04184线性代数(经管类)基础知识

合集下载

自考04184线性代数(经管类)讲义

自考04184线性代数(经管类)讲义

高数线性代数第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。

所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。

行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。

1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;)定义:符号叫二阶行列所以二阶行列式的值等于两个例如)符号叫三阶行列式,它也例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。

我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9 =0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:解得0<x<9所以当0<x<9时,所给行列式大于0。

(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。

其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。

04184线性代数

04184线性代数

行列式性质1.行列互换,行列式值不变2.某行(列)可提取公因数3.对换两行(列),行列式变号(推论:两行(列)成比例,行列式值为0)4.若某行(列)是两个元素的和,可以拆分为两个行列式的和5.某行(列)的k倍加到另一行(列),行列式值不变解法(展开公式)n阶行列式的值,等于它任意一行(列)元素与其对应代数余子式乘积之和克拉默法则若线性方程组的系数行列式≠0,则方程组必有唯一解推论1:若齐次线性方程组系数行列式≠0,则方程组只有0解推论2:若齐次线性方程组有非零解,则系数行列式值为0矩阵矩阵:m行n列元素排列成的数表方阵:m=n时,叫做n阶矩阵或方阵公式1.丨A T丨 =丨A丨2.丨KA丨= K n丨A丨3.丨AB丨=丨A丨·丨B丨丨A2丨=丨A丨2对称矩阵:沿主对角线对称 (A T=A,反对称矩阵A T=-A)正交矩阵:A T A=AA T=E伴随矩阵:矩阵中所有元素对应代数余子式,行列交换组成的新矩阵公式1.AA※=A※A=丨A丨E2.丨A※丨=丨A丨n-1A※=丨A丨·A-13.A-1=丨A丨-1 · A※若存在矩阵B,使AB=BA=E,则矩阵A可逆,矩阵B为矩阵A的逆矩阵性质1.若A可逆,则A-1也可逆,且(A-1)-1=A , (A T)-1=(A-1)T2.若A可逆,K ≠ 0,则KA可逆,且(KA)-1=K-1A-13.若A可逆,则丨A丨≠ 0 (推论:A、B是n阶矩阵,若AB=E,则B=A-1)4.若A、B均可逆,则AB也可逆,且(ABC)-1=C-1B-1A-1分块矩阵运算:分块矩阵运算时,每个子块也要内部运算初等变换:倍乘、互换、倍加初等矩阵:矩阵经过一次初等变换得到的新矩阵(左行右列)矩阵等价:矩阵A经过有限次数初等变换得到B,则A和B等价k阶子式:任意取k行k列元素按原来的次序构成k阶行列式,为矩阵的子式秩:矩阵中值不为0的阶数最大的k阶子式,为矩阵的秩,记作r定理1.秩=阶数,则丨A丨≠0,可逆 (秩<阶数,则丨A丨=0,不可逆)2.经过初等变换,矩阵的秩不变3.转置后矩阵的秩不变n维向量:n个数构成的有序数组,称为一个n维向量零向量:所有分量全为0的向量,不同维数的0向量不相等运算:加法、数乘、内积线性表出a1,a2...a n是一组n维向量,k1,k2...k n是一组常数若B=k1a1,k2a2...k n a n,则称B是a1,a2...a n的线性组合(B可用a1,a2...a n线性表出)定理若向量组B1,B2...B n可用a1,a2...a n线性表出,则r(B)≤r(A)线性相关定义:设a1,a2...a n是n个m维向量,若存在n个不全为0的数k1,k2...k n使k1a1+k2a2+...+k n a n=0,则称向量组线性相关,否则称为线性无关定理a1,a2...a n线性相关1.a1,a2...a n=0,降秩,不可逆2.齐次方程组有非0解3.n+1维向量必线性相关4.