树状图法列出可能出现的结果,并计算点(x,y)落在二次函数y=x2﹣1的图象上的概率.21.在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.若点O'落在上,求的长.(注:本题结果不取近似值)22.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h).应用思考:现用高度为30cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加18cm,求垫高的高度及小孔离水面的竖直距离.23.二次函数y =ax 2+bx +c (a ≠0)的图象与一次函数y 1=x +k 的图象交于A (0,1)、B 两点,C (1,0)为二次函数图象的顶点.(1)求二次函数y =ax 2+bx +c (a ≠0)的表达式;(2)在下图中画出二次函数y =ax 2+bx +c (a ≠0)与一次函数y 1=x +k 的图象;(3)把(1)中的二次函数y =ax 2+bx +c (a ≠0)的图象平移后得到新的二次函数),0(22为常数m a m c bx ax y ≠+++=的图象,定义新函数f :“当自变量x 任取一值时,x 对应的函数值分别为y 1或y 2,如果y 1≠y 2,函数f 的函数值等于y 1、y 2中的较小值;如果y 1=y 2,函数f 的函数值等于y 1(或y 2).”新函数f 的图象与x 轴的交点最多有几个?并求出此时m 的取值范围.24.已知:在菱形ABCD 中,606ABC AB ∠=︒=,,点P 为菱形内一点,且60BPC ∠=︒. (1)如图1,当点P 在菱形对角线BD 上时,求BP 的长;(2)如图2,点M 在线段BP 上,点N 在线段CP 上,且BM CN =,连接,CM MN ,若30CMN ∠=︒,求22CM MN +的值;(3)如图3,延长CP 交BA 延长线于点E ,连接AP 并延长交BC 延长线于点F . ①求证:EA BF EB AD ⋅=⋅;②判断PE PF ⋅是否有最大值?若有,请直接写出....最大值;若没有,请说明理由.答案填空题11. 3(x -3)(x +3) 12. 9 13.14.445310或 15.7616. 5;三.解答题(8小题,17、18、19题6分,20、21题8分,22、23题10分,24题12分) 17.(1)计算:原式=323−..........(3分)(2)解分式方程:x=-2,经检验,x=-2是原分式方程的解...(3分,解2分,经检验1分) 18(1)证明:在矩形ABCD 中,BC =AD ,AD ∥BC ,∠B =90°, ∴∠DAF =∠AEB . ∵DF ⊥AE ,AE =BC , ∴∠AFD =90°,AE =AD .∴△ABE ≌△DF A ..........(3分) (2)解:由(1)知△ABE ≌△DF A . ∴AB =DF =6. 在直角△ADF 中,AF =,∴EF =AE ﹣AF =AD ﹣AF =2. 在直角△DFE 中,DE =, ∴sin ∠EDF =..........(3分)19.(1)连接EC .可得∠EBC =45°,∠ECB =30°.过点E 作EP ⊥BC .如图,EP =BE ×sin45°≈0.25m . CE =2EP =0.5m ; .........(3分)(2)过点A 作AF ⊥DG ,过点E 作EM ⊥AF ,AM =AE ×sin15°. AF =AM +CE +DC =AE ×sin15°+2BE ×sin45°+2.1=0.48+0.50+2.1=3.0m , ∴点A 到地面的距离是3.0m ..........(3分)20. 解:(1)7、7;.........(2分) (2)补全折线图如下:由折线图知,一班成绩波动幅度小, 所以一班垫球成绩稳定.........(2分) (3).........(2分)落在二次函数y=x2﹣1的图象上的点有:(0,﹣1)、(﹣1,0),因此点(x,y)落在二次函数y=x2﹣1的图象上的概率为=..........(2分)21.(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ..........(4分)(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为..........(4分)22.解:(1)∵s2=4h(H﹣h),∴当H=30cm时,s2=4h(30﹣h)∴当h=15cm时,s2有最大值900cm2,∴当h=15cm时,s有最大值30cm.∴当h为15cm时,射程s有最大值,最大射程是30cm;.........(4分)(2)∵s2=4h(30﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(30﹣a)=4b(30﹣b),∴30a ﹣a 2=30b ﹣b 2, ∴a 2﹣b 2=30a ﹣30b ,∴(a +b )(a ﹣b )=30(a ﹣b ), ∴(a ﹣b )(a +b ﹣30)=0, ∴a ﹣b =0,或a +b ﹣30=0, ∴a =b 或a +b =30;.........(3分)(3)设垫高的高度为m ,则s 2=4h (30+m ﹣h )∴当h =230m+cm 时,s max =30+m =30+18, ∴m =18cm ,此时h =230m+=24cm .当h =230m +>30时,即m >30时,h =30时,S 2max =482, 482=4×30×(30+m ﹣30), ∴m =19.2(舍弃).∴垫高的高度为18cm ,小孔离水面的竖直距离为24cm ..........(3分) 23.解:(1)∵C (1,0)为二次函数图象的顶点, ∴设抛物线解析式为y =a (x ﹣1)2, 由抛物线过点A (0,1),可得a =1, ∴抛物线解析式为y =x 2﹣2x +1;.........(4分) (2)画图略.........(2分) (3)最多3个交点;(2分)当新函数f 的图象与x 轴有三个交点,m 的取值范围为﹣4<m <0.(2分)当抛物线的顶点在x 轴上时,即m =0时,新函数f 的图象与x 轴有两个交点,当抛物线与直线交于(﹣1,0)时,0=(﹣1)2﹣2×(﹣1)+1+m ,解得m =﹣4,即m =﹣4时新函数f 的图象与x 轴有两个交点,故当新函数f 的图象与x 轴有三个交点时,m 的取值范围为﹣4<m <0.24.(1)BP =(4分)(2)22CM MN +=36;(3分)(3)①证明见解析;(3分)②PE PF ⋅有最大值,最大值为48.(2分) 详解:(1)略(2)如图,连接AM 、AN 、AC , ∵AB =BC ,∠ABC =60°, ∴△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =∠ACB =60°,∴∠ABC +∠ACB =120°,即∠ABM +∠MBC +∠ACB=120°, ∵∠BPC =60°,∴∠MBC +∠PCB =120°,即∠PBC +∠ACB +∠CAN =120°, ∴∠ABM =∠CAN ,在△ABM 和△CAN 中,AB AC ABM ACN BM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△CAN , ∴AM =AN ,∠BAM =∠CAN , ∴∠BAM +∠MAC =∠CAN +∠MAC , ∴∠MAN =∠BAC =60°, ∴△AMN 是等边三角形, ∴AM =MN ,∠AMN =60°, ∵∠CMN =30°, ∴∠AMC =90°,∴22CM MN +222CM AM AC =+==36..........(3分)(3)①如图,连接AC 、DE 、DF ,在BP 上截取PQ =PC ,连接CQ , ∵∠BPC =60°,PQ =PC , ∴△CPQ 是等边三角形,∴∠PCQ =∠PQC =60°,∠BQC =120°,QC =PC , ∵∠ACB =60°, ∴∠PCQ =∠ACB ,∴∠BCQ +∠ACQ =∠AC P+∠ACQ =60°, ∴∠BCQ =∠ACP ,在△BCQ 和△ACP 中,BC AC BCQ ACP QC PC =⎧⎪∠=∠⎨⎪=⎩,∴△BCQ≌△ACP,∴∠APC=∠BQC=120°,∵∠EAC=∠APC=120°,∠ACE=∠PCA,∴△ACE∽△PCA,∵∠ACF=∠APC=120°,∠CAF=∠P AC,∴△ACF∽△APC,∴△ACE∽△CF A,∴AC CF AE AC=,∵AC=AD=CD,∴CD CF AE AD=,∵BE//CD,∴∠EAD=∠DCF=∠ABC=60°,∴△EAD∽△DCF,∴∠AED=∠CDF,∵∠EAD=∠ADC=60°,∴∠ADE+∠AED+∠EAD=∠AED+∠CDF+∠ADC=180°,∴点E、D、F在同一条直线上,∵AD//B F,∴△AED∽△BEF,∴EA AD EB BF=,∴EA BF EB AD⋅=⋅.........(3分)②∵∠APC=120°,∴∠FPC=∠APE=60°,∵∠BPC=60°,∴∠APB=60°,∴∠EPB=∠BPF=120°,∵∠BCQ +∠CBQ =∠PQC =60°,∠EBP +∠CBQ =60°, ∴∠EBP =∠BCQ , ∵△ACF ∽△APC , ∴∠ACP =∠AFC , ∵∠BCQ =∠ACP , ∴∠EBP =∠AFC , ∴△PBE ∽△PFB , ∴PE PBPB PF=,即2PB PE PF =⋅, ∵∠APC +∠ABC =180°, ∴点A 、B 、C 、P 四点共圆,∴PB 为A 、B 、C 、P 四点所在圆的直径时,PE ·PF 有最大值, ∴PE·PF 有最大值时∠PCB =90°,∴sin 60BCBP =︒=∴PE·PF 的最大值为2BP =48..........(2分)。

2021-2022年义乌市初三数学下期中一模试题附答案 (3)

2021-2022年义乌市初三数学下期中一模试题附答案 (3)

