关于激光的原理及技术基础课件
《激光的基本原理》课件

利用光子学技术,可以实现高灵敏度、高分辨率的医学成 像和诊断。同时,光子学技术还可以用于生物科学研究, 如荧光共振能量转移等技术可以用于研究生物分子间的相 互作用和动力学过程。此外,光子学技术还可以用于光热 治疗、光动力治疗等领域,为癌症治疗等提供新的手段。
THANKS
感谢观看
详细描述
超快激光技术可以用于超快光谱学、 超快成像等领域,为物质科学研究提 供新的工具。同时,超快激光技术还 可以用于微纳加工、光刻等领域,提 高加工精度和效率。
光子晶体激光器的研究与应用
总结词
光子晶体激光器是一种新型的激光器件,具 有高效率、高稳定性等优点,在光通信、光 计算等领域具有广阔的应用前景。
随着技术的进步和应用需求的不断增长,激光技术逐渐拓展 到工业、医疗、通信、军事等领域,成为现代科技的重要组 成部分。
激光的重要性和应用领域
激光具有高亮度、高方向性、高单色 性和高相干性等优点,因此在科学研 究、工业生产、医疗卫生、军事等领 域有广泛的应用。
此外,激光还在通信、测量、军事等 领域中发挥着重要的作用,有力地推 动了科学技术的发展和社会进步。
1960年,美国物理学家梅曼发明了第一台红宝石激光器,标志着激光技 术的诞生。
激光的英文名称是“Laser”,是“Light Amplification by Stimulated Emission of Radiation”的缩写,意为“受激发射光放大”。
激光的发展历程
激光技术经历了从初步实现到逐步成熟的发展过程,各种不 同类型的激光器也不断涌现,如气体激光器、固体激光器、 液体激光器和半导体激光器等。
例如,在工业领域中,激光可以用于 打标、切割、焊接、热处理等;在医 疗领域中,激光可以用于治疗眼科疾 病、皮肤病、口腔疾病等。
激光的基本原理及其特性课件

利用激光的强光束和冲击波去除物体 表面的污垢、油渍等,具有高效、环 保、无损伤等特点。
医疗美容
激光祛斑
利用激光的高能量将皮肤表面的色素 斑点去除,具有祛斑速度快、效果显
著、不留疤痕等特点。
激光脱毛
利用激光的高能量破坏毛囊的生长能 力,从而达到脱毛的效果,具有脱毛 效果好、速度快、安全可靠等特点。
高功率激光在工业、军事、医疗等领域有广泛应 用,如激光切割、激光雷达、激光武器等。
03 技术挑战
高功率激光器的稳定性和可靠性是技术挑战,需 要解决散热、光束质量等问题。
超快激光
01
02
03
超快激光的定义
超快激光是指脉冲宽度小 于某一阈值的激光器,通 常以皮秒或飞秒为单位。
应用领域
超快激光在科学研究ห้องสมุดไป่ตู้工 业制造、医疗等领域有广 泛应用,如光谱分析、微 纳加工、眼科手术等。
单色性好
总结词
激光具有极佳的单色性,其波长范围狭窄,光谱宽度极小。
详细描述
由于激光的频率高度单一,其光谱宽度非常狭窄,这意味着激光的光波波长范围非常稳定。这 种特性使得激光在光谱分析、精密测量等领域具有独特的优势。
亮度高
总结词
激光具有极高的亮度,其能量高度集中,亮度远高于普通光源。
详细描述
激光的亮度取决于其功率和光束面积的比值。由于激光的功率高且光束面积小 ,因此其亮度极高。这种特性使得激光在切割、焊接、打标等领域具有显著的 优势。
技术挑战
超快激光器的稳定性和重 复频率是技术挑战,需要 解决脉冲能量波动、脉冲 时间不稳定等问题。
光子晶体激光器
光子晶体激光器的定义
技术挑战
光子晶体激光器是一种基于光子晶体 原理的激光器,光子晶体是一种具有 周期性折射率变化的介质。
激光原理与技术PPT精品文档