至少有一个向量ai可由其余向量线性表出a1,a2...a n线性无关,而a1,a2...a n,B线性相关,则B必能由a1,a2...a n线性表出,且表法唯一a1,a2...a n可由B1,B2...B t线性表出,且n>t,则a1,a2...a n必线性相关(推论:若a1,a2...a n线性无关,则n≤t)线性无关定义:若k1a1+k2a2+...+k n a n=0,必有k1=0...k n=0,则称a1,a2...a n线性无关向量组的极大无关组设有向量组A:a1,a2...a n,若A中能选出r个向量a1,a2...a r满足:1.A0:a1,a2...a r线性无关 2.向量组A中任意r+1个向量(如果有)都线性相关则称A0是向量组A的一个极大线性无关组向量组的秩向量组T中任意一个极大无关组所含向量个数,为T的秩(等价向量秩必相同)向量空间概念:n维实行(列)向量全体构成的集合,称为实n维向量空间,记作R n子空间:R n中取a1,a2...a n,则k1a1,k2a2...k n a n一定是R n中的一个子空间基设V是R n中的一个向量空间,若V中的向量组A:a1,a2...a n满足1.A线性无关2.V中任意一个向量a都可以由a1,a2...a n线性表出则A是V的一个基,a1,a2...a n为基向量,基中向量个数r为V的维数,并称V为r维向量空间坐标a=k1a1+k2a2+...+k n a n成立时,表出系数k1,k2...k n称为a在基a1,a2...a n下的坐标齐次线性方程组定理1.若n维列向量ξ满足AX=0,则称ξ为AX=0的解2.n为零向量是AX=0的解,称为0解,反之称为非0解,向量分量中至少有一个不为03.由AX=0的解向量构成的向量集合,称为AX=0的解空间性质1.若ξ1和ξ2都是AX=0的解,ξ1+ξ2则也是AX=0的解2.若ξ是AX=0的解,k是任意实数,则kξ也是AX=0的解基础解系设a1,a2...a n是Ax=0的基础解系,若它满足a1,a2...a n线性无关Ax=0任意一个解ξ都可以由a1,a2...a n线性表出则a1,a2...a n是Ax=0的一个基础解系原则1.不能是0向量2.解向量必须都是Ax=0的解3.解向量个数为n-r4.任意n-r个解向量都线性无关推论Ax=0只有零解,则r(A)=n,即Ax=0没有基础解系Ax=0有非零解,则r(A)<n,即Ax=0有无穷个基础解系当A是n阶方阵时Ax=0只有零解,丨A丨≠0Ax=0有非零解,丨A丨等于0非齐次线性方程组增广矩阵:线性方程组中,所有常数项拼成的矩阵有解判别r(A,b)=r(A)时,Ax=b必有解r(A,b)=r(A)=n,方程组有唯一解r(A,b)=r(A)<n,方程组有无穷解r(A,b)=r(A)+1时,Ax=b必无解A是n阶方阵时丨A丨=0时, r(A,b)=r(A)<n,则方程组有无穷解r(A,b)=r(A)+1,则Ax=b无解丨A丨≠0时, r(A,b)=r(A)=n,Ax=b有唯一解x=A-1b导出组任意一个非齐方程组都有对应齐次方程组,称为导出组性质若a1,a2都是Ax=b的解,则ξ=a1-a2是其导出组的解若a是Ax=b的解,ξ是其导出组Ax=0的解,则a+ξ是Ax=b的解结构定理特解:方程组Ax=b的任意一个解齐次方程组解题步骤1.拼系数矩阵2.化成行最简3.立同解方程组4.赋值自由未知量5.求出基础解系6.加入常数项7.基础解系的线性组合即是通解非齐次方程组解题步骤1.拼成增广矩阵2.化成行最简3.立同解方程组4.赋值,找到特解5.立导出组6.赋值,解出基础解系7.求出通解非齐次通解=非齐次特解+齐次通解特征值和特征向量定义:若存在某个数λ与某个n维非零列向量P,满足AP=λP则称λ为A的一个特征值,P为A的属于这个特征值的一个特征向量特征方程特征向量P的值,就是(λE-A)x=0的所有非零解零向量也是(λE-A)x=0的解,但不是A的特征向量结论三角矩阵的特征值乘积,就是其全体对角元一个向量P不可能是属于同一个方阵A的不同特征值的特征向量n阶方阵A与其转置矩阵A T特征值相同n阶方阵全体特征值的和,等于主对角线元素的和 (迹),乘积等于行列式的值求法根据A的特征方程求出A的特征值(丨λE-A丨)逐个代入特征值,得到对应齐次线性方程组,求出对应特征向量方阵相似定义:A和B均为n阶方阵,若存在P,使B=P-1AP,则称A和B相似,记作A~B结论若A~B,则A和B的特征值、迹、行列式的值、秩相同若A矩阵相似于对角阵,那么对角矩阵的对角元就是A矩阵的n个特征值方阵与对角矩阵相似条件矩阵是对称矩阵特征向量全都线性无关特征值相同,需满足特征值重数=对应特征向量个数证明可相似对角化求特征值(特征值是相似对角矩阵主对角线的元素)代入特征值求n-r(λE-A),看是否等于特征值重数内积与正交内积:两个同维向量的内积就是对应分量乘积之和。

