(完整版)cohesive单元实例操作-01详解
ABAQUS中Cohesive单元建模方法
复合材料模型建模与分析1. Cohesive单元建模方法几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive 的本构模型。
Cohesive 单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
ABAQUS中Cohesive单元建模方法
复合材料模型建模与分析1. Cohesive单元建模方法1.1 几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
1.2 材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。
Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
ABAQUS中Cohesive单元建模方法
复合材料模型建模与分析1. Cohesive单元建模方法几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation 描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。
Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
Abaqus教程之cohesive单元损伤模拟全
然后我们结合具体的实例深入分析解读cohesive参数及设置,以及两种 不同的损伤演化准则之间的区别与联系
abaqus中 cohesive模型 的建立及设置
下面我们将给出abaqus不同模块下的实例设置步骤,方便快速理解和学习 Part模块:
Property模块:
Assembly模块:
Step模块:
Cohesive element理论
abaqus6.14在线帮助文档 http://ivt-abaqusdoc.ivt.ntnu.no:2080/v6.14/books/usb/default.htm
cohesive element是基于损伤力学理论,自己去帮助文档补充相关基础知识
cohesive单元的理解起来其实并没有那么复杂,使用起来也是非常高效的,它可以 模拟分层失效,也可以通过在模型中相邻的实体单元间批量插入cohesive单元来模 拟裂纹的随机扩展。
单元由于很多人并不理解cohesive的参数,导致总是调不出想要的开裂效果,多次尝试无果 导致失去信心,其实如果你掌握了abaqus中所有的模拟方法后,你会发现abaqus做断裂其实
没那么难,无非就是断裂力学LEFM和损伤力学而已,下面我详细分析cohesive的本构 及参数设置,而且结合实例验证设置的参数,并分析损伤演化的位移准则和能量 准则的区别与联系,让你在10分钟内掌握cohesive。
Stress2-位移U2曲线
从Stress2与位移U2中发现,当达到100MPa时开始损伤,cohesive张开达到1e-5mm时, cohesive单元完全失效,此时的SDEG=1,此时的cohesive不能再承受力将被删除掉, 这个与我们开始的预期是完全一致的。
PS:如果有需要批量插入cohesive插件的可以联系qq1057593923或微信maliweizhiyuan 插入的具体内容见技术邻https:///content/post/418489
(完整版)cohesiveelement例子详细图解
cohesive element 例子的详细图解1.生成一个新的part,取名为cohesive,本part选取2D deformable shell类型(图1)2.通过Rectangle工具画出一长100,高50的矩形。
(考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。
)(图2,3)3.选择tool– partition,在对话框中选择face-sketch,然后选中整个part确认并进入分割画面。
在part中部分割如图4,其中两条线的距离为2。
(这个时候可以使用create lines生成分割线,并且使用步骤2中提到过的编辑dimension来确定它们的位置。
)G1.jpgPicture3.jpg二(M5为第一个图)1.建立名为interface的材料,并且按照几图分别定义材料的damage initiation和damage evolution以及stiffness。
(相关材料的意义请认真查阅用户分析手册中Element--cohesive element章节)2.这里我们取damage initiation法则为Maxs,数值5e8,5e8,5e8;damage evolution选择energy,mode-independent,2e6。
3.选择mechanical-Elasticity-Elastic,type修改为traction将其中三项取为7e10)*另外建立名为Al的材料,杨式模量7e10,泊松彼0.3M5.jpgPicture6.JPGPicture7.JPGPicture8.JPG三、生成cohesive section,看图就很明了拉*另外生成一适合Al材料的sectionS5.JPGS6.JPG四part-section assignments,分别赋予section属性五Assembly--instance使用independent,然后进行mesh六设置mesh的seeds(看工具栏),然后选取工具栏上的mesh-->controls,将中间interface 部分Technique选为sweep,其他部分用系统默认设置。
(完整版)cohesiveelement例子的详细图解-完整图片-免费
1.生成一个新的part,取名为cohesive,本part选取2D deformable shell类型(图1)2.通过Rectangle工具画出一长100,高50的矩形。
(考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。
)(图2,3)3.选择tool– partition,在对话框中选择face-sketch,然后选中整个part确认并进入分割画面。
