第六章地下工程结构计算理论
岩石力学 第六章 地下空间开挖围岩稳定性分析
行支护达到人工稳定; 支护和破裂岩体本应是相互影响、共同作用的,但 现在还做不到完全用共同作用理论为指导来解决支 护设计问题; 古典地压学说:1907年,普氏学说——俄罗斯学者; 1942年,太沙基学说——美国学者; 在60年代,共同作用理论提出以后的30多年,弹塑 性力学的研究方法在岩石力学研究中一直占据主导 的地位,古典地压学说则被冷落一旁;
r , r p0
解析表达式
R02 1 2 p0 r r
净水压力下围岩应力分布
2019/1/20
《岩石力学》
7
讨论
开巷(孔)后,应力重新分布,也即次生应力场;
, 均为主应力,径向与切向平面为主平面; r
应力大小与弹性常数 周边
2019/1/20
c cot
《岩石力学》
24
塑性区半径
( p0 c cot )(1 sin ) R p R0 P c cot 1
1sin 2 sin
讨论
R p与 R0 成正比,与 p0 成正变,与 c 、
塑性区应力与原岩应力
900 , 2700 处, p0 (3 1) ; 0 0 p0 (3 ) ; 在巷道的侧边,即 0 , 180 处,
在巷道的顶、底板,即
2019/1/20
《岩石力学》
14
应力集中系数与 , 的关系
2019/1/20
《岩石力学》
15
巷道周边位移
o
开挖后(周边)
u (1 ) p 0 R0 E
《岩石力学》
11
2019/1/20
地下建筑结构(复习总结)
8 沉井与沉箱结构
三、沉井验算(课本193):
1、下沉系数验算
2、抗浮系数验算(课本179页例题)
3、刃脚验算:刃脚向外挠曲验算、刃脚向内挠曲验算 (课本182页例题)
4、沉井在竖直平面内受弯计算--抽成垫木计算(井壁 水平钢筋):矩形(两点定位垫木和三点验算),圆形沉井 (四个支撑点和八个支撑点的验算)。
河北工业大学土木工程学院
9 地下连续墙结构
三、地连墙的计算方法(课本207表9-1):
(一)较古典的计算方法: 假设条件:土压力已知,不考虑墙体和支撑变形。 方法:假想梁法、1/2分割法、泰沙基法 (二)横撑轴向力、墙体弯矩不变: 假设条件:土压力已知,考虑墙体变形,不考虑支撑变形。 方法:山肩帮男法、弹性法等 (三)横撑轴向力、墙体弯矩可变: 假设条件:土压力已知,考虑墙体、支撑变形。 方法:日本弹塑性法、有限元法 (四)共同变形理论: 假设条件:土压力随墙体变位而变化,考虑墙体、支撑变形 方法:森重龙马法、有限元法
一、定义:采用液压千斤顶或具有顶进、牵引功能的设备, 以顶管工作井作承压壁,将管子按设计高程、方位、坡度逐 根顶入土层直至达到目的地的一种修建隧道和地下管道的施 工方法。
二、顶管的分类(见课本340例题) 二、顶管的最大顶力计算(见课本245例题)
河北工业大学土木工程学院
一、附建式地下结构定义:
根据一定的防护要求修建的附属于较坚固的建筑物的地下室,与独立修 建的地下人防工事(单建式)相对应,又称为 “防空地下室” 或 “附建式 人防工事”。
二、人防工程分类:
—— 按构筑类型划分
明
单建掘开式
挖
主体的上部无永久性地面建筑
工
地下洞室围岩应力与围岩压力计算
第六章地下洞室围岩应力与围岩压力计算第一节概述一、地下洞室的定义与分类1、定义: 地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的地下空间。
2、地下洞室的分类按用途:矿山巷道(井)、交通隧道、水工隧道、地下厂房(仓库)、地下军事工程按洞壁受压情况:有压洞室、无压洞室按断面形状:圆形、矩形、城门洞形、椭圆形按与水平面关系:水平洞室、斜洞、垂直洞室(井)按介质类型:岩石洞室、土洞二、洞室围岩的力学问题(1)围岩应力重分布问题——计算重分布应力1)天然应力:人类工程活动之前存在于岩体中的应力。
又称地应力、初始应力、一次应力等。
2)重分布应力:由于工程活动改变了的岩体中的应力。
又称二次分布应力等。
地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)围岩变形与破坏问题——计算位移、确定破坏范围在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩压力问题——计算围岩压力围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护、衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
(4)有压洞室围岩抗力问题——计算围岩抗力在有压洞室中,作用有很高的内水压力,并通过衬砌或洞壁传递给围岩,这时围岩将产生一个反力,称为围岩抗力。
天然应力,没有工程活动 开挖洞室后的应立场,为重分布应力,与天然应力有所改变在附近开挖第二个洞室,则视前一个洞室开挖后的应力场为天然应力,第二个洞室开挖后的应力场为重分布应力第二节围岩重分布应力计算一、围岩重分布应力的概念围岩:洞室开挖后,应力重分布影响范围内的岩体。
围岩(重分布)应力:应力重分布影响范围内岩体的应力。
围岩应力与围岩性质、洞形、洞室受外力状态有关。
地下结构设计
2.1 静止土压力如何确定。
当挡土结构在土压力作用下,结构不发生变形和任何位移时,背后填土处于弹性平衡状态,则作用于结构上的侧向土压力称为静止土压力。
其值可根据弹性变形体无侧限变形理论或近似方法求得。
2.2 库伦理论的基本假定:1挡土墙后土体为均质各向同性的无粘性土;2挡土墙是刚性的且长度很长,属于平面应变问题;3挡土墙后产生主动、被动土压力时,土体形成滑动楔体,滑裂面通过墙踵的平面;4墙顶处的土体表面可以是水平面也可以是倾斜面;5在滑裂面和墙背面上的切向力分别满足极限平衡条件2.3 朗肯土压力的基本假定:1挡土墙背竖直,墙面光滑,不计墙面与土层之间的摩擦力;2挡土墙后填土的表面水平,为半无限空间;3挡土墙后填土处于极限平衡状态2.4 围岩压力概念:位于地下结构周围变形或破坏的岩层,作用在衬砌结构或支撑结构上的压力。
影响因素:岩体结构、岩石的强度、地下水的作用、洞室的尺寸及形状、支护的类型及刚度、支护结构上的压力2.5 围岩压力计算的两种理论方法:按松散体理论计算围岩压力,按弹塑性体理论计算围岩压力。
前者考虑到了岩体裂隙和节理的存在,岩体被切割为互不联系的独立块体,将真正的岩体代之以某种具有一定特性的特殊松散体。
2.6 弹性抗力的概念:在靠近拱脚和边墙部位,结构产生压向底层的变形,由于结构与岩土体紧密接触,则岩土体将制止结构变形从而产生对结构的反作用力。
