2017-2019高考 函数的概念与基本初等函数分类汇编(试题版)
2017--2019全国高考函数的概念与性质分类汇编(文科数学)
()2e e xxf x x --=2sin ()cos x x f x x x +=+2017--2019全国高考函数的概念与性质分类汇编(文)一、函数的图像【2016全国1,文9】函数22xy x e =-在[2,2]-的图象大致为( )【2017全国1,文8】函数sin21cos xy x =-的部分图像大致为( )【2019全国1,文5】函数在[,]ππ-的图像大致为( )B.A. C. D.【2018全国2,文3】函数的图象大致为( )2sin 1xy x x=++【2017全国3,文7】函数的部分图像大致为( )【2018全国3,文9】函数422y x x =-++的图像大致为( )二、函数不等式【2016全国1,文8】若0,01a b c >><<,则( ) A.log log a b c c < B.log log c c a b < C.c c a b < D. a b c c >【2019全国1,文3】已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a << 【2018全国1,文12】设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,10()20x x x f x x +≤⎧=⎨>⎩,,,,1()()12f x f x +->【2016全国3,文7】已知4213332,3,25a b c ===,则( )A. b a c <<B. a b c <<C. b c a <<D.c a b << 【2019全国3,文12】设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A. 233231(log )(2)(2)4f f f -->> B. 233231(log )(2)(2)4f f f -->>C. 233231(2)(2)(log )4f f f -->> D.233231(2)(2)(log )4f f f -->>【2017全国3,文16】设函数则满足的x 的取值范围是__________.三、函数性质【2017全国1,文9】已知函数()ln ln(2)f x x x =+-,则( )A.()f x 在(0,2)单调递增 C.()y f x =的图像关于直线1x =对称B.()f x 在(0,2)单调递减 D.()y f x =的图像关于点(1,0)对称【2017全国2,文8】函数2()ln(28)f x x x =-- 的单调区间是( ) A. (-∞,-2) B. (-∞,-1) C. (1, +∞) D. (4, +∞)【2017全国2,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = .【2018全国2,文12】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f ++++=L ( )A .-50B .0C .2D .50【2019全国2,文6】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x-,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x---D .e 1x--+【2018全国3,文16】 已知函数())ln1f x x =+,()4f a =,则()f a -=________四、函数概念与求值【2018全国1,文13】已知函数()()22log f x x a =+,若()31f =,则a =________.【2016全国2,文10】下列函数中,其定义域和值域分别与函数lg 10xy =的定义域和值域相同的是( )A.y x =B.lg y x =C. 2xy =D.y。
2019年数学函数的概念与基本初等函数Ⅰ高考真题和模拟题分项汇编数学文Word版含解析
2019年数学函数的概念与基本初等函数Ⅰ高考真题和模拟题分项汇编专题02 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -, 则当0x <时,0x ->,则()e 1()xf x f x --=-=-,得()e 1xf x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.3.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】Ba b c <<a c b <<c a b <<b c a <<【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0πx ∴=、或2π.()f x ∴在[]0,2π的零点个数是3.故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养,直接求出函数的零点可得答案.4.【2019年高考天津文数】已知0.223log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为A .c b a <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】∵0.200.30.31c =<=,22log 7log 42a =>=, 331log 8log 92b <=<=,∴c b a <<. 故选A .【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与1的大小进行判断. 5.【2019年高考北京文数】下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x - C .12log y x =D .1y x=【答案】A【解析】易知函数122,log xy y x -==,1y x=在区间(0,)+∞上单调递减, 函数12y x =在区间(0,)+∞上单调递增. 故选A.【名师点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题. 6.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.7.【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 2sin cos ++x xx x从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.8.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.9.【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2019年高考天津文数】已知函数01,()1,1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解,则a 的取值范围为 A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦ C .59,{1}44⎛⎤⎥⎝⎦U D .59,{1}44⎡⎤⎢⎥⎣⎦U【答案】D【解析】作出函数01,()1,1x f x x x⎧≤≤⎪=⎨>⎪⎩的图象,以及直线14y x =-,如图,关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解, 即为()y f x =和1()4y x a a =-+∈R 的图象有两个交点, 平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线1()4y x a a =-+∈R 与1y x =在1x >时相切,2114ax x -=, 由210a ∆=-=,解得1a =(1-舍去), 所以a 的取值范围是{}59,149⎡⎤⎢⎥⎣⎦U .故选D.【名师点睛】根据方程实数根的个数确定参数的取值范围,常把其转化为曲线的交点个数问题,特别是其中一个函数的图象为直线时常用此法.11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b 1−a,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a<0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3, 则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.12.【2019年高考江苏】函数y =的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤,即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 14.【2019年高考北京文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求;当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫= ⎪⎝⎭,所以x 的最大值为15.综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养. 15.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】1,34⎡⎪⎢⎪⎣⎭【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数()f x =的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则()(0,2]f x x =∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为11=,解得(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴134k ≤<, 综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为134⎡⎫⎪⎢⎪⎣⎭,. 【名师点睛】本题考查分段函数,函数的图象,函数的性质,函数与方程,点到直线的距离,直线的斜率等,考查知识点较多,难度较大.正确作出函数()f x ,()g x 的图象,数形结合求解是解题的关键因素.16.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23xf x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)【答案】B【解析】易知函数()23xf x x =+在定义域上单调递增且连续, 且2(2)260f --=-<,1(1)230f --=-<,f (0)=1>0,所以由零点存在性定理得,零点所在的区间是(-1,0). 故选B.【名师点睛】本题考查函数的单调性和零点存在性定理,属于基础题.17.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B.【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.18.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0x x x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .15【答案】B【解析】∵函数()()2log 1,04,0x x x f x x ⎧-<=⎨≥⎩,∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B .【名师点睛】本题考查分段函数、函数值的求法,考查对数函数的运算性质,是基础题.19.【山东省济宁市2019届高三二模数学】已知f(x)是定义在R 上的周期为4的奇函数,当x ∈(0,2)时,f(x)=x 2+lnx ,则f(2019)= A .−1 B .0 C .1D .2【答案】A【解析】由题意可得:f(2019)=f(505×4−1)=f(−1)=−f(1)=−(12+ln1)=−1. 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.20.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为A .(,1)-∞-B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数()()22log 34f x x x =--,则2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-, 故函数()f x 的定义域为4x >或1x <-,由2log y x =是单调递增函数,可知函数()f x 的单调减区间即234y x x =--的单调减区间, 当3(,)2x ∈-∞时,函数234y x x =--单调递减,结合()f x 的定义域,可得函数()()22log 34f x x x =--的单调减区间为(),1-∞-.故选A.【名师点睛】本题考查了复合函数的单调性,要注意的是必须在定义域的前提下,去找单调区间. 21.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211log 2144f m m ⎛⎫-=+=-+=- ⎪⎝⎭, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.22.【北京市房山区2019届高三第一次模拟测试数学】关于函数f(x)=x −sinx ,下列说法错误的是A.f(x)是奇函数B.f(x)在(−∞,+∞)上单调递增C.x=0是f(x)的唯一零点D.f(x)是周期函数【答案】D【解析】f(−x)=−x−sin(−x)=−x+sinx=−f(x),则f(x)为奇函数,故A正确;由于f′(x)=1−cosx≥0,故f(x)在(−∞,+∞)上单调递增,故B正确;根据f(x)在(−∞,+∞)上单调递增,f(0)=0,可得x=0是f(x)的唯一零点,故C正确;根据f(x)在(−∞,+∞)上单调递增,可知它一定不是周期函数,故D错误.故选D.【名师点睛】本题考查函数性质的综合应用,关键是能够利用定义判断奇偶性、利用导数判断单调性、利用单调性判断零点.23.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()441xxf x=-的图象大致是A.B.C.D.【答案】D【解析】因为函数()441xxf x=-,44()()()4141x xx xf x f x----==≠--,所以函数()f x不是偶函数,图象不关于y轴对称,故排除A、B选项;又因为9256(3),(4),7255f f ==所以(3)(4)f f >, 而选项C 在0x >时是递增的,故排除C. 故选D.【名师点睛】本题考查了函数的图象和性质,利用函数的奇偶性和取特值判断函数的图象是解题的关键,属于基础题.24.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是A .()e ex xxf x -=+ B .()e ex xxf x -=- C .()e e x xf x x-+=D .()e e x xf x x--=【答案】C【解析】当x →0时,f (x )→±∞,而A 中的f (x )→0,排除A ; 当x <0时,f (x )<0,而选项B 中x <0时,()e e x xxf x -=->0,选项D 中,()e e x xf x x--=>0,排除B ,D , 故选C .【名师点睛】本题考查了函数的单调性、函数值的符号,考查数形结合思想,利用函数值的取值范围可快速解决这类问题.25.【天津市北辰区2019届高考模拟考试数学】已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,则三个数a =f (−log 313),b =f (log 1218),c =f (20.6)的大小关系为A .a >b >cB .a >c >bC .b >a >cD .c >a >b【答案】C【解析】∵2=log 39<log 313<log 327=3,log 1218=log 28=3,0<20.6<21=2,∴0<20.6<log 313<log 1218,∵f (x )为偶函数,∴a =f (−log 313)=f (log 313), 又f (x )在[0,+∞)上单调递增,∴f (log 1218)>f (log 313)>f (20.6),即b >a >c .故选C.【名师点睛】本题考查利用函数的单调性比较大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.26.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是 A .[1,+∞) B .[−1,4) C .[−1,+∞) D .[−1,6]【答案】C【解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x−2(y x )2对于x ∈[1,2],y ∈[2,3]恒成立,令t =yx ,则1≤t ≤3,∴a ≥t −2t 2在[1,3]上恒成立,∵y =−2t 2+t =−2(t −14)2+18,∴t =1时,y max =−1,∴a ≥−1,故a 的取值范围是[−1,+∞). 故选C .【名师点晴】本题主要考查二次函数的性质以及不等式恒成立问题,不等式恒成立问题的常见解法:①分离参数,a ≥f (x )恒成立,即a ≥f (x )max ,或a ≤f (x )恒成立,即a ≤f (x )min ; ②数形结合,f (x )>g (x ),则y =f (x )的图象在y =g (x )图象的上方; ③讨论最值,f (x )min ≥0或f (x )max ≤0恒成立.27.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x af x x x a⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是 A .(),0-∞ B .(),1-∞ C .()1,+∞D .()0,+∞【答案】D【解析】函数2,(),x x af x x x a⎧≥=⎨-<⎩的图象如图:若函数()f x 存在零点,则实数a 的取值范围是(0,+∞). 故选D .【名师点睛】本题考查分段函数,函数的零点,考查数形结合思想以及计算能力.28.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为 A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭U D .(,1)(8,)-∞+∞U【答案】A【解析】因为对121x x ∀<≤,满足()()01212<--x x x f x f ,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于直线1x =对称,所以函数()y f x =当1>x 时,是单调递增函数,又因为(3)1f =,所以有1)1(=-f , 当2log 1x ≤,即当02x <≤时,()()222log 1log (11lo 1g ,22)12f x f x x x f x <⇒<-⇒>-⇒>∴<≤;当2log 1x >,即当2x >时,()()222log 1log (3)log 38,28x x f x f x x f <<⇒⇒<∴<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫ ⎪⎝⎭. 故选A .【名师点睛】本题考查了抽象函数的单调性、对称性、分类讨论思想. 对于()y f x =来说,设定义域为I ,D I ⊆,1212,,x x D x x ∀∈≠, 若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅->>-,则()y f x =是D 上的增函数;若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅-<<-,则()y f x =是D 上的减函数.29.