七年级数学综合测试题

合集下载

人教版七年级上册综合测试卷(含答案)

人教版七年级上册综合测试卷(含答案)

七年级上册数学综合测试卷一、单选题(共10题;共30分)1。

2017年天猫双11落下帷幕,总成交额最终定格在1207亿元,是8年来成交额首次突破1000亿大关,数据1207亿元用科学记数法表示为( )A。

12.07×1010 B. 1.207×1011 C。

1。

207×1012 D。

1。

207×1012【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】∵1207亿=1。

207×1011.故答案为:B.【分析】科学记数法:将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数。

由此即可得出答案.2。

在数,0,4.5, |﹣9|, ﹣6。

79中,属于正数的个数是( )A。

2个 B。

3 个 C。

4个 D。

5个【答案】A【考点】正数和负数【解析】【解答】∵|﹣9|=9,∴正数有:4.5,|﹣9|,共2个,故答案为:A.【分析】根据正数的定义来分析.3。

下列算式中,正确的是()A. 2x+3y=5xyB. 3x2+2x3=5x5C. 4x﹣3x=1D. x2﹣3x2=﹣2x2【答案】D【考点】整式的加减【解析】【解答】解:选项A,2x+3y不能合并; 选项B,3x2+2x3不能合并;选项C,4x ﹣3x不能合并;选项D,x2﹣3x2=﹣2x2,正确。

故选D.【分析】利用同类项的判断,以及合并同类项法则进行判断即可。

4。

如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有( )A. 1个 B。

2个 C。

3个 D。

4个【答案】C【考点】角平分线的定义【解析】【解答】解:①∵∠AOB=∠COD=90°, ∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD,∴①正确;②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;③∵∠AOB=∠COD=90°,OC平分∠AOB,∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°∴OB平分∠COD,∴③正确;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;故选C.【分析】根据角的计算和角平分线性质,对四个结论逐一进行计算即可.5.如图,若A是实数a在数轴上对应的点,则关于a,﹣a,1的大小关系表示正确的是( )A。

人教版数学七年级上册全册综合测试

人教版数学七年级上册全册综合测试

七年级(上)全册综合测试一.选择题(共10小题,满分20分,每小题2分)1.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=12.若a与2互为相反数,则a+1的值为()A.﹣3.B.﹣1.C.1.D.3.3.在代数式中,整式的个数是()A.3B.4C.5D.64.我国倡导的“一带一路”地区覆盖的总人口为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.44×10105.有理数a,b在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a﹣b>0;③a+b >0;④+>0;⑤﹣a>﹣b,其中正确的个数有()A.1个B.2个C.3个D.4个6.下列运算正确的是()A.5a﹣3a=2B.2a+3b=5ab C.﹣(a﹣b)=b+a D.2ab﹣ba=ab 7.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1B.1C.﹣5D.58.已知a、b、c三个数在数轴上对应的点如图所示,下列结论错误的是()A.a+c<0B.b﹣c>0C.c<﹣b<﹣a D.﹣b<a<﹣c 9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对10.已知整数a1、a2、a3、a4、……满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……,a n+1=﹣|a n+n|(n为正整数)依此类推,则a2019的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣1010二.填空题(共6小题,满分18分,每小题3分)11.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).12.化简:4(a﹣b)﹣(2a﹣3b)=.13.|﹣4|﹣|﹣2.5|+|﹣10|=;|﹣24|÷|﹣3|×|﹣2|=;(﹣38)﹣(﹣24)﹣(+65)=.14.若方程2x+1=3和的解相同,则a的值是.15.如图,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE 翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.16.点A和点B在同一平面上,如果从A观察B,B在A的北偏东14°方向,那么从B观察A,A在B的方向.三.解答题(共7小题,满分56分)17.(6分)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.18.(8分)解方程:﹣=1.19.(8分)先化简,再求值:﹣xy,其中x=3,y =﹣.20.(8分)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若∠DCB=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数.21.(8分)为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?22.(8分)如图,点O在直线AB上,∠AOC与∠COD互补,OE平分∠AOC.(1)若∠BOC=40°,则∠DOE的度数为;(2)若∠DOE=48°,求∠BOD的度数.23.(10分)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.参考答案一.选择题1.D.2.B.3.B.4.C.5.C.6.D.7.A.8.C.9.C.10.C.二.填空题11.(7a﹣20).12.2a﹣b13.11.5;16;﹣79.14.7.15.90.16.南偏西14°.三.解答题17.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.18.解:去分母,得:5(x+3)﹣2(x﹣1)=10,去括号,得:5x+15﹣2x+2=10,移项,得:5x﹣2x=10﹣15﹣2,合并同类项,得:3x=﹣7,系数化为1,得:x=﹣.19.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.20.解:(1)∵∠ACD=90°,∠DCB=35°,∴∠ACB=∠ACD+∠DCB=90°+35°=125°,(2)∵∠ACB=140°,∠ACD=90°,∴∠DCB=∠ACB﹣∠ACD=140°﹣90°=50°,又∵∠ECB=90°∴∠ECD=∠ECB﹣∠DCB=90°﹣50°=40°.21.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.22.解:(1)∵点O在直线AB上,∠BOC=40°,∴∠AOC=140°,∵∠AOC与∠COD互补,∴∠COD=40°,∵OE平分∠AOC,∴∠EOC=70°,∴∠DOE=30°;故答案为:30°;(2)∵点O在直线AB上,∴∠AOC与∠BOC互补,∵∠AOC与∠COD互补,∴∠BOC=∠COD,∵OE平分∠AOC,∴∠AOE=∠EOC,设∠BOC为x,可得:2(48°+x)+x=180°,解得:x=28°,∴∠BOD=2∠BOC=56°.23.解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.。

