1模拟电子技术基础简明教程(第三版)杨素行_PPT课件_第一章1

合集下载

模拟电子技术基础简明教程 第三版 第1章

模拟电子技术基础简明教程 第三版 第1章

第一章半导体器件1.1半导体的特性1.2半导体二极管1.31.4双极型三极管(BJT)场效应三极管1.1半导体的特性1.导体:电阻率ρ<10-4Ω·cm的物质。

如铜、银、铝等金属材料。

2.绝缘体:电阻率ρ>109Ω·cm物质。

如橡胶、塑料等。

3.半导体:导电性能介于导体和半导体之间的物质。

大多数半导体器件所用的主要材料是硅(Si)和锗(Ge)。

硅原子结构最外层电子称价电子锗原子也是4 价元素(a)硅的原子结构图4价元素的原子常常用+4电荷的正离子和周围4个价电子表示。

(b)简化模型图1.1.1硅原子结构1.半导体中两种载流子带负电的自由电子带正电的空穴2.本征半导体中,自由电子和空穴总是成对出现,称为电子-空穴对。

3.本征半导体中自由电子和空穴的浓度用ni和pi表示,显然ni=pi。

4.由于物质的运动,自由电子和空穴不断的产生又不断的复合。

在一定的温度下,产生与复合运动会达到平衡,载流子的浓度就一定了。

5.载流子的浓度与温度密切相关,它随着温度的升高,基本按指数规律增加。

1.1.2杂质半导体杂质半导体有两种N 型半导体P 型半导体一、N 型半导体在硅或锗的晶体中掺入少量的5价杂质元素,如磷、锑、砷等,即构成N型半导体(或称电子型半导体)。

常用的5 价杂质元素有磷、锑、砷等。

本征半导体掺入5价元素后,原来晶体中的某些硅原子将被杂质原子代替。

杂质原子最外层有5个价电子,其中4个与硅构成共价键,多余一个电子只受自身原子核吸引,在室温下即可成为自由电子。

自由电子浓度远大于空穴的浓度,即n>>p。

电子称为多数载流子(简称多子),空穴称为少数载流子(简称少子)。

3价杂质元素,如3价杂质原子称为空穴浓度多于电子p>>n。

空穴,电子为说明:1.掺入杂质的浓度决定多数载流子浓度;温度决定少数载流子的浓度。

2.杂质半导体载流子的数目要远远高于本征半导体,因而其导电能力大大改善。

模拟电子技术基础简明教程(第三版)-杨素行-课后答案

模拟电子技术基础简明教程(第三版)-杨素行-课后答案

+习题1-1欲使二极管具有良好的单向导电性,管子的正向电阻和反向电阻分别为大一些好,还是小一些好?答:二极管的正向电阻越小越好,反向电阻越大越好。

理想二极管的正向电阻等于零,反向电阻等于无穷大。

习题1-2假设一个二极管在50℃时的反向电流为10μA,试问它在20℃和80℃时的反向电流大约分别为多大?已知温度每升高10℃,反向电流大致增加一倍。

解:在20℃时的反向电流约为:3210 1.25A Aμμ-⨯=在80℃时的反向电流约为:321080A Aμμ⨯=习题1-5欲使稳压管具有良好的稳压特性,它的工作电流I Z 、动态电阻r Z 以及温度系数αU ,是大一些好还是小一些好?答:动态电阻r Z 愈小,则当稳压管的电流变化时稳压管的电压变化量愈小,稳压性能愈好。

一般来说,对同一个稳压管而言,工作电流I Z 愈大,则其动态内阻愈小,稳压性能也愈好。

但应注意不要超过其额定功耗,以免损坏稳压管。

温度系数αU 的绝对值愈小,表示当温度变化时,稳压管的电压变化的百分比愈小,则稳压性能愈好。

100B i Aμ=80Aμ60A μ40A μ20A μ0Aμ0.9933.22安全工作区习题1-11设某三极管在20℃时的反向饱和电流I CBO =1μA ,β=30;试估算该管在50℃的I CBO 和穿透电流I CE O 大致等于多少。

已知每当温度升高10℃时,I CBO 大约增大一倍,而每当温度升高1℃时,β大约增大1% 。

解:20℃时,()131CEO CBO I I Aβμ=+=50℃时,8CBO I Aμ≈()()()05020011%3011%301301%39t t ββ--=+=⨯+≈⨯+⨯=()13200.32CEO CBO I I A mAβμ=+==习题1-12一个实际PNP 型锗三极管的输入、输出特性曲线分别如图P1-12(a)和(b)所示。