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞U ,,B .2(2)3,C .22()33-,D .22()()33-∞-+∞U ,,【答案】D【解析】因为(2)f x +是偶函数,所以()f x 的图象关于直线2x =对称, 因此,由(0)0f =得(4)0f =,又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增,所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-;当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<,解得23x >, 因此,(23)0f x ->的解集是22()()33-∞-+∞U ,,. 故选D.【名师点睛】本题考查函数的奇偶性和单调性,不等式的求解,先根据函数的奇偶性得到函数在定义域上的单调性,从而分类讨论求解不等式.30.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是 A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞【答案】C【解析】根据题意,()1y f x =-的图象关于直线1x =对称,则函数()f x 的图象关于y 轴对称,即函数()f x 为偶函数,又由函数()f x 在区间)[0+∞,上单调递增, 可得()()2log 2||f a f <,则2log |2|a <, 即22log 2a -<<,解得144a <<, 即a 的取值范围为1,44⎛⎫ ⎪⎝⎭. 故选C .【名师点睛】本题考查函数的单调性与奇偶性的应用,考查对数不等式的解法.31.【陕西省西安市2019届高三第三次质量检测数学】若定义在R 上的函数f (x )满足f(x +2)=f(x)且x ∈[−1,1]时,f (x )=|x |,则方程f (x )=log 3|x |的根的个数是 A .4 B .5 C .6D .7【答案】A【解析】因为函数f (x )满足f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数.又x ∈[−1,1]时,f (x )=|x|,所以函数f (x )的图象如图所示.再作出y =log 3|x |的图象,如图, 易得两函数的图象有4个交点, 所以方程f(x)=log 3|x|有4个根. 故选A .【名师点睛】本题考查函数与方程,函数的零点、方程的根、函数图象与x 轴交点的横坐标之间是可以等价转化的.32.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭ C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤-⎥⎝⎦【答案】A【解析】因为()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩, 所以当0x ≥时,()12x f x +=单调递增,故()122x f x +=≥;当0x <时,()()21112x f x x x x x x ⎡⎤+⎛⎫⎛⎫=-=-+=-+-≥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当且仅当1x x-=-,即1x =-时,取等号, 综上可得,f(x)∈[2,+∞).又因为存在实数a ,使得g(b)+f(a)=2成立,所以只需g(b)≤2−f(a)min ,即g(b)=b 2−b −2≤0, 解得−1≤b ≤2. 故选A.【名师点睛】本题主要考查分段函数的值域,将存在实数a ,使得g(b)+f(a)=2成立,转化为g(b)≤2−f(a)min 是解题的关键,属于常考题型.33.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()f x =,则()f x 的定义域为____________. 【答案】1(,0)2-【解析】要使函数有意义,需12210log (21)0x x +>⎧⎪⎨+>⎪⎩,解得102x -<<. 则()f x 的定义域为1(,0)2-.【名师点睛】本题考查函数的定义域,属于基础题.34.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数f(x)=x 2−(a −2)x +1(x ∈R)为偶函数,则log a 27+log 1a87=__________.【答案】-2【解析】函数f(x)为偶函数,则f(x)=f(−x), 即:x 2−(a −2)x +1=x 2+(a −2)x +1恒成立, ∴a −2=0,a =2.则log a 27+log 1a87= log 227+log 278=log 2(27×78)=log 214=−2.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.35.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________. 【答案】2【解析】由()(2)2f x f a x b +-=知“准奇函数”()f x 关于点),(b a 对称. 因为1)(-=x x x f =111x +-关于(1,1)对称, 所以1a =,1b =,则2a b +=.故答案为2.【名师点睛】本题考查新定义的理解和应用,考查了函数图象的对称性,属于基础题.36.【甘肃、青海、宁夏2019届高三上学期期末联考数学】若函数()()212(0,0)f x mx n x m n =+-+>>的单调递增区间为1,2⎡⎫+∞⎪⎢⎣⎭,则11m n+的最小值为__________. 【答案】4 【解析】由题意知函数()f x 的图象的对称轴为1122n x m -=-=,故1m n +=,则()1111224n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当12m n ==时等号成立, 从而11m n+的最小值为4. 【名师点睛】利用二次函数的单调增区间求得1m n +=,再由()11112n m m n m n m n m n ⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式可求最小值.37.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学】函数()211log 1ax f x x x +=+-为奇函数,则实数a =__________.【答案】1【解析】Q 函数()211log 1ax f x x x +=+-为奇函数,()()f x f x ∴-=-, 即()()0f x f x -+=, 则221111log log 011ax ax x x x x -+-+++=+-,即211log 011ax ax x x +-⎛⎫⋅= ⎪-+⎝⎭, 2221111111ax ax a x x x x+--∴⋅==-+-,则22211a x x -=-,21a ∴=,则1a =±.当1a =-时,()211log 1x f x x x-=+-, 则()f x 的定义域为:{0x x ≠且}1x ≠,此时定义域不关于原点对称,为非奇非偶函数,不满足题意;当1a =时,()211log 1x f x x x+=+-,满足题意, 1a \=.【名师点睛】本题主要考查利用函数的奇偶性求解函数解析式,根据条件建立方程关系是解决本题的关键,易错点是忽略定义域关于原点对称的前提,造成求解错误.38.【东北三省三校(辽宁省实验中学、东北师大附中、哈师大附中)2019届高三第三次模拟考试数学】若函数f (x )={2x +1mx +m −1 ,x ≥0,x <0在(−∞,+∞)上单调递增,则m 的取值范围是__________. 【答案】(0,3]【解析】∵函数f (x )={2x +1mx +m −1 ,x ≥0,x <0在(−∞,+∞)上单调递增, ∴函数y =mx +m −1在区间(−∞,0)上为增函数,∴{m >0m −1≤20+1=2,解得0<m ≤3, ∴实数m 的取值范围是(0,3].故答案为(0,3].【名师点睛】解答此类问题时要注意两点:一是根据函数f (x )在(−∞,+∞)上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.39.【河南省濮阳市2019届高三5月模拟考试数学】已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31i i i x y =+=∑__________.【答案】3【解析】由题意,函数3y x x =-是奇函数,则函数3y x x =-的图象关于原点对称,所以函数31y x x =-+的函数图象关于点(0,1)对称,因为直线l 与曲线31y x x =-+有三个不同的交点()()()112233,,,,,A x y B x y C x y ,且||||AB AC =,所以点A 为函数的对称点,即(0,1)A ,且,B C 两点关于点(0,1)A 对称,所以1231230,3x x x y y y ++=++=,于是()313i ii x y =+=∑. 【名师点睛】本题主要考查了函数对称性的判定及应用,其中解答中根据函数的基本性质,得到函数图象的对称中心,进而得到点A 为函数的对称点,且,B C 两点关于点(0,1)对称是解答的关键,着重考查了推理与运算能力,属于中档试题.。
2017-2019高考 函数的概念与基本初等函数分类汇编(试题版)
2017-2019高考函数的概念与基本初等函数分类汇编(试题版)2017-2019高考函数的概念与基本初等函数分类汇编(试题版)1.已知$a=\log_2{0.2}。
b=20.2.c=0.20.3$,则$a<b<c$,选项A。
2.已知$a=\log_5{2}。
b=\log_{0.5}{0.2}。
c=0.50.2$,则$a<c<b$,选项C。
3.若$a>b$,则$ln(a-b)>0$,选项A。
4.已知太阳的星等是$-26.7$,天狼星的星等是$-1.45$,则太阳与天狼星的亮度的比值为$10^{10.1}$,选项A。
5.函数$f(x)=\frac{\sin{x}+x}{2\cos{x}+x}$在$[-\pi,\pi]$的图像大致为选项B。
6.函数$y=\frac{x}{2}+\frac{2}{2-x}$在$[-6,6]$的图像大致为选项C。
7.在同一直角坐标系中,函数$y=\frac{11}{ax+a^2}$,$y=\log{(x+a)}(a>0,且a≠1)$的图象可能是选项D。
8.嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行。
L2点是平衡点,位于地月连线的延长线上。
设地球质量为$M_1$,月球质量为$M_2$,地月距离为$R$,L2点到月球的距离为$r$,根据牛顿运动定律和万有引力定律,$r$满足方程$\frac{M_1M_2}{(R+r)^2r}=\frac{1}{3}\alpha^3+\frac{1}{3}\al pha^4+\alpha^5r$,近似计算中$r$的近似值为$\frac{2(1+\alpha)R}{3M_2}$,选项B。
20.若函数 $f(x)=x^2+ax+b$ 在区间 $[0,1]$ 上的最大值是$M$,最小值是 $m$,则 $M-m$ 与 $a$ 有关,但与 $b$ 无关。
十年真题(-2019)高考数学真题分类汇编 专题03 函数概念与基本初等函数 理(含解析)
专题03函数概念与基本初等函数历年考题细目表题型年份考点试题位置单选题2019对数函数2019年新课标1理科03单选题2018分段函数2018年新课标1理科09单选题2017函数的奇偶性2017年新课标1理科05单选题2017指数函数2017年新课标1理科11单选题2016指数函数2016年新课标1理科08单选题2014函数的奇偶性2014年新课标1理科03单选题2014函数模型2014年新课标1理科06单选题2013分段函数2013年新课标1理科11单选题2011函数的奇偶性2011年新课标1理科02单选题2011函数的对称性2011年新课标1理科12单选题2010函数模型2010年新课标1理科04单选题2010函数的奇偶性2010年新课标1理科08单选题2010分段函数2010年新课标1理科11填空题2015函数的奇偶性2015年新课标1理科13历年高考真题汇编1.【2019年新课标1理科03】已知a=log20.2,b=20。
2,c=0.20。
3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20。
2<log21=0,b=20。
2>20=1,∵0<0.20。
3<0.20=1,∴c=0.20。
3∈(0,1),∴a<c<b,故选:B.2.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0) B.[0,+∞) C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.3.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2] B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.4.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.5.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c>ba c;故B错误;log a c<0,且log b c<0,log a b<1,即1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣b log a c<﹣a log b c,即b log a c>a log b c,即a log b c<b log a c,故C正确;故选:C.6.【2014年新课标1理科03】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.7.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A.B.C.D.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cos x|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sin x|=|cos x|•|sin x||sin2x|,其周期为T,最大值为,最小值为0,故选:C.8.【2013年新课标1理科11】已知函数f(x),若|f(x)|≥ax,则a的取值范围是( )A.(﹣∞,0] B.(﹣∞,1]C.[﹣2,1] D.[﹣2,0]【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.9.【2011年新课标1理科02】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选:B.10.【2011年新课标1理科12】函数y的图象与函数y=2sinπx,(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.2【解答】解:函数y1,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象,如图,当1<x≤4时,y1<0而函数y2在(1,4)上出现1。
2017-2019年高考真题数学(理)分项汇编_专题09 三角函数
专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2s i n fx x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()s i n s i n 0fx x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C .3D .5【答案】B 【解析】2s i n 2c o αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又s i n 0α>,sin α∴=,故选B . 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-【答案】B【解析】2217cos 212sin 12()39αα=-=-⨯=. 故选B.【名师点睛】本题主要考查三角函数的求值,考查考生的运算求解能力,考查的核心素养是数学运算. 8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π【答案】A【解析】因为()πcos sin 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z , 因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【名师点睛】解答本题时,先确定三角函数单调减区间,再根据集合包含关系确定a 的最大值.函数()sin (0,0)y A x B A =++>>ωϕω的性质:(1)max min =+y A B y A B =-,. (2)周期2.T =πω(3)由()ππ2x k k +=+∈Z ωϕ求对称轴. (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.【名师点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D.【名师点睛】解答本题时,先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可作出判断.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.11.【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 12.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π, 由ϕ<π得12ϕπ=,故选A . 【名师点睛】关于sin()y A x ωϕ=+的问题有以下两种题型:①提供函数图象求解析式或参数的取值范围,一般先根据图象的最高点或最低点确定A ,再根据最小正周期求ω,最后利用最高点或最低点的坐标满足解析式,求出满足条件的ϕ的值;②题目用文字叙述函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己画出大致图象,然后寻求待定的参变量,题型很活,一般是求ω或ϕ的值、函数最值、取值范围等. 14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 24α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】2-【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭,所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时sin 22x x =-=-,所以()min2f x ⎛=⨯= ⎝⎭,故答案是. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________. 【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【名师点睛】由对称轴得2πππππ()326k k k +=+=-+∈Z ,ϕϕ,再根据限制范围求结果.函数()sin y A x B =++ωϕ(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT =ω;(3)由()ππ2x k k +=+∈Z ωϕ求对称轴; (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.20.