七年级下册数学试题及答案

七年级下册数学试题及答案

七年级数学下册综合测试题一、选择题:1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax 4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图(1),在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)CA 1ABB 1 CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图(2),△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2 B .12 cm 2 C .15 cm 2 D .17 cm 210.课间操时,小华、小军、小刚的位置如图(3),小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3) 二、填空题11.49的平方根是________,算术平方根是______ -8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD, 则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______. 三、解答题:19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.CB AD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022•大冶市模拟)a与﹣2互为倒数,则a为()A.﹣2B.2C.12D.−122.(3分)(2022秋•桂平市期中)据猫眼实时数据显示,截止2022年10月16日,电影《万里归途》的累计票房正式突破13亿元,数据13亿用科学记数法表示为()A.1.3×108B.0.13×108C.1.3×109D.1.3×10103.(3分)(2022秋•宿迁期中)下列方程中,是一元一次方程的是()A.x﹣2y+1=0B.2+1x=1C.2x﹣1=0D.xy=44.(3分)(2022秋•如东县期中)下列说法错误的是()A.32ab2c的次数是4次B.多项式2x2﹣3x﹣1是二次三项式C.多项式3x2﹣2x3y+1的次数是6次D.2πr的系数是2π5.(3分)(2022秋•宿城区期中)某商品价格为a元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a相比()A.降低了0.01a B.降低了0.1aC.增加了0.01a D.不变6.(3分)(2022秋•黄浦区期中)分数457介于两个相邻的整数之间,这两个整数是()A.3和4B.4和5C.5和6D.6和77.(3分)(2022秋•扬州期中)下列结论不正确的是()A.单项式﹣ab2的次数是3B.单项式abc的系数是1C.多项式x2y2﹣2x2+1是四次三项式D.−3xy2不是整式8.(3分)(2022秋•丹江口市期中)已知m =n ,则下列变形中正确的个数为( ) ①m +2=n +2;②am =an ;③m n =1;④m a 2+1=na 2+1A .1个B .2个C .3个D .4个 9.(3分)(2022秋•宿城区期中)已知等式a =b ,则下列等式中不一定成立的是( )A .a +1=b +1B .2a ﹣2b =0C .a c =b cD .ac =bc10.(3分)(2022秋•天山区校级期中)如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段BD 的长是( )A .6B .2C .8D .411.(3分)(2022秋•福田区校级期中)下列正方体的展开图中,“勤”的对面是“戴”的展开图是( )A .B .C .D .12.(3分)(2022秋•天山区校级期中)如果线段AB =10cm ,MA +MB =13cm ,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点可能在直线AB 上也可能在AB 外D .M 点在直线AB 外二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•黄石期中)若|m 2﹣5m ﹣2|=1,则2m 2﹣10m +2022的值为 .14.(3分)(2021秋•兴庆区校级期末)若12a +1与2a−73互为相反数,则a 的值为 .15.(3分)(2022秋•莱西市期中)下列几何体属于棱柱的是 (填序号)16.(3分)(2022春•碑林区校级月考)如图,∠AOC =∠DOE =90°,如果∠AOE =65°,那么∠COD 的度数是 .17.(3分)(2022秋•城阳区期中)如图,一块长为为acm ,宽为bcm 的矩形硬纸板,在其四个角各剪去1个边长为2cm 的正方形,然后将四周的部分折起,可制成一个无盖长方体盒子,则所得长方体盒子的侧面积为 (用含a ,b 代数式表示).18.(3分)(2022秋•城阳区期中)如图,将图沿虚线折起来,得到一个正方体,那么“我“的对面是 (填汉字).三、解答题(共7小题,满分66分)19.(9分)(2022秋•宜兴市期中)解方程(1)5x ﹣3=2(x ﹣12);(2)1−2x−16=2x+13.20.(9分)(2022秋•黔东南州期中)先化简,再求值:(1)(2a 2﹣b )﹣(a 2﹣4b )﹣(b +c ),其中:a =13,b =12,c =1;(2)3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1),其中x 、y 满足:x 是2的相反数,y 是−23的绝对值.21.