北师大版八下数学平行四边形练习题

合集下载

初中数学北师大版八年级下册第六章 平行四边形1.平行四边形的性质-章节测试习题(6)

初中数学北师大版八年级下册第六章 平行四边形1.平行四边形的性质-章节测试习题(6)

章节测试题1.【题文】如图,在□ABCD中,对角线AC,BD相交于点O,EO⊥AC.(1)若△ABE的周长为10cm,求平行四边形ABCD的周长;(2)若∠ABC=78°,AE平分∠BAC,试求∠DAc的度数.【答案】解:(1)∵四边形ABCD是平行四边形,∴OA=OC.∵OE⊥AC,∴AE=CE.故△ABE的周长为AB+BC=10(cm).根据平行四边形的对边相等,得□ABCD的周长为2×10=20(cm).(2)∵AE=CE,∴∠EAC=∠ECA.∵∠ABC=78°,AE平分∠BAC,∴∠BAE=∠EAC=∠ECA.∴3∠ACE+78°=180°.∴∠ACE=34°.∵AD∥BC,∠DAC=∠ECA=34°.【分析】【解答】2.【题文】如图,已知点A(-4,2),B(-1,-2),□ABCD的对角线交于坐标原点O.(1)请直接写出点C,D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出□ABCD的面积.【答案】解:(1)C点坐标为(4,-2),D点坐标为(1,2).(2)AB绕点O旋转180°与CD重合.(答案不唯一,合理即可)(3).【分析】【解答】3.【题文】分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,即△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF,请判断GF与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.【答案】解:(1)GF⊥EF,GF=EF.(2)GF⊥EF,GF=EF成立.∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC.∠DAB+∠ADC=180°∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°.∵.∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°.∴∠EAF+∠CDF=45°.∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF.∴△GDF≌△EAF(SAS)∴EF=FG,∠EFA=∠DFG.∴∠GFD+∠GFA=∠EFA+∠GFA=90°.∴∠GFE=90°∴GF⊥EF,GF=EF.【分析】【解答】4.【答题】如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A. AB=CDB. CE=FGC. A,B两点间的距离就是线段AB的长度D. l1与l2两平行线间的距离就是线段CD的长度【答案】D【分析】【解答】5.【答题】如图,直线AB∥CD,P是AB上的动点,当点P的位置变化时,三角形PCD的面积将()A. 变大B. 变小C. 不变D. 变大变小要看点P向左还是向右移动【答案】C【分析】【解答】6.【答题】如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=4cm,那么平行线a,b之间的距离为()A. 5cmB. 4cmC. 3cmD. 不能确定【答案】C【分析】【解答】7.【答题】已知直线a∥b∥c,直线a与直线b的距离是5cm,直线b与直线c的距离是3cm,则直线a与直线c之间的距离是______.【答案】8cm或2cm【分析】【解答】8.【答题】如图,方格纸中每个最小正方形的边长为1,则两平行直线AB,CD之间的距离是______.【答案】3【分析】【解答】9.【答题】如图,已知点E,F分别在长方形ABCD的边AB,CD上,且AF∥CE,AB=3,AD=5,那么AE与CF的距离是______.【答案】5【分析】【解答】10.【答题】如图,AD∥BC,AC,BD交于点E,S△ABC=5,S△EDC=2,则S△BEC=______.【答案】3【分析】【解答】11.【答题】如图,已知直线AB∥CD,AB与CD之间的距离为,∠BAC=60°,则AC=______.【答案】2【分析】【解答】12.【答题】平行四边形两邻边分别为20和16,若两较长边之间的距离为8,则两较短边之间的距离为______.【答案】10【分析】【解答】13.【答题】如图,直线a∥b,点A,B在直线a上,点C,D在直线b上,且AB:CD=1:2,若△ABC的面积为6,则△BCD的面积为______.【答案】12【分析】【解答】14.【题文】如图,已知l1∥l2,点C1在直线l1上,并且C1A⊥l2,点A为垂足,点C2,C3是l1上任意两点,点B在直线l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3.小颖认为S1=S2=S3,请帮小颖说明理由.【答案】解:直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等∴△ABC1,△ABC2,△ABC3同底且等高∴△ABC1,△ABC2,△ABC3的面积相等,即.【分析】【解答】15.【答题】如图,若□ABCD的面积为20,BC=5,则边AD与BC间的距离为______.【答案】4【分析】【解答】16.【答题】如图,四边形ABCD,ABDE都是平行四边形,且S□ABCD=8cm2,那么四边形ABCE的面积是______ cm2.【答案】12【分析】【解答】17.【答题】如图,直线a∥b∥c,且a,b之间的距离为1,△ABC和△CDE是两块全等的直角三角形纸板,其中∠ABC=∠CDE=90°,∠BAC=∠DCE=30°,它们的顶点都在平行线上,则b,c之间的距离是()A. 1B.C.D. 2【答案】C【分析】【解答】18.【答题】如图,a∥b,若要使△ABC的面积与△DEF的面积相等,需增加条件()A. AB=DEB. AC=DFC. BC=EFD. BE=AD【答案】C【分析】【解答】19.【答题】如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,AE=4,AF=6,□BCD的周长是40,则□ABCD的面积是()A. 48B. 40C. 35D. 30【答案】A【分析】【解答】20.【答题】如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S□AEPH=______.【答案】4【分析】【解答】。