①查看该三极管的穿透电流I CE O 约为多大?输入特性的死区电压约为多大?②为了使PNP 型三极管工作在放大区,其u BE 和u BC 的值分别应该大于零还是小于零?并与NPN 型三极管进行比较。

数字模拟电路简明教程(第三版)第一章

数字模拟电路简明教程(第三版)第一章

Y
A B A B
Y
Y
Y

Y
A B
Y
1. 1. 2 公式和定理 一、 常量之间的关系(常量:0 和 1 )
与: 0 · = 0 0
或: 1 + 1 = 1
非: 0 1
0· =0 1 1· =1 1
1+0=1 0+0=0
1 0
二、变量和常量的关系(变量:A、B、C…)
1 与: A · = A 或: A + 0 = A 非: A A 0 A· = 0 0
Y
反演规则的应用:求逻辑函数的反函数 将 Y 式中“.”换成“+”,“+”换成“.” “0”换成“1”,“1”换成“0” Y 原变量换成反变量,反变量换成原变量 运算顺序: 括号 与 或 例如:已知 Y1 A( B C ) CD 则 Y1 ( A BC ) ( C D ) 不属于单个变量上 的反号应保留不变 已知 Y2 A B C D C 则
证明公式 A BC ( A B)( A C ) 方法二:真值表法(将变量的各种取值代入等式 两边,进行计算并填入表中) A B 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 C B C A BC A B A C ( A B)( A C ) 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
AB(C C ) AC ( B B)
ABC ABC ABC ABC
最小项
标准与 或式
标准与或式就是最小项之和的形式

模拟电子技术基础简明教程第三版杨素行

模拟电子技术基础简明教程第三版杨素行
iC / mA
ib(不失真)
Q
ICQ
NPN 管 uo波形
O
tO
UCEQ
O
t
uo = uce
IB = 0
uCE/V
uCE/V
(二)用图解法估算最大输出幅度
输出波形没有 明显失真时能够输 出最大电压。即输 出特性的 A、B 所 限定的范围。
iC / mA
交流负载线
A
Q
U om
CD 2
DE 2
O
C
D
B
iB = 0
2.3 单管共发射极放大电路
2.3.1 单管共发射极放大电路的组成
VT:NPN 型三极管,为放大元件;
VCC:为输出信号提供能量; RC:当 iC 通过 Rc,将 电流的变化转化为集电极
电压的变化,传送到电路
的输出端;
VBB 、Rb:为发射结提 供正向偏置电压,提供静
态基极电流(静态基流)。
图 2.3.1 单管共射放大电路 的原理电路
iB / µA
—— 截止失真
ib
IBQ
O
结论:iB 波形失真
iB / µA
Q tO
O
Байду номын сангаас
t
ui
uBE/V uBE/V
iC 、 uCE (uo )波形失真
iC / mA iC
NPN 管截止失真时 的输出 uo 波形。
ICQ
O
tO
O
t
Q UCEQ
uo = uce
uCE/V uCE/V
2.
iC
Q 点过高,引起 iC、uCE的波形失真—饱和失真
iB
iB / µA
60

模拟电子技术基础简明教程(第三版)-杨素行-课后答案

模拟电子技术基础简明教程(第三版)-杨素行-课后答案

+习题1-1欲使二极管具有良好的单向导电性,管子的正向电阻和反向电阻分别为大一些好,还是小一些好?答:二极管的正向电阻越小越好,反向电阻越大越好。

理想二极管的正向电阻等于零,反向电阻等于无穷大。

习题1-2假设一个二极管在50℃时的反向电流为10μA,试问它在20℃和80℃时的反向电流大约分别为多大?已知温度每升高10℃,反向电流大致增加一倍。

解:在20℃时的反向电流约为:3210 1.25A Aμμ-⨯=在80℃时的反向电流约为:321080A Aμμ⨯=习题1-5欲使稳压管具有良好的稳压特性,它的工作电流I Z 、动态电阻r Z 以及温度系数αU ,是大一些好还是小一些好?答:动态电阻r Z 愈小,则当稳压管的电流变化时稳压管的电压变化量愈小,稳压性能愈好。