(9分)(2022秋•陇县期中)计算:(1)﹣21+(﹣14)﹣(﹣18)﹣15;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3);(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|.22.(9分)(2021秋•肥东县期末)已知:如图,∠AOB =20°,OB 平分∠AOC .(1)以射线OD 为一边,在∠AOD 的外部作∠DOE ,使∠DOE =COD ;(用直尺和圆规作图,保留作图痕迹,不要求写作法)(2)若∠AOE =105°10′,求∠AOD 的大小.23.(10分)(2022秋•郫都区校级期中)整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如x 2+x =1,求x 2+x +2022的值,我们将x 2+x 作为一个整体代入,则原式=1+2022=2023.仿照上面的解题方法,完成下面的问题:(1)若x 2+2x ﹣1=0,则x 2+2x ﹣2022= .(2)若a 2+2ab =﹣5,b 2+2ab =3,求2a 2﹣3b 2﹣2ab 的值.24.(10分)(2022秋•顺德区校级月考)如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f ) 顶点数(v ) 棱数(e ) 图17 14 图28 12 图3 7 10(2)请写出f 、v 、e 三个数量间的关系式.25.(10分)(2022秋•前郭县期中)如图,点A,B是数轴上两点,点A表示的数为﹣16,A,B两点之间的距离为20,动点P、Q分别从A、B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;(2)求数轴上点P,Q表示的数(用含t的式子表示);(3)若点P,Q同时出发,t为何值时,这两点相遇?(4)若点P,Q同时出发,t为何值时,点P和点Q刚好相距5个单位长度?参考答案一、选择题(共12小题,满分36分,每小题3分)1.D ; 2.C ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.C ; 9.C ; 10.B ; 11.D ;12.C ;二、填空题(共6小题,满分18分,每小题3分)13.2024或202814.8715.①②⑥16.115°17.(4a+4b ﹣32)cm 218.大;三、解答题(共7小题,满分66分)19.解:(1)5x ﹣3=2(x ﹣12),去括号,得5x ﹣3=2x ﹣24,移项,得5x ﹣2x =3﹣24,合并同类项,得3x =﹣21,系数化为1,得x =﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x ﹣1)=2(2x +1),去括号,得6﹣2x +1=4x +2,移项,得﹣2x ﹣4x =2﹣6﹣1,合并同类项,得﹣6x =﹣5,系数化为1,得x =56. 20.解:(1)原式=2a 2﹣b ﹣a 2+4b ﹣b ﹣c=a 2+2b ﹣c ,当a =13,b =12,c =1时,原式=19+1﹣1=19;(2)原式=3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2﹣9xy ﹣15x ﹣3﹣6x 2+6xy ﹣6=﹣3xy ﹣15x ﹣9,∵x 是2的相反数,y 是−23的绝对值,∴x =﹣2,y =23,∴原式=﹣3×(﹣2)×23−15×(﹣2)﹣9=25.21.解:(1)﹣21+(﹣14)﹣(﹣18)﹣15=﹣21﹣14+18﹣15=﹣35+18﹣15=﹣17﹣15=﹣32;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3) =−72×87×34−(﹣2)×(﹣3)×(﹣3)=﹣3+18=15;(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|=﹣8+(﹣16×916+3)×(−53)﹣3=﹣8+(﹣9+3)×(−53)﹣3=﹣8+(﹣6)×(−53)﹣3=﹣8+10﹣3=2﹣3=﹣1.22.解:(1)作图如下:(2)∵∠AOB=20°,OB平分∠AOC.∴∠AOC=2∠AOB=40°,∵∠AOE=105°10′,∴∠COE=∠AOE﹣∠AOC=65°10′,∵∠DOE=∠COD,∠COE=32°35′,∴∠COD=12∴∠AOD=∠AOC+∠COD=72°35′.23.解:(1)∵x2+2x﹣1=0,∴x2+2x=1,∴原式=(x2+2x)﹣2022=1﹣2022=﹣2021,故答案为:﹣2021;(2)∵a2+2ab=﹣5,b2+2ab=3,∴a2﹣b2=﹣5﹣3=﹣8,∴原式=2a2﹣2b2﹣b2﹣2ab=2(a2﹣b2)﹣(b2+2ab)=2×(﹣8)﹣3=﹣16﹣3=﹣19.24.解:(1)图1,面数f=7,顶点数v=9,棱数e=14,图2,面数f=6,顶点数v=8,棱数e=12,图3,面数f=7,顶点数v=10,棱数e=15,故答案为:9,6,15.(2)f+v﹣e=2.25.解:(1)∵A,B两点之间的距离为20,点A表示的数为﹣16,且点B在点A的右侧,∴数轴上点B表示的数是﹣16+20=4.故答案为:4.(2)当运动时间为t(t>0)时,数轴上点P表示的数为(2t﹣16),点Q表示的数为(4﹣t).(3)根据题意得:2t﹣16=4﹣t,解得:t=20.3时,这两点相遇.答:若点P,Q同时出发,t为203(4)根据题意得:|2t﹣16﹣(4﹣t)|=5,即20﹣3t=5或3t﹣20=5,.解得:t=5或t=253时,点P和点Q刚好相距5个单位长度.答:若点P,Q同时出发,t为5或253。