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习测试题第六章平行四边形一、选择题1、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是( )A.只有①和②相等 B.只有③和④相等 C.只有①和④相等 D.①和②,③和④分别相等2、如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的点,当点P在CD上从C向D移而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小 C.线段EF的长不变D.线段EF的长与点P的位置有关第二题图3、下面关于平行四边形的说法不正确的是() A.对边平行且相等 B.两组对角分别相等C.对角线互相平分 D.每条对角线平分一组对角4、四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD. 从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种5、如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为( ) A.5 B.7 C.10 D.146、如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( ) A.4 cm B.6 cm C.8 cm D.10 cm7、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG AE,垂足为G,BG=4,则的周长为()A. 8B.9.5C. 10D.11.58、如右图,在中,,平分交边于点,且,则的长为()A. 3B. 4C.D.29、如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A. 18° B. 36°C. 72° D. 108°10、如图,平行四边形纸片ABCD,CD=5,BC=2,∠A=60°,将纸片折叠,使点A落在射线AD上(记为点),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y与x之间关系的大致图象是()A.B. C. D.二、填空题11、已知:四边形ABCD的面积为1. 如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.12、如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE= cm.13、如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件_________ ,使四边形AECF是平行四边形(只填一个即可).14、如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 度.15、如图,在ABCD中,∠B的平分线BE交AD于E,AE=10,ED=4,那么ABCD的周长= 。

北师大版数学八年级下册:第六章 平行四边形 阶段测试(6.1-6.2)(附答案)

北师大版数学八年级下册:第六章 平行四边形  阶段测试(6.1-6.2)(附答案)

第六章平行四边形阶段测试(6.1-6.2)(时间:40分钟满分:100分)一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是()A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为()A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为()A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是()A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形()A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为()A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.17.(12分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且AE=CF,连接BE,DF.求证:BE=DF.18.(14分)提出命题:如图,在四边形ABCD中,∠A=∠C,∠ABC=∠ADC,求证:四边形ABCD是平行四边形.小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是()A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶319.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.参考答案:一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是(A)A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为(A)A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为(B)A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是(D)A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于(D)A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形(D)A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于(C)A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为(C)A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为(D)A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有(B)A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=120°.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是AF=CE(答案不唯一).14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是8_cm.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出3种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE =CF ,BF =DE ,求证:四边形ABCD 是平行四边形.证明:∵AE ⊥BD 于点E ,CF ⊥BD 于点F. ∴∠AED =∠CFB =90°. 在△AED 和△CFB 中,⎩⎨⎧DE =BF ,∠AED =∠CFB ,AE =CF ,∴△AED ≌△CFB (SAS ). ∴AD =BC ,∠ADE =∠CBF. ∴AD ∥BC.∴四边形ABCD 是平行四边形.17.(12分)如图,将▱ABCD 的对角线AC 分别向两个方向延长至点E ,F ,且AE =CF ,连接BE ,DF.求证:BE =DF.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC. ∴∠BCE =∠DAF. ∵AE =CF ,∴CA +AE =AC +CF ,即CE =AF.在△BCE 和△DAF 中,⎩⎨⎧BC =DA ,∠BCE =∠DAF ,CE =AF ,∴△BCE ≌△DAF (SAS ). ∴BE =DF.18.(14分)提出命题:如图,在四边形ABCD 中,∠A =∠C ,∠ABC =∠ADC ,求证:四边形ABCD 是平行四边形. 小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是(B)A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶3解:(1)正确.理由如下:∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.①∵∠ABC=∠ADC,即∠1+∠2=∠3+∠4,②由①②相加、相减,得∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)两组对角分别相等的四边形是平行四边形.19.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.解:(1)∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CD. ∵∠BDC =60°, ∴∠ABD =60°.∵BD ⊥BC ,∴∠ADB =∠DBC =90°. ∴∠DAB =30°.∴在Rt △ADB 中,BD =12AB ,AD =AB 2-BD 2=32AB.∵S ▱ABCD =AD·BD =34AB 2=93,∴AB =6. (2)证明:连接BF.∵AE ,BE 分别平分∠BAD ,∠DBC ,∴∠BAE =12∠BAD =15°,∠DBE =12∠DBC =45°.∵∠ABE +∠BAE +∠AEB =180°,∠ABE =∠ABD +∠DBE =105°, ∴∠AEB =60°.∵EF =BE ,∴△BFE 为等边三角形. ∴BE =BF ,∠FBE =60°.∴∠ABD =∠FBE =60°.∴∠ABF =∠GBE.在△ABF 和△GBE 中,⎩⎨⎧AB =GB ,∠ABF =∠GBE ,BF =BE ,∴△ABF ≌△GBE (SAS ). ∴AF =GE.。