在part中部分割如图4,其中两条线的距离为2。
(这个时候可以使用create lines生成分割线,并且使用步骤2中提到过的编辑dimension来确定它们的位置。
)二(M5为第一个图)1.建立名为interface的材料,并且按照几图分别定义材料的damage initiation和damage evolution以及stiffness。
(相关材料的意义请认真查阅用户分析手册中Element--cohesive element章节)2.这里我们取damage initiation法则为Maxs,数值5e8,5e8,5e8;damage evolution选择energy,mode-independent,2e6。
3.选择mechanical-Elasticity-Elastic,type修改为traction将其中三项取为7e10)*另外建立名为Al的材料,杨式模量7e10,泊松彼0.3三生成cohesive section,看图就很明了拉*另外生成一适合Al材料的section四part-section assignments,分别赋予section属性五Assembly--instance使用independent,然后进行mesh六设置mesh的seeds(看工具栏),然后选取工具栏上的mesh-->controls,将中间interface部分Technique选为sweep,其他部分用系统默认设置。
ABAQUS中Cohesive单元建模方法
复合材料模型建模与分析1. Cohesive单元建模方法1.1 几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
1.2 材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive 的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。
Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
Cohesive经典讲解
复合材料模型建模与分析1.Cohesive单元建模方法1.1几何模型使用内聚力模型(cohesivezone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
1.2材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation 描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。
Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
(完整版)cohesive单元实例操作-01详解
今晚在仿真科技论坛上看见一个关于cohesive的帖子,真心觉得不错,原作者图文并茂的解说为初学者带来了福音,在此感谢原作者cheaxii的无私奉献!剥离臂AA5754-O:弹性模量74.7GPa 泊松比0.33粘合层ESP110:弹性模量5.72Gpa、泊松比0.40、极限应力99MPa、断裂能0.845mJ/mm2 (这里为保持单位一直,在输入参数时单位需要换算为MPa、mm、mJ/mm2)参数来源[1]Ph. Martinya, F. Lania, A.J. Kinlochb, T. Pardoenc.Numerical analysis of the energy contributions in peel tests[J]. International Journal of Adhesion & Adhesives 28 (2008) 222–236 文献中的实验结果如下:45°剥离,剥离强度16.7N/mm90°剥离,剥离强度6.05N/mm135°剥离,剥离强度4.11N/mm本算例模拟了90°剥离,结果和文献实验结果吻合很好。
以下是step by step:1;创建part,2维,deformable,尺寸如下:剥离臂长100mm,厚1mm。
(这里没有采用文献中的220mm的长度,因为这对结果没有影响,厚度一样就行);粘合层厚0.4mm,预制裂纹40mm,所以实际粘合部分长80mm。
这里只建立了半模型,就是说下面的基体没有建立,这里是因为基体厚10mm,相对来说比上剥离臂厚很多,认为它是刚性的,不发生变形,所以不需要建模,以减小计算量。
粘合层是在part模块下分割出来的,这样就可以为他们赋予不同的材料属性和截面特征了。
2,设置属性porperty这里创建两个属性:1、剥离臂;2、粘合层,如下图示3、创建两个截面section如下图4、为不同的分区赋予不同的截面属性如下图5、创建分析步这里因为有几何大变形,所以要打开几何大变形开关,将其从off调到on,其次为了最后的到载荷位移曲线的精确性,将增量步的大小做调整到0.002,这样就有500步,可以有500个采样点;6、调整场变量输出,在菜单栏output下拉菜单选择field output manage 点edit,勾选failure/fracture下面的SDEG和DMICRT,勾选state下面的status,这一步就不截图啦,很简单。
cohesive单元实例操作01详解
今晚在仿真科技论坛上看见一个关于cohesive的帖子,真心觉得不错,原作者图文并茂的解说为初学者带来了福音,在此感谢原作者cheaxii的无私奉献!剥离臂AA5754-O:弹性模量74.7GPa 泊松比0.33粘合层ESP110:弹性模量5.72Gpa、泊松比0.40、极限应力99MPa、断裂能0.845mJ/mm2 (这里为保持单位一直,在输入参数时单位需要换算为MPa、mm、mJ/mm2)参数来源[1]Ph. Martinya, F. Lania, A.J. Kinlochb, T. Pardoenc.Numerical analysis of the energy contributions in peel tests[J]. International Journal of Adhesion & Adhesives 28 (2008) 222–236 文献中的实验结果如下:45°剥离,剥离强度16.7N/mm90°剥离,剥离强度6.05N/mm135°剥离,剥离强度4.11N/mm本算例模拟了90°剥离,结果和文献实验结果吻合很好。