影响因素:结构的变形、地层的物理力学性质。
2.7 弹性抗力的确定:目前采取两种理论。
一为局部变形理论,认为弹性地基某点上施加的外力只会引起改点的沉陷;另一种为共同变性理论,认为弹性地基上的一点外力,不仅引起该点发生沉陷,而且还会引起附近一定范围的地基沉陷。
2.8 温克尔假定:把地基模拟为刚性支座上一系列的弹簧,当地基表面上某一点受压力P时,由于弹簧是彼此独立的,故只在局部产生沉陷y,而在其他地方不产生任何沉陷。
3.1 弹性地基梁两种计算模型的区别:局部弹性地基模型没有考虑地基的连续性,不能全面的反映地基梁的实际情况。
地下工程
一、绪论一、地下工程的历史发展二、地下工程分类三、地下工程设计理论与方法发展四、地下工程施工技术进步五、地下工程风险与防灾地下工程的历史发展欧洲近代革命促使地下工程快速发展,城市地铁,阿尔卑斯山区公路隧道,地下管道大量兴建。
上世纪30年代地下商业街开始出现,并在日本、加拿大、法国蓬勃发展。
中国:截至2009年,15个城市,50条轨道交通线路,营运里程达1154公里。
到2015年,22个城市将新建79条轨道交通线路,营运里程达2260公里,总投资8820亿元。
地下工程分类所有地层表面以下建筑物统称为地下工程。
地下工程按使用功能分类地下工程按使用功能依次可分为叫交通工程、市政管道工程、地下工业建筑、地下民用建筑、地下军事工程、地下仓储工程、地下娱乐设施等。
可以按其用途及功能再分为:1)地下交通工程:地下铁道、公路隧道、过街人行道、海(河、湖)底隧道……2)地下市政管道工程:地下给(排)水管道、通讯、电缆、供热、供气管道、将上述管道汇聚在一起的共同沟3)地下工业建筑:地下核电站、水电站厂房、地下车间、地下厂房、地下垃圾焚烧厂……4)地下民用建筑:地下商业街、地下商场、地下医院、地下旅馆、地下学校……5)地下军事工程:人防隐蔽部、地下军用品仓库、地下战斗工事、地下导弹发射井、地下飞机(舰艇)库、防空指挥中心……6)地下仓储工程:地下粮油水药品等物资仓库、地下车库、地下垃圾堆场、地下核废料仓库、危险品仓库、金库……7)地下文娱文化设施:图书馆、博物馆、展览馆、影剧院、歌舞厅……8)地下体育设施:篮球场、乒乓球场、网球场、羽毛球场、田径场、游泳池、滑冰场……地下工程设计理论与方法发展地下工程设计与计算理论1)地下结构按弹性连续拱形框架计算2)考虑弹性抗力的弹性地基梁的力法、角变位移法等3) 按连续介质计算的解析解以及数值方法(有限元法、离散元法)4) 基于量测数据的新奥法施工动态反馈方法以及复合支护计算理论地下结构的计算方法按对衬砌与地层相互作用模拟方式的不同,地下结构计算方法可区分为两类:荷载结构法和地层结构法。
土力学第六章 土压力计算
第六章 挡土结构物上的土压力第一节 概述第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。
一、挡土结构类型对土压力分布的影响定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。
常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。
挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。
1.刚性挡土墙指用砖、石或混凝土所筑成的断面较大的挡土墙。
由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。
墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。
2.柔性挡土墙当墙身受土压力作用时发生挠曲变形。
3.临时支撑边施工边支撑的临时性。
二、墙体位移与土压力类型墙体位移是影响土压力诸多因素中最主要的。
墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。
1.静止土压力(0E )墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。
2.主动土压力(a E )挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。
3.被动土压力(p E )挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。
此时的土压力称为被动土压力p E 。
同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系:p E >0E > a E在工程中需定量地确定这些土压力值。
Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。
高等土力学教材 第六章 土工数值分析(一)土体稳定的极限平衡和极限分析
土工数值分析(一)土体稳定的极限平衡和极限分析目录1 前言 (2)2 理论基础-塑性力学的上、下限定理 (4)2.1 一般提法 (4)2.2 塑性力学的上、下限定理 (5)2.3 边坡稳定分析的条分法 (7)3 土体稳定问题的下限解-垂直条分法 (9)3.1 垂直条分法的静力平衡方程及其解 (9)3.2 数值分析方法 (11)3.3 垂直条分法的有关理论问题 (15)3.4 垂直条分法在主动土压力领域中的应用 (19)4 土体稳定分析的上限解-斜条分法 (23)4.1 求解上限解的基本方程式 (23)4.2 上限解和滑移线法的关系 (24)4.3 边坡稳定分析的上限解 (27)4.4 地基承载力的上限解 (27)5 确定临界滑动模式的最优化方法 (30)5.1 确定土体的临界失稳模式的数值分析方法 (30)5.2 确定最小安全系数的最优化方法 (31)6 程序设计和应用 (39)6.1 概述 (39)6.2 计算垂直条分法安全系数的程序S.FOR (39)6.3 计算斜条分法安全系数的程序E.FOR (53)1土工数值分析(一):土体稳定的极限平衡和极限分析法1前言边坡稳定、土压力和地基承载力是土力学的三个经典问题。
很多学者认为这三个领域的分析方法属于同一理论体系,即极限平衡分析和极限分析方法,因此,应该建立一个统一的数值分析方法。
Janbu 曾在1957年提出过土坡通用分析方法。
Sokolovski(1954)应用偏微分方程的滑移线理论提出了地基承载力、土压力和边坡稳定的统一的求解方法。