北师大版八年级数学下册第六章 平行四边形单元测试题

北师大版八年级数学下册第六章 平行四边形单元测试题

第六章第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.如图1,在▱ABCD中,∠D=50°,则∠A等于()图1A.45°B.135°C.50°D.130°2.如图2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC3.如图3,在△ABC中,D,E分别是边AB,AC的中点.若BC=10,则DE的长为()图3A.3 B.4 C.5 D.63.如图4,a,b是两条平行线,则甲、乙两个平行四边形的面积关系是()图4A.甲>乙B.甲<乙C.甲=乙D.无法判断5.一个正多边形的内角和等于外角和的5倍,则这个正多边形的边数为()A.8 B.10 C.11 D.126.如图5,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()图5A.4 B.3 C.2 D. 37.如图6所示,a∥b,直线a与直线b之间的距离是()图6A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度8.若直线a∥b,点A,B分别在直线a,b上,且AB=2 cm,则a,b之间的距离() A.等于2 cm B.大于2 cmC.不大于2 cm D.不小于2 cm9.如图7,在平行四边形ABCD中,下列结论中错误的是()图7A.∠1=∠2 B.∠BAD=∠BCDC.AB=CD D.AC⊥BD10.将两个边长分别为2,3,4的全等三角形拼成四边形,可以拼得不同形状的平行四边形的个数是()A.1 B.2 C.3 D.611.如图8,在四边形ABCD中,AB∥CD,AD=BC=5,CD=7,AB=13,点P从点A出发以每秒3个单位长度的速度沿AD→DC向终点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动的时间为()图8A.4秒B.3秒C.2秒D.1秒12.如图9,已知△ABC的周长为1,连接△ABC三边的中点得到第2个三角形,再连接第2个三角形三边的中点得到第3个三角形……依此类推,则第2019个三角形的周长为()图9A.12018B.12019C.⎝⎛⎭⎫122018D.⎝⎛⎭⎫122019请将选择题答案填入下表:第Ⅱ卷(非选择题共64分)二、填空题(每小题3分,共12分)13.在▱ABCD中,若AB=5,BC=3,则这个平行四边形的周长是________.14.从一个多边形的一个顶点出发,一共可作10条对角线,则这个多边形的内角和是________°.15.如图10,在▱ABCD中,E,F分别为BC,AD边上的点,要使BF=DE,需添加一个条件:______________.图1016.在平面直角坐标系中,已知A(-2,1),B(-2,-1),O(0,0).若以A,B,C,O 为顶点的四边形为平行四边形,则点C的坐标是____________.三、解答题(共52分)17.(8分)如图11,四边形ABCD是平行四边形.求:(1)∠ADC,∠BCD的度数;(2)边AB,BC的长.图1118.(8分)如图12,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD 是平行四边形.图1219.(8分)如图13,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED ∥BC,EF∥AC.求证:BE=CF.图1320.(8分)如图14,在△ABC 中,∠ACB =90°,M ,N 分别是AB ,AC 的中点,延长BC 至点D ,使CD =13BD ,连接DN ,MN.若AB =6.(1)求证:MN =CD ; (2)求DN 的长.图1421.(8分)若一个多边形的内角和与外角和相加是1800°,则这个多边形是几边形?22.(12分)如图15,在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③.请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=________.图151.[解析] D ∵在▱ABCD 中,∠D =50°,∴∠A =180°-∠D =180°-50°=130°. 故选D. 2.[答案] D3.[解析] C 因为D ,E 分别是边AB ,AC 的中点,所以DE 是△ABC 的中位线,所以DE =12BC =12×10=5.4.[解析] C 由题图可知:阴影部分是同底等高的两个平行四边形,所以它们的面积相等,故选C. 5.[答案] D6.[解析] C ∵∠C =90°,∠A =30°, ∴BC =12AB =4.又∵DE 是中位线,∴DE =12BC =2.故选C. 7.[答案] A 8.[答案] C 9.[答案] D 10.[答案] C11.[解析] B 设运动时间为t 秒,则CP =12-3t ,BQ =t ,根据题意得12-3t =t ,解得t =3.故选B.12.[解析] C △ABC 的周长为1,根据中位线的性质,可得第2个三角形的周长为12,第3个三角形的周长为(12)2,第4个三角形的周长为(12)3……依此类推,第n 个三角形的周长为(12)n -1,所以第2019个三角形的周长为(12)2018.故选C. 13.[答案] 16[解析] 在▱ABCD 中,CD =AB =5,AD =BC =3,所以▱ABCD 的周长为2AB +2BC =2×5+2×3=16.14.[答案] 1980[解析] 从一个多边形的一个顶点出发,一共可作10条对角线,则这个多边形的边数是13.∵(13-2)×180°=1980°,∴这个多边形的内角和是1980°.15.[答案] 答案不唯一,如BE =DF 或BF ∥DE 或AF =CE 或∠BFD =∠BED 等 16.[答案] (0,2)或(0,-2)或(-4,0)[解析] 如图,①当AB 为该平行四边形的边时,AB =OC .∵A (-2,1),B (-2,-1),O (0,0), ∴C (0,2)或C 1(0,-2).②当AB 为该平行四边形的对角线时,C 2(-4,0). 综上所述,点C 的坐标是(0,2)或(0,-2)或(-4,0). 17.解:(1)∵四边形ABCD 是平行四边形, ∴∠B =∠ADC ,∠BCD +∠B =180°.∵∠B =56°,∴∠ADC =56°,∠BCD =124°. (2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC . ∵AD =30,CD =25, ∴AB =25,BC =30.18.证明:∵∠1+∠B +∠ACB =180°,∠2+∠D +∠CAD =180°,∠B =∠D ,∠1=∠2,∴∠ACB =∠CAD ,∴AD ∥BC . ∵∠1=∠2, ∴AB ∥CD ,∴四边形ABCD 是平行四边形. 19.证明:∵ED ∥BC ,EF ∥AC , ∴四边形EFCD 是平行四边形, ∴ED =CF .∵BD 平分∠ABC ,∴∠EBD =∠DBC . ∵ED ∥BC ,∴∠EDB =∠DBC , ∴∠EBD =∠EDB , ∴BE =ED ,∴BE =CF .20.解:(1)证明:∵M ,N 分别是AB ,AC 的中点,∴MN ∥BC ,MN =12BC .∵CD =13BD ,∴CD =12BC ,∴MN =CD .(2)连接CM ,由(1)知MN ∥CD ,MN =CD ,∴四边形MCDN 是平行四边形,∴DN =CM .∵∠ACB =90°,M 是AB 的中点,∴CM =12AB ,∴DN =12AB =3.21.解:设这个多边形的边数为n .依题意,得(n -2)×180°+360°=1800°,解得n=10.因此,这个多边形是十边形.22.解:(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF.∵AB=AC,∴∠B=∠C.∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴DE+DF=AF+CF=AC.(2)当点D在边BC的延长线上时,DE-DF=AC;当点D在边BC的反向延长线上时,DF-DE=AC.(3)2或10。