线性代数经管类知识点

线性代数经管类知识点

线性代数经管类知识点线性代数在经管类学科中具有重要的地位,其涉及的知识点对于分析、建模和解决管理问题具有重要的作用。

本文将介绍一些线性代数在经管类学科中常用的知识点,并探讨其应用。

应用于经管类学科的线性代数知识主要包括矩阵运算、线性方程组的求解以及向量空间的理解。

我们将逐一进行阐述。

1. 矩阵运算:矩阵是一个重要的线性代数工具,在经管类学科中广泛应用于数据的存储和计算。

矩阵的加法、减法和乘法运算能够对数据进行处理和分析。

例如,在经济学中,我们可以通过矩阵乘法来计算不同经济指标的加权平均值,从而对经济状况进行评估。

此外,矩阵的转置运算也可以用于解决一些经济和管理问题,例如对投资组合的评估与优化。

2. 线性方程组的求解:线性方程组是经管类学科中常见的数学模型。

通过线性代数的方法,我们可以求解线性方程组,从而得到方程组的解析解或数值解。

这对于经济学中的均衡分析和管理学中的约束优化问题具有重要的作用。

同时,我们还可以通过求解线性方程组来进行数据拟合和趋势预测,帮助企业做出决策。

3. 向量空间的理解:向量空间是线性代数中的一个重要概念,它描述了向量的线性组合和向量之间的相对位置关系。

在经管类学科中,我们经常遇到多个变量之间的关系,例如市场需求与供给的关系、公司利润与销售额的关系等。

通过将变量转化为向量,我们可以使用向量空间的理论和方法来分析这些关系。

例如,我们可以通过求解向量的线性相关性来检验变量之间的相关性,从而评估市场需求的变化对供给的影响,或者评估公司销售额的变化对利润的影响。

除了以上提到的知识点,线性代数在经管类学科中还有其他重要的应用。

例如,特征值和特征向量的分析可以用于研究矩阵的稳定性和动态系统的行为。

奇异值分解可以用于降维和数据压缩,从而提取关键信息。

矩阵的逆可以用于求解逆问题,例如在金融学中用于对冲或风险管理。

总之,线性代数在经管类学科中扮演着不可或缺的角色。

通过掌握矩阵运算、线性方程组求解和向量空间的理解,我们能够更好地理解和分析经济和管理问题。

自考《线性代数》(经管类)教学大纲

自考《线性代数》(经管类)教学大纲

自考《线性代数》(经管类)教学大纲课程代码:04184 总学时:33学时一、课程的性质、目的、任务:《线性代数》是以变量的线性关系为主要研究对象的数学学科。

该课程介绍行列式,矩阵,线性方程组,二次型等有关的概念,理论及方法。

本课程不仅是许多后续相关学科的理论基础,同时也是科学技术和经济管理领域的重要数学工具。

内容的抽象性,逻辑的严密性是《线性代数》的基本特点,在教学过程中应特别注意对学生抽象思维,逻辑思维以及归纳推理能力的培养。

通过本课程的教学,要求学生对基本概念,基本理论和重要方法有正确的理解,并能比较熟练地掌握和应用。

通过本课程的学习,使学生获得线性代数的基本知识,培养学生的基本运算能力,增强学生处理问题的初步能力。

另外通过本课程的学习,为学生学习后续课程和进一步深造以及今后工作奠定必要的数学基础。

二、课程教学的基本要求:教学要求由低到高分三个层次,有关定义、定理、性质、特征概念的内容为“知道、了解、理解”;有关计算、解法、公式、法则等方法的内容按“会、掌握、熟练掌握”。

三、教学内容第一章行列式学时:4学时(讲课3学时)本章讲授要点:行列式的概念和基本性质、行列式的计算、行列式按行(列)展开定理、克莱默法则。

重点:行列式的计算、克莱默法则难点:行列式的计算、克莱默法则。

教学内容:§1.1 二阶、三阶行列式§1.2 n阶行列式§1.3 行列式的性质§1.4 行列式按行(列)展开§1.5克莱默法则教学基本要求:1.理解行列式的定义,掌握行列式的性质,并会用行列式的性质证明和计算有关问题。

2.熟练掌握通过三角化计算行列式的方法。

3.理解子式,余子式,代数余子式的定义,熟练掌握按某行(或某列)展开行列式,会应用展开定理计算和处理行列式。

4.了解“克莱默”法则的条件和结论,掌握判别齐次方程组有非零解的条件。

第二章矩阵学时:6学时(讲课4学时)本章讲授要点:矩阵的概念,几种特殊矩阵,矩阵的运算,矩阵可逆的充分必要条件,求逆矩阵,矩阵的初等变换,矩阵的秩。

04184线性代数(经管类)

04184线性代数(经管类)

1【单选题】与矩阵合同的矩阵是()。

A、B、C、D、您的答案:B参考答案:B纠错查看解析2【单选题】设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是A、α1+α2,α2+α3,α3+α1B、α1-α3,α1-α2,α2+α3-2α1C、α1-α2,α2-α3,α3-α1D、α1,α2,α1-α2您的答案:A参考答案:A纠错查看解析3【单选题】设行列式,则A、B、C、D、您的答案:未作答参考答案:C纠错查看解析4【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。

A、B、C、D、您的答案:未作答参考答案:D纠错查看解析5【单选题】设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为()A、-8B、-2C、2D、8您的答案:未作答参考答案:A纠错查看解析6【单选题】已知A是一个3×4矩阵,下列命题中正确的是()A、若矩阵A中所有三阶子式都为0,则秩(A)=2B、若A中存在二阶子式不为0,则秩(A)=2C、若秩(A)=2,则A中所有三阶子式都为0D、若秩(A)=2,则A中所有二阶子式都不为0您的答案:未作答参考答案:C纠错查看解析7【单选题】设则的特征值为1,2,3,则A、-2B、2C、3D、4您的答案:未作答参考答案:D纠错查看解析8【单选题】二次型的正惯性指数为()A、0B、1C、2D、3您的答案:未作答参考答案:C纠错查看解析9【单选题】设为3阶矩阵,将的第三行乘以得到单位矩阵,则A、-2B、C、D、2您的答案:未作答参考答案:A纠错查看解析10【单选题】矩阵有一个特征值为()。

A、-3B、-2C、1D、2您的答案:未作答参考答案:B纠错查看解析11【单选题】设为3阶矩阵,且,将按列分块为,若矩阵,则A、0B、C、D、您的答案:未作答参考答案:C纠错查看解析12【单选题】n维向量组α1,α2,…,αs(s≥2)线性相关充要条件A、α1,α2,…,αs中至少有两个向量成比例B、α1,α2,…,αs中至少有一个是零向量C、α1,α2,…,αs中至少有一个向量可以由其余向量线性表出D、α1,α2,…,αs中第一个向量都可以由其余向量线性表出您的答案:未作答参考答案:C纠错查看解析13【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:未作答参考答案:B纠错查看解析14【单选题】设三阶实对称矩阵的全部特征值为1,-1,-1,则齐次线性方程组的基础解系所含解向量的个数为()。

全国自考04184线性代数(经管类)试题及参考答案解析【大题附解析过程】

全国自考04184线性代数(经管类)试题及参考答案解析【大题附解析过程】

全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 3 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 4 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 5 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】
全国 2014 年 10 月高等教育自学考试统一命题考试 线性代数(经管类)试题答案及评分参考 课程代码:04184 【大题答案附详细解析过程】
第 1 页 共 -7- 页源自全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 2 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 6 页 共 -7- 页
全国 2014 年 10 月自学考试 04184 线性代数(经管类)试题及答案解析【大题附解析过程】 第 7 页 共 -7- 页