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是. 【答案】1【解析】化简三角函数的解析式:()222311cos cos cos 144f x x x x x x ⎛=-+-=-+=--+ ⎝⎭, 由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当cos x =时,函数()f x 取得最大值1. 【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1s i n s i n 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【答案】12-【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【名师点睛】本题主要考查三角恒等变换,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算.23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈, 因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.25.【2017年高考浙江卷】已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.【答案】(1)2;(2)()f x 的最小正周期是π;单调递增区间是2[,],63k k k ππ+π+π∈Z .【解析】(1)由2sin 3π=21cos 32π=-,22211()()()322f π=----. 得2()23f π=. (2)由22cos 2cos sin x x x =-与sin 22sin cos x x x =得()cos 22f x x x =-2sin(2)6x π=-+.所以()f x 的最小正周期是π.由正弦函数的性质得3222,262k x k k πππ+π≤+≤+π∈Z , 解得2,63k x k k ππ+π≤≤+π∈Z ,所以,()f x 的单调递增区间是2[,],63k k k ππ+π+π∈Z .【名师点睛】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x 取到最小值-.【解析】(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值-27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=.(2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 【名师点睛】本题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、解决问题的能力,运算求解能力,考查的数学核心素养是数学运算.求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换. (1)首先利用三角函数的定义求得sin α,然后利用诱导公式,计算sin (α+π)的值;(2)根据sin (α+β)的值,结合同角三角函数的基本关系,计算cos()+αβ的值,要注意该值的正负,然后根据()βαβα=+-,利用两角差的余弦公式,通过分类讨论,求得cos β的值.28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()5+=-αβ.(1)求cos2α的值; (2)求tan()-αβ的值.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3=α,sin tan cos =ααα,所以4sin cos 3=αα.因为22sin cos 1+=αα, 所以29cos 25=α, 因此,27cos 22cos 125=-=-αα. (2)因为,αβ为锐角,所以(0,)+∈παβ.又因为cos()+=αβ,所以sin()+==αβ, 因此tan()2+=-αβ. 因为4tan 3=α,所以22tan 24tan 21tan 7==--ααα, 因此,tan 2tan()2tan()tan[2()]1tan 2tan()11-+-=-+==-++ααβαβααβααβ.【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中03ω<<.已知π()06f =.(1)求ω;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数()y g x =的图象,求()g x 在π3π[,]44-上的最小值. 【答案】(1)2ω=;(2)最小值为32-.【解析】(1)因为ππ()sin()sin()62f x x x ωω=-+-,所以1()cos cos 22f x x x x ωωω=--3sin cos 22x x ωω=-13(sin )2x x ωω=-π)3x ω=-.由题设知π()06f =,所以πππ63k -=ω,k ∈Z . 故62k ω=+,k ∈Z , 又03ω<<, 所以2ω=.(2)由(1)得()23f x x π⎛⎫=- ⎪⎝⎭.所以()4312g x x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 因为π3π[,]44x ∈-, 所以2,1233x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等.。
2017-2019全国高考典型的函数的概念与基本初等函数题目分类汇编
2017-2019全国高考典型的函数的概念与基本初等函数题目分类汇编1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.200.50.50.5c <=<,即112c <<, 所以a c b <<.3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ; 因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 5.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .【答案】B【解析】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A , 7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1xy a =的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=所以.r R α==9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.10.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B I = A .(1,2) B .(1,2] C .(-2,1) D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <,故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<I I .11.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为【答案】B【解析】()()()2ee 0,,x xx f x f x f x x--≠-==-∴Q 为奇函数,舍去A ; ()11e e 0f -=->Q ,∴舍去D ; ()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x xx---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C.12.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或20x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得22x >或202x -<<,此时函数单调递减,排除C. 13.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A,B;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D .14.【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以()3f x x x =+,()231f x x '=+,所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =, 故选D .15.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+, 所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,,因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦L , 因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=, 因为()()200f f ==,从而()()()()()1235012f f f f f ++++==L . 16.【2018年高考天津理数】已知2log e a =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D【解析】由题意结合对数函数的性质可知:2log e 1a =>,()21ln20,1log eb ==∈,12221log log 3log e 3c ==>, 据此可得:c a b >>.17.【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==Q ,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><Q ,0ab ∴<, ∴0ab a b <+<.18.【2017年高考北京理数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093【答案】D【解析】设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310. 19.【2017年高考全国Ⅰ卷理数】设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <. 20.【2017年高考浙江】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关.21.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3].22.【2017年高考北京理数】已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3xy =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数.23.【2017年高考天津理数】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以当0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<, 所以0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<.24.【2017年高考山东理数】已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是A .(0,1])+∞UB .(0,1][3,)+∞UC .)+∞UD .[3,)+∞U【答案】B【解析】当01m <≤时,11m≥,2(1)y mx =-在[0,1]x ∈时单调递减,且22(1)(1),1y mx m ⎡⎤=-∈-⎣⎦,y m =在[0,1]x ∈时单调递增,且[,1]y m m m =∈+,此时有且仅有一个交点;当1m >时,101m <<,2(1)y mx =-在1,1m ⎡⎤⎢⎥⎣⎦上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥.25.【2017年高考山东理数】若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2a ba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+<D .()21log 2a ba b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以1,01,a b ><<所以221,log ()log 12a ba b <+>=, 12112log ()a ba ab a a b b b+>+>+⇒+>+, 26.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A.9,4⎛⎤-∞⎥⎝⎦B.7,3⎛⎤-∞⎥⎝⎦C.5,2⎛⎤-∞⎥⎝⎦D.8,3⎛⎤-∞⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x+=,()2(1)f x f x∴=-.∵(0,1]x∈时,1()(1)[,0]4f x x x=-∈-;∴(1,2]x∈时,1(0,1]x-∈,1()2(1)2(1)(2),02f x f x x x⎡⎤=-=--∈-⎢⎥⎣⎦;∴(2,3]x∈时,1(1,2]x-∈,()2(1)4(2)(3)[1,0]f x f x x x=-=--∈-,如图:当(2,3]x∈时,由84(2)(3)9x x--=-解得173x=,283x=,若对任意(,]x m∈-∞,都有8()9f x≥-,则73m≤.则m的取值范围是7,3⎛⎤-∞⎥⎝⎦.27.【2019年高考浙江】已知,a b∈R,函数32,0()11(1),032x xf xx a x ax x<⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b=--恰有3个零点,则A.a<–1,b<0 B.a<–1,b>0C.a>–1,b<0 D.a>–1,b>0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x 错误!未找到引用源。
专题02 函数的概念与基本初等函数Ⅰ-2019年高考真题和模拟题分项汇编数学(文)(解析版)
=
4
+ 2π π2
1,
f
(π)
=
π −1+
π2
0 ,可知应为 D 选项中的图象.
2
7.【2019 年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗
星的星等与亮度满足
m2
–
m1
=
5 2
lg
E1 E2
,其中星等为 mk
的星的亮度为
Ek (k=1,2).已
知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
=
−
1 2
,1
x
2
,其中 k>0.若在区间(0,9]上,关于 x 的方程 f (x) = g(x) 有
8 个不同的实数根,则 k 的取值范围是 ▲ .
【答案】
1 3
,
2 4
【解析】作出函数 f (x) , g(x) 的图象,如图:
由图可知,函数 f (x) = 1− (x −1)2 的图象与 g(x) = − 1 (1 x 2,3 x 4,5 x 6, 7 x 8) 的图象仅有 2 个交点,即在区间
专题 02 函数的概念与基本初等函数 I
1.【2019 年高考全国Ⅰ卷文数】已知 a = log2 0.2,b = 20.2, c = 0.20.3 ,则( )
A. a b c
B. a c b
C. c a b
D. b c a
【答案】B
【解析】 a = log2 0.2 log2 1 = 0, b = 20.2 20 = 1, 0 c = 0.20.3 0.20 = 1, 即 0 c 1, 则 a c b .故选 B.
【高考冲刺】高考数学(理)真题专项汇编卷(2017-2019)知识点2:函数的概念与基本初等函数
知识点2:函数的概念与基本初等函数1、已知0.20.32log 0.2,2,0.2a b c ===,则( ) A .a b c << B .a c b << C .c a b << D .b c a <<2、函数2sin ()cos x xf x x x +=+在[,]-ππ的图像大致为( )A .B .C .D .3、若a b >,则( ) A .n 0()l a b -> B .33a b < C .330a b ->D .a b >4、设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦5、函数3222x xx y -=+在[]6,6-的图象大致为( ) A . B .C .D .6、设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>7、函数2()x xe ef x x --=的图像大致为( )A. B.C. D.8、已知()f x 是定义域为(,)-∞+∞的奇函数,满足()(11)f f x x =+-.若(1)2f =,则()(2)(3)(50)1f f f f +++⋅⋅⋅+=( ) A.-50B.0C.2D.509、函数422y x x =-++的图像大致为( )A. B.C. D.10、设0.22log 0.3,log 0.3a b ==则( ) A. 0a b ab +<< B. 0ab a b <+< C. 0a b ab +<<D. 0ab a b <<+11、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 的取值范围是( ) A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]12、设,,x y z 为正数,且235x y z ==,则( ) A. 235x y z <<B. 523z x y <<C. 352y z x <<D. 325y x z <<13、已知()f x 是奇函数,且当0x <时,()e ax f x =-,若(ln 2)8f =,则a =_________.14、设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩则满足1()()12f x f x +->的x 的取值范围是________.15、设函数()e e x xf x a -=+(a 为常数),若()f x 为奇函数,则a =_______;若()f x 是R 上的增函数,则a 的取值范围是___________.