2021-2022学年北师大版八年级数学下册第六章平行四边形章节练习试题(精选)

2021-2022学年北师大版八年级数学下册第六章平行四边形章节练习试题(精选)

北师大版八年级数学下册第六章平行四边形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1402、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为()A.4:1 B.5:1 C.6:1 D.7:13、若一个正多边形每个外角都是36°,则这个正多边形的边数为()A.8 B.9 C.10 D.114、如图,求∠A+∠B+∠C+∠D+∠E+∠F=()A.90°B.130°C.180°D.360°5、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是()A.75°B.60°C.55°D.40°6、如图,一张含有80°的三角形纸片,剪去这个80°角后,得到一个四边形,则∠1+∠2的度数是()A.200°B.240°C.260°D.300°7、如图,点O是▱ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是()A .甲大B .乙大C .一样大D .无法确定8、一个多边形每一个外角都等于30°,则这个多边形的边数为( )A .11B .12C .13D .149、如图,在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A .AB BC = B .AD BC = C .A C ∠=∠ D .180B C ∠+=︒10、如图所示,在 ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线EF 分别交AD 于点E ,BC于点F , 35AOE BOF S S ==, ,则 ABCD 的面积为( )A .24B .32C .40D .48第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正n 边形的每个内角都等于120°,则这个正n 边形的边数为________.2、点D 、E 、F 分别是△ABC 三边的中点,△ABC 的周长为24,则△DEF 的周长为______.3、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.4、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,且∠BAD 、∠ADC 的角平分线AE 、DF 分别交BC 于点E 、F .若EF =2,AB =5,则AD 的长为_______.5、如图,四边形ABCD 中,∠C =58°,∠B =∠D =90°,E 、F 分别是BC 、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、四边形ABCD 中,BAD ∠的平分线与边BC 交于点E ;ADC ∠的平分线交直线AE 于点O .(1)若点O 在四边形ABCD 的内部.①如图1,若AD BC ∥,50B ∠=︒,70C ∠=︒,则DOE ∠=______.②如图2,试探索B 、C ∠、DOE ∠之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O 在四边形ABCD 的外部,请探究B 、C ∠、DOE ∠之间的数量关系,并说明理由.2、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形.(1)观察上面每个正多边形中的∠a,填写下表:(2)是否存在正n边形使得∠a=12°?若存在,请求出n的值;若不存在,请说明理由.3、(问题情景)课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC ≌△EDB ,其依据是 ,请选择正确的一项.A .SSS ;B .SAS ;C .AAS ;D .HL(2)由“三角形的三边关系”可求得AD 的取值范围是 .(初步运用)(3)如图2,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试猜想线段AB ,AD ,DC 之间的数量关系,并证明你的猜想.(灵活运用)(4)如图3,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF ,若EF =5,EC =3,求线段BF 的长;(拓展延伸)(5)如图4,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC ,下列四个选项中:A .∠ACD =∠BCDB .CE =2CDC .∠BCD =∠BCE D .CD =CB所有正确选项的序号是 .4、已知:如图,在ABC 中,AD DB =,BE EC =,AF FC =.求证:AE DF、互相平分.5、若一个多边形的内角和与外角的和是1440°,求这个多边形的边数.-参考答案-一、单选题1、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案. 【详解】解:由360=12,30可得:小明第一次回到出发点A,一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.2、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.3、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360°,那么边数n=360°÷一个外角的度数.【详解】解:这个正多边形的边数为n,∵正n边形每个外角都是36°,∴n=360°÷36°=10.故选C.【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键.4、D【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠ADE+∠DAF,由四边形内角和是360°,即可求∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.【详解】解如图,连接AD,∵∠1=∠E+∠F,∠1=∠ADE+∠DAF,∴∠E+∠F=∠ADE+∠DAF,∵∠BAD+∠B+∠C+∠CDA=360°,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.故选:D.【点睛】本题考查三角形的外角的性质、四边形内角和定理等知识,解题的关键是灵活应用所学知识解决问题,属于基础题.5、C【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF =∠B =55°,故选:C .