ONE KEEP VIEW 激光原理与技术PPT精品文档目录CATALOGUE•激光基本原理•激光器类型及工作原理•激光技术应用领域•激光技术发展趋势与挑战•激光安全与防护知识普及•总结与展望PART01激光基本原理激光产生条件粒子数反转高能级粒子数大于低能级粒子数,是产生激光的必要条件。
增益大于损耗增益介质中的受激辐射放大作用要大于各种损耗,才能实现光放大。
光学谐振腔提供正反馈,使受激辐射光在腔内多次反射、放大,形成稳定振荡。
激光发射过程泵浦过程通过外部能量输入(如光、电、化学等),使增益介质中的粒子从低能级跃迁到高能级,实现粒子数反转。
受激辐射过程处于高能级的粒子在外部光子的作用下,跃迁到低能级并发出与入射光子完全相同的光子,实现光放大。
光学谐振腔内的振荡过程受激辐射产生的光子在腔内多次反射、放大,形成稳定的光场分布和振荡模式。
功率激光的功率决定了其能量大小和输出能力,高功率激光具有更强的穿透力和加工能力。
稳定性激光的稳定性决定了其长期运行的可靠性和稳定性,对于高精度、高稳定性的应用尤为重要。
光束质量激光的光束质量决定了其聚焦能力和传输效率,优质的光束质量可以提高激光加工的精度和效率。
波长激光的波长决定了其颜色和应用领域,不同波长的激光具有不同的特性和用途。
激光特性参数PART02激光器类型及工作原理工作原理通过激励源(泵浦源)将能量传递给工作物质,使其产生粒子数反转分布,然后在谐振腔内通过受激辐射产生激光。
特点具有体积小、重量轻、效率高、寿命长等优点,广泛应用于科研、工业、医疗等领域。
构成由工作物质、泵浦源和谐振腔三部分组成。
构成主要由放电管、反射镜和电源三部分组成。
工作原理在放电管中充入一定种类和压强的气体,通过高压放电激励气体分子或原子,使其产生受激辐射并放大,形成激光输出。
特点具有光束质量好、输出功率大、效率高、结构简单等优点,常用于高精度测量、光谱分析等领域。
构成主要由染料溶液、泵浦源和光学谐振腔三部分组成。
激光的原理及技术基础

激光技术的发展趋势
高效化
提高激光器的输出功率 和能量转换效率,以满
足各种应用需求。
微型化
减小激光器的体积和重 量,使其更加便携和易
于集成。
智能化
结合人工智能和机器学 习技术,实现激光器的
智能控制和优化。
多波段化
开发多波段激光器,以 满足不同应用领域的特
殊需求。
未来激光技术的应用前景
01
02
03
04
在激光中,受激辐射通过共振腔的作 用得到放大,使得某一特定波长的光 得到增强,最终形成激光。
激光器的基本组成
激光器由工作物质、共振腔和泵浦源三部分组成。工作物质 是产生激光的物质,共振腔是维持和放大激光的装置,泵浦 源则提供能量使工作物质发生受激辐射。
通过调整共振腔的反射镜间距和角度,可以控制激光的波长 、模式和输出功率等参数。同时,通过改变泵浦源的功率, 可以调节激光的输出功率和模式。
激光武器
激光雷达侦查
利用高能激光束对目标进行打击,具有快速、 灵活、低成本等优点,可应用于反导、反卫 星等领域。
利用激光雷达对敌方目标进行高精度侦查和 定位,获取情报信息,为军事行动提供决策 支持。
04 激光的特性与优势
激光的特性
单色性
方向性
激光的波长范围非常窄,因此具有极高的 单色性。这使得激光在光谱分析、干涉测 量等领域具有广泛的应用。
02 激光技术基础
激光调制技术
直接调制
通过改变注入电流的大小来改变 激光的输出功率,适用于低频信 号的调制。
外部调制
使用一个外部装置来改变激光的 参数,如偏振态或相位,适用于 高速信号的调制。
激光放大技术
半导体激光放大器
《激光基础知识》课件