答案以及解析1答案及解析: 答案:B解析:22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .2答案及解析: 答案:D 解析:由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D .3答案及解析: 答案:C解析:取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ; 因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D , 因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .4答案及解析: 答案:B解析:(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---, 令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍), (,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .5答案及解析: 答案:B解析:设32()22x x x y f x -==+,则332()2()()2222xxx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .6答案及解析: 答案:C 解析:()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.3023log 4122-∴>=>,又()f x 在(0,)+∞单调递减,()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C7答案及解析: 答案:B 解析:详解:∵()()20,x xe e xf x f x x --≠-==-∴()f x 为奇函数,舍去A , ∵()110f e e -=->∴舍去D; ∵()()()()()243222'xx x x x x e e x e e xx e x e f x xx---+---++==∴2x >,()'0f x >所以舍去C;因此选B.8答案及解析: 答案:C解析:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)f x f x +=--所以(3)(1)(1), 4.f x f x f x T +=-+=-=因此(1)(2)(3)...(50)12[(1)(2)(3)(4)](1)(2),f f f f f f f f f f ++++=+++++因此(3)(1),(4)(2),f f f f =-=-所以(1)(2)(3)(4)0,f f f f +++= 因为: (2)(2)(2)f f f =-=-,所以(2)0f = 从而(1)(2)(3)...(50)(1)2,f f f f f ++++==选C.9答案及解析: 答案:D解析:当0x =时, 2y =摘除,A B32'422(21)y x x x x =-+=--,0.1x =时, 0y '>,故选D10答案及解析: 答案:B解析:∵0.22log 0.3,log 0.3a b == ∴0.30.311log 0.2,log 2a b= ∴0.311log 0.4a b +=∴1101a b <<<即01a b ab+<< 又∵0,0a b >< ∴0ab <即0ab a b <+<故选B11答案及解析: 答案:D解析:∵奇函数()f x 在(,)-∞+∞上单调递减,且(1)1f =-,∴(1)(1)1f f -=-=,由1(2)1f x -≤-≤,得121x -≤-≤,∴13x ≤≤,故选D12答案及解析: 答案:D解析:取对数: ln 2ln 3ln 5x y ==,ln 33ln 22x y =>, ∴23x y >,ln 2ln5x z =, 则ln 55ln 22x z =<, ∴25x z <, ∴325y x z <<, 故选D13答案及解析: 答案:-3解析:设0x >,则0x -<.∵当0x <时,()e ax f x =-,∴()e ax f x --=-. ∵()f x 是奇函数,∴()()e ax f x f x -=--=, ∴ln 2ln 2(ln 2)e (e )2a a a f ---===. 又∵(ln 2)8f =,∴28a -=,∴3a =-.14答案及解析: 答案:1,4⎛⎫-+∞ ⎪⎝⎭解析:()1,02 ,0x x x f x x +≤⎧=⎨>⎩,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.15答案及解析:答案:(1). -1; (2). (],0-∞.解析:若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数的取值范围是(],0-∞。
2017-2019年高考真题数学(文)分项汇编_专题02 函数的概念与基本初等函数I
专题02函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -, 则当0x <时,0x ->,则()e 1()xf x f x --=-=-,得()e 1xf x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.3.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0πx ∴=、或2π.()f x ∴在[]0,2π的零点个数是3.故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养,直接求出函数的零点可得答案.4.【2019年高考天津文数】已知0.223log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为A .c b a <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】∵0.200.30.31c =<=,22log 7log 42a =>=, 331log 8log 92b <=<=,∴c b a <<. 故选A .【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与1的大小进行判断. 5.【2019年高考北京文数】下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x - C .12log y x =D .1y x=【答案】A【解析】易知函数122,log xy y x -==,1y x=在区间(0,)+∞上单调递减, 函数12y x =在区间(0,)+∞上单调递增. 故选A.【名师点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.6.【2019年高考全国Ⅰ卷文数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+, 可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.7.【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+=从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.8.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.9.【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2019年高考天津文数】已知函数01,()1,1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解,则a 的取值范围为 A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦ C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦【答案】D【解析】作出函数01,()1,1x f x x x⎧≤≤⎪=⎨>⎪⎩的图象,以及直线14y x =-,如图,关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解, 即为()y f x =和1()4y x a a =-+∈R 的图象有两个交点, 平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线1()4y x a a =-+∈R 与1y x =在1x >时相切,2114ax x -=, 由210a ∆=-=,解得1a =(1-舍去), 所以a 的取值范围是{}59,149⎡⎤⎢⎥⎣⎦.故选D.【名师点睛】根据方程实数根的个数确定参数的取值范围,常把其转化为曲线的交点个数问题,特别是其中一个函数的图象为直线时常用此法.11.【2018年高考全国Ⅲ卷文数】下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是A .()ln 1y x =-B .()ln 2y x =-C .()ln 1y x =+D .()ln 2y x =+【答案】B【解析】函数ln y x =过定点(1,0),(1,0)关于直线x =1对称的点还是(1,0),只有()ln 2y x =-的图象过此点. 故选项B 正确.【名师点睛】本题主要考查函数的对称性和函数的图象,属于中档题.求解时,确定函数ln y x =过定点(1,0)及其关于直线x =1对称的点,代入选项验证即可.12.【2018年高考全国Ⅰ卷文数】设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】将函数()f x 的图象画出来,观察图象可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,. 故选D .【名师点睛】该题考查的是通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图象,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,最后求得结果.13.【2018年高考全国Ⅱ卷文数】函数()2e e x xf x x--=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x--≠-==-∴为奇函数,舍去A ; ()11e e 0f -=->,∴舍去D ;()()()()()243ee e e 22e 2e ,xx x x x x x xx x f x xx---+---++=='2x ∴>时,()0f x '>,()f x 单调递增,舍去C.因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 14.【2018年高考全国Ⅲ卷文数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ; 令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得x <或02x <<,此时函数单调递增,由()0f x '<得22(21)0x x ->,得2x >或02x -<<,此时函数单调递减,排除C. 故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.15.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A,B; 因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D .【名师点睛】先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可判断选择.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的周期性.16.【2018年高考全国Ⅰ卷文数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以()3f x x x =+,()231f x x '=+,所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =, 故选D .【名师点睛】该题考查的是函数的奇偶性以及有关曲线()y f x =在某个点()()00,x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论:多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得()f x ',借助于导数的几何意义,结合直线方程的点斜式求得结果.17.【2018年高考全国Ⅱ卷文数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+, 所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,, 因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦,因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=, 因为()()200f f ==,从而()()()()()1235012f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 18.【2018年高考天津文数】已知13313711log ,,log 245a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D【解析】由题意可知:3337log 3log log 92<<,即12a <<, 1131110444⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即01b <<,133317log log 5log 52=>,即c a >, 综上可得:c a b >>. 故本题选择D 选项.【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 19.【2017年高考全国Ⅱ卷文数】函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞【答案】D【解析】要使函数有意义,则2280x x -->,解得:2x <-或4x >,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调递增区间为()4,+∞.故选D.【名师点睛】求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用复合函数“同增异减”的原则,此时需先确定函数的单调性.20.【2017年高考全国Ⅰ卷文数】函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ; 当1x =时,sin 201cos 2y =>-,故排除A .故选C .【名师点睛】函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等. 21.【2017年高考全国Ⅲ卷文数】函数2sin 1xy x x =++的部分图像大致为【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C ; 当x →+∞时,1y x →+,故排除B,满足条件的只有D. 故选D.【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化进行研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小关系转化为自变量的大小关系.22.【2017年高考浙江】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关.故选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.23.【2017年高考北京文数】已知函数1()3()3x xf x =-,则()f xA .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数【答案】B【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数, 并且3xy =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数. 故选B.【名师点睛】本题属于基础题型,根据()f x -与()f x 的关系就可以判断出函数的奇偶性,判断函数单调性的方法:(1)利用平时学习过的基本初等函数的单调性;(2)利用函数图象判断函数的单调性;(3)利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数;(4)利用导数判断函数的单调性. 24.【2017年高考天津文数】已知奇函数()f x 在R 上是增函数.若221(log ),(log 4.1),5a fb f =-=0.8(2)c f =,则a ,b ,c 的大小关系为A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C【解析】由题意可得221(log )(log 5)5a f f =-=,且22log 5log 4.12>>,0.8122<<,所以0.822log 5log 4.12>>,结合函数的单调性可得0.822(log 5)(log 4.1)(2)f f f >>,即a b c >>,即c b a <<. 故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式. 25.【2017年高考全国Ⅰ卷文数】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线x =1对称D .()y f x =的图像关于点(1,0)对称【答案】C【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图像关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误. 故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图像有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图像有对称中心(,0)2a b+.26.【2017年高考山东文数】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A .2B .4C .6D .8【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<, 由()(+1)f a f a =2(11)a =+-,解得14a =, 则1(4)2(41)6f f a ⎛⎫==⨯-=⎪⎝⎭. 故选C.【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.27.【2017年高考北京文数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48) A .1033 B .1053 C .1073 D .1093【答案】D【解析】设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310. 故选D .【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 28.【2017年高考天津文数】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是A .[2,2]-B .[2]-C .[2,-D .[-【答案】A【解析】当a =±0x =时,()||2xf x a ≥+即2|≥±,即2≥, 显然上式不成立, 由此可排除选项B 、C 、D. 故选A .【名师点睛】涉及分段函数问题要遵循分段处理的原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的取值范围.本题具有较好的区分度,所给解析采用了排除法,解题步骤比较简捷,口算即可得出答案,解题时能够节省不少时间.当然,本题也可画出函数图象,采用数形结合的方法进行求解.29.【2017年高考全国Ⅲ卷文数】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】由211()2(ee )x xf x x x a --+=-++,得()221(2)1211(2)(2)2(2)e e 4442e e x x x x f x x x a x x x a ----+--⎡⎤-=---++=-+-+++=⎣⎦()2112e e x x x x a --+-++,所以(2)()f x f x -=, 即1x =为()f x 图象的对称轴.