以下是step by step:1;创建part,2维,deformable,尺寸如下:剥离臂长100mm,厚1mm。
(这里没有采用文献中的220mm的长度,因为这对结果没有影响,厚度一样就行);粘合层厚0.4mm,预制裂纹40mm,所以实际粘合部分长80mm。
这里只建立了半模型,就是说下面的基体没有建立,这里是因为基体厚10mm,相对来说比上剥离臂厚很多,认为它是刚性的,不发生变形,所以不需要建模,以减小计算量。
粘合层是在part模块下分割出来的,这样就可以为他们赋予不同的材料属性和截面特征了。
2,设置属性porperty这里创建两个属性:1、剥离臂;2、粘合层,如下图示3、创建两个截面section如下图4、为不同的分区赋予不同的截面属性如下图5、创建分析步这里因为有几何大变形,所以要打开几何大变形开关,将其从off调到on,其次为了最后的到载荷位移曲线的精确性,将增量步的大小做调整到0.002,这样就有500步,可以有500个采样点;6、调整场变量输出,在菜单栏output下拉菜单选择field output manage 点edit,勾选failure/fracture下面的SDEG和DMICRT,勾选state下面的status,这一步就不截图啦,很简单。
ABAQUS中Cohesive单元建模方法要点
复合材料模型建模与分析1. Cohesive单元建模方法1.1 几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
1.2 材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation 描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。
Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
abaquscohesive单元实例
abaquscohesive单元实例abaqus cohesive单元实例:建模和模拟断裂过程摘要:abaqus cohesive单元是一种用于模拟材料断裂和界面行为的元素类型。
本文将以一个具体的abaqus cohesive单元实例为例,介绍如何使用abaqus cohesive单元来建模和模拟断裂过程。
文章将逐步回答以下问题:什么是abaqus cohesive单元?如何定义材料参数和几何参数?如何生成和离散化几何模型?如何应用加载条件?如何进行模拟和分析结果?1. 引言断裂是材料结构力学中一个重要的问题,在工程实践中具有广泛的应用。
abaqus cohesive单元是一种用于模拟材料断裂行为的元素类型,适用于各种材料和应力条件。
abaqus cohesive单元模型能够准确地预测断裂面形状、力学性能和界面行为。
2. 定义材料参数和几何参数在开始模拟之前,我们需要定义材料参数和几何参数。
材料参数包括断裂准则、界面刚度和承载能力等。
几何参数包括断裂面的方向和位置等。
这些参数的选择取决于具体的应用需求和材料特性。
3. 生成和离散化几何模型使用abaqus软件生成几何模型,并对其进行离散化。
对于含有断裂接口的模型,我们需要定义和划分断裂面。
abaqus提供了丰富的工具和函数来操作几何模型,例如创建边界、划分网格等。
通过这些操作,可以生成符合实际需求的几何模型。
4. 应用加载条件加载条件是模拟中一个重要的因素。
我们需要定义在加载过程中施加在模型上的载荷和边界条件。
abaqus提供了丰富的加载条件类型,包括均布载荷、温度载荷、约束条件等。
根据应用需求选择合适的加载条件,并将其应用到模型中。
5. 模拟和分析结果模拟过程中,abaqus会自动计算每个离散化区域的力学响应和断裂行为。
根据所定义的材料参数和几何参数,abaqus会预测模型的断裂行为,并输出相应的力学曲线、断裂面形状等结果。
通过分析这些结果,我们可以评估模型的可靠性和性能。
ABAQUS中Cohesive单元建模方法
复合材料模型建模与分析1. Cohesive单元建模方法1.1 几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
1.2 材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive 单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive 的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive 的本构模型。
Cohesive 单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
(完整版)ABAQUS中Cohesive单元建模方法讲解
复合材料模型建模与分析1. Cohesive单元建模方法1。
1 几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive 层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移.方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点 (b)独立的网格通过“tie"绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie"很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
1.2 材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛.而在基于traction—separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段. 注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。
cohesive模拟例子(可编辑修改word版)