W. F. Chen (1975) 在其专著中全面阐述了在塑性力学上限和下限定理基础上建立的土体稳定分析一般方法。
但是,上述这些方法只能对少数具有简单几何形状、介质均匀的问题提供解答,故没有在实践中获得广泛的应用。
下面分析这三个领域分析方法的现状以及建立一个统一的体系的可能性。
有关边坡稳定分析的理论的研究工作,从早期的瑞典法,到适用的园弧滑裂面的Bishop简化法,到适用于任意形状、全面满足静力平衡条件的Morgenstern - Price法(1965),其理论体系逐渐趋于严格。
土力学第六章土压力计算
第六章挡土结构物上的土压力第一节概述第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。
一、挡土结构类型对土压力分布的影响定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。
常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。
挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。
1.刚性挡土墙指用砖、石或混凝土所筑成的断面较大的挡土墙。
由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。
墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。
2.柔性挡土墙当墙身受土压力作用时发生挠曲变形。
3.临时支撑边施工边支撑的临时性。
二、墙体位移与土压力类型墙体位移是影响土压力诸多因素中最主要的。
墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。
1.静止土压力(0E )墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。
2.主动土压力(a E )挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。
3.被动土压力(p E )挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。
此时的土压力称为被动土压力p E 。
同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系:p E >0E > a E在工程中需定量地确定这些土压力值。
Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。
第六章:地下工程结构计算理论
第3节 隧道结构内力计算的荷载结构法
P7 P6
„
Pj P1 P0
„
E0
„
χ
E3 x4 x5 x6 x7 x8 x9
„
x3 4 5 i=6 7 8
3
2 1
x1
x2
Ei
„
E9 E10
9 n=10
y
对于长度远大于横截面尺寸的地下结构(如隧道) ,如果结构的荷载、几何及力学参数沿长 度方向没有变化,则可以认为结构不会发生纵向位移(即平面应变状态) ,采用一段单位长 度的结构进行内力计算。如果考虑三维作用,则因纵向应变为零,按虎克(Hooke)定律可
竖向地层主动压力
脱离区
变形后的结构轴线
侧 向 地 层 主 动 压 力
地层反力 + 弹性抗力
地层弹性抗力
2、计算模型
(1)荷载结构模型 — 基本概念是洞室围岩已经发生松弛或 坍落,结构只是‘被动’地承受地层松动所带来的荷载;结 构内力(和变形)按结构力学方法计算;被动地层反力是结 构与地层相互作用的唯一反映;计算的关键在于确定地层荷 载。荷载结构模型是规范推荐的结构内力计算模型。 1)主动荷载模型:不考虑结构和地层的共同作用,除了在 结构底部受地层约束外,其它部分在主动荷载作用下可以自 由变形,这种模型适用于结构与地层“刚度比”较大的情况, 较弱的地层没有能力去限制衬砌结构的变形;
一般取
2.0 ~ 2.5
(围岩愈软弱,愈宜取大值)。
1)深埋隧道:
方法之一:经验公式法 即《铁路隧道设计规范》(TB10003-2001) 所推荐的方法
q h* {0.45 2 s 1 [1 i( B 5)]}
其中,γ 为围岩的重度(KN/m3 );S为围岩的级别; B为洞室的 跨度,当 B<5m ,取i=0.2,当B>5m,取i=0.1
第六章地下工程结构计算理论.pptx
1、地下工程的受力有以下特点:
(1)除了承受使用荷载,如设备重量、隧道中行驶车辆的重量 等以外,地下工程结构还要承受周围岩土体和地下水的作用,而 且后者往往构成地下铁道结构的主要荷载。
(2)地下工程结构的荷载与众多的、随机性和时空效应明显的、 往往难以量化的自然和工程因素有关;因此,现场量测围岩与结 构的性状对于及时、合理地调整设计与施工往往是至关重要的。
(2)地层结构模型 — 基本概念是围岩与结构共同构成承载 体系,荷载来自地层的初始应力和施工所引起的应力释放; 结构内力与地层重分布应力一起按连续介质力学方法计算 (如弹塑性力学的有限单元法);地层与结构的相互作用以 变形协调条件来体现;计算的关键在于确定围岩的应力释放 和地层结构的相互作用。
荷载结构模型的概念清晰、计算过程明确,是目前最常 用的、也是《地下铁道设计规范》推荐的地下铁道结构内力 计算模型。
i
i
i
i
(a)
i
R为地层的极限承载力
R
k 1
i
(b)
温克尔弹簧可以有几种基本布置方式:沿结构轴线的法线 方向布置可以模拟地层对结构的法向弹性约束,沿结构轴 线方向布置可以模拟地层的切向弹性约束(摩擦阻力), 还可以布置成约束转动的环状弹簧。这些基本温克尔弹簧 可以组合模拟地层对结构的各种弹性约束作用。
(3)地下工程结构的围岩既是荷载的来源,又与结构共同构成 承载体系的一部分;
竖向地层主动压力
脱离 力
地层反力 + 弹性抗力
地层弹性抗力
2、计算模型
(1)荷载结构模型 — 基本概念是洞室围岩已经发生松弛或 坍落,结构只是‘被动’地承受地层松动所带来的荷载;结 构内力(和变形)按结构力学方法计算;被动地层反力是结 构与地层相互作用的唯一反映;计算的关键在于确定地层荷 载。荷载结构模型是规范推荐的结构内力计算模型。
第六章-土压力计算理论
A
二、无粘性土主动土压力的计算
正弦定律 计算自重
主动土压力是假定一系列破坏面计算出的土 压力中的最大值
三、无粘性土被动土压力的计算
W代入