【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF ∥BC 是解题的关键.6、C【分析】三角形纸片中,剪去其中一个80°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°-80°=100°,则根据四边形的内角和定理得:∠1+∠2=360°-100°=260°.故选:C .【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°.7、C【分析】如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N H 则O 为,AC BD 的中点,,,,OA OC OB OD AD BC ∥再证明,ANO CHO ≌ ,,DNO BHO AOB COD ≌≌ 可得,ANHB CHND S S 四边形四边形 从而可得答案.【详解】解:如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N HO 为▱ABCD 的对称中心,O ∴为,AC BD 的中点,,,,OA OC OB OD AD BC ∥,,NAO HCO ANO CHO,ANO CHO ≌同理:,,DNO BHO AOB COD ≌≌,ANHB CHND S S 四边形四边形所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.8、B【分析】根据一个多边形每一个外角都等于30°,多边形外角和360°,根据多边形外角和的性质求解即可.【详解】解:∵一个多边形每一个外角都等于30°,多边形外角和360°,∴多边形的边数为3603012︒÷︒=.故选B .【点睛】此题考查了多边形的外角和,关键是掌握多边形的外角和为360°.9、C【分析】由平行线的性质得180A D +=︒∠∠,再由A C ∠=∠,得180C D ∠+∠=︒,证出//AD BC ,即可得出结论.【详解】解:一定能判定四边形ABCD 是平行四边形的是A C ∠=∠,理由如下://AB CD ,180A D ∴∠+∠=︒,A C ∠=∠,180C D ∴∠+∠=︒,//AD BC ∴,又//AB CD ,∴四边形ABCD 是平行四边形,故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出//AD BC .10、B【分析】先根据平行四边形的性质可得,OB OD AD BC =,再根据三角形全等的判定定理证出DOE BOF ≅,根据全等三角形的性质可得5DOE BOF S S ==,从而可得8AOD S =△,然后根据平行四边形的性质即可得.【详解】解:∵四边形ABCD 是平行四边形,,OB OD AD BC ∴=,EDO FBO ∴∠=∠,在DOE △和BOF 中,∵EDO FBO OD OB DOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴≅,5DOE BOFS S ∴==, 358AOD AOE DOE S S S ∴=+=+=,则ABCD 的面积为44832AOD S=⨯=,故选:B .【点睛】 本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键.二、填空题1、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.2、12【分析】据D 、E 、F 分别是AB 、AC 、BC 的中点,可以判断DF 、FE 、DE 为三角形中位线,利用中位线定理求出DF 、FE 、DE 与AB 、BC 、CA 的长度关系即可解答.【详解】解:∵如图所示,D 、E 、F 分别是AB 、BC 、AC 的中点,∴ED 、FE 、DF 为△ABC 中位线,∴DF 12=BC ,FE 12=AB ,DE 12=AC , ∴△DEF 的周长=DF +FE +DE 12=BC 12+AB 12+AC 12=(AB +BC +CA )12=⨯24=12.故答案为:12.本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.3、5【分析】n解方程求解,n结合从n边形的一个顶点出发设这个正多边形有n条边,再建立方程21801080,n-条对角线,从而可得答案.可以引()3【详解】解:设这个正多边形有n条边,则n21801080,∴-=26,nn=解得:8,所以从一个正八边形的一个顶点出发可以引835-=条对角线,故答案为:5【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为()2180,n-条对角线”是解本题的关键.n-︒从n边形的一个顶点出发可以引()34、8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠CDF,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC=BE+CF﹣EF=5+5﹣2=8,∴AD=BC=8,故答案为:8.【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.5、64°【分析】根据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD 的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=58°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=58°,∴∠ABC=∠ADC=90°,∴∠DAB=360°-∠ABC=∠ADC -∠C=122°,∴∠HAA′=58°,∴∠AA′E+∠A″=∠HAA′=58°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=58°,∵∠AEF=∠FAD+∠A″,∠AFE=∠EA′A+∠EAA′,∴∠AEF+∠AFE+∠AFE=2(∠AA′E+∠A″)=116°∴∠EAF=180°-∠AEF-∠AFE=64°,故答案为:64°.【点睛】本题考查平面内最短路线问题求法、三角形的外角的性质和垂直平分线的性质,根据已知得出E,F 的位置是解题关键.三、解答题1、(1)120°;(2)1118022DOE B C ︒∠=-∠-∠;(3)1122DOE B C ∠=∠+∠ 【分析】(1)①根据平行线的性质和角平分线的定义可求∠BAE ,∠CDO ,再根据三角形外角的性质可求∠AEC ,再根据四边形内角和等于360°可求∠DOE 的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE 和∠BAD 、∠ADC 的关系,再根据四边形内角和等于360°可求∠B 、∠C 、∠DOE 之间的数量关系;(2)根据四边形和三角形的内角和得到∠BAD +∠ADC =360°-∠B -∠C ,∠EAD +∠ADO =180°-∠DOE ,根据角平分线的定义得到∠BAD =2∠EAD ,∠ADC =2∠ADO ,于是得到结论.