感谢您的观看
汇报人:PPT
原理:通过发射激 光束并接收反射信 号,测量距离和速 度
应用:自动驾驶、 机器人、测绘等 领域
优势:精度高、 速度快、抗干扰 能力强
发展趋势:小型 化、低成本、高 可靠性
激光手术:用于眼科、皮肤科、 牙科等手术
激光治疗:用于癌症、心血管 疾病等疾病的治疗
激光诊断:用于医学影像、病 理诊断等领域
激光美容:用于皮肤美容、整 形等领域
激光的产生:通过受激辐射产生光子,形成激光 激光的特性:单色性、相干性、方向性和亮度高 激光的应用:通信、医疗、工业、军事等领域 激光的安全:激光操作需要遵守安全规定,防止眼睛和皮肤受到伤害
方向性好:激光束在传播过程中几乎不发散,具有很高的方向性。 亮度高:激光的亮度比普通光源高出数亿倍,甚至更高。 单色性好:激光的波长非常单一,具有很高的单色性。 相干性好:激光的相干性非常好,可以产生干涉、衍射等光学现象。
工业领域:激光切割、激光 焊接、激光打标等
医疗领域:激光手术、激光 美容等
科研领域:激光测距、激光 雷达、激光通信等
娱乐领域:激光投影、激光 表演等
激光的产生与控制
激光的产生原理: 受激辐射
激光的产生过程: 原子或分子吸收 能量后,从低能 级跃迁到高能级, 再跃迁回低能级, 释放出光子
激光的波长:取 决于产生激光的 原子或分子的能 级差
激光对生物体的影响主要体现在热效应、光化学 效应和生物效应三个方面。
热效应:激光照射生物体时,生物体吸收激光能 量,产生热效应,导致生物体组织温度升高,甚 至烧伤。
光化学效应:激光照射生物体时,生物体 吸收激光能量,产生光化学效应,导致生 物体组织发生化学反应,甚至破坏生物体 组织。
激光原理与技术PPT课件

激光手术
阐述激光手术在眼科、神 经外科等领域的应用及优 势,如精度高、创伤小等 。
05
CATALOGUE
激光测量与检测技术
激光干涉测量技术
1 2
干涉测量原理
利用激光的相干性,通过干涉条纹的变化来测量 长度、角度等物理量。
干涉测量系统组成
包括激光器、分束器、反射镜、探测器等部分。
3
干涉测量技术应用
时间特性
激光束的时间特性包括脉冲宽度、重复频率和稳定性等。其中,脉冲宽度决定 了激光的峰值功率和能量,重复频率则影响了激光的平均功率。稳定性则是确 保激光束在长时间内保持一致性的关键因素。
激光束的调制与偏转技术
调制技术
通过对激光束进行幅度、频率或相位等调制,可以实现信息 的加载和传输。常见的调制方式包括振幅调制、频率调制和 相位调制等。这些调制技术使得激光束能够携带更多的信息 ,并在通信、传感等领域得到广泛应用。
对皮肤的危害
长时间或高强度激光照射皮肤, 可能导致皮肤烧伤、色素沉着、 皮肤癌等严重后果。
激光安全标准与防护措施
激光安全标准
国际电工委员会(IEC)和美国激光产品安全标准(ANSI)等制定了激光产品的 安全标准,包括激光等级分类、安全警示标识、使用说明等。
防护措施
使用激光产品时,应佩戴合适的防护眼镜或面罩,避免直接照射眼睛或皮肤;同 时,应在激光工作区域内设置明显的安全警示标识,提醒他人注意安全。
偏转技术
激光束的偏转技术主要是通过改变激光束的传播方向来实现 。常见的偏转方式包括机械偏转、电光偏转和声光偏转等。 这些偏转技术使得激光束能够灵活地指向目标,并在激光雷 达、光学扫描等领域发挥重要作用。
激光束的聚焦与整形技术
《激光的基本技术》课件

激光的基本技术: 激发您对激光技术的兴趣!本课件将深入探讨激光的定义、 产生、性质、应用、安全以及未来发展。
1. 激光的定义
• 激光的发明和应用历程 • 激光的定义和特点 • 激光与其他光源的区别
2. 激光的产生
• 激光的基本原理 • 激光器的构成和工作原理 • 激光的发射和调制
3. 激光的性质
• 激光的单色性和相干性 • 激光的方向性和聚束性 • 激光的功率和能量密度
4. 激光的应用
• 激光在制造业中的应用 • 激光在医疗领域中的应用 • 激光在通信技术中的应用
5. 激光的安全
• 激光的辐射特性 • 激光的安全标准 • 激光使用时需注意的ຫໍສະໝຸດ 全事项6. 激光技术的未来
• 激光技术的发展前景 • 激光技术的未来趋势 • 激光技术的应用新领域
激光原理与技术PPT(很全面)