一、选择题1.对于反比例函数9y x=-,下列说法正确的是( ) A .点1,33⎫⎛- ⎪⎝⎭在它的图像上B .它的图像在第一、三象限C .y 随x 的增大而增大D .函数的图像关于直线y x =对称 【答案】D【分析】 根据反比例函数图象的性质对各选项分析判断后利用排除法即可求解.【详解】解:A 、因为9932713-=-⨯=-,所以点(13,-27)在它的图像上,故本选项错误; B 、因为反比例函数9y x =-中k=﹣9<0,所以它的图象在第二、四象限,故本选项错误; C 、因为反比例函数9y x =-中k=﹣9<0,该函数图象在每一象限内y 随x 的增大而增大,故本选项错误;D 、反比例函数9y x=-的图像是双曲线且关于直线y x =对称,故本选项正确, 故选:D .【点睛】本题考查反比例函数图象的性质,解题的关键是熟练利用反比例函数图象与系数的关系,反比例函数的对称性及反比例函数增减性.2.已知点A 、点B 在反比例函数(0)k y k x=≠图象的同一支曲线上,则点A 、点B 的坐标有可能是( )A .A (2,3)、B (-2,-3)B .A (1,4)、B (4,1)C .A (4,3)、B (4,-3)D .A (3,3)、B (2,2) 【答案】B【分析】在反比例函数图象的同一支上,一定满足同一函数解析式且在同一象限.【详解】解:A. A (2,3)、B (-2,-3)两点均在同一反比例函数图象上,但不在同一支上,故选项A 不符合题意;B. A (1,4)、B (4,1)两点均在同一反比例函数图象上,且在同一支上,故选项B 符合题意;C. A(4,3)、B(4,-3)两点不在同一反比例函数图象上,故选项C不符合题意;D. A(3,3)、B(2,2)两点不在同一反比例函数图象上,故选项D不符合题意.故选:B.【点睛】本题主要考查了反比例函数图象的特点,掌握两点在反比例函数图象的同一支曲线上的条件是解答本题的关键.3.反比例函数y=1kx-的图象在每一象限内,y随x的增大而减小,则k的取值范围是()A.k>1 B.k<1 C.k=1 D.k≠1【答案】A【分析】根据反比例函数y=1kx-的图象在每一象限内和y随x的增大而减小得出k﹣1>0,再求出k的范围即可.【详解】解:∵反比例函数y=1kx-的图象在每一象限内,y随x的增大而减小,∴k﹣1>0,解得:k>1,故选:A.【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.4.一个几何体是由一些大小相同的小正方体搭成的,其俯视图与左视图如图所示,则搭成该几何体的方式有()种A.2 B.3 C.5 D.65.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是()A .6B .7C .8D .96.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( )A .B .C .D . 7.如图,A B C '''是ABC 以点O 为位似中心经过位似变换得到的,若A B C '''与ABC 的周长比是2:3,则它们的面积比为( )A .2:3B .4:5C .2:3D .4:98.如图,在ABC 中,D 、E 分别是AB 、BC 边上的点,连接DE 并延长,与AC 的延长线交于点F ,且3AD BD =,2EF DE =,若2CF =,则AF 的长为( )A .5B .6C .7D .89.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现5点的概率B .掷一枚硬币,出现正面朝上的概事C .一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D .任意写出一个两位数,能被2整除的概率10.正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE 、BD 相交于点M ,N ,则MN 的长为( )A .556B .25-33C .4515D .3311.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+b 2+a +b 的值是( ) A .0 B .2020 C .4040 D .404212.如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求.连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 定是..( )A .梯形B .矩形C .菱形D .正方形二、填空题13.如图,矩形ABCD 的顶点A ,C 在反比例函数()0,0k y k x x=>>的图象上,若点A 的坐标为()2,6,3AB =,//AD x 轴,则点C 的坐标为__________.14.如图,边长为1的正方形拼成的矩形如图摆放在直角坐标系里,A ,B ,C ,D 是格点.反比例函数y =k x(x >0,k >0)的图象经过格点A 并交CB 于点E .若四边形AECD的面积为6.4,则k 的值为_____.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有_____个.16.某一时刻,长为1m 的标杆影长为0.8m ,此时身高为1.75m 的小明影长为____m . 17.如图,在ABC 中,AB AC >,将ABC 以点A 为中心顺时针旋转,得到AED ,点D 在BC 上,DE 交AB 于点F .如下结论中:①DA 平分EDC ∠;②AEF DBF △∽△;③BDF CAD ∠=∠;④EF BD =.所有正确结论的序号是_____.18.十八世纪法国有名的数学家达兰倍尔犯了这样一个错误:拿两枚硬币随意抛掷,会出现三种情况,要么两枚都是正面向上,要么一枚正面向上,一枚背面向上,要么两枚都是背面向上,因此,两枚都是正面向上的概率是13.事实上,两枚硬币都是正面向上的概率应该是______.19.已知关于x 的一元二次方程(a ﹣2)x 2+2x+1=0有两个不相等的实数根,则a 的取值范围是_____.20.矩形的一条边长为2cm ,且两条对角线夹角为60︒,则矩形的周长为____. 三、解答题21.如图,已知点A 在反比例函数()0k y k x=<的图象上,点B 在直线4y x =-的图象上,点B 的纵坐标为1-,AB x ⊥轴,且92OAB S ∆=()1求k的值;()2点P在y轴上,AOP是等腰三角形,求点P的坐标.22.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.23.以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PA:PD=;(填两数字之比)(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在线段AB上找一点P,使32 APBP;②如图③,在线段BD上找一点P,使△APB∽△CPD.24.“普法知识竞赛”结束后,小张和小李将本单位所有参赛选手的正确答题数进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如图.()1本次比赛参赛选手共有人,条形统计图中“7.5~8.5”这一组人;()2赛前规定,每答对一题得10分,求所有参赛选手的平均得分?(精确到0.1分)()3成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求选中1男1女的概率.25.2019年年底以来,“新冠疫情在全球肆虐,由于我国政府措施得当,疫情得到控制.而某些国家不够重视,导致疫情持续蔓延.若某国一社区开始有2人感染发病,未加控制,结果两天后发现共有50人感染发病.(1)求每位发病者平均每天传染多少人?(2)若疫情得不到有效控制,按照这样的传染速度,再过一天发病人数会超过200人吗?26.如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O与坐标原点重OC=,点E在边BC上,点N的坐标为(3,0),过合,点A在x轴上,点C在y轴上,5点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为OE.(1)求点G的坐标,并求直线OG的解析式;=+平行于直线OG,且与长方形ABMN有公共点,请直接写出n (2)若直线:l y mx n的取值范围.P O G为顶点的三角形为等腰(3)设点P为x轴上的点,是否存在这样的点P,使得以,,三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.C解析:C【分析】根据几何体的俯视图与左视图,可得搭成该几何体的叠加方式,进而即可得到答案.【详解】由题意得:搭成该几何体(俯视图中小正方形中的数字表示在该位置上的小正方体块)的个数的方式如下:,故选C.【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.5.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个, 故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.6.A解析:A【分析】利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.【详解】A 、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高;主视图的长方形的宽为三棱柱的底面三角形的边长,所以A 选项正确;B 、左视图和主视图都是相同的正方形,所以B 选项错误;C 、左视图和主视图都是相同的长方形,所以C 选项错误;D 、左视图和主视图都是相同的等腰三角形,所以D 选项错误.故选A .【点睛】本题考查了简单几何体的三视图:画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.会画常见的几何体的三视图.7.D解析:D【分析】直接利用位似是相似的特殊形式,利用相似的性质可知对应边A′B′与AB 之比等于△A′B′C′的周长与△ABC 的周长之比为2:3,再根据面积比等于相似比的平方求解即可.【详解】解:∵△A'B'C'是△ABC 以点O 为位似中心经过位似变换得到的,△A'B'C'的周长与△ABC 的周长比是2:3,∴A B C '''∽ABC ,23A B AB ''=, ∴222439A B C ABC A S B S B A '''⎛''⎛⎫== ⎪⎝⎫= ⎪⎝⎭⎭. 故选:D .【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握位似图形的对应边平行、相似三角形的面积比等于相似比的平方是解题的关键.8.B解析:B【分析】过点F 作//FG AB ,通过证明BED GEF ∽△△可得2FG BD =再证明FCG ACB ∽△△可得AC 的长度,即可求解.【详解】如图,过点F 作//FG AB ,交BC 延长线于点G ,则由平行易知BED GEF ∽△△,因此12BD DE FG EF ==, 即2FG BD =由平行易知FCG ACB ∽△△,因此FG CF AB AC= ∵3AD BD =,∴4AB AD BD BD =+=, ∴2142FG BD AB BD ==, ∴12CF AC =, 即212AC =, ∴4AC =,∴6AF AC CF =+=.故答案选:B .【点睛】本题主要考查了利用三角形相似的性质求解线段的长度的问题,正确做出辅助线并证明三角形相似是解决本题的关键.9.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A 、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B 、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C 、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333≈,故此选项正确; D 、任意写出一个两位数,能被2整除的概率为12,故此选项错误. 故选:C .【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.10.C 解析:C【分析】 首先过F 作FH ⊥AD 于H ,交ED 于O ,于是得到FH =AB =2,根据勾股定理求得AF ,根据平行线分线段成比例定理求得OH ,由相似三角形的性质求得AM 与AN 的长,即可得到结论. 【详解】过F 作FH ⊥AD 于H ,交ED 于O ,则FH =AB =2,∵BF =FC ,BC =AD =2,∴BF =AH =1,FC =HD =1,∴AF 222221FH AH =++5 ∵OH ∥AE ,∴12HO DH AE AD ==, ∴OH =12AE =12, ∴OF =FH−OH =2−12=32, ∵AE ∥FO , ∴△AME ∽△FMO ,∴23AM AE FM OF ==,∴AM =25AF , ∵AD ∥BF ,∴△AND ∽△FNB , ∴AN AD FN BF==2,∴AN =2NF ,∴MN =AN−AM =3−=15. 故选:C .【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN 与AM 的长是解题的关键.11.D解析:D【分析】根据一元二次方程的解及根与系数的关系可得出a+b=-1,ab=-2021,将其代入a 2+b 2+a +b =(a+b )2+(a+b )-2ab 中即可求出结论.【详解】解:∵a ,b 是方程x 2+x-2020=0的两个实数根,∴a+b=-1,ab=-2021∴a 2+b 2+a +b =(a+b )2+(a+b )-2ab=1-1+4042=4042.故选:D .【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系找出a+b=-1,ab=-2021是解题的关键.12.C解析:C【分析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形.【详解】∵分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D , ∴AC=AD=BD=BC ,∴四边形ADBC 一定是菱形,故选C .【点睛】考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.二、填空题13.【分析】根据矩形的性质可知点A和点B的横坐标相等由A(26)和AB为3可知点B(23)又因为AD∥x轴即可知道点C的纵坐标将点C代入反比例函数中求解即可;【详解】∵A(26)AB=3∴B(23)∵A解析:()4,3【分析】根据矩形的性质可知点A和点B的横坐标相等,由A(2,6)和AB为3可知点B(2,3),又因为AD∥x轴,即可知道点C的纵坐标,将点C代入反比例函数中求解即可;【详解】∵A(2,6),AB=3,∴ B(2,3),∵AD∥x,∴点C的纵坐标也是3,∵A(2,6),∴反比例函数解析式为:12yx=,将点C的纵坐标代入反比例函数中求得:123=x,解得x=4,∴点C(4,3)故答案为:(4,3).【点睛】本题考查案了反比例函数解析式以及矩形的性质问题,正确掌握知识点是解题的关键;14.6【分析】根据四边形的面积求得CE=54设A(m3)则E(m+441)根据反比例函数系数k的代数意义得出k=3m=m+44解得即可【详解】解:由图象可知AD=1CD=2∵四边形AECD的面积为64∴解析:6【分析】根据四边形的面积求得CE=5.4,设A(m,3),则E(m+4.4,1),根据反比例函数系数k的代数意义得出k=3m=m+4.4,解得即可.【详解】解:由图象可知AD=1,CD=2,∵四边形AECD的面积为6.4,∴12(AD+CE)•CD=6.4,即12⨯(1+CE)×2=6.4,∴CE=5.4,设A(m,3),则E(m+4.4,1),∵反比例函数y=k(x>0,k>0)的图象经过格点A并交CB于点E.x∴k=3m=m+4.4,解得m=2.2,∴k=3m=6.6,故答案为6.6.【点睛】本题考查了反比例函数系数k的代数意义,梯形的面积,表示点A、E点的坐标是解题的关键.15.【分析】根据主视图以及左视图可得出该小正方形共有两行搭成俯视图可确定几何体中小正方形的列数【详解】由主视图与左视图可以在俯视图上标注数字为:主视图有三列每列的方块数分别是:211左视图有两列每列的方解析:【分析】根据主视图以及左视图可得出该小正方形共有两行搭成,俯视图可确定几何体中小正方形的列数.【详解】由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1,左视图有两列,每列的方块数分别是:1,2,俯视图有三列,每列的方块数分别是:2,1,2,∴总个数为1+2+1+1+1=6个.故答案为6.【点睛】考查由三视图判断几何体;注意俯视图可表示最底层正方体的个数.16.【分析】设小明影子长为根据同一时刻物高与影子长度对应成比例列出关于的方程即可求出答案【详解】设小明影子长为长为的标杆影长为小明身高为解之得:故答案为【点睛】本题主要考查了平行投影明确同一时刻的物高与解析:75【分析】设小明影子长为xm,根据同一时刻物高与影子长度对应成比例,列出关于x的方程,即可求出答案.【详解】设小明影子长为xm,长为1m的标杆影长为0.8m,小明身高为1.75m,∴1 1.750.8x=解之得:75x=故答案为7 5【点睛】本题主要考查了平行投影,明确同一时刻的物高与影子长度对应成比例是解题关键. 17.①②③【分析】由旋转性质得AD=AC∠ADE=∠C利用AD=AC得到∠ADC=∠C即可推出∠ADC=∠ADE判断①正确;根据∠E=∠B∠AFE=∠BFD即可证明△AEF∽△DBF判断②正确;利用三角解析:①②③【分析】由旋转性质得AD=AC,∠ADE=∠C,利用AD=AC得到∠ADC=∠C,即可推出∠ADC=∠ADE,判断①正确;根据∠E=∠B,∠AFE=∠BFD,即可证明△AEF∽△DBF,判断②正确;利用三角形的外角性质判断③正确;由∠FAD不一定等于∠CAD,不能证明△ADF全等于△ADC,故CD不一定等于DF,由此判断④错误.【详解】由旋转得:AD=AC,∠ADE=∠C,∵AD=AC,∴∠ADC=∠C,∴∠ADC=∠ADE,即DA平分∠EDC,故①正确;∵∠E=∠B,∠AFE=∠BFD,∴△AEF∽△DBF,故②正确;∵∠ADB=∠ADE+∠BDF=∠C+∠CAD,∠ADE=∠C,∴BDF CAD∠=∠,故③正确;∵∠FAD不一定等于∠CAD,AD=AD,∠ADC=∠ADE,∴不能证明△ADF全等于△ADC,故CD不一定等于DF,∴DE-DF不一定等于BC-CD,即无法证明EF=BD,故④错误;故答案为:①②③.【点睛】此题考查旋转的性质,等腰三角形的性质,相似三角形的判定及性质,三角形的外角性质,是一道三角形的综合题.18.【分析】根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案【详解】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的解析:14【分析】根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数,然后根据概率公式即可得出答案.【详解】解:同时抛掷两枚质地均匀的硬币一次,共有正正、正反、反正、反反四种等可能的结果,两枚硬币都是正面向上的有1种, 所以两枚硬币都是正面向上的概率应该是14; 故答案为14. 【点睛】此题考查了求概率,用到的知识点为:概率=所求情况数与总情况数之比,熟知概率的定义是解题关键. 19.且【分析】根据一元二次方程的定义及根的判别式△>0即可得出关于a 的一元一次不等式组解之即可得出结论【详解】∵关于x 的一元二次方程(a ﹣2)x2+2x+1=0有两个不相等的实数根∴解得:a <3且a≠2解析:3a <且2a ≠【分析】根据一元二次方程的定义及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】∵关于x 的一元二次方程(a ﹣2)x 2+2x+1=0有两个不相等的实数根,∴22024(2)10a a -≠⎧⎨=--⨯>⎩, 解得:a <3且a≠2.故答案为:a <3且a≠2【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a 的取值范围,同时方程是一元二次方程,二次项系数不为零.20.或【分析】由矩形的性质得出证明是等边三角形然后分AB=2cm 和AD=2cm 分别计算相应边长可得周长【详解】解:如图所示:四边形是矩形是等边三角形当AB=2cm 时OA=OB=2cm 则AC=BD=4cm解析:4)cm +或4)cm 【分析】由矩形的性质得出OA OB =,证明AOB ∆是等边三角形,然后分AB=2cm 和AD=2cm 分别计算相应边长,可得周长.【详解】解:如图所示:四边形ABCD 是矩形,AB CD ∴=,AD BC =,90ABC ∠=︒,12OA AC =,12OB BD =,AC BD =, OA OB ∴=,60AOB ∠=︒,AOB ∴∆是等边三角形,∴当AB=2cm 时,OA=OB=2cm ,则AC=BD=4cm ,∴AD=2242-=23cm , 则矩形ABCD 的周长2()443()AB BC cm =+=+,当AD 2cm =时,设AB=CD=x ,∵∠CAD=90°-60°=30°,∴AC=BD=2x ,则()22222x x =+,解得:x=23, ∴AB=CD=23, 则矩形ABCD 的周长434()cm =+, 故答案为:443()cm +或434()cm +.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三、解答题21.(1)-12;(2)点P 的坐标为()()()12340,5, 0,5,0,8,250,8P P P P ⎛⎫-- ⎝-⎪⎭ 【分析】()1可先求得B 点坐标,再结合△OAB 的面积可求得AB 的长,则可求得A 点坐标,把A 点坐标代入反比例函数解析式可求得k 的值;()2分三种情况: ①OP=OA ;②AP=OA ;③AP=OP 三种情况进行讨论【详解】解:()1点B 在直线4y x =-的图象上,点B 的纵坐标为1-,41,x ∴-=-3,x ∴=3,(1).B ∴-设点A 的坐标为(3,)t ,则1,1t AB t <-=--. 92OAB S ∆= ()191322t ∴--⨯=, 解得4,t =-∴点A 的坐标为(3,4)-. 4,123k k -=-∴=12y x∴=- ()2分三种情况:①点O 为顶点时:如图1,12OP OP OA ==.∵点A 的坐标为(3,4)-,∴5OA =;∴125==OP OP()()120,5,0,5P P ∴-.②点A 为顶点时:如图2.35,AP OA ==作AH y ⊥轴于H ,则34==HP HO ; ()30,8P ∴-③点P 为顶点时:如图3.44AP OP =作OA 的垂直平分线PQ ,交y 轴于点4P , ∵点A 的坐标为(3,4)-,∴OA 的表达式为43y x =-;∴OA 的中点坐标为3,22⎛⎫- ⎪⎝⎭,设PQ 的表达式为34y x b =+,将3,22⎛⎫- ⎪⎝⎭代入得,258b =- 4P Q ∴的表达式为32548y x =-. 4250,8P ⎛⎫∴- ⎪⎝⎭ 综上得出,点P 的坐标为()()()1234250,5,0,5,0,8,0,8P P P P ⎛⎫---⎪⎝⎭. 【点睛】 本题考查反比例函数和几何、反比例函数和一次函数相结合等知识,解题的关键是灵活运用所学知识解决问题,学会利用分类讨论的数学思想,属于中考常考题型.22.无23.(1)3:1;(2)①见解析;②见解析【分析】(1)如图①中,利用平行线的性质求解即可.(2)①如图②中,取格点E ,F ,连接EF 交AB 于点P ,点P 即为所求作.②如图③中,取格点T ,连接CT 交BD 于点P ,连接PA ,点P 即为所求作.【详解】解:(1)如图①中,∵AB ∥CD ,∴PA PD =AB CD =31, 故答案为:3:1. (2)①如图②中,点P 即为所求作.②如图③中,点P 即为所求作.【点睛】本题考查了作图-应用与设计,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.()150,8;()269.4分;()323【分析】(1)用前两组的人数和除以它们所占的百分比得到调查的总人数,再计算出“6.5~8.5”这两组的人数,然后计算“7.5~8.5”这一组的人数;(2)根据加权平均数计算方法求解即可;(3)画树状图展示所有等可能的结果数,找出恰好选中1男1女的结果数,然后根据概率公式计算.【详解】解:(1)(2+3)÷10%=50(人)“6.5~8.5”两组的人数为:50×36%=18(人)“7.5~8.5”这组的人数为:18-10=8(人)故答案为:50,8;(2)23347586107888941010)50⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯ 69.4=(分)(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率=82=123. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.25.(1)4人;(2)会【分析】(1)设每位发病者平均每天传染x 人,然后根据一开始有两人,经过两天后变为50人列出方程,即可求解;(2)利用(1)结果,结合第二天总人数计算即可求解.【详解】(1)设每位发病者平均每天传染x 人,由题意得, 22(1)50x +=.解得:14x =,26x =-(不合题意,舍去)答:每位发病者平均每天传染4个人;(2)50(1)505250x ⨯+=⨯=.答:若疫情得不到有效控制,再过一天发病人数会超过200人.【点睛】本题考查了一元二次方程的应用,属于传播类问题,关键是根据等量关系列出方程. 26.(1)G 的坐标为(3,4),直线OG 的解析式为43y x =;(2)2013n -;(3)P 的坐标为(5,0)或(50)-,或(6,0)或25,06⎛⎫ ⎪⎝⎭【分析】(1)由图形折叠的不变性可得OG 的长度,从而可求NG 的长度,可得G 的坐标;利用待定系数法代入G 的坐标,可得直线OG 的解析式(2)结合图形,分别求出直线过点M 、A 时n 的值,可得n 的取值范围(3)依据等腰三角形性质的定义,将两腰相等的情况分为三类,分别求解即可【详解】解:(1)由折叠的性质可知,5OG OC ==,由勾股定理得,4GN ==,∴点G 的坐标为(3,4)设直线OG 的解析式为y kx =将(3,4)G 代入y kx =,得43k =∴直线OG 的解析式为43y x =. (2)∵直线:l y mx n =+平行于直线OG ,34m ∴=,即直线l 的解析式为43y x n =+, 当直线l 经过点(3,5)M 时,4533n =⨯+, 解得,1n =当直线l 经过点(5,0)A 时,4053n =⨯+ 解得,203n =-, ∴直线l 与长方形ABMN 有公共点时,2013n -(3)①当5OP OG ==时, 若点P 在原点左侧,点P 的坐标为(5,0)-,若点P 在原点右侧,点P 的坐标为(5,0),②当GP GO =时,GN OP ⊥,3NP NO ∴==,6OP ∴=∴点P 的坐标为(6,0),③当PO PG =时,可得3PN OP ON OP =-=-,在Rt GPN 中,222PG GN PN =+,即222(3)4OP OP =-+, 解得,256OP =∴,点P 的坐标为25,06⎛⎫ ⎪⎝⎭, 综上所述,以P O G ,,为顶点的三角形为等腰三角形时,点P 的坐标为(5)0,或(50)-,或(6)0,或2506⎛⎫ ⎪⎝⎭,. 【点睛】本题利用图形折叠的不变性,考查了一次函数解析式的求法及一次函数图像的平移,同时考查了等要三角形的定义及勾股定理的应用,熟练掌握考查内容并利用数形结合的思想是解决问题的关键。