04184线性代数知识点

04184线性代数知识点

b b1. 已知 2 阶行列式 a 1 a 1= N , b 1 b c 1 c 线性代数知识点 = n ,则 b 1 b 2 a 1 + c 1 a 2 + c 22. 设 A 是 n 阶矩阵,C 是 n 阶正交阵,且 B=C T AC ,则 A 与 B 等价、A 与 B 有相同的特征值、A 与 B 相似3. n 元线性方程组 Ax=b 有两个解 a 、c ,则 a-c 是 Ax=0 的解。

4.4.设 A ,B ,C 均为 n 阶方阵,AB= BA ,AC=CA ,则 ABC=BCA5. 非齐次线性方程组 Ax=b 中,系数矩阵 A 和增广矩阵的秩都等于 4,A 是 4×6 矩阵,则方程组有无穷多解6. α,β,γ是三维列向量,且|α,β,γ|≠0,则向量组α,β,γ的线性相关性是线性无关7.(-1,1)不能表示成(1,0)和(2,0)的线性组合8.(4,0)能表示成(-1,2),(3,2)和(6,4)的线性组合,且系数不唯一9.设β=(1,0,1),γ=(1,1,-1),则满足条件 3x+β=γ的 x 为 1/3(0, 1, -2)10.设α,β,γ都是 n 维向量,k ,l 是数,(α+β)+γ=α+(β+γ)、α+β=β+α、α+(-α)=011.属于不同特征值的特征向量必线性无关、相似矩阵必有相同的特征值、特征值相同的矩阵未必相似12. 已知矩阵 A = 5 2 1有一个特征值为 0,则 x= 2.5 13. 已知 3 阶矩阵 A 的特征值为 1,2,3,则|A-4E|=-614. 已知 f (x )=x 2+x+1 方阵 A 的特征值 1,0,-1,则 f (A )的特征值为 3,1,115. 要保证 n 阶实对称阵 A 为正定,则 A -1 正定 、A 合同于单位阵、A 的正惯性指数等于 n16.二次型 f (x 1,x 2,x 3)= x 12+ x 22+x 32+2x 1x 2+2x 1x 3+2x 2x 3,其秩为 117. 设 f=X T AX ,g=X T BX 是两个 n 元正定二次型,则 X T ABX 未必是正定二次型。

自考线性代数(04184)经管类复习提纲内含经典例题分类讲解

自考线性代数(04184)经管类复习提纲内含经典例题分类讲解

线性代数复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

04184线性代数知识点

04184线性代数知识点

04184线性代数知识点线性代数是数学中的一个重要分支,它研究的是向量空间以及线性映射的性质与运算规律。

它在科学和工程领域中有着非常广泛的应用,包括计算机图形学、机器学习、量子力学等。

以下是线性代数中一些重要的知识点:1.向量与向量空间:向量是具有大小和方向的量,可以用一列有序数表示。

向量空间是由一组向量及其线性组合组成的集合。

向量空间满足加法、数乘和封闭性等基本性质。

2.矩阵与行列式:矩阵是一个按照矩形排列的数组,行列式是一个用于描述矩阵性质的数。

矩阵可以用来表示线性映射,而行列式则可以用来计算矩阵的特征值和特征向量。

3.线性方程组与线性映射:线性方程组是一组关于未知量的线性方程的集合,可以用矩阵和向量的形式表示。

线性映射是一种保持向量空间结构的映射,包括线性变换和线性函数。

4.向量空间的基与维数:向量空间的基是一个线性无关的向量组,它可以用来表示向量空间中的任意向量。

维数是向量空间中基的数量,对于有限维向量空间,维数即基中向量的个数。

5.线性相关与线性无关:向量组中如果存在一组不全为零的线性组合得到零向量,就称这个向量组线性相关;否则,就称这个向量组线性无关。

线性无关的向量组可以作为向量空间的基。

6.线性变换与特征值特征向量:线性变换是指一个向量空间到另一个向量空间的映射,它保持向量空间中的线性结构。

特征值是线性变换对应矩阵的特征方程的根,特征向量是与特征值对应的非零向量。

7.内积空间与正交性:内积空间是一个满足特定性质的向量空间,其中定义了一种内积运算。

正交性是指两个向量的内积为零,它在几何学和物理学中有着重要的应用。

8.矩阵的特征值分解与奇异值分解:特征值分解是将一个矩阵分解为特征值和特征向量的形式,奇异值分解是将一个矩阵分解为奇异值和奇异向量的形式。

这两种分解在矩阵分析和数据处理中都有广泛的应用。

9.欧几里得空间与投影:欧几里得空间是一个具有内积的向量空间,它常常用来描述实数空间中的几何关系。

04184-线性代数(经管类)

04184-线性代数(经管类)