当挡土墙向填土方向挤压时,最危险滑动面上 的P值一定是最小的,因为此时滑动土体所受 阻力最小,最容易被向上推出,所以作用在墙 背上的被动土压力EP值,应是假定一系列破坏 面上计算出的土压力最小值Pmin
土体作用在挡土结构物上的压力称为土压力 本章的任务是讨论土压力的大小和分布规律的确
定方法。
位移对土压力的影响及三种土压力
主动 被动
挡土墙不向任何方向发生位移和转动时,墙 后土体处于弹性平衡状态,作用在墙背上的土
压力称为静止土压力。
挡墙沿墙趾向离开填土方向转动或平行移动, 且位移达到一定量时,墙后土体达到主动极限 平衡状态,填土中开始出现滑动面 ,这时挡土
六、粘性填土、地下水对土压力的影响
(一)粘性填土 粘性填土与无粘性填土相比,抗剪强度中包括
粘聚力的贡献,因此采用库仑土压力理论对滑 动块体进行受力分析时,当墙后填土达到极限 平衡状态时,力矢多边形需考虑墙背面和滑动 面上粘聚力。 粘性填土的库仑土压力确定可采用试算图解法。
对于工程实际中粘性填土问题,往往采用等代 内摩擦角法,不直接考虑粘性填土粘聚力的影响, 而是用一个等代内摩擦角来代替粘土的两个强度 指标,然后再按无粘性填土问题求解。 (二)填土中有地下水 在计算水下土体重量时,应采用浮容重进行计算 考虑水的存在引起土的抗剪强度的降低; 考虑水压力的作用; 如果墙后填土中有稳定渗流,那么在建立滑动土
基本假设:1、墙本身是刚性的,不考虑墙身 的变形;2、墙后填土延伸到无限远处,填土 表面水平(=0);3、墙背垂直光滑。
地下建筑结构 考点 答案
第一章绪论1.地下建筑是修建在地层中的建筑物,它可以分为两大类:一类是修建在土层中的地下建筑结构;另一类是修建在岩层中的地下建筑结构。
2.衬砌的作用:衬砌结构主要是起承重和围护两方面的作用。
承重,即承受岩土体压力、结构自重以及其他荷载的作用;围护,即防止岩士体风化、坍塌、防水、防潮等。
3.地下建筑与地面建筑结构相比,在计算理论和施工方法两方面都有许多不同之处。
其中,最主要的是地下建筑结构所承受的荷载比地面结构复杂。
这是因为地下建筑结构埋置于地下,其周围的岩土体不仅作为荷载作用于地下建筑结构上,而且约束着结构的移动和变形。
所以,在地下建筑结构设计中除了要计算因素多变的岩土体压力之外,还要考虑地下结构与周围岩土体的共同作用。
这一点乃是地下建筑结构在计算理论上与地面建筑结构最主要的差别。
(重要)4.地下建筑结构的形式主要由使用功能、地质条件和施工技术等因素确定。
要注意施工方法对地下结构的形式会起重要影响。
5.施工方案是决定地下结构形式的重要因素之一,在使用和地质条件相同情况下,由于施工方法不同而采取不同的结构形式。
(判断)6.拱形结构优点:(1)地下结构的荷载比地面结构大,且主要承受竖向荷载。
因此,拱形结构就受力性能而言比平顶结构好(例如在竖向荷载作用下弯矩小)。
(2)拱形结构的内轮廓比较平滑,只要适当调整拱曲率,--般都能满足地下建筑的使用要求,并且建筑布置比圆形结构方便,净空浪费也比圆形结构少。
(3)拱主要是承压结构。
因此,适用于采用抗拉性能较差,抗压性能较好的砖、石、混凝土等材料构筑。
这些材料造价低,耐久性良好,易维护。
7.喷锚结构:在地下建筑中,可采用喷混凝土、钢筋网喷混凝土、锚杆喷混凝土或锚杆钢筋网喷混凝土加固围岩。
这些加固形式统称为喷锚结构(定义)。
喷锚结构可以做临时支护,也可作为永久衬砌结构。
8.复合衬砌结构:复合支护结构通常由初期支护和二次支护组成,防水要求较高时须在初期支护和两次支护间增设防水层。
高等土力学教材第六章土工数值分析(一)土体稳定的极限平衡和极限分析
⾼等⼟⼒学教材第六章⼟⼯数值分析(⼀)⼟体稳定的极限平衡和极限分析⼟⼯数值分析(⼀)⼟体稳定的极限平衡和极限分析⽬录1 前⾔ (2)2 理论基础-塑性⼒学的上、下限定理 (4)2.1 ⼀般提法 (4)2.2 塑性⼒学的上、下限定理 (5)2.3 边坡稳定分析的条分法 (7)3 ⼟体稳定问题的下限解-垂直条分法 (9)3.1 垂直条分法的静⼒平衡⽅程及其解 (9)3.2 数值分析⽅法 (11)3.3 垂直条分法的有关理论问题 (15)3.4 垂直条分法在主动⼟压⼒领域中的应⽤ (19)4 ⼟体稳定分析的上限解-斜条分法 (23)4.1 求解上限解的基本⽅程式 (23)4.2 上限解和滑移线法的关系 (24)4.3 边坡稳定分析的上限解 (27)4.4 地基承载⼒的上限解 (27)5 确定临界滑动模式的最优化⽅法 (30)5.1 确定⼟体的临界失稳模式的数值分析⽅法 (30)5.2 确定最⼩安全系数的最优化⽅法 (31)6 程序设计和应⽤ (39)6.1 概述 (39)6.2 计算垂直条分法安全系数的程序S.FOR (39)6.3 计算斜条分法安全系数的程序E.FOR (53)1⼟⼯数值分析(⼀):⼟体稳定的极限平衡和极限分析法1前⾔边坡稳定、⼟压⼒和地基承载⼒是⼟⼒学的三个经典问题。
很多学者认为这三个领域的分析⽅法属于同⼀理论体系,即极限平衡分析和极限分析⽅法,因此,应该建⽴⼀个统⼀的数值分析⽅法。
Janbu 曾在1957年提出过⼟坡通⽤分析⽅法。
Sokolovski(1954)应⽤偏微分⽅程的滑移线理论提出了地基承载⼒、⼟压⼒和边坡稳定的统⼀的求解⽅法。
W. F. Chen (1975)在其专著中全⾯阐述了在塑性⼒学上限和下限定理基础上建⽴的⼟体稳定分析⼀般⽅法。
但是,上述这些⽅法只能对少数具有简单⼏何形状、介质均匀的问题提供解答,故没有在实践中获得⼴泛的应⽤。
下⾯分析这三个领域分析⽅法的现状以及建⽴⼀个统⼀的体系的可能性。
岩土工程渗流:第6章 地下水渗流理论计算
6.1 概 述
6.1.2 基本假定及计算条件简化 渗流所研究的一般是地下水中的重力水 一般作如下的规定:
(1)渗流服从达西(Darcy)定律。 (2)不考虑土体和水的压缩性,渗透时土体的空隙 大小和孔隙率不变。 (3)土体的饱和度不变。
4
本章渗流计算内容
闸、坝基渗流问题 ——按一维简化,考虑成层土层
ln
a0
H2 a0
(6.4.18)
按流量相同,迭代可求q,h0或a0
32
33
坝下游有排水 设备的情况
水平排水体
坝体内的自由水面线 为一条抛物线。 抛物线焦点在排水体伸入坝体的端点,坐标原点设在焦 点。上游三角形仍用宽度等于ΔL的矩形代替。
L
m1 2m1 1
H1
(6.4.7)
上游垂直面bc和y轴截面间水平长度为L0,两截面间的 水头差为H1-h0,平均过水断面面积为(H1+h0)/2,通过 该坝段的渗流量为:
《地下水渗流力学 》
第6章 地下水渗流理论计算
第6章 地下水渗流理论计算