浙江省金华市义乌市稠州中学2022-2023学年九年级下学期6月月考数学试题

浙江省金华市义乌市稠州中学2022-2023学年九年级下学期6月月考数学试题

两点,若 x1 0 x2 时, y1 y2 ,则 m 的取值范围是.
15.如图,将Y ABCD 绕点 A 逆时针旋转到YABCD 的位置,使点 B 落在 BC 上,BC
与 CD 交于点 E .若 AB 3 , BC 4,BB 1 ,则 CE 的长为 .
16.如图是一种手机三脚架,它通过改变锁扣 C 在主轴 AB 上的位置调节三脚架的高度, 其它支架长度固定不变,已知支脚 DE AB .底座 CD AB ,BG AB ,且 CD BG , F 是 DE 上的固定点,且 EF : DF 2 : 3 .
B. (130 x)(60 x) 130 60 1.5 D. (130 2x)(60 2x) 130 60 1.5
8.已知关于
x
,y
的二元一次方程组
3x 2 y k
x
2
y
9
1 的解互为相反数,则
k
的值是(

A.3
B.2
C.1
D.0
9.如图,将矩形 ABCD 沿 GH 折叠,点 C 落在点 Q 处,点 D 落在 AB 边上的点 E 处,
若∠AGE=32°,则∠GHC 等于( )
A.112°
B.110°
C.108°
D.106°
10.如图,在 Rt△ABC 中,ACB 90 ,以其三边为边向外作正方形,延长 EA 交 BG
于点 M ,连接 IM 交 BC 于点 N , 若 B G 5MG ,则 IN 值是( ) IM
A. 5 9
B. 4 5
C. 3 5
试卷第 2 页,共 7 页
D. 1
2
二、填空题 11.分解因式: x2 2x .
12.十边形的外角和是°.