由题意,()f x 有唯一零点,所以()f x 的零点只能为1x =,即()21111(1)121e e 0f a --+=-⨯++=, 解得12a =. 故选C.【名师点睛】本题主要考查函数的图象与性质、函数的零点,意在考查考生的运算求解能力与数形结合能力.30.【2017年高考山东文数】若函数e ()xf x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是 A .()2xf x -= B .2()f x x = C .()3x f x -=D .()cos f x x =【答案】A【解析】对于A ,e e ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2xf x -=具有M 性质;对于B ,2e ()e x x f x x =⋅,令2()e x g x x =⋅,则2()e 2e e (2)xxxg x x x x x '=⋅+⋅=+,∴当2x <-或0x >时,()0g x '>,当20x -<<时,()0g x '<,∴2e ()e xxf x x =⋅在(,2)-∞-,(0,)+∞上单调递增,在(2,0)-上单调递减, 故2()f x x =不具有M 性质;对于C ,e e ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; 对于D ,易知()cos f x x =在定义域内有增有减,故()cos f x x =不具有M 性质. 故选A.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的动向,它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.31.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减, 则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且()3211(1)1(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.32.【2019年高考江苏】函数y =的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.33.【2018年高考全国Ⅰ卷文数】已知函数()()22log f x x a =+,若()31f =,则a =________.【答案】7-【解析】根据题意有()()23log 91f a =+=,可得92a +=, 所以7a =-. 故答案是7-.【名师点睛】该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.34.【2018年高考江苏】函数()f x =________.【答案】[2,+∞)【解析】要使函数()f x 有意义,则需2log 10x -≥, 解得2x ≥,即函数()f x 的定义域为[)2,+∞.【名师点睛】求给定函数的定义域往往需转化为解不等式(组)的问题.求解本题时,根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.35.【2018年高考全国Ⅲ卷文数】已知函数())ln1f x x =+,()4f a =,则()f a -=________.【答案】2-【解析】由题意得()()))()22ln1ln1ln 122f x f x x x x x +-=+++=+-+=,()()2f a f a ∴+-=,则()2f a -=-. 故答案为−2.【名师点睛】本题主要考查函数的性质,由函数解析式计算发现()()2f x f x +-=是关键,属于中档题.36.【2017年高考江苏】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--. 【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.37.【2017年高考全国Ⅱ卷文数】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =. 【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.38.【2017年高考山东文数】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)=______. 【答案】6【解析】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =, 所以(919)(61531)(1)f f f =⨯+=(1)6f =-=. 【名师点睛】与函数奇偶性有关问题的解决方法:①已知函数的奇偶性,求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.②已知函数的奇偶性求解析式:将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.39.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤,即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 40.【2019年高考北京文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫=⎪⎝⎭,所以x 的最大值为15. 综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养. 41.【2018年高考浙江】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
高中数学--《函数概念与基本初等函数》测试题(含答案)
高中数学--《函数概念与基本初等函数》测试题(含答案)1.已知,,,则a,b,c三个数的大小关系是A. B. C. D.【答案解析】A试题分析:由基本初等函数的单调性易知a<b,c<b,可排除B、C、D三个选项,对于选项A,因为a>1,c<1,所以c<a<b,答案选A.考点:函数的单调性及其应用2.函数的零点所在区间是A. B. C. D.(1,2)【答案解析】C试题分析:因为,所以,零点在区间上,答案选C.考点:零点存在性定理3.下列函数中,在区间(0,)上是增函数的是A. B. C. D.【答案解析】D4.A. B. C. D.【答案解析】D5.函数的定义域是()A.B.C.D.【答案解析】D6.已知幂函数y=f(x)的图象过(4,2)点,则=()A.B.C.D.【答案解析】B7.函数的定义域为(A)(B)(C)(D)【答案解析】C8.若,则等于()A.B.C.D.【答案解析】B9.若上述函数是幂函数的个数是()A.个B.个C.个D.个【答案解析】C10.已知幂函数的图象经过点(4,2),则=( )A.2 B.4 C. D.8【答案解析】B11.已知函数是幂函数,则实数的值是().0B.1C.0或1D.【答案解析】A12.函数的定义域是()A、B、C、D、【答案解析】B13.设,则()A.10B.11C.12D.13【答案解析】B14.函数的定义域是()A. B. C. D.【答案解析】D15.与为同一函数的是()A. B. C. D.【答案解析】B16.函数f(x)=lg(3x+1)的定义域是A、(0,+∞);B、(-1,0);C、(-1/3,+∞);D、(-1/3,0);【答案解析】C17.,则f{f[f(-3)]}等于( )A.0B.πC.D.9 【答案解析】C18.以下函数为指数函数的是()A.B.C.D.【答案解析】B。
高考数学(理)真题专题汇编:函数的概念与基本初等函数
高考数学(理)真题专题汇编:函数的概念与基本初等函数一、选择题1.【来源】2019年高考真题——数学(浙江卷)设,a b R ∈,数列{a n }中,21,n n n a a a a b +==+,b N *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =->D. 当104,10b a =->2.【来源】2019年高考真题——数学(浙江卷)已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >->D. 1,0a b >-<3.【来源】2019年高考真题——数学(浙江卷) 在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.4.【来源】2019年高考真题——理科数学(北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A. 1010.1B. 10.1C. lg10.1D. 10–10.15.【来源】2019年高考真题——理科数学(天津卷)已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A.[0,1]B.[0,2]C.[0,e ]D.[1, e ] 6.【来源】2019年高考真题——理科数学(天津卷) 已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则a ,b ,c 的大小关系为A.a c b <<B.a b c <<C.b c a <<D.c a b << 7.【来源】2019年高考真题——理科数学(全国卷Ⅱ)设函数f (x )的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦8.【来源】2019年高考真题——理科数学(全国卷Ⅱ)若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │9.【来源】2019年高考真题——理科数学(全国卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A .21M R M B .212M R MC .2313M R M D .2313M R M 10.【来源】2019年高考真题——理科数学(全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则 A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 11.【来源】2019年高考真题——理科数学(全国卷Ⅲ)函数3222x xx y -=+在[-6,6]的图象大致为 A .B .C .D .12.【来源】2019年高考真题——理科数学(全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm13.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知0.20.32 log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<14.【来源】2018年高考真题——数学理(全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则 A .a +b <ab <0 B . ab <a +b <0 C .a +b <0<abD . ab <0<a +b15.【来源】2018年高考真题——数学理(全国卷Ⅲ)函数422y x x =-++的图像大致为16.【来源】2018年高考真题——理科数学(天津卷)已知2log e=a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为(A) a b c >>(B) b a c >>(C) c b a >>(D) c a b >>17.【来源】2018年高考真题——理科数学(全国卷II )已知f (x )是定义域为(-∞,+∞)的奇函数,满足 f (1-x )= f (1+x ).若f (1)=2,则f (1)+ f (2)+ f (3)+…+f (50)=A .-50B .0C .2D .5018.【来源】2018年高考真题——理科数学(全国卷II )函数()2e e x xf x x --=的图像大致为19.【来源】2018年高考真题——理科数学(全国卷Ⅰ)已知函数⎩⎨⎧>≤=0,ln 0,)(x x x e x f x ,g (x )=f (x )+x +a ,若g (x )存在2个零点,则a 的取值范围是 A.[-1,0) B. [0,+∞) C. [-1,+∞) D. [1,+∞)二、填空题20.【来源】2019年高考真题——数学(浙江卷)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.21.【来源】2019年高考真题——理科数学(北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.22.【来源】2019年高考真题——理科数学(北京卷)设函数f (x )=e x+a e −x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R上的增函数,则a 的取值范围是___________.23.【来源】2019年高考真题——理科数学(全国卷Ⅱ)已知f (x )是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.24.【来源】2019年高考真题——数学(江苏卷)设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当(0,2]x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是_____.25.【来源】2019年高考真题——数学(江苏卷)函数y =_____. 26.【来源】2018年高考真题——数学(江苏卷)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(-2,2]上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为▲ .27.【来源】2018年高考真题——数学(江苏卷)函数()f x =的定义域为 ▲ .28.【来源】2018年高考真题——理科数学(天津卷)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 . 29.【来源】2016年高考真题——理科数学(天津卷)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足1(2)(a f f ->,则a 的取值范围是______.三、解答题30.【来源】2019年高考真题——数学(江苏卷)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q 两点间的距离.试卷答案1. A 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B :不动点满足2211042x x x ⎛⎫-+=-= ⎪⎝⎭时,如图,若1110,,22n a a a ⎛⎫=∈< ⎪⎝⎭,排除如图,若a 为不动点12则12n a = 选项C :不动点满足22192024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为ax 12-,令2a =,则210n a =<,排除选项D :不动点满足221174024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为1712x =±,令1712a =,则171102n a =±<,排除. 选项A :证明:当12b =时,2222132431113117,,12224216a a a a a a =+≥=+≥=+≥≥, 处理一:可依次迭代到10a ; 处理二:当4n ≥时,221112n n n a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>⇒>则12117(4)16n na n -+⎛⎫≥≥ ⎪⎝⎭,则626410217164646311114710161616216a ⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++> ⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解. 2. D 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析. 【详解】原题可转化为()y f x =与y ax b =+,有三个交点.当BC AP λ=时,2()(1)()(1)f x x a x a x a x '=-++=--,且(0)0,(0)f f a ='=,则(1)当1a ≤-时,如图()y f x =与y ax b =+不可能有三个交点(实际上有一个),排除A ,B(2)当1a >-时,分三种情况,如图()y f x =与y ax b =+若有三个交点,则0b <,答案选D下面证明:1a >-时,BC AP λ=时3211()()(1)32F x f x ax b x a x b =--=-+-,2()(1)((1))F x x a x x x a '=-+=-+,则(0)0 ,(+1)<0F >F a ,才能保证至少有两个零点,即310(1)6b a >>-+,若另一零点在0<【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.. 3. D 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 4. D 【分析】 先求出12lgE E ,然后将对数式换为指数式求12E E ,再求12E E . 【详解】两颗星的星等与亮度满足12125lg 2E m m E -= , 令2 1.45m =- ,126.7m =- ,()1212221g( 1.4526.7)10.155E m m E =-=-+=, 10.110.112211010E EE E -=⋅= ,故选D. 5. C∵(0)0f ≥,即0a ≥, (1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤。
专题02函数的概念与基本初等函数I-三年(2017-2019)高考真题数学(文)分项汇编(解析版)