6.1 概 述 6.2 均值透水地基的渗流计算 6.3 多层透水地基渗流计算 6.4 不透水地基上土坝渗流计算 6.5 不透水地基上心墙坝渗流计算 6.6 库水位下降时心墙坝渗流计算(不讲) 补充:均质地基复杂地下轮廓线的渗流近似
m
由(3.3.7)式在 K相同条件下
2H x2
H H1
2
0
M m (M m)m
(6.2.2)
边界条件: x , H H1
x L, H H2
9
第一区段:
x L
2H x2
H
H1
2
0
M m (M m)m
地下建筑结构复习
地下建筑结构复习第一章绪论1.1简述地下建筑结构的概念及形式:地下建筑结构即埋置于地层内部的结构.包括衬砌结构和内部结构两局部.要考虑地下结构与周围岩土体的共同作用.地下建筑结构的形式主要由使用功能、地质条件和施工技术等因素确定.根据地质情况差异可分为土层和岩层内的两种形式.土层地下建筑结构分为①浅埋式结构②附建式结构③沉井〔沉箱〕结构④地下连续墙结构⑤盾构结构⑥沉管结构⑦其他如顶管和箱涵结构.岩石地下建筑结构形式主要包括直墙拱形、圆形、曲墙拱形,还有如喷锚结构、穹顶结构、复合结构.1.2简述地下建筑结构设计程序及内容:设计工作一般分为初步设计和技术设计两个阶段;初步设计主要内容:①工程等级和要求,以及静、动荷载标准确实定②确定埋置深度和施工方法③初步设计荷载值④选择建筑材料⑤选定结构形式和布置⑥估算结构跨度、高度、顶底板及边墙厚度等主要尺寸⑦绘制初步设计结构图⑧估算工程材料数量及财务概算.技术细节主要内容:①计算荷载②计算简图③内力分析④内力组合⑤配筋设计⑥绘制结构施工详图⑦材料、工程数量和工程财务预算1.3地下建筑结构的优缺点有哪些:优点①被限定的视觉影响②地外表开放空间③有效的土地利用④有效的往来和输送方式⑤环境和利益⑥能源利用的节省和气候限制⑥地下的季节湿度的差异⑧ 自然灾害的保护⑨市民防卫⑩平安⑪噪声和震动的隔离⑫维修治理缺点①获得眺望和自然采光时机有限②进入和往来的限制③能源上的限制1.4地下建筑结构的工程特点:①建筑结构替代了原来的地层〔承载作用〕②地层荷载随施工过程是发生变化的③地质条件影响地层荷载④地下水准结构设计影响大④设计考虑施工、使用的整个阶段⑤地层与结构共同的承载体系⑥地层的成拱效应1.5地下建筑地下建筑结构地上建筑区别:计算理论设计和施工方法不同,地下建筑结构所承受的荷载比地面结构复杂,由于地下建筑结构埋置于地下,其周围的岩土体不仅作为荷载作用于地下建筑结构上,而且约束着结构的移动和变形.第二章地下建筑结构的荷载2.1地下建筑荷载分哪几类:按其存在的状态,可以分为静荷载〔结构自重,岩土体压力〕、动荷载〔地震波,爆炸产生冲击〕和活荷载〔人群物件和设备重量,吊车荷载〕三大类2.2简述地下建筑荷载的计算原那么:需进行最不利情况的组合,先进性个别荷载单独作用下的结构各部件截面内力,再进行最不利的内力组合,得出各设计限制截面的最大内力.2.3土压力可分为几种形式?其大小关系如何:土压力分为静止土压力E0、主动土压力力Ea、被动土压力 Ep,那么 Ep>E0>Ea2.4静止土压力是如何确定的:在挡土结构在土压力作用下,结构不发生变形和任何位移,背后填土处于弹性平衡状态,那么作用于结构上的侧向土压力,称为静止土压力.静止土压力可根据半无限弹性体的应力状态求解.2.5库仑理论的根本假设是什么?并给出其一般土压力计算公式:根本假设:①挡土墙墙后土体为均质各向同性的无黏性土②挡土墙是刚性的且长度很长,属于平面应变问题③挡土墙后土体产生主动土压力或被动土压力时,土体形成滑动碶体,滑裂面为通过墙踵的平面④墙顶处土体外表可以是水平的也可以是倾斜面,倾斜面与水平面的夹角为B角⑤在滑裂面和墙反面上的切向力分别满足极限平衡条件. P=yh-2K/22.6应用库仑理论如何确定黏性土中的土压力大小:库仑土压力理论是根据无黏性土的情况导出, 没有考虑黏性土的黏聚力,因此,当挡土结构处于黏性土层时,应该考虑黏聚力的有利影响.在工程实践中可采用换算的等效内摩擦角来进行计算或在库仑理论根底上,考虑土的黏聚力作用可适用填土外表为一倾斜平面,其上作用有均布超载的一般情况.2.7简述朗肯土压力理论的根本假设:根本假定:①挡土墙背竖直,墙面光滑,不计墙面与土层之间的摩擦力②挡土墙后填土的外表为水平面,土体向下和沿水平方向都能伸展到无穷,即为半无限空间③挡土墙后填土处于极限平衡状态2.8如何计算分层土的土压力:采用凑合的方法,按转换成相应的当量土层,分两种情况①按第i层土的物理力学指标计算第i层的土压力②按第1 — i层土的加权平均指标进行计算2.9考虑地下水时的水平压力如何计算的:水压力分算和水压力合算,对砂性土和粉土,可按水土分算原那么进行,对黏性土可根据现场情况和工程经验,按水土分算或合算进行.水土分算是采用浮重度计算土压力,按静水压力计算水压力,然后两者相加即为总的侧压力.水土合算是采用土的饱和重度计算总的水、土压力.稳态渗流时水压力的计算2.10简述围岩压力的概念及影响因素:围岩压力就是指位于地下结构周围变形或破坏的岩层,作用在衬砌结构或支撑结构上的压力.分为围岩垂直压力、围岩水平压力、围岩底部压力.影响围岩压力的因素很多,主要与岩体的结构、岩石的强度、地下水的作用、洞室的尺寸与形状、支护的类型和刚度、施工方法、洞室的埋置深度和支护时间等因素相关.其中岩体稳定性的关键之一在于岩体结构面的类型和特征.2.11简述围岩压力计算的两种理论方法?二者有何区别:两种理论分别为①按松散体理论计算围岩压力,当地下结构上覆岩层较薄时.通常认为覆盖层全部岩体重量作用于地下结构.这时地下结构所受的围岩压力就是覆盖层岩石柱的重量.深埋结构是指地下结构的埋深大到这样一种程度,以致两侧摩擦阻力远远超过了滑移柱的重量,深埋结构的围岩压力是研究地下洞室上方一个局部范围内的压力现象局部岩体的稳定性,这局部岩体称为岩石拱,只有以下岩体重量对结构产生压力,称此为压力拱,为二次抛物曲线.水平围岩压力只对较松软的岩层才考虑.由于围岩隆起而对衬砌底板产生的作用力叫底部围岩压力②按弹塑性体理论计算围岩压力2.12简述弹性抗力的根本概念?其值大小与哪些因素有关:地下建筑结构除承受主动荷载作用外〔如围岩压力、结构自重等〕,还承受一种被动荷载,即地层的弹性抗力.岩土体将制止结构的变形, 从而产生了对结构的反作用力,对这个反作用力习惯上称弹性抗力.弹性抗力大小和分布规律不仅决定于结构的变形,还与地层的物理力学性质有着密切的关系.2.13如何确定弹性抗力:目前有两种理论,一种是局部变形理论,认为弹性地基某点上施加的外力只会引起该点的沉陷.