一般来说,对同一个稳压管而言,工作电流I Z 愈大,则其动态内阻愈小,稳压性能也愈好。

但应注意不要超过其额定功耗,以免损坏稳压管。

温度系数αU 的绝对值愈小,表示当温度变化时,稳压管的电压变化的百分比愈小,则稳压性能愈好。

100B i Aμ=80Aμ60Aμ40A μ20A μ0Aμ0.9933.22安全工作区习题1-11设某三极管在20℃时的反向饱和电流I CBO =1μA ,β=30;试估算该管在50℃的I CBO 和穿透电流I CE O 大致等于多少。

已知每当温度升高10℃时,I CBO 大约增大一倍,而每当温度升高1℃时,β大约增大1% 。

解:20℃时,()131CEO CBO I I Aβμ=+=50℃时,8CBO I Aμ≈()()()05020011%3011%301301%39t t ββ--=+=⨯+≈⨯+⨯=()13200.32CEO CBO I I A mAβμ=+==习题1-12一个实际PNP 型锗三极管的输入、输出特性曲线分别如图P1-12(a)和(b)所示。

①查看该三极管的穿透电流I CE O 约为多大?输入特性的死区电压约为多大?②为了使PNP 型三极管工作在放大区,其u BE 和u BC 的值分别应该大于零还是小于零?并与NPN 型三极管进行比较。

模拟电子技术基础简明教程(第三版)_杨素行_课后答案

模拟电子技术基础简明教程(第三版)_杨素行_课后答案

+习题1-1欲使二极管具有良好的单向导电性,管子的正向电阻和反向电阻分别为大一些好,还是小一些好?答:二极管的正向电阻越小越好,反向电阻越大越好。

理想二极管的正向电阻等于零,反向电阻等于无穷大。

习题1-2假设一个二极管在50℃时的反向电流为10μA,试问它在20℃和80℃时的反向电流大约分别为多大?已知温度每升高10℃,反向电流大致增加一倍。

解:在20℃时的反向电流约为:3210 1.25A Aμμ-⨯=在80℃时的反向电流约为:321080A Aμμ⨯=习题1-5欲使稳压管具有良好的稳压特性,它的工作电流I Z 、动态电阻r Z 以及温度系数αU ,是大一些好还是小一些好?答:动态电阻r Z 愈小,则当稳压管的电流变化时稳压管的电压变化量愈小,稳压性能愈好。

一般来说,对同一个稳压管而言,工作电流I Z 愈大,则其动态内阻愈小,稳压性能也愈好。

但应注意不要超过其额定功耗,以免损坏稳压管。

温度系数αU 的绝对值愈小,表示当温度变化时,稳压管的电压变化的百分比愈小,则稳压性能愈好。

100B i Aμ=80Aμ60A μ40A μ20A μ0Aμ0.9933.22安全工作区习题1-11设某三极管在20℃时的反向饱和电流I CBO =1μA ,β=30;试估算该管在50℃的I CBO 和穿透电流I CE O 大致等于多少。

已知每当温度升高10℃时,I CBO 大约增大一倍,而每当温度升高1℃时,β大约增大1% 。

解:20℃时,()131CEO CBO I I Aβμ=+=50℃时,8CBO I Aμ≈()()()05020011%3011%301301%39t t ββ--=+=⨯+≈⨯+⨯=()13200.32CEO CBO I I A mAβμ=+==习题1-12一个实际PNP 型锗三极管的输入、输出特性曲线分别如图P1-12(a)和(b)所示。

①查看该三极管的穿透电流I CE O 约为多大?输入特性的死区电压约为多大?②为了使PNP 型三极管工作在放大区,其u BE 和u BC 的值分别应该大于零还是小于零?并与NPN 型三极管进行比较。

模拟电子技术基础简明教程(第三版) 杨素行 课后答案

模拟电子技术基础简明教程(第三版) 杨素行 课后答案

+习题1-1欲使二极管具有良好的单向导电性,管子的正向电阻和反向电阻分别为大一些好,还是小一些好?答:二极管的正向电阻越小越好,反向电阻越大越好。

理想二极管的正向电阻等于零,反向电阻等于无穷大。

习题1-2假设一个二极管在50℃时的反向电流为10μA,试问它在20℃和80℃时的反向电流大约分别为多大?已知温度每升高10℃,反向电流大致增加一倍。

解:在20℃时的反向电流约为:3210 1.25A Aμμ-⨯=在80℃时的反向电流约为:321080A Aμμ⨯=习题1-5欲使稳压管具有良好的稳压特性,它的工作电流I Z 、动态电阻r Z 以及温度系数αU ,是大一些好还是小一些好?答:动态电阻r Z 愈小,则当稳压管的电流变化时稳压管的电压变化量愈小,稳压性能愈好。