04
激光与物质相互作用
激光与物质相互作用的基本过程
激光束在物质中的传播
包括反射、折射、吸收和散射等现象。
激光与物质相互作用的机理
包括光热作用、光电效应、光化学效应等。
激光与物质相互作用的特点
如高能量密度、高亮度、高方向性等。
激光加工原理及应用
1 2
激光加工的基本原理
通过高能激光束对材料进行加热、熔化、汽化或 达到其他物理或化学变化,以实现加工目的。
应用领域
适用于气体、液体和固体等多种介质的流速测量,如风速测量、 血流速度测量等。
激光光谱分析技术
光谱原理
不同物质具有不同的光谱特征,通过测量物质的光谱信息可以分析 其成分和性质。
分析方法
包括激光拉曼光谱分析、激光荧光光谱分析等,可用于物质的定性、 定量分析。
应用领域
广泛应用于化学、生物、医学、环境等领域,如药物分析、环境监测 等。
液体激光器
染料激光器
使用有机染料作为增益介质,通过 泵浦光激发染料分子产生激光,具 有宽调谐范围和短脉冲输出能力。
液体激光核聚变
利用高功率激光束照射含有氘、氚 等聚变燃料的靶丸,实现核聚变反 应,是惯性约束聚变研究的重要手 段。
半导体激光器
边发射半导体激光器
电流注入半导体PN结,电子与空穴复 合释放能量形成激光输出,具有体积 小、效率高、寿命长等优点。
特性
方向性好,亮度高,单色 性好,相干性好。
应用领域
激光加工、激光测距、激 光雷达、激光通信、激光 治疗等。
02
激光器类型及技术
固体激光器
晶体激光器
使用掺杂稀土元素的晶体 作为增益介质,如Nd:YAG 激光器。
激光原理与技术ppt课件2024新版

激光束的传输与变换
激光束的传输特性
探讨激光束在自由空间和光学系统中 的传输特性,包括光束的发散、聚焦 和像差等。
激光束的质量控制
阐述激光束质量评价的标准和方法, 以及提高激光束质量的措施和技术。
激光束的变换方法
介绍常见的激光束变换方法,如透镜 变换、反射镜变换和光纤传输等,并 分析它们的应用场景和优缺点。
激光原理与技术 ppt课件
目录
• 激光原理概述 • 激光技术基础 • 固体激光器 • 气体激光器 • 液体激光器与光纤激光器 • 激光技术的应用与发展趋势
01
激光原理概述
激光的产生与发展
01
1917年,爱因斯坦提出 “受激辐射”理论
02
03
1954年,美国物理学家 汤斯和肖洛提出激光原 理
1960年,梅曼制成世界 上第一台红宝石激光器
03
固体激光器
固体激光器的结构与工作原理
固体激光器的组成
工作物质、泵浦源、光学谐振腔
工作原理
通过泵浦源提供能量,使工作物 质中的粒子实现粒子数反转,然 后在光学谐振腔的作用下产生激
光振荡,输出激光。
光学谐振腔的作用
提供正反馈,使受激辐射光不断 放大,同时控制激光输出的方向
和质量。
固体激光器的性能特点
液体激光器与光纤激光器的性能特点及应用
液体激光器
主要应用于可调谐激光光谱学、生物 医学成像等领域。
光纤激光器
广泛应用于工业加工、通信、医疗等 领域,如激光切割、焊接、打标等。
06
激光技术的应用与发 展趋势
激光加工技术的应用与发展
激光切割
高精度、高效率的切割方法,广泛应用于金 属、非金属材料的加工。
激光原理与技术完整ppt课件

1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,
《激光原理》PPT课件

对未来学习建议
深入学习激光原理相关知识
包括激光器设计、激光光束质量控 制、非线性光学等,为从事激光相 关领域工作打下坚实基础。
关注前沿动态
及时了解激光领域的最新研究进展 和前沿动态,把握发展趋势。
拓展跨学科知识
学习光学、电子学、材料学等相关 学科知识,拓宽视野,为深入研究 激光技术提供多维度支持。
实践与应用
通过实验操作、项目实践等方式, 将所学知识应用于实际问题的解决 中,提升实践能力和创新能力。
THANKS
感谢观看
液体染料激光器技术特点
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
半导体材料发光机制及器件结构
半导体材料发光机制
半导体材料中的电子在导带和价带之间跃迁时,会释放出能量并以光子的形式发出。通过 控制半导体材料的能带结构和载流子浓度,可以实现不同波长的激光输出。
量子点激光器优势
宽频带可调谐、低阈值电流、高稳定性等
其他新型激光器简介
表面等离激元激光 器
利用表面等离激元效应实现光放大和激光
微腔激光器
利用微纳加工技术实现高品质因子微腔,实现低阈值激光
生物激光器
利用生物组织或细胞中的荧光物质实现激光输出,具有生 物相容性和可降解性等优点。
06
激光调制、检测与应用 技术
典型案例分析:激光雷达测距系统
工作原理
激光雷达测距系统通过发射激光 束并接收目标反射回来的光信号 ,根据光信号的时间差或相位差 计算出目标距离。
激光原理与技术课件课件