浙江省义乌市年级数学下学期期中教学质量检测试题 新人教版及答案

浙江省义乌市年级数学下学期期中教学质量检测试题 新人教版及答案

(第9题)(第4题图)浙江省义乌市九年级数学第二学期期中教学质量检测试题参考公式:二次函数2y ax bx c =++图像的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭一、选择题(本题有10小题,每小题4分,共40分)1.在直角坐标系中,点(2,1)在( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 2.四边形的内角和为 ( ▲ )A .90°B .180°C .360°D .720°3.下列计算正确的是 ( ▲ )A. 32x x x =⋅B.2x x x =+C. 532)(x x =D. 236x x x =÷ 4.如图几何体由单位立方体搭成,则它的俯视图的面积是( ▲ ) A .7 B .6 C .5 D .45.函数y 中,自变量x 的取值范围是( ▲ )A .2x >B .2x ≠C .2x <D .2x ≤6.“义新欧”铁路的建设和开通,义乌市经济保持平稳增长.据统计,截止到今年3月初,我市金融机构存款余额约为1193亿元,用科学记数法应记为( ▲ )A .101.19310⨯元 B .111.19310⨯元 C .121.19310⨯元 D .131.19310⨯元 7.如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( ▲ ) A .102cm B .102πcm C .202cm D .202πcm8.小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动, 下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是( ▲ )A .19B .13C .23D .299.如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E , 如果AE EC =23,那么ABAC =( ▲ ) A .13 B .23 C .25 D .3510.如图,在△ABC 中,AD 是中线,DE ⊥BC 交AB 于E ,AH ∥DE 交BC 于H ,且∠DAH =∠CAH ,连接CE 交AD 于F ,交AH 于G .下列结论:①△AEF ∽△CEA ;②FH ∥AC ;③若CE ⊥AB ,则tan ∠BAC =2;④若四边形AEDG 是菱形,则∠ACB =60°.其中正确的是( ) A .①②③ B .②③④ C .①② D .①②③④二、填空题 (本题有6小题,每小题5分,共30分)B D?第10题(15题)11.=16 ▲ .12. 分解因式:2x xy += ▲ .13.化简nnm n m +÷+)11(的结果是 ▲ . 14.如图,︒=∠=∠90E C ,3=AC ,4=BC , 2=AE ,则=AD ▲ . 15.如图,已知点A ,C 在反比例函数)0(>=a xay 的 图象上,点B ,D 在反比例函数)0(<=b xby 的图象上, AB ∥CD ∥y 轴,AB ,CD 在y 轴的同侧,AB =3,CD =2, AB 与CD 的距离为1,则b a -的值是 ▲ 16.如图:在平面直角坐标系中,直线y =x +3与x 轴、y 轴分别交于A , B 两点,直线y =kx +8与直线AB 相交于点D ,与x 轴相交于点C ,过D 作DE ⊥x 轴于点E (1,0),点P (t ,0)为x 轴上一动点.若点T 为直线DE 上一动点,当以O,B, T 为顶点的三角形与以O,B, P 为顶点的三角形相似时,则相应的点P (t <0)的坐标为 ▲ .三、解答题(本大题共8小题, 第17、18,19题各8分, 第20,21,22题各10分, 第23题12分,24题14分)17.(本题8分)032(π2012)4sin 45(1)--+-°.18.(本题8分)(1)解不等式:3x -2>x +4; (2)解方程:1x x ++1x x-=219.(本题8分)如图,在□ABCD 中,已知点E 在AB 上,点F 在CD 上且AE =CF . (1)求证:DE =BF ;(2)连结BD ,并写出图中所有的全等三角形.(不要求证明)20.(本题10分)位于义乌市江滨路和香山路交叉十字路口的“施粥摊”,每天早晨向群众免费施粥,某天早上7:30时亭前已经排起了180人长的队伍,预计从7:30开始到8:30每分钟有8位群众过来喝粥,8:30后过来喝粥人逐渐减少,现在施粥摊上有志愿工作人员3人,每人每分钟能服务3名群众喝粥,设从7:30开始x 分钟后队伍人数为y 人。

2022-2023学年浙江省金华市义乌市稠州中学九年级(下)期中数学试卷(含解析)

2022-2023学年浙江省金华市义乌市稠州中学九年级(下)期中数学试卷(含解析)

2022-2023学年浙江省金华市义乌市稠州中学九年级(下)期中数学试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −5的绝对值是( )A. 5B. −5C. 15D. −152. 据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至2020年3月26日,全国已有7901万多名党员自愿捐款,共捐款82.6亿元.82.6亿用科学记数法可表示为( )A. 0.826×1010B. 8.26×109C. 8.26×108D. 82.6×1083. 下列交通标识,既是中心对称图形,又是轴对称图形的是( )A. B. C. D.4. 下列运算正确的是( )A. 8+2=10B. 8−2=6C. 8×2=4D. 8÷2=45. 在平面直角坐标系中,点P(x2+2,−3)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 已知反比例函数y=−4x,下列说法中错误的是( )A. 图象经过点(1,−4)B. 图象位于第二、四象限C. 图象关于直线y=x对称D. y随x的增大而增大7. 如图,半径为10的扇形AOB中,∠AOB=90°,C为A B上一点,CD⊥OA,CE⊥OB,垂足分别为点D、点E.若∠CDE为36°,则图中阴影部分的面积为( )A. 10πB. 9πC. 8πD. 6π8. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A. {y =x +4.50.5y =x −1B. {y =x +4.5y =2x −1C. {y =x −4.50.5y =x +1D. {y =x −4.5y =2x −19. 在平面直角坐标系中,已知函数y 1=x 2+ax +1,y 2=x 2+bx +2,y 3=x 2+cx +3,其中a =2,b 、c 都是正实数,且满足b 2=ac .设y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,则下列结论错误的是( )A. 若M 1=1,M 2=1,则M 3=2B. 若M 1=1,M 2=1,则M 3=1C. 若M 1=1,M 2=0,则M 3=0或1或2D. 若M 1=1,M 2=2,则M 3=210.如图,在Rt △ABC 中,∠ABC =90°,以AB ,AC 为边分别向外作正方形ABFG 和正方形ACDE ,CG 交AB 于点M ,BD 交AC于点N .若GM CM =12,则CG BD=( )A. 12B. 34C. 255D. 13013第II 卷(非选择题)二、填空题(本大题共6小题,共24.0分)11. 若分式1的值不存在,则x=______.x+112. 一个不透明的袋中装有3个黑球、2个白球和1个红球,这些球除颜色外都相同,从这个袋中任意摸出一个球为白球的概率是______.13. 若单项式2x m−1y2与单项式1x2y n+1是同类项,则m+n=______.314.如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x(x>0)的图象经过O轴的正半轴上,点A在第一象限,反比例函数y=kxA的中点C.交AB于点D,连接CD.若△ACD的面积是3,则四边形OBDC的面积是______ .15. 如图,在平面直角坐标系中,点A(1,0),直线y=3x3+b交x轴于点B(−3,0),交y轴于点C,点D在直线BC上,且D的横坐标为3,E是线段BD上的点(不和端点重合),连接AE,一动点M从点A出发沿线段AE以每秒1个单位的速度运动到E,再沿线段ED以每秒2个单位的速度运动到D后停止,当点E的坐标是______ 时,点M在整个运动过程中用时最少.16. 如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),且AC=BD,AF//BE,sin∠BAF=0.8,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长CD′.已知直线BE⊥B′E′,CD′=2CD,那么AB的长为______cm,CD′的长为______cm.三、计算题(本大题共1小题,共6.0分)17. 计算:( 3−1)0+(−13)−1−2cos 30°+ 12× 6.四、解答题(本大题共7小题,共56.0分。

浙江省金华市义乌市2021-2022学年九年级下学期期中数学试题(一模)(word版含答案)

浙江省金华市义乌市2021-2022学年九年级下学期期中数学试题(一模)(word版含答案)

浙江省金华市义乌市2021-2022学年九年级下学期期中数学试题(一模)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,比﹣2小的数是()A.3B.1C.﹣1D.﹣32.为应对疫情,许多企业跨界抗疫,生产口罩截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.11.6×107B.1.16×107C.1.16×108D.1.16×109 3.下列计算正确的是()A.3a+4b=7ab B.(ab3)3=ab6C.(a+2)2=a2+4D.x12÷x6=x6 4.在一个不透明的口袋中装有若干个只有颜色不同的白球和黄球,如果袋中黄球的个数是白球的两倍,那么摸到白球的概率为()A.13B.23C.12D.不能确定5.如图,∠BAC=36°,点O在边AB上,∠O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于()A.27°B.29°C.35°D.37°6.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4mC.4.5m D.5m7.如图,已知点O是矩形ABCD的对称中心,且AB>AD.点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF的形状不可能是()A.平行四边形B.菱形C.矩形D.正方形8.若二次函数y=kx2﹣2x﹣1与x轴有交点,则k的取值范围是()A.k>﹣1B.k≤1且k≠0C.k<﹣1D.k≥﹣1且k≠0 9.如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线l上取一点P,使,使∠APB=30°,则满足条件的点P共有A.l个B.2个C.3个D.无数个10.如图,正方形ABCD边长为4,点E在边DC上运动(不含端点),以AE为边作等腰直角三角形AEF,∠AEF=90°,连接DF.下面四个说法中有几个正确()∠当1DE=时,AF∠当2DE=时,点B,D,F共线;∠当三角形ADF与三角形EDF面积相等时,则DE=2;∠当AD平分∠EAF时,则DE=3A.1个B.2个C.3个D.4个二、填空题11.因式分解:2a2﹣8=_____.12.半径为10cm,母线长为15cm的圆锥的侧面积为______.13.为了考察甲、乙两块地小麦的长势,抽样测得小麦株苗的方差分别为S 甲2=3.6,S 乙2=15.8,则 ____ 地的小麦长势更整齐.(填“甲”或“乙”)14.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为_____.15.如图,点A 是射线y ═54x (x ≥0)上一点,过点A 作AB ∠x 轴于点B ,以AB 为边在其右侧作正方形ABCD ,过点A 的双曲线y =k x交CD 边于点E ,则DEEC 的值为_____.16.如图,点A ,B 是直线AB 上的固定的两点,AB =5.点M 是平面内一动点,满足23MB MA . (1)当∠ABM 为等腰三角形时,∠ABM 的周长为____. (2)当∠ABM 的面积最大时,AM =___三、解答题17.(1--(2012﹣π)0-4sin45° (2)解方程:x 2-10x +9=0.18.如图,在方格纸中,∠ABC 的三个顶点及D ,E ,F ,G ,H 五个点都在小方格的顶点上.现以点D ,E ,F ,G ,H 中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与∠ABC相似且相似比为1:2.(2)在图乙中画出一个三角形与∠ABC的面积比为1:4但不相似.19.为了从甲、乙两位同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两位同学6次选拔赛的成绩,分别绘制了如图统计图.(1)填写下列表格(2)如果分别从甲、乙两人的6次成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都不低于90分的概率.20.图(1)为某大型商场的自动扶梯.图(2)中的AB为从一楼到二楼的扶梯的侧面示意图.小明站在扶梯起点A处时,测得天花板上日光灯C的仰角为37°,此时他的眼睛D与地面的距离AD=1.8m,之后他沿一楼扶梯到达顶端B后又沿BL∥)向正前方走了2m,发现日光灯C刚好在他的正上方.已知自动扶梯AB (BL MN的坡度为1:2.4,AB的长度是13m,(参考数据:sin37°≈0.6,cos37°=0.8,tan37°≈0.75).(1)求图中B 到一楼地面的高度.(2)求日光灯C 到一楼地面的高度.(结果精确到十分位).21.如图,∠ABC 中,AB=AC ,以AB 为直径的∠O 交BC 于点P ,PD∠AC 于点D . (1)求证:PD 是∠O 的切线;(2)若∠CAB=120°,AB=6,求BC 的长.22.在平面直角坐标系xOy 中,已知抛物线2(1)2y x a x a =+--,其中a 为常数,点(4,24)A a --在此抛物线上.(1)求此时抛物线的解析式及点A 的坐标;(2)设点(,)M x y 为抛物线上一点,当32x -≤≤时,求纵坐标y 的最大值与最小值的差; (3)已知点(2,3),(2,3)P Q ---为平面直角坐标系内两点,连接PQ .若抛物线向上平移c 个单位(0)c >的过程中,与线段PQ 恰好只有一个公共点,请直接写出c 的取值范围. 23.我们定义:对角线互相垂直的四边形叫做“对垂四边形”.(1)如图1,四边形ABCD 为“对垂四边形”.求证:AB 2+CD 2=BC 2+AD 2. (2)如图2,E 是四边形ABCD 内一点,连结AE ,BE ,CE 和DE ,AC 与BD 交于点O.若∠BEC=90°,∠BAC=∠BDC,∠1+∠2=∠3.求证:四边形ABCD为“对垂四边形”.(3)如图3,四边形ABCD为“对垂四边形”,AB=AC,∠ADC=120°,AD=3,BC=,求CD的长.24.如图1,在矩形ABCD中,AB=8,AD=6,动点P沿着边AB从点A运动到点B,同时动点Q沿着边BC,CD从点B运动到点D,它们同时到达终点,BD与PQ交于点E.若记点Q的运动路程为x,线段BP的长记为y.(1)求y关于x的函数表达式.(2)如图2,当点Q在CD上时,求BE DE.(3)将矩形沿着PQ折叠,点B的对应点为点F,连结EF,当EF所在直线与∠BCD的一边垂直时,求BP的长.参考答案:1.D 2.C 3.D 4.A 5.A 6.D 7.D 8.D 9.B 10.C11.2(a+2)(a-2). 12.2150cm π 13.甲1415.5416. 17.5或40317.(13 (2)11x =,29x =18.(1)见解析(答案不唯一);(2)见解析(答案不唯一) 19.(1)91,90,85(2)1420.(1)图中B 到一楼地面的高度为5()m (2)日光灯C 到一楼地面的高度为12.3m21.(1)证明见解析;(2)BC= 22.(1)226y x x =+-.点A 的坐标为(4,2)- (2)9(3)03c <<或4c =23.(1)详见解析;(2)详见解析;(3)1 24.(1)487y x =-+ (2)47(3)569或4011或20077或2011。