另一种是共同变形理论,即认为弹性地基上的一点外力,不仅引起该点发生沉陷,而且还会引起附近一定范围的地基沉陷2.14简述温克尔假定:假设认为地层的弹性抗力与结构变位成正比.2.15如何考虑初始地应力、释放荷载和开挖效应:初始地应力确实定对岩石地层,可分为自重地应力和狗找地应力两局部,而土层一般仅有自重地应力.围岩与支护间形变压力的传递,是一个随时间的推进而逐渐开展的过程.这类现象称时间效应.有限元分析中,形变压力常在计算过程中同时确定,而作为开挖效应的模拟,直接施加的荷载是在开挖边界上施加的释放荷载.释放荷载可有初始地应力或与前一步开挖相应的应力场确定.2.16分析新奥法和锚喷支护的联系和区别:新奥法和锚喷支护两者都可以增加围岩的稳定性在地下工程中应用广泛.新奥法是应用岩体力学理论,以维护和利用围岩的自承水平为基点,采用锚杆和喷射混凝土为主要支护手段,及时的进行支护,限制围岩的变形和松弛,使围岩成为支护体系的组成局部,并通过对围岩和支护的量测、监控来指导隧道施工和地下工程设计施工的方法和原那么.喷锚支护是指借高压喷射水泥混凝土和打入岩层中的金属锚杆的联合作用〔根据地质情况也可分别单独采用〕加固岩层,分为临时性支护结构和永久性支护结构.喷混凝土可以作为洞室围岩的初期支护, 也可以作为永久性支护.喷锚支护是使锚杆、混凝土喷层和围岩形成共同作用的体系预防岩体松动、别离.2.17何如区分深浅埋:深浅埋隧道分界深度为2〜2.5倍的塌方平均高度值;以隧道顶部覆盖层能否形成自然拱为原那么第三章弹性地基梁理论3.1简述弹性地基梁两种计算模型的区别:第一种模型是局部弹性地基模型,是建立在温克尔假定前提下,把地基模拟为刚性支座上一系列独立的弹簧,没有反映地基的变形连续性,特别对于密实厚土层地基和整体岩石地基,将会引起较大误差,如果地基上部为较薄的土层,下部为坚硬岩石,结果比拟满意.第二种模型是半无限体弹性地基模型,提出另一种假设:把地基看作一个均质、连续、弹性的半无限体,可把弹性力学结论做为计算根底.其中弹性假设没有反映土壤的非弹性性质,均质假设没有反映土壤的不均匀性,半无限体假设没有反映地基的分层特点.3.2简述弹性地基梁与普通梁的区别:①普通梁只在有限个支座处与根底相连,梁所受的支座反力是有限个未知力,因此,普通梁是静定的或有限次超静定的结构.弹性地基梁与地基连续接触,梁所受的反力是连续分布的,也就是说弹性地基梁具有无穷多个支点和无穷多个未知反力.无穷屡次超静定②普通梁的支座通常看作是刚性支座,即略去地基的变形,只考虑梁的变形,而弹性地基梁必须同时考虑地基的变形.实际上梁与地基是共同变形的.3.3简述弹性特征系数a的含义及其确定公式:a是与梁和地基的弹性性质相关的一个综合参数, 反映了地基梁与地基的相对刚度,对地基梁的受力特性和变形有重要影响,通常把a称为特性系数, a人称为换算长度.计算公式4KEI或4KbEI3.4何为弹性地基短梁、长梁及刚性梁?有什么区别:当弹性地基梁的换算长度1<入<2.75时,属于短梁,它是弹性地基梁的一般情况.长梁可分为无限长梁、半无限长梁.当换算长度人>2.75时, 属于长梁,假设荷载作用点距梁两端的换算长度均不小于 2.75时,可忽略该荷载对梁端的影响,这类梁称为无限长梁,假设荷载作用点仅距梁一端的换算长度不小于2.75时可忽略该荷载对这一端的影响,而对另一端的影响不能忽略,这类梁称为半无限长梁,无限长梁可化为两上半无限长梁.当换算长度入4 1时,属于刚性梁,可认为梁是绝对刚性的.划分标准主要依据梁的实际长度与梁和地基的相对刚度之乘积.3.5弹性地基梁:指搁置在具有一定弹性地基上,各点与地基紧密相贴的梁.第四章地下建筑结构的计算方法4.1简述地下建筑结构计算理论的开展过程:地下建筑计算理论建立了典型的假定抗力方法、弹性地基梁的力法、角变位移法及不平衡力矩与侧力传播法等4.2简述地下建筑结构计算方法的类型及含义:①以参照以往隧道工程的实践经验进行工程类比为主的经验设计法②以现场量测和实验室试验为主的实用设计方法,例如以洞周位移量测值为根据的收敛一限制法③作用一反作用模型,例如对弹性地基圆环和弹性地基框架建立的计算法等④连续介质模型,包括解析法和数值法,解析法中有封闭解,也有近似解,数值计算法目前主要是有限元法.我国采用的计算方法主要有荷载一结构模型,地层一结构模型,经验类比法,收敛限制模型〔或称特征线法,计算理论也是地层结构法〕4.3试述荷载结构法、地层结构法的根本含义和主要区别:荷载结构模型认为地层对结构的作用只是产生作用在地下建筑结构上的荷载〔包括主动地层压力和被动地层抗力〕衬砌在荷载作用下产生内力和变形,与其相应的计算方法称为荷载结构,〔弹性连续框架〔含拱形〕法、假定抗力法和弹性地基梁〔含曲梁和圆环〕法等可归于荷载结构法〕.设计原理是认为隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能平安可靠地承受地层压力等荷载作用.地层结构模型把地下结构与地层作为一个受力变形的整体,根据连续介质力学原理来计算地下建筑结构以及周围地层的变形;不仅计算出衬砌结构的内力及变形,而且计算周围地层的应力,充分表达周围地层与地下建筑结构的相互作用.相对于荷载结构,充分考虑了地下结构与周围地层的相互作用,结合具体的施工过程可以充分模拟地下结构以及周围地层在每一个施工工况的结构内力以及周围地层的变形更能符合工程实际,〔见的关于圆形衬砌的弹性解、粘弹性解和弹塑性解等都归属于地层结构法〕.设计原理是将衬砌和地层视为整体共同受力的统一体系,在满足变形协调条件的前提下分别计算衬砌与地层的内力,据以验算地层的稳定性和进行结构截面设计.4.4简述荷载结构法和地层结构法的计算过程:荷载结构法计算时先按地层分类法或由实用公式确定地层压力,然后按弹性地基上结构物的计算方法计算衬砌的内力,并进行结构截面设计.地层结构法,计算包括初始地应力,本构模型,单元模式,施工模拟几局部第五章地下建筑结构可靠度理论5.1简述地下建筑结构不确定性因素及其特点:地下建筑结构的不确定因素及其特点一般来说,地下建筑结构中不确定性因素主要表达在其周围的地层介质特性、结构力学计算模型的假设、施工因素以及环境因素等①地层介质特性参数的不确定性②岩土体分类的不确定性③分析模型的不确定性④荷载与抗力的不确定性⑤地下结构施工中的不确定性因素⑥自然条件的不确定性5.2简述地下建筑结构可靠性分析的特点:在进行地下建筑结构工程可靠性分析时,应考虑以下几个方面:①周围岩土体介质特性的变异性②地下建筑结构规模和尺寸的影响③极限状态及失效模式的含义不同④极限状态方程呈非线性特征⑤土性指标的相关性⑥概率与数理统计的理论与方法的应用5.3地下建筑结构的可靠度指标如何确定的:地下建筑的可靠度就是在规定的时间内,规定的条件下,完成预定功能的概率大小,叫可靠度指标.