专题 02函数的观点与基本初等函数I1.【 2019 年高考全国Ⅰ卷文数】已知 a log 2 0.2,b 2, c0.2 ,则A . a b cB . a c bC. c a b D . b c a【答案】 B【分析】 a log2log 2 1 0, b2201,0 c 01, 即 0 c1,则 a c b .应选 B.【名师点睛】此题考察指数和对数大小的比较,考察了数学运算的修养.采纳中间量法,依据指数函数和对数函数的单一性即可比较大小.2.【 2019 年高考全国Ⅱ卷文数】设f(x)为奇函数,且当x≥0时, f(x)= e x1,则当x<0时,f(x)=A .e x1B .e x 1C. e x1 D . e x 1【答案】 D【分析】由题意知 f ( x) 是奇函数,且当x≥0时,f(x)= e x1,则当 x 0 时,x 0 ,则 f ( x) e x1 f ( x) ,得 f ( x) e x1.应选 D.【名师点睛】此题考察分段函数的奇偶性和分析式,浸透了数学抽象和数学运算修养.采纳代换法,利用转变与化归的思想解题.3.【 2019年高考全国Ⅲ卷文数】函数 f ( x) 2sinx sin2 x 在[0,2π]的零点个数为A.2B.3C.4D.5【答案】 B【分析】由 f (x) 2sin x sin 2x 2sin x 2sin x cos x 2sin x(1 cos x)0 ,得 sin x0 或 cosx 1,x 0,2 π, x 0、 π或 2π.f ( x) 在 0,2π 的零点个数是 3.应选 B .【名师点睛】此题考察在必定范围内的函数的零点个数,浸透了直观想象和数学运算修养,直接求出函数的零点可得答案 .4.【 2019 年高考天津文数】已知a log 2 7,b log 3 8,c ,则 a , b , c 的大小关系为A . c b aB . a b cC . bc aD . ca b【答案】 A【分析】∵ c1 ,a log 2 7 log 2 4 2 ,1b log 3 8 log 3 9 2 ,∴ c b a .应选 A.【名师点睛】利用指数函数、对数函数的单一性时,要依据底数与1的大小进行判断.5.【 2019 年高考北京文数】以下函数中,在区间(0, +)上单一递加的是1A . y x2B . y= 2 xC . ylog 1 x1D . y2x【答案】 A【分析】易知函数 y 2x, y log 1 x , y1(0, ) 上单一递减,在区间2x1函数 yx 2 在区间 (0,) 上单一递加 .应选 A.【名师点睛】此题考察简单的指数函数、对数函数、幂函数的单一性,着重对重要知识、基础知识的考查,包含数形联合思想,属于简单题.sinx x , ] 的图像大概为6.【 2019 年高考全国Ⅰ卷文数】函数f(x)=x 2 在 [cosxA .B .C .D .【答案】 D【分析】由 f (sin( x) ( x) sin x x f ( x) ,得 f ( x) 是奇函数, 其图象对于原点对称.x)x) ( x) 2cos x x 2cos( π1π24 2π1, f ( π)π0 ,又 f ( )π2 222( π1 π)2可知应为 D 选项中的图象.应选 D .【名师点睛】此题考察函数的性质与图象的辨别,浸透了逻辑推理、直观想象和数学运算修养.采纳性质法和赋值法,利用数形联合思想解题.7.【 2019 年高考北京文数】在天文学中,天体的明暗程度能够用星等或亮度来描绘.两颗星的星等与亮度知足m 2 –5lgE1,此中星等为m k 的星的亮度为 E k (k=1,2 ).已知太阳的星等是– ,天狼星m 12 E 2的星等是 –,则太阳与天狼星的亮度的比值为 A . 10 B .C .D .10【答案】 A【分析】两颗星的星等与亮度知足m 2 m 15 lg E1,2 E 2令 m 2 1.45,m 1 26.7 ,则 lgE 12 m 2 m 12 ( 26.7) 10.1,从而E110 .E 2应选 A.【名师点睛】此题以天文学识题为背景,考察考生的数学应意图识?信息办理能力 ?阅读理解能力以及对数的运算 .1 , y log a ( x1 8.【 2019 年高考浙江】在同向来角坐标系中,函数y) (a>0,且 a ≠ 1)的图象可能是a x2【答案】 D【分析】 当 0a 1时,函数 y a x 的图象过定点 (0,1) 且单一递减, 则函数 y1 的图象过定点 (0,1)a x且单一递加,函数 y log a x1 的图象过定点 (1,0) 且单一递减, D 选项切合;2 2当 a 1时,函数 ya x 的图象过定点 (0,1) 且单一递加, 则函数 y1 的图象过定点 (0,1) 且单一递减,a x函数 y log ax 1 的图象过定点 ( 1 ).2 2 ,0 且单一递加,各选项均不切合综上,选 D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不娴熟,致使判断失误;二是不可以经过议论 a 的不一样取值范围,认识函数的单一性.9.【 2019 年高考全国Ⅲ卷文数】设f x 是定义域为 R 的偶函数,且在 0,单一递减,则1 32A . f ( log 3 )> f ( 2 2 )> f ( 2 3 )41 23B . f ( log 3 )> f ( 2 3 )> f ( 2 2 )43 2 1 C . f ( 2 2 )> f ( 2 3 )> f ( log 3 )4231D . f (2 3 )> f( 2 2)> f ( log 3 )4【答案】 Cf xR 的偶函数,f (log 3 1f (log 3 4) .【分析】是定义域为 )42323,log 3 4 log 3 3 1,1 2 2 32 2, log 3 4 232 2又 f x 在 (0,+∞)上单一递减,23∴ f (log 3 4)f 2 3f 2 2 ,3 21f 2 2f 23.即f log3 4应选 C .【名师点睛】此题主要考察函数的奇偶性、单一性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后依据单一性获得答案.2 x , 0x 1, 1x a(a R )10.【 2019 年高考天津文数】 已知函数 f ( x)1x1. 若对于 x 的方程 f ( x),4x恰有两个互异的实数解,则 a 的取值范围为A . 5 ,9B . 5 ,94 44 4C . 5 , 9 { 1}5 ,9{ 1}4 4D . 44【答案】 D2 x , 0 x 1,【分析】作出函数f ( x)1 , x 1的图象,x以及直线 y1 x ,如图,4对于 x 的方程 f (x)1 x a(a R ) 恰有两个互异的实数解,4 即为 yf ( x) 和 y1 x a(a R ) 的图象有两个交点,4平移直线 y1x ,考虑直线经过点 (1,2) 和 (1,1) 时,有两个交点,可得 a9 或 a5 ,4 44考虑直线 y1 x a(a R ) 与 y 1 在 x 1 时相切, ax1 x2 1,4x4由a 21 0 ,解得 a 1( 1舍去),所以 a 的取值范围是5 , 9 1 .4 9应选 D.【名师点睛】依据方程实数根的个数确立参数的取值范围,常把其转变为曲线的交点个数问题,特别是此中一个函数的图象为直线经常用此法.11.【 2018 年高考全国Ⅲ卷文数】以下函数中,其图象与函数y ln x 的图象对于直线 x 1 对称的是A . y ln 1 xB . y ln 2 xC . yln 1 xD . yln 2x【答案】 B【分析】 函数 yln x 过定点 (1,0),(1,0)对于直线 x=1 对称的点仍是 (1,0),只有 y ln 2 x的图象过此点 .应选项 B 正确.【名师点睛】此题主要考察函数的对称性和函数的图象,属于中档题. 求解时,确立函数y ln x 过定点( 1,0)及其对于直线 x=1 对称的点,代当选项考证即可.12.【 2018 年高考全国Ⅰ卷文数】设函数f x2 x,,则知足 f x 1f 2x 的 x 的取值范围x ,1 x 0是A . , 1B . 0,C .1,0D .,0【答案】 D【分析】将函数f x 的图象画出来,2 x 0,解得 x 0 ,察看图象可知会有x2 x 1所以知足 f x 1 f2x 的 x 的取值范围是 ,0 .应选 D .【名师点睛】该题考察的是经过函数值的大小来推测自变量的大小关系,从而求得有关的参数的值的问题,在求解的过程中,需要利用函数分析式画出函数图象,从而获得要出现函数值的大小,绝对不是常函数,从而确立出自变量所处的地点,联合函数值的大小,确立出自变量的大小,从而获得其等价的不等式组,最后求得结果 .e x e x的图像大概为13.【 2018 年高考全国Ⅱ卷文数】函数f x2x【答案】 B【分析】x 0, f x e x e xf x , f x 为奇函数,舍去 A ;x 2f 1 e e 1 0 ,∴舍去D;f x e x e x x2 e x e x 2x x 2 e x x 2 e x0,f ( x)单一x4 x3, x 2 时, f x递加,舍去 C.所以选 B.【名师点睛】有关函数图象辨别问题的常有题型及解题思路:( 1)由函数的定义域,判断图象左右的地点,由函数的值域,判断图象的上下地点;(2)由函数的单一性,判断图象的变化趋向;(3)由函数的奇偶性,判断图象的对称性;( 4)由函数的周期性,判断图象的周期性.14.【 2018 年高考全国Ⅲ卷文数】函数y x4x2 2 的图像大概为【答案】 D【分析】函数图象过定点(0, 2) ,清除A,B;令 y f ( x)x4x2 2 ,则 f ( x) 4x3 2 x 2x(2 x2 1) ,由 f ( x) 0 得 2x(2 x2 1) 0 ,得 x 2 或 0 x 2 ,此时函数单一递加,2 2由 f ( x) 0 得 2x(2 x2 1) 0 ,得 x 2 或 2 x 0 ,此时函数单一递减,清除 C.2 2应选 D.【名师点睛】此题主要考察函数的图象的辨别和判断,利用函数图象过的定点及由导数判断函数的单一性是解决此题的重点 .15.【 2018 年高考浙江】函数xy= 2 sin2x 的图象可能是A.B.C.D.【答案】 D【分析】令 f x 2 x sin2x ,因为所以x R, f x 2 x sin2 x 2 x sin2 x f x ,f x 2 x sin2x 为奇函数,清除选项A,B;因为 xπ,π时, f x0 ,所以清除选项C,2应选 D.【名师点睛】先研究函数的奇偶性,再研究函数在π.有关函数图象的识, π上的符号,即可判断选择2别问题的常有题型及解题思路:(1)由函数的定义域,判断图象的左、右地点,由函数的值域,判断图象的上、下地点;(2)由函数的单一性,判断图象的变化趋向;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性.16.【 2018 年高考全国Ⅰ卷文数】设函数 f x x3 a 1 x2ax ,若 f x 为奇函数,则曲线 y f x 在点0,0 处的切线方程为A .y 2xB .y xC.y 2x D .y x【答案】 D【分析】因为函数 f x 是奇函数,所以 a 1 0 ,解得 a 1 ,所以 f x3x , f x2x 3x 1 ,所以 f 0 1, f 0 0 ,所以曲线 y f x 在点0,0 处的切线方程为y f 0 f 0 x ,化简可得 y x ,应选 D.【名师点睛】该题考察的是函数的奇偶性以及有关曲线y f x 在某个点x0 , f x0处的切线方程的问题,在求解的过程中,第一需要确立函数分析式,此时利用到结论:多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,以后利用求导公式求得 f x ,借助于导数的几何意义,联合直线方程的点斜式求得结果.17.【 2018 年高考全国Ⅱ卷文数】已知 f x 是定义域为,的奇函数,知足 f 1 xf 1 x .若f 1 2 ,则 f 1 f 2 f 3 f 50A.50 B . 0C. 2 D .50【分析】因为 f x 是定义域为 ,的奇函数,且f 1 x f 1 x ,所以 f 1 xf x 1 , f 3 xf x 1f x 1 , T 4 ,所以 f 1 f 2f 3f 5012 f 1f 2f 3 f 4 f 1 f 2 ,因为 f 3 f 1 , f 4 f 2 ,所以 f 1f 2f 3 f 4 0 ,因为 f2 f 0 0 ,从而 f 1 f2 f 3f 50f 1 2 .应选 C .【名师点睛】先依据奇函数的性质以及对称性确立函数周期,再依据周期以及对应函数值求结果 .函数的奇偶性与周期性相联合的问题多考察求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转变到已知分析式的函数定义域内求解.118.【 2018 年高考天津文数】已知a log 371 3log 1 1,则 a,b,c 的大小关系为, b4, c523 A . a b c B . b a c C . cb aD . ca b【答案】 D【分析】由题意可知:7log 39 ,即 1 a 2 , log 33 log32111 144 31 4,即 0 b 1,log 1 1 log 3 5 log 3 7 ,即 c a ,3 52综上可得: ca b .故此题选择 D 选项 .【名师点睛】由题意联合对数的性质,对数函数的单一性和指数的性质整理计算即可确立a,b,c 的大小关系 .对于指数幂的大小的比较,我们往常都是运用指数函数的单一性,但好多时候,因幂的底数或指数不同样,不可以直接利用函数的单一性进行比较.这就一定掌握一些特别方法.在进行指数幂的大小比较时,若底数不一样,则第一考虑将其转变成同底数,而后再依据指数函数的单一性进行判断.对于不一样底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又正确.19.【 2017 年高考全国Ⅱ卷文数】函数f ( x) ln( x 2 2 x 8) 的单一递加区间是A . ( , 2)B . ( ,1)C . (1,)D . (4,)【答案】 D【分析】要使函数存心义,则x 2 2x 8 0,解得: x2 或 x 4 ,联合二次函数的单一性、对数函数的单一性和复合函数同增异减的原则可得函数的单一递加区间为4,.应选 D.【名师点睛】求函数单一区间的常用方法:(1) 定义法和导数法,经过解相应不等式得单一区间; (2)图象法,由图象确立函数的单一区间需注意两点:一是单一区间一定是函数定义域的子集:二是图象不连续的单一区间要分开写,用 “和 ”或 “, ”连结,不可以用“∪ ”连结; (3)利用复合函数“同增异减 ”的原则,此时需先确立函数的单一性.sin2 x 20.【 2017 年高考全国Ⅰ卷文数】函数y1cosx A .C .【答案】 C的部分图像大概为B .D .【分析】由题意知,函数ysin 2x为奇函数,故清除B ;1 cos x当 x π时, y 0,故清除 D ;当 x1 时, ysin 2 ,故清除 A .1cos2【名师点睛】函数图像问题第一关注定义域,从图像的对称性,剖析函数的奇偶性,依据函数的奇偶性清除部分选择项,从图像的最高点、最低点,剖析函数的最值、极值,利用特值查验,较难的需要研究单一性、极值等,从图像的走向趋向,剖析函数的单一性、周期性等.21.【 2017 年高考全国Ⅲ卷文数】函数y 1 x sin x的部分图像大概为x2【答案】 D【分析】当x 1 时, f 1 1 1 sin1 2 sin1 2 ,故清除A,C;当 x时,y 1 x ,故清除B,知足条件的只有 D.应选 D.【名师点睛】( 1)运用函数性质研究函数图像时,先要正确理解和掌握函数有关性质自己的含义及其应用方向 .(2)在运用函数性质特别是奇偶性、周期、对称性、单一性、最值、零点时,要注意用好其与条件的互相关系,联合特色进行等价转变进行研究.如奇偶性可实现自变量正负转变,周期可实现自变量大小转变,单一性可实现去“f”,马上函数值的大小关系转变为自变量的大小关系. 22.【 2017 年高考浙江】若函数f(x)= x2+ ax+b 在区间 [0 ,1]上的最大值是M,最小值是m,则 M –mA .与 a 有关,且与 b 有关B .与 a 有关,但与 b 没关C.与 a 没关,且与 b 没关 D .与 a 没关,但与 b 有关【答案】 B【分析】因为最值在 f (0) b, f (1) 1 a b, f ( a) b a2 中取,所以最值之差必定与 b 没关 .2 4应选 B.【名师点睛】对于二次函数的最值或值域问题,往常先判断函数图象对称轴与所给自变量闭区间的关系,联合图象,当函数图象张口向上时,若对称轴在区间的左侧,则函数在所给区间内单一递加;若对称轴在区间的右侧,则函数在所给区间内单一递减;若对称轴在区间内,则函数图象极点的纵坐标为最小值,区间端点距离对称轴较远的一端获得函数的最大值.23.【 2017 年高考北京文数】已知函数 f ( x) 3x ( 1)x,则 f ( x)3A .是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数【答案】 Bx x【分析】f x 3 x 1 1 3x f x ,所以该函数是奇函数,3 3x而且 y 3x是增函数,y 1 是减函数,依据增函数- 减函数 =增函数,可知该函数是增函数 .3应选 B.【名师点睛】此题属于基础题型,依据 f x 与 f x 的关系就能够判断出函数的奇偶性,判断函数单一性的方法:(1)利用平常学习过的基本初等函数的单一性;(2)利用函数图象判断函数的单一性;( 3)利用函数的四则运算判断函数的单一性,如:增函数+增函数 =增函数,增函数- 减函数 =增函数;( 4)利用导数判断函数的单一性.24.【 2017 年高考天津文数】已知奇函数 f (x) 在R上是增函数.若a f (log 21), b f (log 2 4.1), 5c f (2 ) ,则a,b,c的大小关系为A .a b cB .b a c C.c b a D .c a b 【答案】 C【分析】由题意可得 a15 log 2 4.1 2 ,1 22,f ( log2 ) f (log 2 5) ,且 log 25所以 log 2 5 log 2 20.8 ,联合函数的单一性可得f (log 2 5) f (log 2 4.1) f (2 ) ,即 ab c ,即 c b a .应选 C .【名师点睛】比较大小是高考的常有题型,指数式、对数式的大小比较要联合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单一性、奇偶性等进行大小比较,要特别关注灵巧利用函数的奇偶性和单一性,数形联合进行大小比较或解不等式.25.【 2017 年高考全国Ⅰ卷文数】已知函数f (x) ln x ln(2 x) ,则A . f (x) 在( 0, 2)单一递加B . f (x) 在( 0, 2)单一递减C . y f (x) 的图像对于直线 x=1 对称D . yf (x) 的图像对于点( 1,0)对称【答案】 C【分析】由题意知,f (2 x) ln(2 x) ln x f ( x) ,所以 f (x) 的图像对于直线 x 1 对称,故 C正确, D 错误;又 f (x)ln[ x(2 x)] ( 0 x 2 ),由复合函数的单一性可知 f (x) 在 (0,1) 上单一递加,在 (1,2) 上单一递减,所以 A ,B 错误 .应选 C .【名师点睛】假如函数f ( x) , x D ,知足x D ,恒有 f (a x) f (b x) ,那么函数的图像a b f ( x) , x D ,知足 xD ,恒有 f (ax)f (b x) ,那么函有对称轴 x;假如函数2数 f (x) 的图像有对称中心(a b,0) .226.【 2017 年高考山东文数】设fx,0 x 1a f a 11 xx 1 , x,若 f,则 f2 1aA .2B . 4C . 6D .8【答案】 C【分析】由 x1时 f x 2 x 1 是增函数可知 ,若 a 1 ,则 f a f a 1 ,所以 0 a 1,由 f (a) f (a+1) 得 a 2(a 1 1) ,解得 a 1 , 4则f 1 f (4) 2 (4 1) 6 .a应选 C.【名师点睛】求分段函数的函数值,第一要确立自变量的范围,而后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应依据每一段分析式分别求解,但要注意查验所求自变量的值或取值范围能否切合相应段的自变量的值或取值范围.27.【 2017 年高考北京文数】依占有关资料,围棋状态空间复杂度的上限M 约为 3361,而可观察宇宙中普通物质的原子总数N 约为 1080.则以下各数中与M最靠近的是N(参照数据:lg3 ≈)33 A. 10C. 1073 【答案】 D 【分析】设53B.10D .1093M3361Nx1080,两边取对数,3361361 80,lg x lg 1080 lg3 lg10所以x 10,即M最靠近1093 . N应选 D.【名师点睛】此题考察了转变与化归能力,此题以实质问题的形式给出,但实质就是对数的运算关系,以及指数与对数运算的关系,难点是令3361,并想到两边同时取对数进行求解,对数运算公式包x8010含 log a M log a N log a MN , log a M log a N log a M , log a M n n log a M .N| x | 2, x 1,R ,若对于x的不等式f ( x) |xa |28.【 2017 年高考天津文数】已知函数 f ( x) 2 , x 设 ax 1. 2x在R上恒建立,则a 的取值范围是A .[ 2,2]B . [ 2 3, 2]C . [ 2,2 3]D .[ 2 3,2 3]【答案】 A【分析】当 a2 3 ,且 x0 时, f ( x) |xa |即 2 | 2 3|,即 22 3 ,2明显上式不建立,由此可清除选项 B 、 C 、 D.应选 A .【名师点睛】波及分段函数问题要按照分段办理的原则,分别对x 的两种不一样状况进行议论,针对每种状况依据 x 的范围, 利用极端原理, 求出对应的 a 的取值范围. 此题拥有较好的划分度,所给分析采用了清除法,解题步骤比较简捷,口算即可得出答案,解题时能够节俭许多时间.自然,此题也可画出函数图象,采纳数形联合的方法进行求解.29.