浙江省2021九年级下学期数学期中考试试卷(I)卷

浙江省2021九年级下学期数学期中考试试卷(I)卷

浙江省2021九年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019七上·海安月考) | |的相反数是()A .B .C .D .2. (2分) (2016七上·磴口期中) 若﹣3xmy2与2x3y2是同类项,则m等于()A . 1B . 2C . 3D . 43. (2分)某篮球队12名队员的年龄如表所示:年龄(岁)18192021人数5412则这12名队员年龄的众数和中位数分别是()A . 2,19B . 18,19C . 2,19.5D . 18,19.54. (2分)(2020·长安模拟) 如图所示的几何体的左视图是()A .B .C .D .5. (2分)(2019·白山模拟) 如图,A为双曲线y=上任意一点,过点A作轴的垂线,交双曲线y=﹣于点B,连结OA,OB,则△AOB的面积等于()A .B .C . 3D . 66. (2分) (2020八下·瑞安期中) 若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A . 2B . 1C . 0D . ﹣1二、填空题 (共6题;共7分)7. (1分)(2020·甘南模拟) 在函数y= +(x﹣4)0中,自变量x的取值范围是________.8. (1分) (2017八下·鹤壁期中) 某种感冒病毒的直径是0.00000012米,用科学记数法表示为________米.9. (1分)对于任意实数、,定义一种运算,等式的右边是通常的加减和乘法运算.例如:.请根据上述定义解决问题:若,且解集中有两个整数解,则的取值范围是________.10. (1分) (2021九上·乐清期末) 若圆锥底面的半径为4,它的侧面展开图的面积为,则它的母线长为________.11. (1分)(2019·玉林模拟) 将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排,从左到右第n个数,如(3,2)表示正整数5,(4,3)表示正整数9,则(20,19)表示的正整数是________.12. (2分) (2015八下·临沂期中) 如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是________.三、解答题 (共11题;共108分)13. (10分)如图1,在一张矩形纸片ABCD上任意画一条线段GF,将纸片沿线段GF折叠,(1)重叠部分的△EFG是等腰三角形吗?请说明理由.(2)若使点C与点A重合,折叠为GF,如图2,△AFG的面积记为S1 ,图3中沿BD折叠,△EBD的面积记为S2 ,试问S1和S2相等吗?请说明理由.14. (5分) (2020八上·昌平月考) 计算:15. (10分)(2020·广州) 如图,中,.(1)作点关于的对称点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,,连接,交于点.①求证:四边形是菱形;②取的中点,连接,若,,求点到的距离.16. (10分)甲、乙两人用手指玩游戏,规则如下:(1)每次游戏时,两人同时随机地各伸出一根手指;(2)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率(2)求乙取胜的概率.(请用“画树状图”或“列表”等方法写出分析过程);17. (5分) (2019七上·杨浦月考) 已知A、B两地相距160千米,甲车从A地开出2小时后,乙车也从A 地开出,结果乙车比甲车晚40分钟到达B地.已知甲车的速度是乙车速度的,求甲、乙两车的速度.18. (8分)(2017·连云港模拟) 解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?19. (10分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)20. (10分)如图,在△ABC中,D为BC中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥A B于F,EG⊥AC交AC的延长线于G,(1)求证:BF=CG;(2)若AB=7,AC=3,求AF的长.21. (10分)(2020·陕西模拟) 如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线。