04184-线性代数(经管类)()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=;④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示. √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()AE E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =√ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++为A 的一个多项式.√ 设,,m n n s A B ⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B的列向量为12,,,sβββ⋅⋅⋅,AB的列向量为12,,,sr r r ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量;用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ①m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<;m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.②()0r A A ο=⇔=.③ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一. ④ 矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.⑤ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅矩阵等价 A 经过有限次初等变换化为B . 记作:A B =⑥ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑦ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑧ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且sn >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n . ⑨ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑩ 任一向量组和它的极大无关组等价.⑪ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑫ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑬ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.线性方程组的矩阵式Ax β= 向量式 1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦121212,,,,,,()(),,,n n n Ax Ax n Ax Ax Ax r A r A n βοαααβοβαααββααα⇒⇔==<<≠⇒⇒⇔==⇔=⇔=<≠=⇒有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解.当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限.√ 矩阵的秩的性质: ① ()()()T T r A r A r A A ==② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min(),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1 ⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=标准正交基 n 个n 维线性无关的向量,两两正交,每个向量长度为1.αβ与正交 (,)0αβ=. α是单位向量(,)1ααα==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+(,)(,)(,)c c c αβαβαβ==施密特 123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ=333βηβ=正交矩阵 T AA E =.√A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:①1T A A -=; ② T T AA A A E ==;③A 是正交阵,则T A (或1A -)也是正交阵;④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.A 的特征矩阵 E A λ-.A 的特征多项式 ()E A f λλ-=.A 的特征方程 0E A λ-=. Ax x Ax x λ=→ 与线性相关√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素. √ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量.√12n A λλλ= 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 230n λλλ====.√ 若A 的全部特征值12,,,n λλλ,()f x 是多项式,则:①()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ,A *的全部特征值为12,,,nA AAλ.√ 1122,.m m Ak kAa b aA bEAA A A A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m A k kAa b aA bEAx A x A A Aλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. A 与B 相似 1B P AP -= (P 为可逆阵) 记为:A B√A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值.√A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数.√ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.A 与B 正交相似 1B P AP -= (P 为正交矩阵)√ 相似矩阵的性质:①11A B -- 若,A B 均可逆② T T A B③kk A B (k 为整数)④E A E Bλλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量.⑤A B= 从而,A B 同时可逆或不可逆⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 可以相似对角化 A 与对角阵Λ相似. 记为:A Λ (称Λ是A 的相似标准型)√ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =.√ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦. √ 若A B , CD ,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. √ 若A B ,则()()f A f B ,()()f A f B =.二次型12(,,,)T n f x x x X AX=A 为对称矩阵 12(,,,)T n X x x x =A 与B 合同 T BC AC =. 记作:A B (,,A B C 为对称阵为可逆阵)√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√ 两个矩阵合同的充分条件是:A B√ 两个矩阵合同的必要条件是:()()r A r B =√12(,,,)Tn f x x x X AX=经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x x x d y =∑标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,则为规范形 .√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵11110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量;② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1CAC -=Λ;④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.正定二次型 12,,,n x x x 不全为零,12(,,,)0n f x x x >.正定矩阵 正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ;② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =;⑤ 存在可逆矩阵P ,使T A P P = (从而0A >); ⑥存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦(i λ大于0).√ 成为正定矩阵的必要条件:0iia > ; 0A >.。

自考04184线性代数(经管类)-自考核心考点笔记-自考重点资料

自考04184线性代数(经管类)-自考核心考点笔记-自考重点资料

《线性代数(经管类)》刘吉佑、徐诚浩主编,武汉大学出版社新版第一章行列式1.1 行列式的定义1。

2 行列式行(列)展开1。

3 行列式的性质与计算1。

3 克拉默法则第二章矩阵2。

1 线性方程组与矩阵的定义2.2 矩阵运算2.3 分阵的逆矩阵2。

4 分块矩阵2.5 矩阵的初等变换与初等方阵2.6 矩阵的秩2.7 矩阵与线性方程组第三章向量空间3.1 n 维向量概念及其线性运算3。

2 线性相关与线性无关3。

3 向量组的秩3.4 向量空间第四章线性方程组4。

1 齐次线性方程组4.2 非齐次线性方程组第五章特征值与特征向量5.1 特征值与特征向量5。

2 方阵的相似变换5。

3 向量内积和正交矩阵5。

4 实对称矩阵的相似标准形第六章实二次型6.1 实二次型及其标准形6。

2 正这二次型和正定矩阵… … (中间部分略)完整版15页请——QQ :1273114568 索取第一部分行列式本章概述行列式在线性代数的考试中占很大的比例。

从考试大纲来看。

虽然只占13%左右。

但在其他章.的试题中都有必须用到行列式计算的内容.故这部分试题在试卷中所占比例远大于13%.1.1 行列式的定义1。

1。

1 二阶行列式与三阶行列式的定义一、二元一次方程组和二阶行列式例1.求二元一次方程组的解.解:应用消元法得当时。

得同理得定义称为二阶行列式。

称为二阶行列式的值.记为.于是由此可知。

若.则二元一次方程组的解可表示为:例2二阶行列式的结果是一个数.我们称它为该二阶行列式的值.二、三元一次方程组和三阶行列式考虑三元一次方程组希望适当选择。

使得当后将消去。

得一元一次方程若,能解出其中要满足为解出。

在(6),(7)的两边都除以得这是以为未知数的二元一次方程组.定义1。

1。

1 在三阶行列式中,称于是原方程组的解为;类似地得这就将二元一次方程组解的公式推广到了三元一次方程组。

例3 计算例4 (1)(2)例5 当x取何值时,?为将此结果推广到n 元一次方程组。

《线性代数(经管类)-04184》

《线性代数(经管类)-04184》
14[单选题]
参考答案:B您的答案:B
o收起解析
o试题难度:
o参考解析:
15[单选题]
参考答案:C您的答案:C
o收起解析
o试题难度:
o参考解析:
16[单选题]
参考答案:D您的答案:D
o收起解析
o试题难度:
o参考解析:
17[单选题]
参考答案:C您的答案:C
o收起解析
o试题难度:
o参考解析:
18[单选题]
1[单选题]
参考答案:C您的答案:C
o收起解析
o试题难度:
o参考解析:
2[单选题]
参考答案:C您的答案:C
o收起解析
o试题难度:
o参考解析:3[单ຫໍສະໝຸດ 题]参考答案:D您的答案:D
o收起解析
o试题难度:
o参考解析:
4[单选题]
参考答案:B您的答案:B
o收起解析
o试题难度:
o参考解析:
5[单选题]
参考答案:B您的答案:B
o收起解析
o试题难度:
o参考解析:
6[单选题]
参考答案:B您的答案:B
o收起解析
o试题难度:
o参考解析:
7[单选题]
参考答案:D您的答案:D
o收起解析
o试题难度:
o参考解析:
8[单选题]
参考答案:B您的答案:B
o收起解析
o试题难度:
o参考解析:
9[单选题]
参考答案:A您的答案:A
o收起解析
o试题难度:
31[单选题]
参考答案:D您的答案:D
o收起解析
o试题难度:
o参考解析:
32[单选题]