人教版七年级数学上册期末综合测试题(含答案)

人教版七年级数学上册期末综合测试题(含答案)
2022-2023学年人教版七年级数学上册期末综合测试题
一、单选题(每题3分,共30分)
1. 的相反数是( )
A.2022B. C. D.
2.下列结论成立的是( )
A.若 ,则 B.若 ,则 或
C.若 ,则 D.若 ,则 .
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为44亿人,这个数用科学记数法表示为()
∴ , ,
∴ .
20(1) (件),
∴产量最多的一天比产量最少的一天多生产35件,
故答案为:35.
(2)
(件),
(元),
∴本周该工厂应支付工人的工资总额是84500元.
21.(1)解:∵ 平分 , 平分 ,
∴ , ,


故答案为: ;
(2) 平分 , 平分 ,
, ,即

(3) , ,
又 ,
,得 .
答: 为 秒.
A. B. C. D.
7.如图,下列说法正确的是( )
A.点 在射线 上B.点 是直线 的一个端点
C.射线 和射线 是同一条射线D.点 在线段 上
8.在平面内, , 在 的外部, 是锐角, 平分 , 平分 ,若 度数逐渐变大,则 变化情况是()
A.变大B.变小C.保持不变D.无法确定
9.在解方程 时,去分母正确的是( )
17.(1)
解:

(2)
解:

18.(1)解:2(2a2+9b)+(-3a2-4b)