激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。
激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。
本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。
二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。
在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。
而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。
2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。
这个过程是激光产生的核心原理。
3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。
当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。
同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。
三、激光的特性1.单色性激光具有极高的单色性,即频率单一。
这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。
2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。
相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。
3.方向性激光具有极高的方向性,即光束的发散角很小。
这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。
4.高亮度激光具有高亮度,即单位面积上的光功率较高。
这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。
四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。
激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。
激光原理与应用课件

1 .3 激光工作物质的能级结构
一、三能级系统
激发态的平均寿命只有10-8(s)。然而在原子的能 级中,有一种特殊的能级,其寿命可达10-3(s)甚
至更长。我们称这种状态为原子的亚稳态。
在He、Ne、CO2 、N2等物质中都有这种能级结 构
10
物质三能级系统的示意图
抽运
快 E3
E2 (亚稳态)
n 受激辐射出的光子,与入射光子具有相
同的频率,相同的初相,相同的传播方
向,相同的偏振态等。
E2
hv
E1
hv
E2
hhvv
输入 hv
hv hv
hv hv 输出
E1
hv
受激辐射示意图
受激辐射光放大示意图
6
1 .2 粒子数反转
n 处在温度为T的平衡态下,各能级上分布的分 子数,服从玻尔兹曼分布,
n 高能态En'上分布的分子数与低能态En上分布的 分子数之比为:
34
3.4 激光在几何参数测量方面的应用
一、激光测距技术
1、激光脉冲计数方法
2、相位测距法
B
X A
He-Ne激 光
45°
二、利用激光技术和几M何学d原理可以对板N参材考平面
的厚度进行测量
激光测厚原理示意图
35
3.5 激光条码检测技术
n 条码技术是通过一定形状和间隔的条纹 组合来表达计算机“0” 、“1”语言的一种方 法。
慢
E1 (基态)
n 应该注意:三能级系统,是指激光器在运转过 程中,所涉及到的三级能级。并不是指该系统 仅有这三条能级。
11
二、四能级系统
抽运
快 E4
E3 (亚稳态)
激光原理与技术课件

自由空间光通信
利用激光在自由空间中传输信息,具 有传输速度快、抗干扰能力强等优点 。
激光雷达
利用激光的反射和散射特性对目标进 行探测和定位,具有精度高、抗干扰 能力强等优点。
军事领域
激光雷达侦查
利用激光雷达对敌方目标进行探测和识别 ,具有探测距离远、分辨率高等优点。
A 激光武器
利用激光的高能量密度对目标进行 摧毁或致盲,具有反应速度快、命
、光谱分析等。
半导体激光器
01 总结词
利用半导体材料作为增益介质 的激光器。
02
详细描述
半导体激光器通常由半导体材 料、电极、反射镜等组成,其 中半导体材料是实现光放大的 介质。由于半导体激光器的结 构紧凑、效率高、寿命长等特 点,使其在许多领域得到广泛 应用。
03
特点
04
半导体激光器具有体积小、重量 轻、可靠性高、响应速度快等特 点,同时其成本较低,易于集成 。
激光原理与技术课件
目录 Contents
• 激光原理 • 激光技术 • 激光器件 • 激光技术应用 • 激光安全
01
激光原理
光的相干性
光的相干性是指光波在空间不同点上具有相同的相位关系。在激光中,相干性使 得光波在传播过程中能够保持稳定的相位关系,从而实现光的干涉和衍射现象。
光的干涉是指两束或多束相干光波在空间某一点相遇时,由于相位关系不同而产 生的明暗交替的现象。干涉现象在激光技术中具有重要的应用,如干涉仪和光学 薄膜等。
液体激光器
总结词
详细描述
特点
应用领域
利用液体作为增益介质的激 光器。
液体激光器通常由染料溶液 、泵浦源、反射镜等组成, 其中染料溶液是实现光放大 的介质。液体激光器的输出 波长可以通过改变染料溶液
激光的原理及激光材料PPT课件