全国2020年10月自考04184线性代数(经管类)试题及答案

全国2020年10月自考04184线性代数(经管类)试题及答案

D020·04184(附参考答案)绝密★考试结束前2020年10月高等教育自学考试全国统一命题考试线性代数(经管类)(课程代码:04184)注意事项:1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。

2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。

3. 涂写部分、画图部分必须使用2B 铅笔,书写部分必须使用黑色字迹签字笔。

说明:在本卷中,A T 表示矩阵A 的转置矩阵,A •表示矩阵A 的伴随矩阵,E 是单位矩阵,丨A 丨表示方阵A 的行列式,r (A )表示矩阵A 的秩。

第一部分 选择题一、单项选择题:本大题共5小题,每小题2分,共10分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.设()0125101232a x a x x f +=-=,则0a =A.-7B.-4C.4D.72.设A 为3阶矩阵,将A 的第2列与第3列互换得到矩阵B ,再将B 的第1列的(-2)倍加到第3列得到单位矩阵E ,则=AA.⎪⎪⎪⎭⎫⎝⎛010100021B.⎪⎪⎪⎭⎫⎝⎛-010100021C.⎪⎪⎪⎭⎫ ⎝⎛-010100201D.⎪⎪⎪⎭⎫⎝⎛010100201 3.若向量组⎪⎪⎪⎭⎫ ⎝⎛=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=3112α,⎪⎪⎪⎭⎫ ⎝⎛-=k 623α,⎪⎪⎪⎭⎫⎝⎛--=k 2024α的秩为2,则数k =A.1B.2C.3D.44.设线性方程组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多个解,则数a =A.-2B.-1C.1D.25.设2阶矩阵A 满足032=+A E ,0=-A E ,则E A +=A.23-B.32-C.32D.23第二部分 非选择题注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、填空题:本大题共10小题,每小题2分,共20分。