(2)解:3x2y-[2xy2-2(xy-1.5x2y)+xy]+3xy2
当x=-3,y=-2时,
原式

人教版七年级数学上册期末综合素质水平测试卷【含答案】

人教版七年级数学上册期末综合素质水平测试卷【含答案】

人教版七年级数学上册期末综合素质水平测试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )A .-3℃B .8℃C .-8℃D .11℃2.有理数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >03.下列方程是一元一次方程的是( )A .x -y =6B .x -2=xC .x 2+3x =1D .1+x =34.截至2月底,我国口罩日产量已超过7 000万只.7 000万用科学记数法表示为( )A .7×106B .0.7×108C .7×108D .7×1075.下列运算正确的是( )A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +ba =0146.如图是一个正方体的平面展开图,则原正方体中与“你”字所在对的字是( )A .遇B .见C .未D .来7.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元8.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )A .∠1=∠3B .∠1=180°-∠3C .∠1=90°+∠3D .以上都不对9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =∠AOB ,则射线OC 是∠AOB 的平分线;12④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(本题共6小题,每小题4分,共24分)11.-的相反数是________,-的倒数的绝对值是________.1512.若-xy 3与2x m -2y n +5是同类项,则n m =________.1313.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__________.15.已知点O 在直线AB 上,且线段OA 的长为4 cm ,线段OB 的长为6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为______________.16.观察如图摆放的三角形,则第四个图中的三角形有________个,第n 个图中的三角形有__________个.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:-3×(-4)+(-2)3÷(-2)2-(-1)2 022.18.(8分)解方程:-1=-.x -22x +13x +8619.(8分)先化简,再求值:(2x 2-2y 2)-3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =-1,y =2.20.(8分)如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ;(2)连接BC ,并延长CB 至D ,使得BD =BC ;(3)在直线l 上确定点E ,使得AE +CE 最小.21.(8分)如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.22.(10分)如图,直线AB,CD相交于O点,OM平分∠AOB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.23.(10分)阅读下面材料:数学课上,老师给出了如下问题:如图①,∠AOB=80°,OC平分∠AOB.若∠BOD=20°,请你补全图形,并求出∠COD的度数.以下是小红的解答过程:解:如图②,因为OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =__________°.12因为∠BOD =20°,所以∠COD =∠__________+∠__________=________°.小李说:“我觉得这个题有两种情况,小红考虑的是OD 在∠AOB 外部的情况,事实上,OD 还可能在∠AOB 的内部”.请完成以下问题:(1)请你将小红的解答过程补充完整;(2)根据小李的想法,请你在图③中画出另一种情况对应的图形,并求出此时∠COD 的度数.(要求写出解答过程)24.(12分)在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如下表所示的数据:功率使用寿命价格普通白炽灯100瓦(即0.1千瓦) 2 000小时3元/盏优质节能灯20瓦(即0.02千瓦) 4 000小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1 000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的式子分别表示用一盏白炽灯的费用和用一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4 000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.(14分)如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数;(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于电子蚂蚁P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变.请判断哪个结论正确,并求出正确结论的值.答案1.D1.D2.B3.D4.D 5.D 6.D 7.C 8.C 9.C 10.C二、11.;5 2312.-8 13.-5 14.北偏东70° 15.1 cm 或5 cm16.14;(3n +2)三、17.解:原式=12+(-8)÷4-1=12-2-1=9.18.解:去分母,得3(x -2)-6=2(x +1)-(x +8).去括号,得3x -6-6=2x +2-x -8.移项、合并同类项,得2x =6.系数化为1,得x =3.19.解:原式=2x 2-2y 2-3x 2y 2-3x 2+3x 2y 2+3y 2=-x 2+y 2.当x =-1,y =2时,原式=-(-1)2+22=3.20.解:(1)如图,射线AB 即为所求作的射线.(2)如图,BD =BC .(3)连接AC ,交直线l 于点E ,根据两点之间,线段最短,可得此时AE +CE 最小.21.解:如图所示.22.解:(1)因为OM 平分∠AOB ,所以∠1+∠AOC =90°.因为∠1=∠2,所以∠2+∠AOC =90°,所以∠NOD =180°-90°=90°.(2)因为∠BOC =4∠1,所以90°+∠1=4∠1,所以∠1=30°,所以∠AOC =90°-30°=60°,∠MOD =180°-30°=150°.23.解:(1)40;BOC ;BOD ;60(2)如图即为另一种情况对应的图形.因为 OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =40°.12因为∠BOD =20°,所以∠COD =∠BOC -∠BOD =40°-20°=20°.24.解:(1)根据题意得1 000×0.1×0.5+3=53(元),则选用一盏普通白炽灯照明1 000小时,它的费用是53元.(2)用一盏白炽灯的费用为0.1x ×0.5+3=0.05x +3(元),用一盏节能灯的费用为0.02x ×0.5+35=0.01x +35(元).(3)根据题意得0.05x +3=0.01x +35,解得x =800.则照明800小时时,使用这两种灯的费用相等.(4)用节能灯更省钱,理由:当x =4 000时,用白炽灯的费用为2 000×0.1×0.5×2+3×2=206(元);用节能灯的费用为4 000×0.02×0.5+35=75(元),因为75<206,所以用节能灯更省钱.25.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25;若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50.故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130,解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)②正确,即ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =PO =50+4m ,12所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50.故ON -AQ 的值不变,这个值为50.。