abaqus 的关于断裂那部分培训资料里面有一些例子,附着很详细的建立过程,挺不错的,你可以去看看一1.生成一个新的part,取名为cohesive,本part 选取2D deformable shell 类型(图1)2.通过Rectangle 工具画出一长100,高50 的矩形。
(考虑使用工具栏add- dimension 和edit dimension 来画出精确长度的模型。
)(图2,3)3.选择tool– partition,在对话框中选择face-sketch,然后选中整个part 确认并进入分割画面。
在part 中部分割如图4,其中两条线的距离为2。
(这个时候可以使用create lines 生成分割线,并且使用步骤2 中提到过的编辑dimension 来确定它们的位置。
)二(M5 为第一个图)1.建立名为interface 的材料,并且按照几图分别定义材料的damage initiation和damage evolution 以及stiffness。
(相关材料的意义请认真查阅用户分析手册中Element--cohesive element 章节)2.这里我们取damage initiation 法则为Maxs,数值5e8,5e8,5e8;damageevolution 选择energy,mode-independent,2e6。
3.选择mechanical-Elasticity-Elastic,type 修改为traction 将其中三项取为7e10)*另外建立名为Al 的材料,杨式模量7e10,泊松彼0.3三生成cohesive section,看图就很明了拉*另外生成一适合Al 材料的section四part-section assignments,分别赋予section 属性五Assembly--instance 使用independent,然后进行mesh六设置mesh 的seeds(看工具栏),然后选取工具栏上的mesh-->controls,将中间interface 部分Technique 选为sweep,其他部分用系统默认设置。
(完整版)cohesive定义理解
1。
关于cohesive element的traction—separation law的定义:顾名思义,这个law给的是力与位移的关系,而不是平时常见的力与应变的关系,因此现在的曲线斜率(对于开始的线弹性阶段),是E/L而不是E. (简单的推导:stress=E(modulus)*strain=E*L(original length)/L*strain=E/L *delta(位移),so stress/delta=E/L).2。
试验数据的输入:针对一种材料,或者一组试验数据得到的材料的young's modulus E, 中间的cohesive layer的厚度,当转换输入到ABAQUS中进行模拟的时候,对于cohesive layer,ABAQUS需要的是stiffness,也就是E/L,而不是E,所以使用者需要把试验材料的E除以试验得出的cohesive layer的厚度,输入到ABAQUS中去。
因此搞清楚这个关系也就明白了试验数据与模拟输入之间的转换。
3. 所谓的geometric thickness和constitutive thickness: geometric thickness,简单理解就是模型的尺寸,目的--让模型“显得”更真实.constitutive thickness,就是参与内部运算的尺寸,目的--让结果“算的”更真实.4. constitutive thickness在cohesive element的使用中起什么作用?(包含我的一些实践体会和疑问)a. 首先,参与运算,常用默认的1,可以使算得的位移等于应变值。
(可是这个到底有什么好处呢?我从手册上没有发现.)b。
改变constitutive thickness对运算有影响吗?constitutive thickness 和输入的stiffness K之间有什么关系呢?我认为constitutive thickness 的改变对运算是有影响的,但是并不存在constitutive thickness和stiffness之间的对应关系。
ABAQUS中Cohesive单元建模方法
复合材料模型建模与分析1. Cohesive单元建模方法1.1 几何模型使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。
建立cohesive层的方法主要有:方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。
方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。
(a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定图1.建模方法上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。
1.2 材料属性应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation 描述;另一种是基于连续体描述。
其中基于traction-separation描述的方法应用更加广泛。
而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。
它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。
注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。
曲线下的面积即为材料断裂时的能量释放率。
因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。
常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。
Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
今晚在仿真科技论坛上看见一个关于cohesive的帖子,真心觉得不错,原作者图文并茂的解说为初学者带来了福音,在此感谢原作者cheaxii的无私奉献!