线性代数(经管类)重点内容_目录

线性代数(经管类)重点内容_目录

线性代数(经管类)重点内容目录第一章行列式1.简单的二阶、三阶行列式的计算。

(P3)2.利用行列式的定义计算行列式。

(P9)3.利用行列式的六大性质计算行列式。

(P11)4.利用克拉默法则求解线性方程组。

(P27)第二章矩阵5.矩阵的乘法运算。

(P37)6.矩阵乘法运算规律。

(P41)7.方阵的行列式具有的性质。

(P45)8.方阵的逆矩阵及其具有的性质。

(P48)9.利用矩阵的初等变换求解逆矩阵。

(P66)10.矩阵秩的求法。

(P70)11.利用矩阵求解线性方程组。

(P75)第三章向量空间12.线性表示。

(P83)13.线性相关和线性无关的性质与证明。

(P88)14.求向量组的极大无关组。

(P94)15.向量组的秩具有的性质。

(P97)16.求向量组的秩。

(P99)17.求向量空间的基与维数。

(P106)第四章线性方程组18.齐次线性方程组的性质。

(P110)19.求解齐次线性方程组。

(P114)20.非齐次线性方程组解的判别定理。

(P119)21.非齐次线性方程组的求通解方法。

(P120)第五章特征值与特征向量22.特征值与特征向量的定义求法。

(P129)23.特征值与特征向量的一些重要结论。

(P131)24.特征值的性质。

(P132)25.求特征值与特征向量的一般方法。

(P133)26.方阵相似具有的性质。

(P138)27.求向量内积。

(P146)28.正交矩阵的性质与证明。

(P150)第六章实二次型29.实二次型与矩阵之间的相互转换。

(P164)30.实二次型转化为标准形的方法。

(P166)31.用配方法求实二次型的标准形。

(P168)32.求二次型的规范形。

(P169)33.正定矩阵的判定。

(P173)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章行列式(一)行列式的定义1.行列式的定义D n=∑(-1)t a1c1a2c2…a n cn(t是列标c的逆序数)=∑(-1)t a r11a r22…a rn n(t是行标r的逆序数) 2.余子式及代数余子式设有n阶行列式D n,对任何一个元素a ij,划去它所在的第i行及第j列,剩下的元素按原先次序组成一个n-1阶行列式,称它为元素a ij的余子式,记作M ij,再记A ij=(-1)i+j M ij,称A ij为元素a ij的代数余子式.3.特殊行列式①②③(二)行列式的性质性质1 行列式与它的转置行列式相等,即|A|=|A T|性质2用数k乘行列式D中某一行(列)的所有元素等于用数k乘此行列式D.推论1行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面性质3互换行列式的任意两行(列),行列式的值改变符号.推论2如果行列式中有某两行(列)相同,则此行列式的值等于零.推论3 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4如果行列式某行(列)所有元素均为两个数的和,则行列式可以按该行(列)拆为两个行列式的和.性质5 把行列式某一行(列)所有元素都乘以同一个数然后加到另一行(列)的对应元素上去,行列式不变. 定理1(行列式展开定理)n阶行列式D=|a ij|n等于它任意一行(列)各元素与其对应的代数余子式的乘积的和,即D=a i1A i1+a i2A i2+…+a in A in(i=1,2,…n)(D按第i行的展开式)或D=a1j A1j+a2j A2j+…+a nj A nj(j=1,2,…n)(D按第j列的展开式)定理2行列式D=|a ij|n的任一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即a i1A k1+a i2A k2+…+a in A kn=0(i≠k)或a1j A1s+a2j A2s+…+a nj A ns=0(j≠s)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:第二章矩阵(一)矩阵的定义矩阵定义:m*n个数a ij(i=1,2,…m,j=1,2,…n)排列成一个m行n列的有序数表,称为m*n矩阵,记为(a ij)m*n (二)矩阵的运算1.矩阵的同型与相等设有矩阵A=(a ij)m*n, B=(b ij)k*s,若m=k, n=s,则说A与B是同型矩阵,若A与B同型,且对应元素相等,即a ij=b ij,则称矩阵A与B相等,记为A=B2.矩阵的加、减法设A=(a ij)m*n, B=(b ij)m*n,是两个同型矩阵,则A+B=(a ij+b ij)m*n , A-B=(a ij-b ij)m*n注意:矩阵的相加(减)体现为对应元素的相加(减),只有A与B为同型矩阵,它们才可以相加(减).①A+B=B+A ②(A+B)+C=A+(B+C) ③A-B=A+(-B)3.数乘运算设A=(a ij)m*n,k为任一个数,则规定kA=(ka ij)m*n, 数k与矩阵A的乘积就是A中所有元素都乘以k①(kj)A=k(j A) ②(k+j)A=k A+j A ③k(A+B)=k A+k B4.乘法运算设A=(a ij)m*k,B=(b ij)k*n,则规定AB=(c ij)m*n,其中c ij=a i1b1j+a i2b2j+…+a ik b kj (i=1,2,…,m, j=1,2,…,n)只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,且AB的行数为A的行数,AB的列数为B的列数,AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.矩阵乘法与普通数乘法不同:不满足交换律,即①AB≠BA②当AB=0,不能推出A=0或B=0,不满足消去律.①(AB)C=A(BC) ②A(B+C)=AB+AC ③(B+C)A=BA+CA ④k(AB)=(k A)B=A(k B)⑤AE=EA=A5.方阵的乘幂与多项式方阵A为n阶方阵,则A m=AAA…A(m个).①A k A j=A k+j ②(A k)j=A kj ③特别地A0=E④若f(x)=a m x m+a m-1x m-1+…+a1x+a0,则规定f(A)=a m A m+a m-1A m-1+…+a1A+a0E,称f(A)为A的方阵多项式。

6.矩阵的转置设A为m*n矩阵,把A中行与列互换,得到n*m矩阵,称为A的转置矩阵,记为A T,转置运算满足以下运算律:①(A T)T=A ②(A+B)T=A T+B T③(kA)T=kA T ④(AB)T=B T A T设A为n阶方阵,若满足A T= A,则称A为对称矩阵,若满足A T= -A,则称A为反对称矩阵.7.方阵的行列式设A=(a ij)为一个n阶方阵,则由A中元素构成一个n阶行列式|a ij|n,称为方阵A的行列式,记为|A|8. 方阵的行列式的性质设A,B为n阶方阵,k为数,则①|A T|=|A|②|kA|=k n|A|③|AB|=|BA|=|A||B|(三)方阵的逆矩阵1.可逆矩阵的概念与性质对n阶方阵A,若存在另一个n阶方阵B,使AB=BA=E,则称B为A的逆矩阵,且称A为可逆方阵逆矩阵的性质:设A,B为同阶可逆矩阵,k≠0为常数,则:⑤A-1可逆,且(A-1)-1=A;②AB可逆,且(AB)-1=B-1A-1;③kA可逆,且(kA)-1=A-1/k ④A T可逆,且(A T)-1=(A-1)T ⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则PA=PB A=B,AP=BP A=B 2.伴随矩阵的概念及性质设A=(a ij)为n阶方阵,A ij为A的行列式|A|=|a ij|n中元素a ij的代数余子式,则:矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛nnnnAAAA1111称为A的伴随矩阵,记为A*(务必注意A*中元素排列的特点)伴随矩阵的性质:①AA*=A*A=|A|E,②|A*|=|A|n-1(n为A的阶数)3.n阶方阵可逆性的判定定理:n阶方阵A可逆|A|≠0推论:设A,B均为n阶方阵,且满足AB=E,则A,B都可逆,且A-1=B,B-1=A4.逆矩阵的求解①用初等行变换求可逆矩阵的逆矩阵(★必须是行变换,不能是列变换)设A为任一个n阶可逆矩阵,构造n*2n矩阵(A,E),然后(A,E) (E,A-1)②用伴随阵求可逆矩阵的逆矩阵A-1= A*/|A|(四) 分块矩阵1. 分块矩阵的概念与运算用贯穿矩阵的横线和纵线把矩阵分成若干小块,每个小块叫矩阵的子块,以子块为元素的矩阵叫分块阵. 在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A 的列分块方式与右矩阵B 的行分块方式一致,然后把子块当作元素来看待,相乘时A 的各子块分别左乘B 的对应的子块.2.分块对角矩阵的逆矩阵形如元素分块沿主对角线排列的分块阵称分块对角阵。