数学七年级下册 期末试卷综合测试卷(word含答案)

数学七年级下册 期末试卷综合测试卷(word含答案)

数学七年级下册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,1∠和2∠不是同旁内角的是( )A .B .C .D . 2.下列运动属于平移的是( )A .汽车在平直的马路上行驶B .吹肥皂泡时小气泡变成大气泡C .铅球被抛出D .红旗随风飘扬 3.若点P 在第四象限内,则点P 的坐标可能是( ) A .()4,3 B .()3,4- C .()3,4-- D .()3,4- 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒ 6.下列说法正确的是( )A .64的平方根是8B .-16的立方根是-4C .只有非负数才有立方根D .-3的立方根是33-7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-二、填空题9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,在△ABC 中,CD 是它的角平分线,DE ⊥AC 于点 E .若BC =6cm ,DE =2cm ,则△BCD 的面积为_____cm 212.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点A ,B 两点,则点A ,B 表示的数分别为__________.15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-.18.求下列各式中x 的值:(1)()24264x -=;(2)3338x -=. 19.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠.证明:∠+∠=︒(已知)∵12180AD EF()∴//∠=∠()∴3D又∵3A∠=∠(已知)∴D A∠=∠()AB CD()∴//∠=∠()∴B C20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.21.数学活动课上,王老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:3的整数部分是 ;小数部分是(2)已知8+3=x+y,其中x是一个整数,且0<y<1,求出2x+(y-3)2012的值.二十二、解答题22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.二十三、解答题23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论. (3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.25.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案.【详解】解:选项A 、C 、D 中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项B 中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.故选:B .【点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U ”形.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B 、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合; B 、吹肥皂泡时小气泡变成大气泡,不属于平移,故B 选项不符合;C 、铅球被抛出是旋转与平移组合,故C 选项不符合;D 、随风摆动的红旗,不属于平移,故D 选项不符合.故选:A .【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A 、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B 、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C 、一条直线的垂线可以画无数条,正确,不符合题意;D 、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意; 故选:A .【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.D【分析】根据平方根和立方根的定义逐项判断即可得.【详解】A 、64的平方根是8±,则此项说法错误,不符题意;B 、因为()346416-=-≠- ,所以16-的立方根不是4-,此项说法错误,不符题意;C 、任何实数都有立方根,则此项说法错误,不符题意;D 3333-=3-的立方根是33故选:D .【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键.7.B【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解.【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒,180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B .【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A 9A 10=3×10=30,进而求得A 10的横纵坐标.【详解】解:根据题意可知:OA 1=3,A 1A 2=6,A 2A 3=9,A 3A 4=12,A 4A 5=15,A 5A 6=18•••,A 9A 10=30,∴A 1点坐标为(3,0),A 2点坐标为(3,6),A 3点坐标为(﹣6,6),A 4点坐标为(﹣6,﹣6),A 5点坐标为(9,﹣6),A 6点坐标为(9,12),以此类推,A 9点坐标为(15,﹣12),所以A 10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x=.故答案为:.【点睛【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x 轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.6【分析】根据角平分线的性质计算即可;【详解】作,∵CD 是角平分线,DE ⊥AC ,∴,又∵BC =6cm ,∴;故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作DF BC ⊥,∵CD 是角平分线,DE ⊥AC ,∴=2DE DF cm =,又∵BC =6cm , ∴212662BCD S cm =⨯⨯=△; 故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.12.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】∠=︒,解:∵∠1+2∠2=180°,140∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟解析:1--,1【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴∴点A表示的数为1-1-+.故答案为:1--1【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和解析:(1)6x =或2x =-;(2)32x =【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1)()24264x -=, ()2216x -=,24x -=±,24x -=或24-=-x ,∴6x =或2x =-;(2)3338x -=, 3278x , 32x =; 【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键. 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD ∥EF (同旁内角互补,两直线平行),∴∠3=∠D (两直线平行,同位角相等),又∵∠3=∠A (已知),∴∠D =∠A (等量代换),,∴AB ∥CD (内错角相等,两直线平行),∴∠B =∠C (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.20.(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,⨯=.∴线段PC扫过的面积为313【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.【详解】解:(1)∵1<<2,∴的整数部分是1;小解析:(1)13(2)19【分析】(1)根据已知的条件就可以求出;(233x,y的值,即可解答.【详解】解:(1)∵132,∴313;(2)解:∵132,∴9<310,∵3x+y,且x是一个整数,0<y<1,∴x=9,y=3931,∴2x+(32012=2×9+332012=18+1=19.【点睛】二十二、解答题22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.二十三、解答题23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.25.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.26.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。