【详解】解:(1)①∵//AD BC∴180,180B BAD C ADC ∠+∠=∠+∠=又∵∠B =50°,∠C =70°∴∠BAD =130°,∠ADC =110°∵AE 、DO 分别平分∠BAD 、∠ADC∴∠BAE =65°,∠ODC =55°∴∠AEC =115°∴∠DOE =360°-115°-70°-55°=120°故答案为:120° ②1118022DOE B C ︒∠=-∠-∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+()12BAD ADC =∠+∠360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠ 180DOE AOD ︒∴∠=-∠1118022B C ︒=-∠-∠ 即1118022DOE B C ︒∠=-∠-∠ (2)1122DOE B C ∠=∠+∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+ ()12BAD ADC =∠+∠ 360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠ 1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠ 即:1122DOE B C ∠=∠+∠. 【点睛】本题考查多边形内角与外角平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°,这是解题的重点.2、(1)18045,3630,(),n︒︒︒︒;(2)存在,15 【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得α∠的度数;(2)根据(1)的结论,将12α∠=︒代入求得n 的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于360n ︒ 则正多边形的每个内角为360180n︒︒-, 根据题意,正多边形的每一条边都相等,则α∠所在的等腰三角形的顶角为:360180n ︒︒-,另一个底角为α∠,1360180=1801802n n α⎡︒⎤⎛⎫⎛⎫∴∠︒-︒-=︒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 当4n =时,45α∠=︒当5n =时,α∠=36︒当6n =时,α∠=30 故答案为:18045,3630,(),n ︒︒︒︒(2)存在.设存在正n 边形使得12a ∠=︒, ∴180()12n︒=︒,解得15n =. 【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键.3、(1)B ,(2)2<AD <8,(3)AD =AB+DC ;证明见解析,(4)8(5)B 、C【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;(3)延长AE 交DC 延长线于点M ,类似(1)证明三角形全等,根据全等三角形的性质解答;(4)延长AD 到M ,使AD =DM ,连接BM ,证明△ADC ≌△MDB ,根据全等三角形的性质解答;(5)根据三角形的中线的概念、等腰三角形的性质、三角形的中位线定理以及全等三角形的判定和性质进行分析判断.【详解】解:(1)在△ADC 和△EDB 中,CD BD CDA BDE AD DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△EDB (SAS ),故选:B ;(2)由(1)得:△ADC ≌△EDB ,∴AC =BE =6,在△ABE 中,AB ﹣BE <AE <AB +BE ,即10﹣6<2AD <10+6,∴2<AD <8,故答案为:2<AD <8;(3)AD =AB+DC ;延长AE 交DC 延长线于点N ,∵点E 是BC 的中点,,∴CE =BE ,∵AB ∥CD ,∴∠NCE =∠ABE ,∵在△NCE 和△ABE 中,EC EB CEN BEA NCE ABE =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△NCE ≌△ABE (SAS ),∴CN =AB ,∠BAE =∠N ,∵AE 是∠BAD 的平分线,∴∠BAE =∠DAE ,,∴∠EAD =∠N ,∴AD =DN =AB+DC ;(4)延长AD 到M ,使AD =DM ,连接BM ,如图②所示:∵AE =EF .EF =5,∴AC =AE +EC =5+3=8,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中,DC DB ADC MDB DA DM =⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠CAD =∠M ,∴BF =BM =AC =8;(5)取CE的中点F,连接BF.∵AB=BE,CF=EF,∴BF∥AC,BF=0.5AC.∴∠CBF=∠ACB.∵AC=AB,∴∠ACB=∠ABC.∴∠CBF=∠DBC.又∵CD是三角形ABC的中线,∴AC=AB=2BD.∴BD=BF.又∵BC=BC,∴△BCD≌△BCF,∴CF=CD.∠BCD=∠BCE.∴CE=2CD.故B、C选项正确.若要∠ACD=∠BCE,则需∠ACB=∠DCE,又∠ACB=∠ABC=∠BCE+∠E=∠DCE,则需∠E=∠BCD.根据全等,得∠BCD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故A选项错误;若要CD=CB,则需∠A=∠BCD,也不一定成立,故D选项错误;故答案为:B 、C .【点睛】本题以阅读为背景考查了三角形的全等和四边形等知识,解题的关键是通过辅助线构造全等三角形.4、证明见解析【分析】连接,DE EF ,由三角形中位线定理可得DE AC ∥,EF AB ∥,可证四边形ADEF 是平行四边形,由平行四边形的性质可得AE ,DF 互相平分;【详解】证明:连接,DE EF ,∵AD =DB ,BE =EC ,∴DE AC ∥,∵BE =EC ,AF =FC ,∴EF AB ∥,∴四边形ADEF是平行四边形,∴AE,DF互相平分.【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.5、这个多边形的边数为8【分析】设这个多边形的边数为n,根据多边形内角和及外角和可进行求解.【详解】解:设这个多边形的边数为n,由题意得:()21803601440n-⨯︒+︒=︒,解得:8n=,∴这个多边形的边数为8.【点睛】本题主要考查多边形内角和与外角和,熟练掌握多边形的内角和与外角和是解题的关键.。