浙教版2021-2022学年度第二学期九年级期中质量检测数学试卷

浙教版2021-2022学年度第二学期九年级期中质量检测数学试卷

浙教版2021-2022学年度第二学期九年级期中质量检测数学试卷题号 一 二 三 总分 得分评卷人 得分一、选择题(共30分) 1.(本题3分)如图所示的工件中,该几何体的俯视图是( )A .B .C .D .2.(本题3分)若1cos 2α=,则锐角α=( ) A .30°B .45°C .50°D .60°3.(本题3分)如图所示的正方形网格中有∠α,则tan α的值为( ).A .12B .55 C .255D .2 4.(本题3分)下列物体的影子中,不正确的是( )A .B .C .D .5.(本题3分)如图,在Rt ABC 中,90C ∠=︒,5sin 13A =,则cos A 的值为( )A .512 B .125C .1213 D .13126.(本题3分)如图,AB 是⊙O 的直径,点M 在BA 的延长线上,MA =AO ,MD 与⊙O 相切于点D ,BC ⊥AB 交MD 的延长线于点C ,若⊙O 的半径为2,则BC 的长是( )A .4B .23C .22D .37.(本题3分)ABC 中,A ∠,B 均为锐角,且有23tan 3sin 02B A ⎛⎫-+-= ⎪ ⎪⎝⎭,则ABC 是( )A .直角(不等腰)三角形B .等边三角形C .等腰(不等边)三角形D .等腰直角三角形8.(本题3分)如图,一把宽为2cm 的刻度尺(单位:cm ),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )A .10cmB .8cmC .6cmD .5cm9.(本题3分)如图,△ABC 周长为20cm ,BC =6cm ,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为( )A .14cmB .8cmC .7cmD .9cm10.(本题3分)东莞市某学校数学探究小组利用无人机在操场上开展测量教学楼高度的活动,如图,此时无人机在离地面30米的点D 处,操控者站在点A 处,无人机测得点A 的俯角为30°,测得教学楼楼顶点C 处的俯角为45°,操控者和教学楼BC 的距离为60米,则教学楼BC 的高度是( )米.A .60303-B .303C .30330-D .30315-评卷人 得分二、填空题(共32分) 11.(本题4分)计算:()022tan 45π1-+︒--=______.12.(本题4分)如图,AB 和DE 是直立在地面上的两根立柱,4m AB =,AB 在阳光下的影长3m BC =,在同一时刻阳光下DE 的影长4m EF =,则DE 的长为________米.13.(本题4分)如图,某时刻阳光通过窗口AB 照射到室内,在地面上留下4米宽的“亮区”DE ,光线与地面所成的角(如∠BEC )的正切值是12,那么窗口的高AB 等于___米.14.(本题4分)如图,大坝的横截面是一个梯形,坝顶宽10m DC =,坝高15m ,斜坡AD 的坡度11:2l =,斜坡BC 的坡度23:4l =,则坡底宽AB =__________m .15.(本题4分)如图,码头A 在码头B 的正东方向,它们之间的距离为10海里.一货船由码头A 出发,沿北偏东45°方向航行到达小岛C 处,此时测得码头B 在南偏西60°方向,那么码头A 与小岛C 的距离是___海里(结果保留根号).16.(本题4分)如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形的半径AB =30cm ,则这个扇形圆心角α的度数是 .17.(本题4分)如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P与x 轴相切时,圆心P 的横坐标为______.18.(本题4分)如图,已知正方形ABCD 的边长为4,点E 在BC 上,DE 为以AB 为直径的半圆的切线,切点为F ,连结CF ,则ED 的长为______,CF 的长为______.评卷人 得分三、解答题(共58分) 19.(本题8分)计算:(1)2sin303cos604tan 45︒+︒-︒; (2)()11324cos30123-⎛⎫-++︒-- ⎪⎝⎭20.(本题8分)如图,是由几个大小相同的小正方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示这个位置小正方体的个数,请画出从正面、左面看到的这个几何体的形状图.21.(本题10分)如图,一艘邮轮从港口P 处出发,沿北偏东60°方向行驶200海里到A 港口,卸货后向正南方向行驶到B 港口,此时P 港口在邮轮的北偏西45°方向上,求此时邮轮与港口P 相距多少海里.(结果保留根号)22.(本题10分)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,AB AC =,BC 交⊙O 于点D ,E 是AB 的中点.(1)求证:C E ∠=∠;(2)判断四边形ACDE 的形状,并说明理由.23.(本题10分)如图,已知电线杆AB上有一盏路灯A.灯光下,身高1.2米的小明在点C处时,他的影子是CD,他从C处沿BC方向行走2.1米,到点E处时,他的影子是EF.在A处测得D、F的俯角分别是53°、37°.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)(1)影子长CD、EF分别是多少米?(2)求电线杆AB的高度.24.(本题12分)如图,在△ABC中,∠C=90°,点E在AB上,以AE为直径的⊙O切BC于点D,连接AD.(1)求证:AD平分∠BAC;(2)若⊙O的半径为5,sin∠DAC5BD的长.参考答案:1.解:从上边看是一个同心圆,外圆是实线,内圆是虚线,故选:B . 2.解:∵1cos602︒=,且α为锐角,∴α=60°.故选:D . 3.如图,在Rt △ACB 中,1tan 2AB CB α==,故选A . 4.B5.解:在直角三角形ABC 中,∠C =90°∵sinA =513a c =, ∴可设a =5k ,c =13k ,由勾股定理可求得b =12k ,∴cosA =12121313b kc k ==,故选:C . 6.解:连接OD ,∵MD 切⊙O 于D ,∴∠ODM =90°,∵⊙O 的半径为2,MA =AO ,AB 是⊙O 的直径,∴MO =2+2=4,MB =4+2=6,OD =2, 由勾股定理得:MD =22OM OD -=2242-=23,∵BC ⊥AB ,∴BC 切⊙O 于B , ∵DC 切⊙O 于D ,∴CD =BC ,设CD =CB =x ,在Rt △MBC 中,由勾股定理得:MC 2=MB 2+BC 2,即(23+x )2=62+x 2,解得:x =23, 即BC =23,故选:B .7.解:∵23tan 3sin 02B A ⎛⎫-+-= ⎪ ⎪⎝⎭,∴tan 3B -=0,3sin 2A -=0, ∴tanB =3,3sin 2A =,则∠B =60°,∠A =60°,∴△ABC 是等边三角形.故选:B . 8.解:作OD ⊥AB 于C ,OC 的延长线交圆于D ,其中点O 为圆心,OA OB ,为半径,由题意可知2CD =cm ,8AB =cm ;∵⊥OD AB ∴AC =BC =4cm ,设茶杯的杯口外沿半径为r 则在Rt AOC △中,由勾股定理知()2224r r =-+解得=5r 故选D .9.解:∵圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,∴BF =BE ,CF =CD ,DN =NG ,EM =GM ,AD =AE ,∵△ABC 周长为20cm ,BC =6cm ,∴AE =AD =2AB AC BC +-=202BC BC--=20122-=4(cm ),∴△AMN 的周长为AM +MG +NG +AN =AM +ME +AN +ND =AE +AD =4+4=8(cm ),故选:B .10.如图,过点D 作DE AB ⊥于E ,过点C 作CF DE ⊥于F ,由题意得:60AB =米,30DE =米,30DAB ∠=︒,45DCF ∠=︒,在Rt AED △中,tan DE DAE AE ∠=,∴30303tan tan 30DE AE DAE ===∠︒(米),∵60AB =米,∴60303BE CF AB AE ==-=-(米),∵CF DE ⊥,45DCF ∠=︒,∴60303DF CF ==-(米),∴30(60303)30330BC EF DE DF ==-=--=-. 故选:C .11.解:()022tan 45π1-+︒--1114=+-14=.故答案为:14.12.解:DE 在阳光下的投影是EF 如图所示;∵△ABC ∽△DEF ,4m AB =,3m BC =,4m EF =,∴AB DEBC EF=,∴434DE =∴DE =163(米),答:DE 的长为163米,故答案是:163. 13.解:由题意知1tan 2BC AC BEC CE CD ∠===,DE =4,∴CE =2BC ,CD =2AC , ∴CD =DE +CE =4+2BC ,∵AD ∥BE ,∴△BCE ∽△ACD ,∴BC AC =CE CD, ∴BC BC AB+=242BC BC +=2BCBC +,∴BC +AB =2+BC ,∴AB =2,故答案为:2. 14.解:如图,过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥于点F ,则15m DE CF ==,四边形DEFC 是矩形,10m EF DC ∴==,斜坡AD 的坡度11:2l =,斜坡BC 的坡度23:4l =,13,24DE CF AE BF ∴==,即151153,24AE BF ==, 解得30(m),20(m)AE BF ==,则坡底宽30102060(m)AB AE EF BF =++=++=, 故答案为:60.15.解:过C 作CD ⊥BA 于D , 则90CDB ∠=︒,由题意得:60BCD ∠=︒,904545CAD ∠︒-︒=︒=,∴ACD 是等腰直角三角形, ∴CD AD =,222AC AD CD CD =+=,设CD AD x ==海里,则2AC x =海里, 在Rt BCD 中,603BDtan BCD tan CD∠==︒=,∴33BD CD x ==(海里), ∵BD AD AB =+,∴310x x =+,解得:535x =+,∴()225355652x =⨯+=+,即()5652AC =+海里,故答案为:5652+. 16.∵底面半径为10cm ,∴圆锥的底面圆的周长=2π×10=20π∴20π=30180απ⋅,∴α=120°.故答案为120°.17.解:当y =1时,有1=-12x 2+1,x =0.当y =-1时,有-1=-12x 2+1,x =2±.故答案是:2或2-或0.18.∵正方形ABCD ∴CD =AD =BC =4,CE ⊥AB ,DA ⊥AB ∵以AB 为直径的半圆 ∴BE 、AD 也是半圆的切线∵DE 为以AB 为直径的半圆的切线,∴EB =EF 、DA =DF =4 ∴EC =BC -BE =4-EF ,DE =DF +EF =4+EF 在Rt △DCE 中,222CD CE DE +=∴2224(4)(4)EF EF +-=+解得1EF =∴DE =DF +EF =4+EF =5过F 作FG ⊥DC 于G ,如图∴DFG DEC ∴GF DF DG CE DE DC ==∴4354GF DG==解得1216,55GF DG ==∴45CG CD DG =-=∴在Rt △DCE 中,22222124410()()555CF FG CG =+=+=故答案为:5,4105 19.(1)原式11234122=⨯+⨯-⨯3142=+-32=-(2)原式1131(3)4232--=++⨯-132323=++-4= 20.解:如图所示:21.解:如图所示,作PD ⊥AB 于D 点,根据题意可得∠APD =30°,AP =200海里, 在Rt △APD 中,AD =100海里,cos ∠APD =PD AP ,∴PD =AP cos30°=200×32=1003(海里),在Rt △BPD 中,PD =1003海里,sin B =PDPB,∠B =45°,∴PB =sin 45PD︒=100322=1006(海里),答:此时邮轮与港口P 相距1006海里.22.(1)证明:∵AB =AC ,∴∠C =∠B ,∵∠B =∠E ,∴∠C =∠E ;(2)解:四边形ACDE 是平行四边形,理由:如图,连接AO 并延长,交⊙O 于F ,连接AD 、DF ,则∠ADF =90°,即∠F +∠DAF =90°,∵AC 是⊙O 的切线,∴∠CAF =90°,即∠CAD +∠DAF =90°,∴∠F =∠CAD ,∵∠F =∠E ,∠C =∠E ,∴∠F =∠C ,∴∠C =∠CAD , ∴∠ADB =∠C +∠CAD =2∠C ,∵E 是AB 的中点,∴AE BE =,∴∠ADE =∠BDE , ∴∠ADB =2∠BDE ,∴∠C =∠BDE ,∴AC ∥DE ,∵∠C =∠E ,∠C =∠BDE ,∴∠E =∠BDE ,∴AE ∥CD ,∴四边形ACDE 是平行四边形.23.(1)解:如下图:根据题意得:tan 0.75EHEFH EF∠==, 1.6EF ∴=(米),53CDG ∠=︒,905337CGD ∴∠=︒-︒=︒,tan 0.75CDCGD CG∴∠==,0.9CD ∴=(米); (2)解:,tan 37tan 37ABBF BD AB ==︒︒,() 2.8BF BD DF CE CD EF -==-+=(米), tan 37 2.8tan 37AB AB ∴-︒=︒,0.75 2.80.75ABAB ∴-⨯=,解得: 4.8AB =(米). 24.(1)解:如图1所示:连接OD .∵BC 与圆O 相切,∴OD ⊥BC .∴∠ODB =90°.∵∠C =90°,∴∠C =∠ODB .∴OD ∥AC .∴∠ODA =∠DAC .∵OD =OA ,∴∠OAD =∠ODA . ∴∠OAD =∠DAC .∴AD 平分∠BAC . (2)如图2所示:连接ED .∵⊙O 的半径为5,AE 是圆O 的直径,∴AE =10,∠EDA =90°. ∵∠EAD =∠CAD ,sin ∠DAC 5sin ∠EAD 5在Rt △ADE 中,DE =AE ×sin ∠510=5 ∴()2222102545AD AE AD =-=-=在Rt △ADC 中,DC =DC ×sin ∠554, ∴()22224548AC AD CD =-=-=.∵OD ∥AC ,∴△BOD ∽△BAC . ∴OD BD AC BC=,即584BD BD =+,解得:BD =203.【点睛】本题主要考查的是切线的性质、平行线的判定和性质、等腰三角形的性质、锐角三角函数的定义、相似三角形的判定和性质,列出关于BD 的方程是解题的关键.。