一般来说,对同一个稳压管而言,工作电流I Z 愈大,则其动态内阻愈小,稳压性能也愈好。

但应注意不要超过其额定功耗,以免损坏稳压管。

温度系数αU 的绝对值愈小,表示当温度变化时,稳压管的电压变化的百分比愈小,则稳压性能愈好。

100B i Aμ=80Aμ60A μ40A μ20A μ0Aμ0.9933.22安全工作区习题1-11设某三极管在20℃时的反向饱和电流I CBO =1μA ,β=30;试估算该管在50℃的I CBO 和穿透电流I CE O 大致等于多少。

已知每当温度升高10℃时,I CBO 大约增大一倍,而每当温度升高1℃时,β大约增大1% 。

解:20℃时,()131CEO CBO I I Aβμ=+=50℃时,8CBO I Aμ≈()()()05020011%3011%301301%39t t ββ--=+=⨯+≈⨯+⨯=()13200.32CEO CBO I I A mAβμ=+==习题1-12一个实际PNP 型锗三极管的输入、输出特性曲线分别如图P1-12(a)和(b)所示。

①查看该三极管的穿透电流I CE O 约为多大?输入特性的死区电压约为多大?②为了使PNP 型三极管工作在放大区,其u BE 和u BC 的值分别应该大于零还是小于零?并与NPN 型三极管进行比较。

模拟电子技术基础简明教程第三版杨素行版答案全面解析1-

模拟电子技术基础简明教程第三版杨素行版答案全面解析1-

,试在特性曲线图中画出三极管的安全工作区。

100B i Aμ=80Aμ60A μ40A μ20A μ0Aμ0.9930.9933.22=安全工作区FD 、EABC图P1-14(g)DS =15V ,u GS =4V 时的跨导g m u DS =15V由图可得,开启电压U GS(th)=2V ,I DO =2.5mA ,4 1.22.84.53.5D m GS i g mS u ∆-===∆-1-17试根据图P1-17所示的转移特性曲线,分别判断各相应的场效应管的类型(结型或绝缘栅型,P 型沟道或道,增强型或耗尽型)。

如为耗尽型,在特性曲线上标注出其夹断电压U GS(off)和饱和漏极电流I DSS ;如为增强型,标出其(a)绝缘栅型N 沟道增强型;(b)结型P 沟道耗尽型;(c)绝缘栅型N 沟道耗尽型;(d)绝缘栅型P 沟道增强型。

习题1-18已知一个N 型沟道增强型MOS场效应管的开启电压UGS(th)= +3V,I DO=4mA,请示意画出其转移特性曲线。

习题1-19已知一个P型沟道耗尽型MOS场效应管的饱和漏极电流IDSS = -2.5mA,夹断电压U GS(off)=4V,请示意画出其转移特性曲线。

习题1-18图习题1-19图习题2-1试判断图P2-1中各电路有无放大作用,简单说明理由。

答:(a)无放大作用(发射结反偏);(b)不能正常放大(发射结无直流偏置);(c)无放大作用(集电结无直流偏置);(d)无放大作用(发射结无直流偏置);(e)有放大作用(是射极跟随器);(f)无放大作用(输出交流接地);(g)无放大作用(输入交流接地);(h)不能正常放大(栅极无直流偏置);(i)无放大作用(电源极性接反);习题2-2试画出图P2-2中各电路的直流通路和交流通路。

设各电路中的电容均足够大,变压器为理想变压器。

答:(a)R b+V CC R cR e1R e2(a)直流通路R b R c(a)交流通路R e1iU++--oUR1+V CCR5R3R4(b)直流通路R2R2R4(b)交流通路iU++--oUR1R b2+V CCR e(c)直流通路R b1(c)交流通路iU'+-LR'图(c)中,21i iNU UN'=234L LNR RN⎛⎫'= ⎪⎝⎭习题2-4在图2.5.2所示NPN三极管组成的分压式工作点稳定电路中,假设电路其他参数不变,分别改变以下某一参数时,试定性说明放大电路的IBQ、ICQ和UCE Q、rbe和将增大、减少还是基本不变。