北师大版八年级下册数学第六章 平行四边形含答案

北师大版八年级下册数学第六章 平行四边形含答案

北师大版八年级下册数学第六章平行四边形含答案一、单选题(共15题,共计45分)1、如图,在五边形 ABCDE 中,∠A+∠B+∠E=α,DP,CP 分别平分∠EDC,∠BCD,则∠P 的度数是()A.90°+ αB. α﹣90°C. αD.540° - α2、一个多边形的每一个内角都等于140°,则它的边数是()A.7B.8C.9D.103、如图,点P是四边形ABCD内的一点,AP平分∠DAB,BP平分∠ABC,设∠C+∠D的大小为x,∠P的大小为y,则x,y的关系是()A. B. C. D.4、若多边形的边数增加1,则其内角和的度数()A.增加180°B.其内角和为360°C.其内角和不变D.其外角和减少5、若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数( )A.增加B.减少C.不变D.不能确定6、若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.707、一个多边形的内角和是外角和的5倍,这个多边形是()A.正六边形B.正八边形C.正十边形D.正十二边形8、若一个正多边形的一个外角是40°,则这个正多边形的边数是()A.6B.8C.9D.109、如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1 的大小为().A.120°B.36°C.108°D.90°10、若一个多边形的内角和是900度,则这个多边形的边数为()A.6B.7C.8D.1011、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数是()A.40 0B.45 0C.50 0D.60 012、若一个多边形每一个内角都是120º,则这个多边形的边数是()A.6B.8C.10D.1213、如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5B.6C.8D.1014、若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A.90°;B.105°;C.130°;D.120°.15、一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是()A.2B.C.1D.二、填空题(共10题,共计30分)16、如图,六边形ABCDEF是正六边形,那么∠α的度数是________.17、四边形具有不稳定性.如图,矩形按箭头方向变形成平行四边形,当变形后图形面积是原图形面积的一半时,则________.18、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为________.19、如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC =3,则S△BCF=________.20、八边形的外角和等于________°.21、如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.22、如图,在正六边形ABCDEF中,连接AD,AE,则∠DAE=________.23、如图,EF是△ABC的中位线,将△AEF沿AB方向平移到△EBO的位置,点D在BC上,已知△AEF的面积为5,则图中阴影部分的面积为________.24、如图,在平行四边形ABCD中,∠A=30°.BE⊥CD.BF⊥AD,垂足分别为E.F.BE=1,BF=2.则DF=________.25、已知□ABCD中,若∠B+∠D=200°,则∠A的度数为________.三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.28、如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.29、如图,已知四边形ABCD为平行四边形,其对角线相交于点O,,,求的正弦值.30、已知:如图,▱ABCD的对角线AC,BD相交于0,点E,F分别在AO,CO 上,且AE=CF,求证:四边形BEDF是平行四边形.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、A5、C6、C7、D8、C9、C10、B11、A12、A14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。