2021年义乌市初三数学下期中一模试题附答案

2021年义乌市初三数学下期中一模试题附答案

一、选择题1.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3- 2.如图,在正方形ABCD 中,E 为BC 中点,3DF FC =. 联结AE AF EF 、、.那么下列结果错误的是( )A .ABE △与ECF 相似B .ABE △与AEF 相似C .ABE △与ADF 相似D .AEF 与ECF 相似3.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .3600 4.如图,在边长为2的正方形ABCD 中,对角线AC 与BD 相交于点O ,点P 是BD 上的一个动点,过点P 作EF ∥AC ,分别交正方形的两条边于点E ,F ,连接OE ,OF ,设BP =x ,△OEF 的面积为y ,则能大致反映y 与x 之间的函数关系的图像为( )A .B .C .D . 5.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AD AB 等于( )A .2B .22C .51-D .26.如图,在△ABC 中,AB =AC=5,BC =25,若点O 为△ABC 三条高的交点,则OA 的长度为( )A .352B .253C 5D 35 7.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数m y x =的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-88.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .59.已知反比例函数2y -x=,点A (a-b ,2),B (a-c ,3)在这个函数图象上,下列对于a ,b ,c 的大小判断正确的是( )A .a <b <cB .a <c <bC .c <b <aD .b <c <a 10.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数C .-1D .不能确定11.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-12.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =k x的图象经过点P ,则k 的值为( )A .1B .3C .6D .8二、填空题13.如图,△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点P 沿BC 边以2cm/s 的速度从点B 向点C 移动,同时点Q 沿CA 边以1cm/s 的速度从点C 向点A 移动.若以点C 、P 、Q 构成的三角形与△ABC 相似,则运动时间为____________秒.14.如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,D 是AB 边的中点,P 是BC 边上一动点(点P 不与B 、C 重合),若以D 、C 、P 为顶点的三角形与ABC 相似,则线段PC ______.15.如图,Rt △ABC 中,AC =5,BC =12,O 为BC 上一点,⊙O 分别与边AB 、AC 切于E 、C ,则⊙O 半径是________.16.如图,90A B ∠=∠=︒,AB a ,AD BC <,在边AB 上取点P ,使得PAD △,PBC 与PDC △两两相似,则AP 长为___________.(结果用含a 的代数式表示)17.在平面直角坐标系中,若直线2y x =-+与反比例函数k y x=的图象有2个公共点,则k 的取值范围是_________. 18.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)19.将x=23代入反比例函数y=-1x 中,所得的函数值记为1y ,又将x=1y +1代入反比例函数y=-1x 中,所得的函数值记为2y ,又将x=2y +1代入反比例函数y=-1x中,所得的函数值记为3y ,…,如此继续下去,则y 2020=______________ 20.已知点A (-1,2)在反比例函数1m y x -=的图象上,则m =_____________. 三、解答题21.如图,在ABC 和ADE 中,BAD CAE ∠=∠,ABC ADE ∠=∠.求证:ABD ACE .22.如图,一次函数1522y x =-+的图象与反比例函数()0k y k x=>的图象交于,A B 两点,过点A 作x 轴的垂线,垂足为M ,AOM ∆面积为1.(1)求反比例函数的解析式.(2)求出A 、B 两点坐标,并直接写出不等式1522k x x <-+的解集. (3)在x 轴上找一点P ,并求出PA PB -取最大值时点P 的坐标.23.如图,A B 、两点的坐标分别为()()2,0,0,3-,将线段AB 绕点B 逆时针旋转90°得到线段BC ,过点C 作CD OB ⊥,垂足为D ,反比例函数k y x=的图象经过点C .(1)直接写出点C 的坐标,并求反比例函数的解析式;(2)点P 在反比例函数k y x=的图象上,当PCD 的面积为3时,求点P 的坐标. 24.已知反比例函数y =12m x -(m 为常数)的图象在第一、三象限.(1)求m 的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD 的顶点D ,点A ,B 的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E (x 1,y 1),F (x 2,y 2)都在该反比例函数的图象上,且x 1>x 2>0,则y 1和y 2有怎样的大小关系?25.如图,已知AB 为O 直径,C 为O 外一点,(连结,AC BC 交O 于点F ,取弧BF 的中点D ,连接AD 交BC 于点E ,过点E 作EH AB ⊥于H ,且满足BH BC BE AB ⋅=⋅.(1)求证:AC 是O 的切线;(2)若8,10CF BF ==,求AC 和EH 的长26.黄金分割为“最美丽”的几何比率,广泛应用于图案设计,下图是一个包装盒的俯视图,线段AB 是这个俯视图的中轴线.某公司想在中轴线AB 上找到黄金分割点,安装视频播放器.(1)请你用尺规作图的方式找出这个点(作出一点即可,保留作图痕迹); (2)请证明你找到的点是黄金分割点.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】解:∵四边形ABCO 是矩形∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA = ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.2.C解析:C【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:5,244AE EF AF ======, ∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中, ∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.3.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.4.C解析:C【分析】根据题意易得BO =EF 与x 的关系,进而分两种情况,依情况来判断函数图像即可.【详解】解:∵四边形ABCD 是正方形,边长为2,∴AC BD ==12BO OD BD ===①当P 在OB 上时,即0x ≤≤∵EF ∥AC ,∴△BEF ∽△BAC , ∴EF BP AC OB=, ∴22EF BP x ==, ∵OP x =,∴)2122y x x x =⨯⨯=-+;②当P 在OD x <≤∵EF ∥AC ,∴△DEF ∽△DAC , ∴EF DP AC OD =,=,∴)2EF x =,∵BP=x , ∴OP x =∴(()21242y x x x =⋅=-+-, 这是一个二次函数,根据二次函数的性质可知:二次函数的图像是一条抛物线,开口向下,故选C .【点睛】本题主要考查相似三角形的性质与判定、二次函数的图像与性质及正方形的性质,关键是利用三角形相似和面积来列出二次函数的解析式,进而求解.5.A解析:A【分析】 首先根据相似的性质,可得对应边成比例,即为AD AB AB BF =,又根据12BF AD =,可得出2212AD AB =,据此进行求解即可.【详解】∵各种开本的矩形都相似,∴矩形ABCD 与矩形BFEA 相似, ∴AD AB AB BF =, ∴AD•BF=AB•AB ,又∵12BF AD =, ∴2212AD AB =, ∴2AD AB=, 故选A .【点睛】本题考查了相似多边形的的性质,相似多边形对应边之比等于相似比,准确识图,熟练掌握和灵活运用相关知识是解题的关键.6.A解析:A【分析】设BC 边上的高为AD ,结合三角形高线的性质及等腰三角形的性质证明△OBD ∽△BAD ,可得BD:AD=OD:BD ,利用勾股定理可求解AD 的长,进而可求解OD 的长.【详解】解:如图,设BC 边上的高为AD ,∵点O 为△ABC 三条高的交点,∴AD ⊥BC ,BO ⊥AC ,∴∠ADB=90°,∠OBC+∠C=90°,∴∠CAD+∠C=90°,∴∠OBD=∠CAD ,∵AB=AC ,∴D 为BC 的中点,∠BAD=∠CAD ,∴∠OBD=∠BAD ,∴△OBD ∽△BAD ,∴BD:AD=OD:BD ,∵BC=25∴5在Rt △ABD 中,AB=5,∴AD=()22225525AB BD -=-=, ∴5:25:5OD =,解得OD=152, ∴OA=AD−OD=1352552-=, 故选A .【点睛】 本题主要考查等腰三角形的性质,三角形的高线,相似三角形的性质与判定,勾股定理等知识的综合运用 .7.D解析:D【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0),∴OA=1,∵AE=BE ,BN ∥y 轴,∴OA=ON=1,∴AN=2,B 的横坐标为1,把x=1代入3y x=,得y=3, ∴B (1,3),∴BN=3,∵四边形ABCD 为正方形,∴AD=AB ,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM ,在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ),∴DM=AN=2,AM=BN=3,∴134OM OA AM =+=+= ,∴D 42-(,), ∵点D 在反比例函数m yx=,的图象上, ∴428m =-⨯=- ,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键. 8.B解析:B【分析】证明()△△DHA CGD AAS ≅,()△△ANB DGC AAS ≅得到:1AN DG AH===,而11AH m =--=,解得2m =-,即可求解; 【详解】设点8,D m m ⎛⎫ ⎪⎝⎭, 如图所示,过点D 作x 轴的垂线交CE 于点G ,过点A 作x 轴的平行线DG 于点H ,过点A 作AN x ⊥轴于点N ,∵90GDC DCG ∠+∠=︒,90GDC HDA ∠=∠=︒,∴HDA GCD ∠=∠,又AD CD =,90DHA CGD ∠=∠=︒,∴()△△DHA CGD AAS ≅,∴HA DG =,DH CG =,同理可得:()△△ANB DGCAAS ≅, ∴1AN DG AH===, 则点8,1G m m ⎛⎫- ⎪⎝⎭,CG DH =, 11AH m =--=,解得:2m =-, 故点()2,5G --,()2,4D --,()2,1H-, 则点8,55E ⎛⎫-- ⎪⎝⎭,25GE =, ∴223555CE CG GE DH GE =-=-=-=. 故答案选B .【点睛】本题主要考查了反比例函数图象上点的坐标特征,正方形的性质,准确分析计算是解题的关键.9.B解析:B【分析】利用反比例函数图象上点的坐标特征得到2(a-b )=-2,3(a-c )=-2,则a-b=-1<0,a-c=-23<0,再消去a 得到-b+c=-13<0,然后比较a 、b 、c 的大小关系. 【详解】∵点A (a-b ,2),B (a-c ,3)在函数2y -x =的图象上, ∴2(a-b )=-2,3(a-c )=-2,∴a-b=-1<0,a-c=-23<0, ∴a <b ,a <c , ∵-b+c=-13<0, ∴c <b ,∴a <c <b .故选B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .10.C解析:C【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.11.A解析:A【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k . 12.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标. 二、填空题13.或【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似然后分别从当即时△CPQ ∽△CBA 与当即时△CPQ ∽△CAB 去分析求解即可求得答案【详解】设点P 移动t 秒时△CPQ 与△ABC 相似∵点P 从点B 以2c 解析:125或3211【分析】 首先设点P 移动t 秒时△CPQ 与△ABC 相似,然后分别从当CP CQ CB CA =,即8286t t -=时,△CPQ ∽△CBA ,与当CQ CP CB CA =,即8286t t -=时,△CPQ ∽△CAB ,去分析求解即可求得答案.【详解】设点P 移动t 秒时△CPQ 与△ABC 相似,∵点P 从点B 以2cm/s 的速度向点C 移动,点Q 以1cm/s 的速度从点C 向点A 移动, ∴BP =2tcm ,CQ =tcm ,则CP =CB−BP =8−2t (cm ),∵∠C 是公共角,∴当CP CQ CB CA=,即8286t t -=时,△CPQ ∽△CBA , 解得:t =125; 当CQ CP CB CA=,即8286t t -=时,△CPQ ∽△CAB ,解得:t =3211, ∴点P 移动125s 或3211s 时△CPQ 与△ABC 相似. 故答案为:125或3211【点睛】 此题考查了相似三角形的判定.此题难度适中,注意掌握数形结合思想、分类讨论思想以及方程思想的应用.14.或【分析】分两种情况求解或利用相似三角形对应边成比例求出PC 的长【详解】解:①如图∵且D 是AB 中点∴∴∵∴∴∵∴∴解得;②如图此时∴即解得故答案是:或【点睛】本题考查相似三角形的性质和判定解题的关键 解析:4或254 【分析】分两种情况求解,90CPD ∠=︒或90CDP ∠=︒,利用相似三角形对应边成比例求出PC 的长.【详解】解:①如图,90CPD ∠=︒,∵90ACB ∠=︒,且D 是AB 中点,∴AD BD CD ==,∴DCP ABC ∠=∠,∵90CPD BCA ∠=∠=︒,∴CPD BCA , ∴CP CD BC BA=, ∵6AC =,8BC =,∴10AB =,5AD BD CD ===,∴5810CP =,解得4CP =;②如图,90CDP ∠=︒,此时CDP BCA ,∴CP CD BA BC =,即5108CP =,解得254CP =.故答案是:4或254. 【点睛】 本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 15.【分析】连接EO 根据切线性质定理得OE ⊥AB 可得到△BEO ∽△BCA 根据相似三角形的性质可求出圆半径的长【详解】解:∵⊙O 分别与边ABAC 切于EC 连接OE 则OE ⊥ABBC ⊥AC ∴∠BEO=∠BCA 又解析:103【分析】连接EO ,根据切线性质定理得OE ⊥AB ,可得到△BEO ∽△BCA ,根据相似三角形的性质,可求出圆半径的长.【详解】解:∵⊙O 分别与边AB 、AC 切于E 、C ,连接OE ,则OE ⊥AB ,BC ⊥AC∴∠BEO=∠BCA ,又∠B=∠B∴△BEO ∽△BCA ∴=BO OE AB AC又AC=5,BC=12,∴22AC BC +,设圆的半径为r ,∴12r r =135- ∴r=103 ∴圆的半径是103 , 故答案为:103.【点睛】此题考查了切线的性质及相似三角形的判定与性质,解题关键在于熟练掌握切线性质定理及相似三角形的性质与判定定理.16.