①若rA A A ,,,21 均为方阵,空白处都是零,则|A|=|A 1||A 2|…|A t | ②若rA A A ,,,21 均可逆,则A 可逆,且 (五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A 的某两行(列);(2)用一个非零数k 乘A 的某一行(列);(3)把A 中某一行(列)的k 倍加到另一行(列)上.注意:对矩阵施行初等变换是变换过程用“→”连接前后矩阵.初等变换是矩阵常用的运算,最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵.2.初等方阵由单位阵E 经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为ij P ,)(k D i 和)(k T ij ,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A 为任一矩阵,当在A 的左边乘一个初等方阵所的乘积相当于对A 作同类型的初等行变换;在A 的右边乘一个初等方阵所的乘积相当于对A 作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A 经过若干次初等变换变为B ,则称A 与B 等价,记为A ≌B,矩阵等价的性质;①对称性 A ≌B 则B ≌A ②传递性A ≌B ,B ≌C 则A ≌C对任一矩阵A ,必与分块矩阵⎪⎪⎭⎫⎝⎛O O O E r 等价,称这个分块矩阵为A 的等价标准形. 即对任一矩阵A ,必有n 阶可逆矩阵P 及 Q 使得⎪⎪⎭⎫⎝⎛=O O O E PAQ r 5. 用初等行变换法求解矩阵方程(★必须是行变换,不能是列变换)方法①先求逆阵,再求解矩阵方程AX=B →A -1AX=A -1B → EX=A -1B → X=A -1B方法②构造增广矩阵,直接求解矩阵方程(A ,B )→(E ,A -1B) →X=A -1B(六)矩阵的秩 1.秩的定义设A 为m*n 矩阵,把A 中非零子式的最高阶数称为A 的秩,记为秩(A)或r(A) ,零矩阵的秩为0, 因而0<秩(A<min(m,n),对n 阶方阵A ,若秩(A)=n ,称A 为满秩矩阵,否则称为降秩矩阵. 2、秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A ,只要用初等行变换把A 化成阶梯形矩阵T ,则秩(A)=秩(T)=T 中非零行的行数. 3.满秩矩阵等价的条件n 阶方阵A 满秩 A 可逆,即存在B ,使AB=BA=EA 非奇异,即|A|≠0 A 的等价标准形为EA 可以表示为有限个初等方阵的乘积 齐次线性方程组AX=0只有零解对任意非零列向量b ,非齐次线性方程组AX=b 有唯一解 A 的行(列)向量组线性无关A 的行(列)向量组为R*的一个基 任意n 维行(列)向量均可表示为A 的行(列)向量组的线性组合且表示法唯一. A 的特征值均不为零 A T A 为正定矩阵. (七)线性方程组的消元法. 对于给定的线性方程组Ax=b ,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解. 第三章 向量空间 (一)向量的定义及向量组的线性组合 1.向量的定义及运算 由n 个数组成的一个有序数组称为一个n 维向量,若用一行表示,称为n 维行向量,即1×n 矩阵, 若用一列表示,称为n 维列向量,即n ×1矩阵. ①α+β=β+α ②(α+β)+γ=α+(β+γ) ③k (j α)=(kj )α④k (α+β)= k α+k β ⑤(k+j )α=k α+j α 2、向量组的线性组合 设α1 α2…αm 是一组n 维向量,k 1 k 2 …k m 是一组常数, 则称k 1α1+k 2α2+…k m αm 为α1 α2…αm 的一个线性组合,常数k 1 k 2 …k m 称为组合系数. 若一个向量β可以表示成β=k 1α1+k 2α2+…k m αm 则称β是α1 α2…αm 的线性组合,或称β可用α1 α2…αm 线性表出. 3.矩阵的行、列向量组 设A 为一个m*n 矩阵,若把A 按列分块,可得一个m 维列向量组称之为A 的列向量组.若把A 按行分块,可得一个n 维行向量组称之为A 的行向量组. 4.线性表示的判断及表出系数的求法. 向量β能用α1 α2…αm 线性表出 方程组x 1α1+x 2α2+…x m αm =β有解,且每一个解就是一个组合系数. (二) 向量组的线性相关与线性无关1.线性相关性概念 设α1 α2…αm 是m 个n 维向量,如果存在m 个不全为零的数k 1,k 2,…,k m 使得k 1α1+ k 2α2+…+k m αm =0,则称向量α1 α2…αm 线性相关,称k 1,k 2,…,k m 为相关系数.否则,称向量α1 α2…αm 线性无关.由定义知,α1 α2…αm 线性无关就是指向量等式k 1α1+ k 2α2+…+k m αm =0当且仅当k 1=k 2=,…,=k m =0时成立. 特别①单个向量α线性相关 α=0; ②单个向量α线性无关 α≠0 2.求相关系数的方法 m 元齐次线性方程组x 1α1+x 2α2+…x m αm =0有非零解,且每一个非零解就是一个相关系数3.线性相关性的若干基本定理①向量组α1 α2…αm线性相关至少有一个向量是其余向量的线性组合.向量组α1 α2…αm线性无关任一个向量都不能表示为其余向量的线性组合.②如向量组α1 α2…αm线性无关,又βα1 α2…αm线性相关,则β可用α1 α2…αm线性表示且表示法唯一.③若向量组中有部分组线性相关,则整体组也必相关,若整体组无关,则部分组必无关.④无关组的接长向量组必无关,相关组的截短向量组必相关⑤如向量组中有零向量,则向量组必相关⑥m>n时,m个n维向量必相关⑦向量组线性无关的充要条件是它的向量个数等于它的秩⑧由m个向量构成的向量组线性相关,则向量组的秩小于m⑨A能由向量组B表示,则A的秩不大于B的秩⑩矩阵A=(a ij)r*n(r≤n)的行(列)向量组线性无关中存在一个不为零的r阶子式D≠0,含有D的r个行向量及r个列向量线性无关。

相关文档
最新文档