北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)

北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)
正方形应是N的一部分,也是 的一部分,
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加

四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章平行四边形练习题
一、选择题
1.已知▱ABCD 中,∠A+∠C=200°,则∠B 的度数是( )
A .100°
B .160°
C .80°
D .60°
2. ▱ABCD 的对角线AC 、BD 相交于点O ,下列结论正确的是( )
A .S ▱ABCD =4S △AO
B B .AC=BD
C .AC ⊥B
D D .▱ABCD 是轴对称图形
3.如图,▱ABCD 中,AB :BC=3:2,∠DAB=60°,
E 在AB 上,且AE :EB=1:2,
F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP :DQ 等于( )
A .3:4
B .52:13
C . 62:13
D 13:32
4.已知点A (0,0),B (0,4),C (3,t+4),D (3,t ).记N (t )为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )
A .6、7
B .7、8
C .6、7、8
D .6、8、9
5.如图,在▱ABCD 中,AB=4,∠BAD 的平分线与BC
的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )
A .32
B .34
C .4
D .8
6.如图,在▱ABCD 中,AC 与BD 相交于点O ,则下列结论不
一定成立的是( )
A .BO=DO
B .CD=AB
C .∠BAD=∠BC
D D .AC=BD
7.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()
A 11+
23
11
B. 11-
23
11
C. 11+
23
11
或11-
23
11
D. 11+
23
11
或1+
2
3 8.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对
角线AC,BD相交于点O,则OA的取值范围是()
A.2cm<OA<5cm B.2cm<OA<8cm
C.1cm<OA<4cm D.3cm<OA<8cm
9.如图,过▱ABCD的对角线BD上一点M分别作平行四边
形两边的平行线EF与GH,那么图中的▱AEMG的面积S1
与▱HCFM的面积S2的大小关系是()
A.S1>S B.S1<S2 C.S1=S2D.2S1=S2
10. 如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.8
二、填空题
1.已知点D与点A(8,0),B(0,6),C(a,-a)是
一平行四边形的四个顶点,则CD长的最小值
为.
2.如图,△ACE是以▱ABCD的对角线AC为边的等边三
角形,点C与点E关于x轴对称.若E点的坐标是(7,
-33),则D点的坐标是
3.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为
4.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为
5.如图,平行四边形ABCD中,AB=5,AD=3,AE平
分∠DAB交BC的延长线于F点,则CF=
6.如图,已知点E、F是平行四边形ABCD对角线上的
两点,请添加一个条件
使△ABE≌△CDF(只填一个即可).
7.如图,将平行四边形ABCD的一边BC延长至E,若
∠A=110°,则∠1=
8.在▱ABCD中,AB=6cm,BC=8cm,则▱ABCD的周长
为 cm.
9.如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE
交AD于点F,若CF平分∠BCD,AB=3,则BC的长为
10.如图,在平行四边形ABCD中,AC、BD相交于点O,点E
是AB的中点.若OE=3cm,则AD的长是cm.
三、解答题
1.已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,
点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;
1∠AGE.
(2)求证:∠CEG=
2
2.如图,已知四边形ABDE是平行四边形,C为边
BD延长线上一点,连结AC、CE,使AB=AC.
(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
3.(2013•南充)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.
求证:OE=OF.
4.如图,已知▱ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.
5.如图,在平行四边形ABCD中,过AC中点O作
直线,分别交AD、BC于点E、F.
求证:△AOE≌△COF.
6.已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.
(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);
(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.
7.如图,在平行四边形ABCD中,AE∥CF,求证:
△ABE≌△CDF.
8.在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.
9.如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB 和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5cm,AP=8cm,求△APB的周长.
10.如图,C为AB的中点.四边形ACDE为平行四边形,BE与CD相交于点F.
求证:EF=BF.。

相关文档
最新文档