或【分析】根据△PAD △PBC 都是直角三角形△PAD △PBC △PDC 两两相似利用相似三角形性质分类讨论即可;【详解】∵△PAD △PBC 都是直角三角形△PAD △PBC △PDC 两两相似∴△PDC 是直角三 解析:12a 或13a 【分析】 根据△PAD ,△PBC 都是直角三角形,△PAD ,△PBC ,△PDC 两两相似,利用相似三角形性质分类讨论即可;【详解】∵△PAD ,△PBC 都是直角三角形,△PAD ,△PBC ,△PDC 两两相似,∴△PDC 是直角三角形,当90DPC ∠=︒时,∴90APD BPC ∠+∠=︒,∵90BPC BCP ∠+∠=︒,∴APD BCP ∠=∠,∵90A B ∠=∠=︒,∴△△APD BCP ,当△△APD PDC 时,∴APD PDC ∠=∠,此时CD ∥AB ,90ADC ∠=︒,四边形ABCD 是矩形, ∴AD=BC ,与题意矛盾,故不存在这种情况;当△△APD PCD 时,∴ADP PDC ∠=∠,APD PCD ∠=∠,∴PCD BCP ∠=∠,过点P 作PM CD ⊥于M ,∴90PMD A ∠=∠=︒,90PMC B ∠=∠=︒,在△PAD 和△PMD 中, A PMD ADP MDP PD PD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△△PAD PMD ≅, ∴PA=PM ,在△PBC 和△PMC 中, B PMC BCP MCP CP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△△PBC PMC ≅, ∴PB=PM , ∴12PA PB AB ==, ∵AB a , ∴12AP a =; 当90PDC ∠=︒时, 当△△△ADPDCP BCP 时,60APD DPC BPC ∠=∠=∠=︒, ∴30ADP ∠=︒, ∴12AP PD =, 在△DPC 和△BPC 中, PDC B DPC BPC PC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△△DPC BPC ≅, ∴PD=PB , ∴12AP PB =,∴1133AP AB a ==; ∴AP 的长为12a 或13a . 【点睛】 本题主要考查了相似三角形的性质应用,结合全等三角形证明求解是解题的关键. 17.且【分析】联立两函数解析式消去y 得到关于x 的一元二次方程由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0列出关于k 的不等式求出不等式的解集即可得到k 的范围【详解】联立两解析式得:消去 解析:1k <且0k ≠【分析】联立两函数解析式,消去y 得到关于x 的一元二次方程,由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0,列出关于k 的不等式,求出不等式的解集即可得到k 的范围.【详解】 联立两解析式得:2y x k y x =-+⎧⎪⎨=⎪⎩, 消去y 得:220x x k -+=,∵两个函数在同一直角坐标系中的图象有两个公共点,∴24440b ac k =-=->,即1k <,则当k 满足1k <且0k ≠时,这两个函数在同一直角坐标系中的图象有两个公共点. 故答案为:1k <且0k ≠.【点睛】本题考查了一次函数与反比例函数的交点问题,把两函数图象的交点问题转化成一元二次方程根的问题是解题的关键.18.【解析】根据题意得xy =025×400=100∴ 解析:100y x =【解析】根据题意得xy =0.25×400=100,∴100y x=. 19.-【分析】分别计算出y1y2y3y4可得到每三个一循环而2020÷3=673……1即可得到y2020=y1【详解】解:将x =代入反比例函数y =﹣中得y1=﹣=﹣把x =﹣+1=﹣代入反比例函数y =﹣得解析:-32【分析】分别计算出y 1,y 2,y 3,y 4,可得到每三个一循环,而2020÷3=673……1,即可得到y 2020=y 1.【详解】解:将x =23代入反比例函数y =﹣1x 中,得y 1=﹣123=﹣32, 把x =﹣32+1=﹣12代入反比例函数y =﹣1x 得y 2=﹣112-=2; 把x =2+1=3代入反比例函数y =﹣1x 得y 3=﹣13; 把x =﹣13+1=23代入反比例函数y =﹣1x 得y 4=﹣32;…; 如此继续下去每三个一循环,∵2020÷3=673……1,∴y 2020=y 1=﹣32. 故答案为:﹣32. 【点睛】本题考查反比例函数的定义.按照题目的叙述计算一下y 的值,从中观察得到规律,是解决本题的关键. 20.-1【分析】将点A (-12)代入反比例函数即可求出m 的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1【分析】将点A (-1,2)代入反比例函数1m y x -=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1;故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.三、解答题21.证明见解析【分析】根据相似三角形的判定和性质定理即可得到结论.【详解】证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE ,又∵∠ABC =∠ADE ,∴△ABC ∽△ADE , ∴AB AC AD AE=. 又∵∠BAD =∠CAE ,∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 22.(1)2y x =;(2)()1,2A ,14,2B ⎛⎫ ⎪⎝⎭,解集为14x <<或0x <;(3)()5,0 【分析】(1)根据反比例函数比例系数k 的几何意义得出12|k|=1,进而得到反比例函数的解析式;(2)解析式联立求得A 、B 的坐标,根据图象即可求得不等式1522k x x <-+的解集; (3)一次函数1522y x =-+与x 轴的交点即为P 点,此时|PA−PB|的值最大,最大值为AB 的长;根据一次函数图象上点的坐标特征即可求得点P 的坐标.【详解】(1)∵反比例函数()0k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1, ∴1|k |12=, ∵0k >,∴2k =, 故反比例函数的解析式为:2y x=;(2)由15-222y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴()1,2A ,14,2B ⎛⎫ ⎪⎝⎭, ∴不等式1522k x x <-+的解集为14x <<或0x <; (3)一次函数1522y x =-+的图象与x 轴的交点即为P 点, 此时PA PB -的值最大,最大值为AB 的长.∵一次函数1522y x =-+, 令0y =,则15022x -+=,解得5x =, ∴P 点坐标为()5,0.【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题,解题的关键是确定|PA−PB|的值最大时,点P 的位置,灵活运用数形结合思想是解题的关键.23.(1)(3,1);3y x=;(2)(1,3)或(3,1)--. 【分析】 (1)由A B ,两点的坐标得出OAOB ,的长度,由题意得出D AOB B C ∆≅∆,进而得出BD CD ,的长度,从而得出OD 的长度,即可得出C 点的坐标;进而求出反比例函数的解析式;(2)分点P 在第一象限、第三象限两种情况分类讨论即可.【详解】解:(1)∵A B ,两点的坐标分别为(2,0),(0,3)-,∴23OA OB ==,,∵线段AB 绕点B 逆时针旋转90°得到线段BC ,CD OB ⊥,∴AB BC =,90ABO CBD CBD BCD ∠+∠=∠+∠=︒,∴ABO BCD ∠=∠,又∵==90AOB BDC ∠∠︒,∴D AOB B C ∆≅∆,∴32CD OB BD OA ====,,∴321OD OB BD =-=-=,∴C 点的坐标为(3,1),∵反比例函数k y x =的图象经过点(3,1)C , 1=3k ∴, 3k ∴=,∴反比例函数的解析式为3y x=; (2)∵3CD =,∴当PCD ∆的面积等于3时,以3CD =为底时,得出的高为2,∵(3,1)C ,∴P 点不会在C 点的右边; 设点(,)P x y ,若点P 在第一象限,过点P 作PN CD ⊥,垂足为N , PCD ∴∆的面积为3,113(1)322CD PN y ∴⋅=⨯⨯-=, 解得3y =,将3y =代入3y x=,解得1x =, (1,3)P ∴,若点P 在第三象限,过点P 作PM CD ⊥,垂足为M ,PCD 的面积为3,113(1)322CD PM y ∴⋅=⨯⨯-=, 解得1y =-,将1y =-代入3y x=,解得3x =-, (3,1)P ∴--,综上所述,点P的坐标是(1,3)或(3,1)--.【点睛】本题主要考查的是反比例函数的图象与性质、待定系数法求关系式、旋转的性质、面积的存在性问题以及分类讨论思想的应用,解决本题的关键就是熟知性质,对于不确定的情况要分类讨论.24.(1)m<12;(2)该反比例函数的解析式为y=6x;(3)y1<y2.【分析】(1)由图象在第一、三象限可得关于m的不等式,然后解不等式即可;(2)先根据平行四边形的性质求出D点的坐标,然后将D点的坐标代入y=12mx-可求得1-2m的值即可;(3)利用反比例函数的增减性解答即可.【详解】解:(1)∵y=12mx-的图象在第一、三象限,∴1﹣2m>0,∴m<12;(2)∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴该反比例函数的解析式为y=6x;(3)∵x1>x2>0,∴E,F两点都在第一象限,又∵该反比例函数在每一个象限内,函数值y 都随x 的增大而减小,∴y 1<y 2.【点睛】本题考查了反比例函数的解析式、反比例函数的性质以及反比例函数与几何的综合,掌握反比例函数的定义及性质是解答本题的关键.25.(1)见解析;(2)65AC =;4EH =【分析】(1)根据条件可证明△EBH ∽△CBA ,推出90CAB EHB ∠=∠=︒即可.(2)证明△AFC ∽△BFA ,可得AF 2=FC•FB ,求出AF ,再利用勾股定理求出AC ,证明EH=EF ,在Rt △BEH 中,利用勾股定理构建方程即可解决问题.【详解】(1)证明:∵BH BC BE AB ⋅=⋅, ∴BH BE BA BC=, ∵EBH CBA ∠=∠,∴EBH CBA ∽,∴EHB CAB ∠=∠,∵EH AB ⊥,∴90EHB ∠=︒,∴90CAB EHB ∠=∠=︒,∴AC AB ⊥,∴AC 是O 的切线.(2)解:连接AF .∵AB 是直径,∴90AFB AFC ∠=∠=︒,∵90,90C CAF CAF FAB ∠+∠=︒∠+∠=︒,∴C FAB ∠=∠,∴AFC BFA ∽,∴280AF FC FB =⋅=,∴45AF =∴22228(45)12,10(45)65AC AB =+==+=,∵DF BD =,∴FAD DAB ∠=∠,∵,EF AF EH AB ⊥⊥,∴EF EH =,设EH EF x ==,∵AE AE =,∴()Rt AEF Rt AEH HL ≌,∴45,25AF AH BH ===,在Rt EBH △中,∵222BE EH BH =+,∴222(10)(25)x x -=+,∴4x =,∴4EH =.【点睛】本题考查了相似三角形的判定和性质,圆周角,切线的判定等知识,解题的关键是正确作出辅助线,寻找相似三角形解决问题.26.(1)图见解析;(2)见解析【分析】(1)过点B 作AB 的垂线,并用圆规在垂线上截取BC ,使BC=12AB ,连接AC ,以C 为圆心,BC 为半径画弧,交AC 于点D ,以A 为圆心,AD 为半径画弧,交AB 于E ,则点E 即为线段AB 的黄金分割点;(2)设BC=a ,则AB=2a ,AC=225AB BC a +=,通过计算证明2AE BE AB =⋅即可解决问题.【详解】(1)如图:点E 即为所求;(2)设BC=a ,则AB=2a ,∴225AB BC a +=,∵CD=BC=a ,∴5a -a ,∵2222=-=-,222(2)6AB BE a a a a⋅=⋅+=-,aAE a6)∴2=⋅,AE BE AB∴点E是线段AB的黄金分割点.【点睛】此题考查黄金分割,黄金分割的作图,勾股定理,正确掌握黄金分割的知识并熟练应用解决问题是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.0000025用科学记数法表示为( )
A.2.5×10-6B.0.25×10-5C.2.5×106D.25×10-7
4.如图是由4个相同的正方体搭成的几何体,则其俯视图是()
A. B. C. D.
5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分B.20分,17分C.20分,19分D.20分,20分
6.以O为中心点的量角器与直角三角板ABC如图摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P,则∠CBD的度数是()
浙江省义乌市稠州中学2019届九年级下学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 的相反数是( )
A. B.2C. D.
2.下列运算正确的是( )
A.a3•a2=a6B.a﹣2=﹣ C.3 ﹣2 = D.(a+2)(a﹣2)=a2+4
21.如图,⊙O是△ABC的外接圆,AC是直径,弦BD=BA,EB⊥DC,交DC的延长线于点E.
(1)求证:BE是⊙O的切线;
ቤተ መጻሕፍቲ ባይዱ(2)当sin∠BCE= ,AB=3时,求AD的长.
22.如图甲,在正方形ABCD中,AB=6cm,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q的速度分别为1cm/s,3cm/s,点M的速度2cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动的时间为ts,△PQM的面积为Scm2,则S关于t的函数图象如图乙所示.结合图形,完成以下各题:
(1)填空:a=;b=;c=.
(2)当t为何值时,点M与点Q相遇?
(3)当2<t≤3时,求S与t的函数关系式;
(4)在整个运动过程中,△PQM能否为直角三角形?若能,请求出此时t的值;若不能,请说明理由.
23.如图①,直线y= 与x轴、y轴分别交于点B,C,抛物线y= 过B,C两点,且与x轴的另一个交点为点A,连接AC.
三、解答题
17.计算: .
18.先化简,再求值: ,其中0≤x<3,请你选择你喜欢的整数求值.
19.王阿姨家的阳台上放置了一个晾衣架,完全稳固张开如图①.图②,③是晾衣架的侧面展开图,△AOB是边长为130cm的等边三角形,晾衣架OE,OF能以O为圆心转动,且OE=OF=130cm:在OA,OB上的点C,D处分别有支撑杆CN,DM能以C,D为圆心转动.
(1)如图②,若EF平行于地面AB,王阿姨的衣服穿在衣架上的总长度是110cm,垂挂在晾衣杆OE上是否会拖到地面上?说明理由.
(2)如图③,当支撑杆DM支到点M′,此时∠EOB=78°,点E离地面距离最大.保证衣服不拖到地面上,衣服穿在衣架上的总长度最长约为多少厘米?(结果取整)参考数据:( )
20.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
A. B. C. D.
二、填空题
11.写出-2和0之间的一个无理数:.
12.分解因式:x2-9y2=________.
13.分式方程 的解是.
14.一个扇形的圆心角为120°,半径为2,则这个扇形的弧长为____.
15.如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为 上的动点,点M,N,P分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是________.
等级
成绩(s)
频数(人数)
A
90<s≤100
4
B
80<s≤90
x
C
70<s≤80
16
D
s≤70
6
根据以上信息,解答以下问题:
(1)表中的x=;
(2)扇形统计图中m=,n=,C等级对应的扇形的圆心角为度;
(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点D(与点A不重合),使得S△DBC=S△ABC,若存在,求出点D的坐标;若不存在,请说明理由;
(3)有宽度为2,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.
A.45°10'B.44°50'C.46°10'D.不能确定
7.如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于 为半径作弧,两弧交于点M,N;②作直线MN,且 恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是( )
A. B. C.若AB=4,则 D.
8.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有( )
A.4个B.3个C.2个D.1个
9.如图,点A(﹣2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y= (k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是()
A.﹣9B.﹣12C.﹣16D.﹣18
10.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值是()
16.如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,则有:(1)AD=__CD(填数量关系);(2)△ACD面积的最大值为_____.
相关文档
最新文档