【 2017 年高考全国Ⅲ卷文数】已知函数f (x) x 22x a(e x 1e x 1 ) 有独一零点,则 a=11A .B .23C .1D .12【答案】 C【分析】由 f (x)x 22x a(e x 1 e x 1 ) ,得f (2 x) (2 x)22(2 x) a e 2x 1e (2 x) 1x 2 4x 4 42x a e 1 x e x 1x 2 2x a e x 1e x 1 ,所以 f (2 x) f (x) ,即 x1 为 f (x) 图象的对称轴 .由题意, f ( x) 有独一零点,所以f (x) 的零点只好为 x 1 ,即21 11 1,1 2 1 a eef (1)1解得 a.2应选 C.【名师点睛】此题主要考察函数的图象与性质、函数的零点,意在考察考生的运算求解能力与数形联合能力 .30.【 2017 年高考山东文数】若函数e xf ( x) ( 是自然对数的底数)在f ( x) 的定义域上单调递加,则称函数 f ( x) 拥有 M 性质 .以下函数中拥有 M 性质的是A . f (x) 2 xB . f ( x) x 2C . f (x) 3 xD . f ( x)cos x【答案】 A【分析】对于 A , e xf ( x) ex2x( e )x在 R 上单一递加,故 f ( x) 2 x 拥有性质;2对于 B , e x f ( x) e x x 2 ,令 g(x) e x x 2 ,则 g ( x) e x x 2 2e x x xe x ( x 2) , ∴当 x 2 或 x 0 时, g ( x)0 ,当 2 x 0 时, g (x) 0 ,∴ e x f ( x) e x x 2 在 ( , 2) , (0,) 上单一递加,在 (2,0) 上单一递减,故 f ( x)x 2 不拥有性质;对于 C , e xf ( x)e x3x(e) x 在 R 上单一递减,故 f (x) 3x不拥有 性质;3对于 D ,易知 f (x) cos x 在定义域内有增有减,故 f ( x) cos x 不拥有性质.应选 A.【名师点睛】此题考察新定义问题,属于创新题,切合新高考的动向,它考察学生的阅读理解能力,接受新思想的能力,考察学生剖析问题与解决问题的能力,新定义的观点实质上不过一个载体,解决新问题时,只需经过这个载体把问题转变为我们已经熟习的知识即可.x, x 031.【 2019 年高考浙江】 已知 a,b R ,函数 f ( x)1 x 3 1(a 1)x 2 ax, x 0 .若函数 y f (x) ax b32恰有 3 个零点,则A .a<–1, b<0B . a<–1, b>0C . a>–1, b<0D .a>–1, b>0【答案】 C【分析】当 x <0 时, y = f ( x )﹣ ax ﹣ b = x ﹣ ax ﹣ b =( 1﹣ a )x ﹣ b = 0,得 x ,则 y = f ( x )﹣ ax ﹣ b 最多有一个零点;当 x ≥0时, y =f ( x )﹣ ax ﹣bx 3( a+1) x 2+ax ﹣ax ﹣ b x 3( a+1) x 2﹣ b ,y x2(a1)x ,当 a+1≤0,即 a≤﹣ 1 时, y′≥0,y= f( x)﹣ ax﹣ b 在 [0,+∞)上单一递加,则 y= f( x)﹣ ax﹣ b 最多有一个零点,不合题意;当 a+1> 0,即 a>﹣ 1 时,令 y′> 0 得 x∈ (a+1, +∞),此时函数单一递加,令 y′< 0 得 x∈ [0, a+1),此时函数单一递减,则函数最多有 2 个零点 .依据题意,函数y=f( x)﹣ ax﹣ b 恰有 3 个零点 ? 函数 y= f(x)﹣ ax﹣ b 在(﹣∞, 0)上有一个零点,在 [0, +∞)上有 2 个零点,如图:b 0∴<0且1 3 1 2 ,(a 1) a 1 (a 1) b 03 2解得 b< 0, 1﹣ a> 0, b>( a+1 )3,则 a>–1,b<0.应选 C.【名师点睛】此题考察函数与方程,导数的应用.当 x< 0 时, y=f( x)﹣ ax﹣b= x﹣ ax﹣b=( 1﹣ a)x ﹣ b 最多有一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2﹣b,利用导数研究函数的单一性,依据单一性画出函数的草图,从而联合题意可列不等式组求解.32.【 2019 年高考江苏】函数y7 6x x2的定义域是▲.【答案】 [1,7]【分析】由题意获得对于x 的不等式,解不等式可得函数的定义域.由已知得 7 6x x20 ,即 x26x 7 0 ,解得 1 x7 ,故函数的定义域为[ 1,7] .【名师点睛】求函数的定义域,其实质就是以函数分析式存心义为准则,列出不等式或不等式组,然后求出它们的解集即可.33.【 2018 年高考全国Ⅰ卷文数】已知函数 f x log2 x 2a,若,则 a________.f 3 1【答案】7【分析】依据题意有 f 3 log 2 9 a 1 ,可得 9 a 2,所以 a 7 .故答案是7 .【名师点睛】该题考察的是有关已知某个自变量对应函数值的大小,来确立有关参数值的问题,在求解的过程中,需要将自变量代入函数分析式,求解即可得结果,属于基础题目.34.【 2018 年高考江苏】函数 f x log2 x 1的定义域为________.【答案】 [2, +∞)【分析】要使函数 f x 存心义,则需log 2 x 10 ,解得 x 2 ,即函数 f x 的定义域为2,.【名师点睛】求给定函数的定义域常常需转变为解不等式(组)的问题.求解此题时,依据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.35.【 2018 年高考全国Ⅲ卷文数】已知函数 f x ln 1 x2x 1 , f a 4 ,则 f a________.【答案】 2【分析】由题意得 f x f x ln 1 x2x 1 ln 1 x2x 1 ln 1 x2x22 2 ,f a f a 2 ,则 f a 2 .故答案为 - 2.【名师点睛】此题主要考察函数的性质,由函数分析式计算发现题 .f x f x 2 是重点,属于中档36.【 2017 年高考江苏】记函数 f (x) 6 x x2的定义域为 D .在区间[ 4,5] 上随机取一个数x ,则x D 的概率是.【答案】59【分析】由 6 x x2 0 ,即 x2 x 6 0 ,得 2 x 3 ,x 3 ( 2) 5依据几何概型的概率计算公式得 D 的概率是( 4) .5 9【名师点睛】(1)当试验的结果组成的地区为长度、面积或体积等时,应试虑使用几何概型求解.(2)利用几何概型求概率时,重点是试验的所有结果组成的地区和事件发生的地区的找寻,有时需要设出变量,在座标系中表示所需要的地区.(3)几何概型有两个特色:①无穷性,②等可能性.基本领件能够抽象为点,只管这些点是无穷的,但它们所占有的地区都是有限的,所以可用“比率解法”求解几何概型的概率.37.【 2017 年高考全国Ⅱ卷文数】已知函数f (x)是定义在R上的奇函数,当x ( ,0) 时, f ( x) 2x3 x2, 则 f (2) .【答案】 12【分析】 f (2) f ( 2) [2 ( 8) 4] 12 .【名师点睛】(1) 已知函数的奇偶性求函数值或分析式,第一抓住奇偶性议论函数在各个区间上的分析式,或充足利用奇偶性得出对于 f (x) 的方程,从而可得 f ( x) 的值或分析式.(2) 已知函数的奇偶性求参数,一般采纳待定系数法求解,依据f ( x) f ( x)0 获得对于待求参数的恒等式,由系数的平等性得参数的值或方程(组 ),从而得出参数的值.38.【2017 年高考山东文数】已知 f(x)是定义在R 上的偶函数,且f( x+4)= f(x-2).若当x[ 3,0] 时, f ( x) 6x,则 f(919)= ______.【答案】 6【分析】由f(x+4)= f(x-2) 可知 , f x 是周期函数,且 T 6 ,【名师点睛】与函数奇偶性有关问题的解决方法:①已知函数的奇偶性,求函数值:将待求值利用奇偶性转变为已知区间上的函数值求解.②已知函数的奇偶性求分析式:将待求区间上的自变量,转变到已知区间上,再利用奇偶性求出,或充足利用奇偶性结构对于 f(x)的方程 ( 组),从而获得 f(x)的分析式.39.【 2019 年高考浙江】已知 a R ,函数 f (x) ax3 x ,若存在t R ,使得| f (t 2) f (t) | 2 ,3 则实数 a 的最大值是___________.【答案】432【分析】存在 t R,使得| f (t 2) f (t ) | ,2 3即有 | a(t 2)3 (t 2) at 3 t | ,3 化为 | 2a 3t 2 6t4 2 | 2 ,2 32 ,可得2a 3t2 6t 4 2即2 343a 3t 2 6t 4 ,3 34由 3t 2 6t 4 3(t 1)2 1 1,可得 0 a .则实数a的最大值是4 3.3【名师点睛】此题考察函数的分析式及二次函数,联合函数的分析式可得| a(t 2) 3 (t 2) at 3 t | 2,去绝对值化简,联合二次函数的最值及不等式的性质可求解.340.【 2019 年高考北京文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价钱挨次为60 元 /盒、 65 元/盒、 80 元 /盒、 90 元 / 盒.为增添销量,李明对这四种水果进行促销:一次购置水果的总价达到120 元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会获得支付款的80%.①当 x=10 时,顾客一次购置草莓和西瓜各 1 盒,需要支付__________ 元;②在促销活动中,为保证李明每笔订单获得的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】① 130;② 15【分析】①x 10 时,顾客一次购置草莓和西瓜各一盒,需要支付60 80 10130 元.②设顾客一次购置水果的促销前总价为y 元,当 y 120 元时,李明获得的金额为y 80% ,切合要求;当 y 120 元时,有y x 80% y 70% 恒建立,即 8 y x 7y, x y ,8因为y15,所以 x 的最大值为15.8 min综上,① 130;② 15.【名师点睛】此题主要考察函数的最值,不等式的性质及恒建立,数学的应意图识,数学式子变形与运算求解能力 .以实质生活为背景,创建问题情境,考察学生身旁的数学,考察学生的数学建模修养. 41.【 2018 年高考浙江】我国古代数学著作《张邱建算经》中记录百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
(2017-2019)高考文数真题分类汇编专题02 函数的概念与基本初等函数I(教师版)
专题02 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考全国Ⅱ卷文数】设f ()为奇函数,且当≥0时,f ()=e 1x -,则当<0时,f ()= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当≥0时,f ()=e 1x -, 则当0x <时,0x ->,则()e 1()xf x f x --=-=-,得()e 1xf x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.3.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,a b c <<a c b <<c a b <<b c a <<得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0πx ∴=、或2π.()f x ∴在[]0,2π的零点个数是3.故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养,直接求出函数的零点可得答案.4.【2019年高考天津文数】已知0.223log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为A .c b a <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】∵0.200.30.31c =<=,22log 7log 42a =>=, 331log 8log 92b <=<=,∴c b a <<. 故选A .【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与1的大小进行判断. 5.【2019年高考北京文数】下列函数中,在区间(0,+)上单调递增的是 A .12y x = B .y =2x - C .12log y x =D .1y x=【答案】A【解析】易知函数122,log xy y x -==,1y x=在区间(0,)+∞上单调递减, 函数12y x =在区间(0,)+∞上单调递增. 故选A.【名师点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.6.【2019年高考全国Ⅰ卷文数】函数f ()=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+, 可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.7.【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 2sin cos ++x xx x从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.8.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.9.【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2019年高考天津文数】已知函数01,()1,1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解,则a 的取值范围为 A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦ C .59,{1}44⎛⎤⎥⎝⎦U D .59,{1}44⎡⎤⎢⎥⎣⎦U【答案】D【解析】作出函数01,()1,1x f x x x⎧≤≤⎪=⎨>⎪⎩的图象,以及直线14y x =-,如图,关于的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解, 即为()y f x =和1()4y x a a =-+∈R 的图象有两个交点, 平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线1()4y x a a =-+∈R 与1y x =在1x >时相切,2114ax x -=, 由210a ∆=-=,解得1a =(1-舍去), 所以a 的取值范围是{}59,149⎡⎤⎢⎥⎣⎦U .故选D.【名师点睛】根据方程实数根的个数确定参数的取值范围,常把其转化为曲线的交点个数问题,特别是其中一个函数的图象为直线时常用此法.11.【2018年高考全国Ⅲ卷文数】下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是A .()ln 1y x =-B .()ln 2y x =-C .()ln 1y x =+D .()ln 2y x =+【答案】B【解析】函数ln y x =过定点(1,0),(1,0)关于直线=1对称的点还是(1,0),只有()ln 2y x =-的图象过此点. 故选项B 正确.【名师点睛】本题主要考查函数的对称性和函数的图象,属于中档题.求解时,确定函数ln y x =过定点(1,0)及其关于直线=1对称的点,代入选项验证即可.12.【2018年高考全国Ⅰ卷文数】设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】将函数()f x 的图象画出,观察图象可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的的取值范围是()0-∞,. 故选D .【名师点睛】该题考查的是通过函数值的大小推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图象,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,最后求得结果.13.【2018年高考全国Ⅱ卷文数】函数()2e e x xf x x --=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x --≠-==-∴Q 为奇函数,舍去A ; ()11e e 0f -=->Q ,∴舍去D ;()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x x x ---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C. 因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 14.【2018年高考全国Ⅲ卷文数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ; 令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或02x <<,此时函数单调递增,由()0f x '<得22(21)0x x ->,得2x >或02x -<<,此时函数单调递减,排除C. 故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.15.【2018年高考浙江】函数y =2xsin2的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A,B; 因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D .【名师点睛】先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可判断选择.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的周期性.16.【2018年高考全国Ⅰ卷文数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以()3f x x x =+,()231f x x '=+,所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =, 故选D .【名师点睛】该题考查的是函数的奇偶性以及有关曲线()y f x =在某个点()()00,x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论:多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得()f x ',借助于导数的几何意义,结合直线方程的点斜式求得结果.17.【2018年高考全国Ⅱ卷文数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+,所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,,因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦L , 因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=, 因为()()200f f ==,从而()()()()()1235012f f f f f ++++==L . 故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 18.【2018年高考天津文数】已知13313711log ,,log 245a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D【解析】由题意可知:3337log 3log log 92<<,即12a <<, 1131110444⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即01b <<,133317log log 5log 52=>,即c a >, 综上可得:c a b >>. 