4.激光材料的应用及前景
在军事和航天方面,可用于红外 伪装和红外诱饵器。红外伪装的最 基本原标被发现和 识别的可能性。
在航天领域中,航天器用红外辐射 涂层是一种高温高发射率涂层,涂 在航天器蒙皮表面上,作为辐射防 热结构。
4.激光材料的应用及前景
(1)激光器技术开发向高功率、高光束质量、高 可靠性、高智能化和低成本方向发展。
➢ 半导体激光器
基本结构: 由掺杂浓度很高的半导体材 料形成p-n结,利用半导体能 带跃迁的复合发光引发受激 辐射而形成激光。
加电压后,n区向p区注入电子,p区向n区注入空穴
电激励 半导体薄膜
GaAs 、 GaSb 、 InAs 、 InSb 、 PbSe 、 PbTe、InGaAsP、AlGaAsSb
用 的
激 激光玻璃
光
激光玻璃因储能大,制造工艺成熟,以及 价格便宜等特点,在高功率光系统、纤维 激光器和光放大器,以及其他重复频率不 高的中小激光器中得到了广泛的应用,与
材
激光晶体一起构成了固体激光材料的两大
料
类,并得到了迅速的发展。
红外材料
红外材料是指与红外线的辐射、吸收、透 射和探测等相关的一些材料。
激光的原理及激光材料
Laser materials
1.激光的发展
Einstein
Tolman
Maiman
1.激光的发展
Maiman的第一台激光器
2.激光的原理
激光(Laser): Light Amplification by Stimulated Emission of Radiation
激光是光的受激辐射。 激光的特点:单色性好,方向性好;相干性好;亮度高.
基本沿某一条直线传播, 通常发散角限制在10-6球 面度量级的立体角内.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)光速 c 2 .9 9 8 1 0 8 m /s 3 1 0 8 m /s
(3)频率:光矢量每秒钟振动的次数 1
T
(4)三者的关系
在真空中
c l0
各种介质中传播时,保持其原有频率不变,而速度各不相同
υcυl(ll0)
折射率始终大于1?
自然界中所有材料的折射率均大于1,各种气体的折射率近似 等于1; 负折射率材料:当介电常数<0,磁导率<0时,折射率n=()1/2,小于零(人造材料,2000年后)
光子
➢ 在真空中一个光子的能量 h
式中h是普朗克常数,h=6.63×10-34J•s。
➢
光子的具有运动质量
mc2
hc2 hmc2
➢ 光子的动量
h h h2 h l l P m c n 0cn 0n 0 2 n 0 2k
➢光的能量就是所有光子能量的总和。当光与物质(原子、分 子)交换能量时,光子只能整个地被原子吸收或发射。
的,即满足相干系的光波场振动是相干的。
相干截面S相干的定义
S相干 D相干2பைடு நூலகம்l2
其物理含义:在整个光束截面内的任意两点间具有完全确定相位关 系的光场振动完全相干。
发散角的测量: ①打靶法②套孔法③圆环法 等等
L
/2
D
f
D
激光器 /2
f
图1.1 打靶法测量发散角示意图
二. 单色性和时间相干性(不同时间发射光束的相干态)
关于激光的原理及技术基础
第一章 激光原理及技术基础
§1.1 激光的特点 §1.2 激光的产生 §1.3 激光器的基本组成 §1.4 光线在谐振腔内的行为和腔的稳定条件 §1.5 激光振荡模式 §1.6 光腔的损耗和激光振荡的阈值条件
光的波粒二象性
波动性:传播过程 ➢ 具有频率、波长、偏振
粒子性:光与物质相互作用 ➢ 具有能量、动量、运动质量
系统成像,由于衍射的限制,不可能得到理想
像点,而是得到一个夫朗和费衍射像。因为一
般光学系统的口径都是圆形,夫朗和费衍射像
就是所谓的艾里斑。这样每个物点的像就是一
个弥散斑,两个弥散斑靠近后就不好区分,这
样就限制了系统的分辨率,这个斑越大,分辨
率越低。这个限制是物理光学的限制,是光的
衍射造成的。 L 1
1km外,光斑直径扩至10m; 单模激光器: 经发射望远镜的光束孔径为1m,平面发散角10-6rad,传