模拟电子技术基础简明教程(第三版)-杨素行-课后答案

模拟电子技术基础简明教程(第三版)-杨素行-课后答案

+习题1-1欲使二极管具有良好的单向导电性,管子的正向电阻和反向电阻分别为大一些好,还是小一些好?答:二极管的正向电阻越小越好,反向电阻越大越好。

理想二极管的正向电阻等于零,反向电阻等于无穷大。

习题1-2假设一个二极管在50℃时的反向电流为10μA,试问它在20℃和80℃时的反向电流大约分别为多大?已知温度每升高10℃,反向电流大致增加一倍。

解:在20℃时的反向电流约为:3210 1.25A Aμμ-⨯=在80℃时的反向电流约为:321080A Aμμ⨯=习题1-5欲使稳压管具有良好的稳压特性,它的工作电流I Z 、动态电阻r Z 以及温度系数αU ,是大一些好还是小一些好?答:动态电阻r Z 愈小,则当稳压管的电流变化时稳压管的电压变化量愈小,稳压性能愈好。

一般来说,对同一个稳压管而言,工作电流I Z 愈大,则其动态内阻愈小,稳压性能也愈好。

但应注意不要超过其额定功耗,以免损坏稳压管。

温度系数αU 的绝对值愈小,表示当温度变化时,稳压管的电压变化的百分比愈小,则稳压性能愈好。

100B i Aμ=80Aμ60Aμ40A μ20A μ0Aμ0.9933.22安全工作区习题1-11设某三极管在20℃时的反向饱和电流I CBO =1μA ,β=30;试估算该管在50℃的I CBO 和穿透电流I CE O 大致等于多少。

已知每当温度升高10℃时,I CBO 大约增大一倍,而每当温度升高1℃时,β大约增大1% 。

解:20℃时,()131CEO CBO I I Aβμ=+=50℃时,8CBO I Aμ≈()()()05020011%3011%301301%39t t ββ--=+=⨯+≈⨯+⨯=()13200.32CEO CBO I I A mAβμ=+==习题1-12一个实际PNP 型锗三极管的输入、输出特性曲线分别如图P1-12(a)和(b)所示。