故本题选择D 选项.【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 19.【2017年高考全国Ⅱ卷文数】函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞【答案】D【解析】要使函数有意义,则2280x x -->,解得:2x <-或4x >,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调递增区间为()4,+∞.故选D.【名师点睛】求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用复合函数“同增异减”的原则,此时需先确定函数的单调性.20.【2017年高考全国Ⅰ卷文数】函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ; 当1x =时,sin 201cos 2y =>-,故排除A .故选C .【名师点睛】函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等. 21.【2017年高考全国Ⅲ卷文数】函数2sin 1xy x x =++的部分图像大致为【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C ; 当x →+∞时,1y x →+,故排除B,满足条件的只有D. 故选D.【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化进行研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小关系转化为自变量的大小关系.22.【2017年高考浙江】若函数f ()=2+ a +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关.故选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.23.【2017年高考北京文数】已知函数1()3()3x xf x =-,则()f xA .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数【答案】B【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数, 并且3xy =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数. 故选B.【名师点睛】本题属于基础题型,根据()f x -与()f x 的关系就可以判断出函数的奇偶性,判断函数单调性的方法:(1)利用平时学习过的基本初等函数的单调性;(2)利用函数图象判断函数的单调性;(3)利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数;(4)利用导数判断函数的单调性.24.【2017年高考天津文数】已知奇函数()f x 在R 上是增函数.若221(log ),(log 4.1),5a fb f =-=0.8(2)c f =,则,,的大小关系为A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C【解析】由题意可得221(log )(log 5)5a f f =-=,且22log 5log 4.12>>,0.8122<<, 所以0.822log 5log 4.12>>,a b c结合函数的单调性可得0.822(log 5)(log 4.1)(2)f f f >>,即a b c >>,即c b a <<. 故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式. 25.【2017年高考全国Ⅰ卷文数】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线=1对称D .()y f x =的图像关于点(1,0)对称【答案】C【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图像关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误. 故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图像有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图像有对称中心(,0)2a b+.26.【2017年高考山东文数】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A .2B .4C .6D .8【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知, 若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =, 则1(4)2(41)6f f a ⎛⎫==⨯-=⎪⎝⎭. 故选C.【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.27.【2017年高考北京文数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093【答案】D【解析】设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310. 故选D .【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 28.【2017年高考天津文数】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 A .[2,2]-B.[2]-C .[2,-D .[-【答案】A【解析】当a =±0x =时,()||2xf x a ≥+即2|≥±,即2≥, 显然上式不成立, 由此可排除选项B 、C 、D. 故选A .【名师点睛】涉及分段函数问题要遵循分段处理的原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的取值范围.本题具有较好的区分度,所给解析采用了排除法,解题步骤比较简捷,口算即可得出答案,解题时能够节省不少时间.当然,本题也可画出函数图象,采用数形结合的方法进行求解.29.【2017年高考全国Ⅲ卷文数】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】由211()2(ee )x xf x x x a --+=-++,得()221(2)1211(2)(2)2(2)e e 4442e e x x x x f x x x a x x x a ----+--⎡⎤-=---++=-+-+++=⎣⎦()2112e e x x x x a --+-++,所以(2)()f x f x -=, 即1x =为()f x 图象的对称轴.由题意,()f x 有唯一零点,所以()f x 的零点只能为1x =,即()21111(1)121e e 0f a --+=-⨯++=, 解得12a =. 故选C.【名师点睛】本题主要考查函数的图象与性质、函数的零点,意在考查考生的运算求解能力与数形结合能力.30.【2017年高考山东文数】若函数e ()xf x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是 A .()2xf x -= B .2()f x x = C .()3x f x -=D .()cos f x x =【答案】A【解析】对于A ,e e ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2xf x -=具有性质;对于B ,2e ()e x x f x x =⋅,令2()e x g x x =⋅,则2()e 2e e (2)xxxg x x x x x '=⋅+⋅=+,∴当2x <-或0x >时,()0g x '>,当20x -<<时,()0g x '<,∴2e ()e xxf x x =⋅在(,2)-∞-,(0,)+∞上单调递增,在(2,0)-上单调递减, 故2()f x x =不具有性质;对于C ,e e ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3xf x -=不具有性质; 对于D ,易知()cos f x x =在定义域内有增有减,故()cos f x x =不具有性质. 故选A.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的动向,它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.31.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当<0时,y =f ()﹣a ﹣b =﹣a ﹣b =(1﹣a )﹣b =0,得=b1−a , 则y =f ()﹣a ﹣b 最多有一个零点;当≥0时,y =f ()﹣a ﹣b =133−12(a +1)2+a ﹣a ﹣b =133−12(a +1)2﹣b ,M M M M2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f ()﹣a ﹣b 在[0,+∞)上单调递增, 则y =f ()﹣a ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得∈(a +1,+∞),此时函数单调递增, 令y ′<0得∈[0,a +1),此时函数单调递减, 则函数最多有2个零点.根据题意,函数y =f ()﹣a ﹣b 恰有3个零点⇔函数y =f ()﹣a ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且()3211(1)1(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当<0时,y =f ()﹣a ﹣b =﹣a ﹣b =(1﹣a )﹣b 最多有一个零点;当≥0时,y =f ()﹣a ﹣b =133−12(a +1)2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解. 32.【2019年高考江苏】函数y =的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.33.【2018年高考全国Ⅰ卷文数】已知函数()()22log f x x a =+,若()31f =,则a =________.【答案】7-【解析】根据题意有()()23log 91f a =+=,可得92a +=, 所以7a =-. 故答案是7-.【名师点睛】该题考查的是有关已知某个自变量对应函数值的大小,确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.34.【2018年高考江苏】函数()f x =________.【答案】[2,+∞)【解析】要使函数()f x 有意义,则需2log 10x -≥, 解得2x ≥,即函数()f x 的定义域为[)2,+∞.【名师点睛】求给定函数的定义域往往需转化为解不等式(组)的问题.求解本题时,根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.35.【2018年高考全国Ⅲ卷文数】已知函数())ln1f x x =+,()4f a =,则()f a -=________.【答案】2-【解析】由题意得()()))()22ln1ln1ln 122f x f x x x x x +-=+++=+-+=,()()2f a f a ∴+-=,则()2f a -=-. 故答案为−2.【名师点睛】本题主要考查函数的性质,由函数解析式计算发现()()2f x f x +-=是关键,属于中档题.36.【2017年高考江苏】记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 .【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--. 【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.37.【2017年高考全国Ⅱ卷文数】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = . 【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.38.【2017年高考山东文数】已知f ()是定义在R 上的偶函数,且f (+4)=f (-2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= ______ . 【答案】6【解析】由f (+4)=f (-2)可知,()f x 是周期函数,且6T =, 所以(919)(61531)(1)f f f =⨯+=(1)6f =-=.【名师点睛】与函数奇偶性有关问题的解决方法:①已知函数的奇偶性,求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.②已知函数的奇偶性求解析式:将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f ()的方程(组),从而得到f ()的解析式.39.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤,即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 40.【2019年高考北京文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则的最大值为__________. 【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫=⎪⎝⎭,所以x 的最大值为15. 综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养. 41.【2018年高考浙江】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2019高考 函数的概念与基本初等函数分类汇编(试题版)1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.15.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 A 21M R M B 212M R MC 2313M R M D 2313M R M 9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)10.【2017年高考山东理数】设函数24y x =-的定义域为A ,函数ln(1)y x =-的定义域为B ,则A B I = A .(1,2) B .(1,2] C .(-2,1)D .[-2,1)11.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x --=的图像大致为12.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为13.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .14.【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =15.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .5016.【2018年高考天津理数】已知2log e a =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >>D .c a b >>17.【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+18.【2017年高考北京理数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .109319.【2017年高考全国Ⅰ卷理数】设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z20.【2017年高考浙江】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关21.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]22.【2017年高考北京理数】已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数23.【2017年高考天津理数】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<24.【2017年高考山东理数】已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是A .(0,1])+∞UB .(0,1][3,)+∞UC .)+∞UD .[3,)+∞U25.【2017年高考山东理数】若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2a b a a b b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+< D .()21log 2a b a b a b +<+<26.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦27.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >028.【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞)D .[1,+∞)29.【2017年高考全国Ⅲ卷理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减30.【2017年高考全国Ⅲ卷理数】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .131.【2017年高考天津理数】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16-B .4739[,]1616-C.[2]- D.39[]16- 32.【2019年高考江苏】函数y =的定义域是 ▲ . 33.【2018年高考江苏】函数()f x =________.34.【2017年高考江苏】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 .35.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.36.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.37.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________.38.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.39.【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+⎪⎝⎭在[]0π,的零点个数为________. 40.【2018年高考浙江】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。