输至1000km,光斑直径扩至几米。
§1.1 激光的特点
一. 高方向性和空间相干性
方向性:束径和束散角的概念
单模束径指最大能量密度Pmax的 1/e2输出点的光束直径d 。
多模束径指最大能量密度1/2处
光波是电磁波 ➢ 振动的电场; ➢ 振动的磁场
l
光与大多数探测器作用时,主要是电矢量起作用,故把电矢量称 作光矢量
光的波粒二象性
光波是横波,有偏振方向,激光本质上讲是偏振光---偏振方向有 时随时间变化
y
Ey
E
(1)线偏振光
x Ex
(2)自然光
传播方向 z
光速、频率和波长三者的关系
(1)波长:振动状态在经历一个周期的时间内向前传播的距离。
激光光束三大特点的物理基础
三. 高亮度和光子简并度
单色亮度值B
B定义:单位截面、单位频带、单位立体角内的辐射光功率,
单位:瓦/平方厘米·球面度· 赫兹。
B
P
S
太阳辐射: B 2 .6 1 0 12 W / ( c m 2 s r H z ) 气体激光器: B 1 0 2 ~ 1 0 2 W / ( c m 2 s r H z ) 固体激光器: B 1 0 ~ 1 0 3 W / ( c m 2 s r H z ) 大功率激光器: B 1 0 4 ~ 1 0 7 W / ( c m 2 s r H z )
单色性程度: l/l106
进行精密干涉测量时,最大量程不超过1m,测量误差为1微米。
l 激光光源: 单模稳频He-Ne激光,中心波长: 632.8nm
谱线宽度: l1012m
ll 单色性程度 : / 1 0 1 0~ 1 0 1 3
进行精密干涉测量时,最大量程扩展到1000km,测量误差小
于 102 ~101m。
三. 通常以激光辐射的谱线宽度表征辐射的单色性和激光相干时间,单色
性量度用 或 l 表征。
l
激光相干时间τ相干和谱线宽度关系:
相
干=
1
纵向相干长度L相干:
L相干 c相干 =c
物理意义:在小于和等于此值的空间延时范围内,被延时的光波和后
续光波应当是完全相干的。
普通光源:氪同位素86(Kr86)灯,中心波长为 l60.75nm; 谱线宽度: l0.47106m
简并度:
在物理学中,简并是指被当作同一较粗糙物理状态的两个或多个不同 的较精细物理状态。例如在量子力学中,原子中的电子,由其能量确定的 同一能级状态,可以有两种不同自旋量子数的状态,该能级状态是两种不 同的自旋状态的简并态。
具有相同能量的粒子可以处在不同的量子态(即不同的波函数),即 每一个能级上可能有若干个不同的量子状态存在,反映在光谱上就是代表 某一能级的谱线常常由好几条非常接近的精细谱线所组成。
§1.1 激光的特点
Light Amplification by Stimulated Emission of Radiation ,通过 受激发射的放大光。Laser翻译成激光由1964年钱学森指定。
高方向性(高定向性)、高单色性、高亮度性 辐射度——高亮度; 统计物理——高光子简并度; 电磁波谱——极强的紫外、可见光或红外相干辐射,具有波长可调谐。 定向聚光反射镜的探照灯: 发射孔径1m,平面发散角10rad,传输至
最大直径d。
P P max
e -2P m ax
x d
束散角θ (弧度rad) :
令出口附近的束径为d1,传 输一段距离后的束径为d2时,
定义束散角为:
d1 d2
L
近似情况下,激光器输出的平
d1
d2
Laser
L
面发散角θ等于光束的衍射角
θ衍
衍
1.22
l
D
光束的立体发散角:
衍
(
l )2
D
衍射极限:衍射极限是指一个理想点物经光学
L2
R
S
光源
f
障碍物
E
接收屏
空间相干性(不同空间位置的光源之间的相干状态) 空间相干性指同一时刻空间两点光波场的相干性。由杨氏双缝 干涉实验来定性解释。
空间相干性又称横向相干性,由横向相干长度D相干来表征:
D相干=
l
其中,λ为光波长,θ为平面发散角
D相干的物理含义为激光束平面上距离为范围内的各个点之间是相干