剥离臂AA5754-O:弹性模量74.7GPa 泊松比0.33
粘合层ESP110:弹性模量5.72Gpa、泊松比0.40、极限应力99MPa、断裂能0.845mJ/mm2 (这里为保持单位一直,在输入参数时单位需要换算为MPa、mm、mJ/mm2)
参数来源[1]Ph. Martinya, F. Lania, A.J. Kinlochb, T. Pardoenc.Numerical analysis of the energy contributions in peel tests[J]. International Journal of Adhesion & Adhesives 28 (2008) 222–236 文献中的实验结果如下:
45°剥离,剥离强度16.7N/mm
90°剥离,剥离强度6.05N/mm
135°剥离,剥离强度4.11N/mm
本算例模拟了90°剥离,结果和文献实验结果吻合很好。
以下是step by step:
1;创建part,2维,deformable,尺寸如下:剥离臂长100mm,厚1mm。
(这里没有采用文献中的220mm的长度,因为这对结果没有影响,厚度一样就行);粘合层厚0.4mm,预制裂纹40mm,所以实际粘合部分长80mm。
这里只建立了半模型,就是说下面的基体没有建立,这里是因为基体厚10mm,相对来说比上剥离臂厚很多,认为它是刚性的,不发生变形,所以不需要建模,以减小计算量。
粘合层是在part模块下分割出来的,这样就可以为他们赋予不同的材料属性和截面特征了。
2,设置属性porperty
这里创建两个属性:1、剥离臂;2、粘合层,如下图示
3、创建两个截面section如下图
4、为不同的分区赋予不同的截面属性如下图
5、创建分析步
这里因为有几何大变形,所以要打开几何大变形开关,将其从off调到on,其次为了最后的到载荷位移曲线的精确性,将增量步的大小做调整到0.002,这样就有500步,可以有500个采样点;
6、调整场变量输出,在菜单栏output下拉菜单选择field output manage 点edit,勾选failure/fracture下面的SDEG和DMICRT,勾选state下面的status,这一步就不截图啦,很简单。
7、仍然在step下,创建一个surface集,后面有用的,选tool下来菜单的surface,然后创建,选择剥离臂右端截面。
点ok,这个也很简单啦
8、创建边界条件
在initial分析步下,对粘合层下部施加固定约束(因为对下面的基体建模,所以固定约束施加在粘合层下端,这样做是可行的,因为基体很厚,变形忽略为0),在step1(上面创建的)下,在剥离臂右端施加30mm的强制位移载荷
9、划分网格
布置全局种子尺寸为0.25。
剥离臂右端端面局部种子个数为4个(这样就有5个节点)剥离臂单元控制类型为为扫略、单元类型为CPS4R,粘合层单元控制类型必须为扫略,类型COH2D4,(这里粘合层单元只能建为一层)。
这里要把单元删除选项选为yes,退化类型specify为1(即SDEG值达到1时完全失效,然后删除这个单元),这样共划分了1160个单元。
10、创建一个job,然后提交,这个一路ok,就不截图了
11、查看结果,点monitor里面的result后者直接切换到viserible,得到的应力云图如下,可以看到,由于前面的单元已经破坏失效所以被删除了,只有最后蓝色的部分还粘在一起
12、绘制载荷时间曲线(因为位移是按时间线性加载的,所以载荷时间曲线相当于载荷位移曲线)
点击XY Data manage——create——OBD field output,将position选为unique nodal,在element/nodal选项卡下选择set,然后选择前面创建的那个set(其实就是选择了剥离臂端面上的5个节点)然后点保存,在create——operate on XY data 选择公式sum(()),将保存的5个XY图求和,在保存为XY-data1(或其他名字),然后在XY Data manage下点plot,绘制载荷时间图像如下。
显示最大载荷为6.5N/mm左右,与文献中的6.05N/mm,很接近。
在此,再次感谢原作者cheaxii!
附上算例。