具体可靠度尺度有三种:可靠概率sp、失效概率fp、可靠度指标.由于直接应用数值积分方法计算地下结构的失效概率比拟困难,因此实际中多采用近似方法,为此引入结构可靠指标概念.22zzRSRS,当结构失效概率小于等于310时,结构的失效概率对功能函数Z的概率分布不再敏感.5.4结构可靠度分析方法有哪几种?各有什么特点和不同:①半经验半概率法②近似概率设计法③ 全概率法④广义可靠性分析近似方法有中央点法,演算点法,JC法,随机变量相关时的可靠度的分析方法以及蒙特卡罗模拟;中央点法将非线性功能函数在随机变量的平均值〔也称为中央点〕处作泰勒级数展开并保存至一次项,然后近似计算功能函数的平均值和标准差,再根据可靠指标的概念直接用功能函数的平均值〔一阶矩〕和标准差〔二阶矩〕进行计算;验算点法是在利用Taylor级数对功能函数进行展开时,把设计运算点取为线性化点JC法是适用于随机变量在任意分布下结构可靠度指标的计算第六章浅埋式结构6.1试列举几种工程中常见的浅埋式结构形式并简述其特点:大体可归纳为三种①直墙拱形结构〔在小型的地下通道以及早期的人防工程中比拟普遍,拱形结构主要承受压力,弯矩和剪力都较小,主要使用砖石和混凝土等抗压性能较好抗拉性能较差的材料,有半圆拱、割圆拱、抛物线拱等多种形式〕②矩形框架〔具有空间利用率高,挖掘断面经济,易于施工的优点,顶底板为水平构建承受弯矩较拱形结构大,故一般做成钢筋混凝土结构,可以是单跨双跨或多跨的〕③梁板结构〔顶、底板做成现浇钢筋混凝土梁板式结构,而围墙和隔墙那么为砖墙,如地下医院、教室、指挥所等, 或是上述形式的组合.6.2简述浅埋式矩形框架结构的计算原理,如何确定其计算简图:结构计算包括三方面:荷载计算、内力计算、截面设计.在静荷载作用下地层中的闭合框架一般按弹性地基上的框架进行计算,弹性地基可按温克尔地基考虑,也可将地基视作弹性半无限平面.在特殊荷载与其他荷载共同下,按弯矩及轴力对构件进行强度验算时,要考虑材料在动载作用下的强度提升,而按剪力和扭力对构件进行强度验算时,那么材料的强度不提升.6.3浅埋式结构的地层荷载如何考虑:由于是浅埋式结构,所以计算覆土压力时,只要将结构范围内顶板以上各层土壤包括路面材料的重量之和求出来,然后除以顶板的承压面积即可,如果土壤位于地下水中,那么它的容重要采用浮容重.6.4浅埋式结构节点设计弯矩与计算弯矩有何区别?如何计算节点的设计弯矩:根据计算简图求解超静定结构时,直接求得是节点处的内力,然后利用平衡条件可以求得各杆任意截面处的内力.节点弯矩〔计算弯矩〕虽然比附近截面的弯矩打,但其对应的截面高度是侧墙的高度,所以实际不利的截面那么是侧墙边缘处的截面,对应的截面弯矩称为设计弯矩.6.5浅埋式结构的适用场合:常用于覆盖土层较薄,不满足压力拱成拱条件〔H±V〔2〜2.5〕h1, hl为压力拱高〕或软土地层中覆盖层厚度小于结构尺寸的地区第七章沉井和沉管结构7.1沉井和沉箱结构的特点:①躯体结构刚性大,断面大,承载力高,抗渗水平强,耐久性好,内部空间可有效利用②施工场地占地面积较小,可靠性良好③适用士质范围广〔淤泥士、砂士、黏士、沙砾等士层均可施工〕④施工深度大⑤施工时周围士体变形较小,因此对邻近建筑〔构筑〕物的影响小, 适合近接施工,尤其是压气沉箱工法对周围地层沉降造成的影响极小⑥具有良好的抗震性能.7.2沉井结构:沉井是一个上无盖下无底的井筒状结构物,利用结构自重作用而下沉入土,即在地面筑成的“半成品〞沉入土中,在地下完成结构物施工.7.3沉管隧道的特点:①对地质水文条件适应性强,施工方法简单②施工工期短,对航运干扰最小, 施工质量容易保证③工程造价较低④有利于多车道和大断面布置⑤接头少、密实度高、隧道防渗效果好⑥具有很强的反抗战争破坏和抗自然灾害的水平.7.4试述沉井的构造及各部位的作用:①井壁:承受在下沉过程中各种最不利荷载组合〔水土压力〕所产生的内力.同时有足够的重量,使沉井能在自重作用下顺利下沉到设计标高②刃脚:主要功用是减少下沉阻力③内隔墙:增加沉井在下沉过程中的刚度并减小井壁跨径④封底及顶盖:预防地下水渗入井内有集水井内⑤底梁和框架:在比拟大型的沉井中,如由于使用要求,不能设置内隔墙,那么可在沉井底部增设底梁,并构成框架以增加沉井在施工下沉阶段和使用阶段的整体刚度.7.5说明沉管施工的步骤:先在隧址以外建造临时干坞,在干坞内制作钢筋混凝土的隧道管段〔道路隧道用的管段每节长60〜140m,两端用临时封墙封闭.向临时干坞内灌水使管段逐节浮出水面,并用拖轮拖运到指定位置.于设计隧位处预先挖好一个水底沟槽.待管段定位就绪后,向管段里灌水压载,使之下沉.沉设完毕的管段在水下联接起来.进行根底处理,经覆土回填后便筑成了隧道.第八章地下连续墙8.1地下连续墙:利用挖槽机械,借助于泥浆的护壁作用,在地下挖出窄而深的沟槽,并在其内浇注混凝土而形成一道具有防渗〔水〕、挡土和承重功能的连续的地下墙体.8.2地下连续墙的优缺点:优点①施工时对环境影响小.没有噪音,无振动,不必放坡,可紧邻相近的建筑和地下设施施工②墙体刚度大,整体性好,结构和地基变形都较小,即可用于超深围护结构,也可用作主体结构③连续墙为整体连续结构,耐久性和抗渗性好④可实行逆作法施工,有利于施工安全,加快施工进度⑤适用于多种地质条件.缺点①弃土和废泥浆处理.除增加工程费用外,假设处理不当,还会造成新的环境污染②地质条件和施工的适应性问题③槽壁坍塌问题④现浇地下连续墙的墙面通常较粗糙,如果对墙面要求较高,虽可使用喷浆或喷砂等方法进行外表处理或另作衬壁来改善, 但增加工作量⑤地下连续墙如用作施工期间的临时挡土结构,不如采用钢板桩尚可拔出重复使用来得经济.8.3地下连续墙的适用条件:①基坑深度大于10m②软土地基或砂土地基③在密集的建筑群或重要的地下管线条件下施工,对基坑工程周围地面沉降和位移值有严格限制的地下工程④围护结构与主体结构相结合,对抗渗有严格要求时⑤采用逆作法施工,内衬与护壁形成复合结构的工程.第九章盾构法9.1盾构法:在盾构保护下修筑软土隧道的一类施工方法.这类方法的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等作业都在盾构保护下进行,并需随时排除地下水和限制地面沉降,因而是工艺技术要求高、综合性强的一类施工方法.9.2盾构法施工的优缺点及适用范围:优点①具有良好的隐蔽性,噪声、震动等引起的公害小,施工费用不受埋置深度而影响②机械化及自动化程度高,劳动强度低③隧道穿越河底、海底及地面建筑群时下部时,可完全不影响航道通行和地面建筑的正常使用④适宜在不同颗粒条件下的土层中施工⑤多车道的隧道可做到分期施工,分期运营,可减少一次性投资.缺点①不能完全预防盾构施工区。