①查看该三极管的穿透电流I CE O 约为多大?输入特性的死区电压约为多大?②为了使PNP 型三极管工作在放大区,其u BE 和u BC 的值分别应该大于零还是小于零?并与NPN 型三极管进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又称正向偏置,简称正偏。
P
空间电荷区
空间电荷区变窄,有利 于扩散运动,电路中有 较大的正向电流。
N
I 内电场方向
外电场方向
V
R
图3 正向偏置PN结
在 PN 结加上一个很小的正向电压,即可得到较大的 正向电流,为防止电流过大,可接入电阻 R。
(2) PN 结外加反向电压(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
模拟电子技术基础
一、电子技术的发展
• 1947年 • 1958年 • 1969年 • 1975年
贝尔实验室制成第一只晶体管 集成电路 大规模集成电路 超大规模集成电路
第一片集成电路只有4个晶体管,而1997年一片集成电路 中有40亿个晶体管。有科学家预测,集成度还将按10倍/6年 的速度增长,到2015或2020年达到饱和。
3. 本征半导体中自由电子和空穴的浓度相等。
4. 载流子的浓度与温度密切相关,它随着温度 的升高,基本按指数规律增加。
三、杂质半导体
杂质半导体有两种 1、 N 型半导体
N 型半导体 P 型半导体
在硅或锗的晶体中掺入少量的 5 价杂质元素, 如磷、锑、砷等,即构成 N 型半导体(或称电子 型半导体)。
学习电子技术方面的课程需时刻关注电子技术的发展!
电子技术的发展很大程度上反映在元器件的发展 上。从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成电 路研制成功
电子管、晶体管、集成电路比较
值得纪念的几位科学家!
第一只晶体管的发明者
(by John Bardeen , William Schockley and Walter Brattain in Bell Lab)
1.1 半导体的特性
一、半导体特性
1、半导体:导电性能介于导体和绝缘体之间的物 质。 常见半导体材料:硅(Si)、锗(Ge)
半导体导电性能是由其原子结构决定的。
硅原子结构 最外层电子称价电子
价电子
4 价元素的原子常常用 + 4 电荷的正离子和周围 4 个价电子表示。
(a)硅的原子结构图 +4
(b)简化模型 图 1 硅原子结构
(3)扩散与漂移的动态平衡 扩散运动使空间电荷区增大,扩散电流逐渐减小; 随着内电场的增强,漂移运动逐渐增加; 当扩散电流与漂移电流相等时,PN 结总的电流
等于零,空间电荷区的宽度达到稳定。即扩散运动与 漂移运动达到动态平衡。
空间电荷区的宽度约为几微米 ~ 几十微米;
2、 PN 结的单向导电性
(1)PN外加正向电压
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4
+4
图 4 N 型半导体的晶体结构
本征半导体掺入 5 价元素后,原来晶体中的 某些硅原子将被杂质原子代替。杂质原子最外层 有 5 个价电子,其中 4 个与硅构成共价键,多 余一个电子只受自身原子核吸引,在室温下即可 成为自由电子。
自由电子浓度远大于空穴的浓度 。电子称为 多数载流子(简称多子),空穴称为少数载流子(简 称少子)。
P
PN结
N
图 1 PN 结的形成
1、 PN 结中载流子的运动
(1)扩散运动
P
N
电子和空穴
浓度差形成多数
载流子的扩散运
动。
扩散运动形 成空间电荷区
耗尽层
P
空间电荷区
N
—— PN 结,耗 尽层。
图 2(a) 多数载流子的扩散运动
(2)漂移运动
内电场有利于少子运动—漂移。
阻挡层
P
空间电荷区
N
内电场 图2(b) 少子漂移运动
二、模拟信号与模拟电路
1、模拟信号:连续性。大多数物理量为模拟信号。
任何瞬间的任何 值均是有意义的
2. 模拟电路
➢ 模拟电路是对模拟信号进行处理的电路。
➢ 最基本的处理是对信号的放大。
➢ 其它模拟电路多以放大电路为基础。
第一章 半导体器件
1.1 半导体的特性 1.2 半导体二极管 1.3 双极型三极管(BJT)
自由电子和空穴使本 征半导体具有导电能力, 但很微弱。
空穴可看成带正电的载 流子。
T
+4
+4
空穴
+4
+4
+4
自由电子 +4
+4
+4
+4
图3 本征半导体中的 自由电子和空穴
1. 本征半导体中两种载流 子
带负电的自由电子 带正电的空穴
2. 本征半导体中,自由电子和空穴总是成对出
现,称为 电子 - 空穴对。
他们在1947年11月底发明了晶 体管,并在12月16日正式宣布“晶 体管”诞生。1956年获诺贝尔物理 学奖。巴丁所做的超导研究于1972 年第二次获得诺贝尔物理学奖。
第一个集成电路及其发明者
( Jack Kilby from TI )
1958年9月12日,在德州仪器公司 的实验室里,实现了把电子器件集成 在一块半导体材料上的构想。42年以 后, 2000年获诺贝尔物理学奖。 “为现代信息技术奠定了基础”。
2、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体。
+4
+4
+4
空穴
+4
+43 受主 +4
原子
+4
+4
+4
图 5 P 型半导体的晶体结构
说明:
(1)掺入杂质的浓度决定多数载流子浓度;温度决 定少数载流子的浓度。
(2)杂质半导体载流子的数目要远远高于本征半导 体,因而其导电能力大大改善。
二、本征半导体
完全纯净的、不含其他杂质且具有晶体结 构的半导体。
将硅或锗材
+4
+4
+4
料提纯便形成单

晶体,它的原子

结构为共价键结
价 键
+4
+4

+4

构。
当 温 度 T=0K 时 , 半 导 体
不导电,如同绝缘体。
+4
+4
+4
图 2 单晶体中的共价键结构
若 T ,将有少数价 电子克服共价键的束缚成 为自由电子,在原来的共 价 键 中 留 下 一 个 空 位 —— 空穴。
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
空间电荷区
N
IS
内电场方向
外电场方向
V
R
图4 反相偏置的 PN 结
(3)杂质半导体总体上保持电中性。
(4)杂质半导体的表示方法:
(a)N 型半导体
(b) P 型半导体
半导体二极管
一、PN结及单向导电性
在一块半导体单晶上一侧掺杂成为 P 型半导体,另
一侧掺杂成为 N 型半导体,两个区域的交界处就形成了
一个特殊的薄层,称为 PN 结。
相关文档
最新文档