地下结构工程 地下结构的计算理论48页PPT
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责ห้องสมุดไป่ตู้ 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、地下工程的受力有以下特点:
(1)除了承受使用荷载,如设备重量、隧道中行驶车辆的重量 等以外,地下工程结构还要承受周围岩土体和地下水的作用,而 且后者往往构成地下铁道结构的主要荷载。
(2)地下工程结构的荷载与众多的、随机性和时空效应明显的、 往往难以量化的自然和工程因素有关;因此,现场量测围岩与结 构的性状对于及时、合理地调整设计与施工往往是至关重要的。
(2)天然拱范围的影响因素: 1)围岩地质条件; 2)支护结构架设的时间; 3)支护结构的刚度; 4)支护结构与围岩的接触状态; 5)隧道的形状、大小和尺寸; 6)隧道的埋深; 7)施工方法。
(3)天然拱高度的确定
确定了天然拱的高度,也就得出了围岩压力。
以天然拱的范围为参照,兼顾天然拱以外岩体的某个变形范围,
i
i
i
i
(a)
i
R为地层的极限承载力
R
k 1
i
(b)
温克尔弹簧可以有几种基本布置方式:沿结构轴线的法线 方向布置可以模拟地层对结构的法向弹性约束,沿结构轴 线方向布置可以模拟地层的切向弹性约束(摩擦阻力), 还可以布置成约束转动的环状弹簧。这些基本温克尔弹簧 可以组合模拟地层对结构的各种弹性约束作用。
1)变形阶段:隧道开挖后,在围岩应力重分布的过程中,顶 板开始沉陷,并出现拉裂纹。
2)松动阶段:顶板的裂纹继续发展,并且张开,由于结构面 切割等原因,逐渐转变为“松动”。
3)塌落阶段:顶板岩体逐渐塌落
4)成拱阶段。顶板岩体塌落停止,达到一个平衡状态,在隧 道上方,塌落的岩体形成一个“拱形”。称之为“塌落拱” 或“天然拱”。天然拱范围内的岩体重量就是作用在支护结 构上围岩松动压力的来源。
荷载组合分为基本组合和一些特殊组合,前者仅计入主要荷载 (永久荷载 + 某些经常作用的可变荷载),而特殊组合则考虑主 要荷载和某些不经常作用的可变荷载及偶然荷载的共同作用。
二、荷载计算
1、弹性抗力
所谓弹性抗力就是指由于支护结构发生向围岩方向的变形而引起 的被动围岩的 抵抗力。用Winkler的局部变形理论来解释。该理论 认为围岩的弹性抗力与围岩在该点的变形成正比。
1)永久荷载,又称恒载,是地下结构承受的主要静力荷载,在设 计基准期内其量值不随时间变化,一般主要包括结构自重、地层 压力、地下水压力、地层反力和弹性抗力等。
2)可变荷载,一般主要包括使用活载(如交通隧道的运营活载)、 活载产生的土压力、温度应力等,
3)偶然荷载,在设计基准期内不一定出现,而一旦出现其量值很 大且作用时间很短,如落石冲击力、地震力等。
1)主动荷载模型:不考虑结构和地层的共同作用,除了在 结构底部受地层约束外,其它部分在主动荷载作用下可以自 由变形,这种模型适用于结构与地层“刚度比”较大的情况, 较弱的地层没有能力去限制衬砌结构的变形;
2)主动荷载加地层弹性约束模型
地层不仅对衬砌结构施加主动荷载而且由于结构与地层 的共同作用,还要对衬砌结构施加被动弹性抗力。
(3)地下工程结构的围岩既是荷载的来源,又与结构共同构成 承载体系的一部分;
竖向地层主动压力
脱离区力
地层反力 + 弹性抗力
地层弹性抗力
2、计算模型
(1)荷载结构模型 — 基本概念是洞室围岩已经发生松弛或 坍落,结构只是‘被动’地承受地层松动所带来的荷载;结 构内力(和变形)按结构力学方法计算;被动地层反力是结 构与地层相互作用的唯一反映;计算的关键在于确定地层荷 载。荷载结构模型是规范推荐的结构内力计算模型。
(2)地层结构模型 — 基本概念是围岩与结构共同构成承载 体系,荷载来自地层的初始应力和施工所引起的应力释放; 结构内力与地层重分布应力一起按连续介质力学方法计算 (如弹塑性力学的有限单元法);地层与结构的相互作用以 变形协调条件来体现;计算的关键在于确定围岩的应力释放 和地层结构的相互作用。
荷载结构模型的概念清晰、计算过程明确,是目前最常 用的、也是《地下铁道设计规范》推荐的地下铁道结构内力 计算模型。
σ=Kδ
温式假定相当于围岩简化为一系列彼此独立的弹簧,某一弹簧 受到压缩时所产生的反作用力只与该弹簧有关,而与其它弹簧无 关。这个假定虽然与实际情况不符,但是简单明了,能够满足工 程设计所需要的精度。
弹性抗力的大小取决于支护结构的变形,而支护结构的变形 又和弹性抗力有关,这是一个非线性的问题,一般采用“弹性地 基梁理论”或者用弹性支承代替弹性抗力。于是支护结构的内力 分析问题就成了通常的超静定结构的求解。
地层结构模型虽然在概念和理论上比荷载结构模型更合 理、更灵活,但由于围岩应力释放和地层结构相互作用很难 准确有效地模拟、且计算过程相对复杂,目前应用范围有限, 目前常用作比选施工方案、分析开挖环境影响等工作的一种 辅助工具。
第2节 地下结构的荷载类型及荷载计算
一、荷载类型:采用荷载结构模型进行地下工程结构内力计算时, 需要计算地下铁道结构受到的各种荷载的大小和按照一定标准的 进行荷载组合。按荷载作用的时间特征划分,地下铁道结构的荷 载可以分成以下三类:
(a)
(b)
(c)
(d)
图: 弹性支撑方向的选择 — (i)法向和切向,(ii) 法向,(iii)法向加上摩擦力影响,(iv)简化成水平 方向
2、地层压力
(1)如何计算:地层压力是否就等于上覆地层的重量。
作用在支护结构上的围岩的松动压力总是远远小于其上覆盖 地层自重所造成的压力。这可以用围岩的“成拱作用”来解 释。四个阶段:
可以把地下铁道结构划分为深埋与浅埋两种类型,分别计算主动
地层压力。用 h*表示天然拱的高度, h表c 示地下铁道结构的埋深,
原则上可以把
hc 的洞h* 室定义为深埋,否则定义为浅埋;系数
反映的是天然拱内外岩体的坍落与变形范围。
一般取 2.0 ~ 2.5 (围岩愈软弱,愈宜取大值)。 1)深埋隧道:
方法之一:经验公式法 即《铁路隧道设计规范》(TB10003-2001) 所推荐的方法
q h* {0.45 2s1 [1 i(B 5)]}
其中,γ为围岩的重度(KN/m3);S为围岩的级别;B为洞室的 跨度,当 B<5m ,取i=0.2,当B>5m,取i=0.1