七年级数学综合测试卷人教版

七年级数学综合测试卷人教版

七年级数学综合测试卷人教版一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 计算:3 + (-5)的结果是()A. -2B. 2C. 8D. -8.3. 在数轴上,距离原点3个单位长度的点表示的数是()A. 3B. -3C. 3或 -3D. 6或 -6。

4. 单项式-(2)/(3)x^2y的系数是()A. -(2)/(3)B. (2)/(3)C. -2D. 2.5. 下列式子中,是一元一次方程的是()A. x + 2y = 1B. x^2-2x + 1 = 0C. 2x - 3 = (1)/(x)D. 3x - 5 = 2x6. 若x = 2是方程3x + a = 7的解,则a的值为()A. 1B. -1C. 0D. 2.7. 化简:3(a - b)+2(b - a)的结果是()A. a - bB. a + bC. 5(a - b)D. 5(b - a)8. 一个角的度数是35^∘,则它的余角的度数是()A. 55^∘B. 45^∘C. 145^∘D. 65^∘9. 把方程(x)/(2)-(x - 1)/(3)=1去分母后,正确的是()A. 3x - 2(x - 1)=1B. 3x - 2(x - 1)=6C. 3x - 2x - 2 = 6D. 3x - 2x + 2 = 110. 某商品原价为a元,打八折后的价格是()A. 0.2a元B. 0.8a元C. a元D. (a)/(0.8)元。

二、填空题(每题3分,共15分)1. 比较大小:-3___-4(填“>”或“<”)。

2. 计算:(-2)^3=___。

3. 若x = 5,则x =___。

4. 一个多项式加上2x^2-3x + 5的和是4x^2-x + 3,则这个多项式是___。

5. 已知线段AB = 8cm,点C在直线AB上,AC = 3cm,则BC =___cm。

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。

湘教版七年级数学上册全册综合测试

湘教版七年级数学上册全册综合测试

七年级数学综合测试一.选择题(共8小题,满分24分,每小题3分)1.已知2a=5,2b=3.2,2c=6.4,2d=10,则a+b+c+d的值为()A.5B.10C.32D.642.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3B.﹣3C.﹣4D.44.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,305.因式分解x2﹣9y2的正确结果是()A.(x+9y)(x﹣9y)B.(x+3y)(x﹣3y)C.(x﹣3y)2D.(x﹣9y)26.已知在同一平面内,直线a,b,c互相平行,直线a与b之间的距离是3cm,直线b与c之间的距离是5cm,那么直线a与c的距离是()A.2cm B.8cm C.8或2cm D.不能确定7.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:益,爱,我,数,学,广,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱广益C.我爱广益D.广益数学8.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°二.填空题(共8小题,满分24分,每小题3分)9.利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=.10.计算:x(x﹣2)=11.若(m﹣2)x n+=0是二元一次方程,则m+n的值.12.若s2=[(3.2﹣)2+(5.7﹣)2+(4.3﹣)2+(6.8)2]是李华同学在求一组数据的方差时,写出的计算过程,则其中的=.13.如图,AB∥CD,EG、EM、FM分别平分∠AEF、∠BEF、∠EFD,下列结论:其中正确的是(填序号).①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EGC.14.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.15.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的为(填序号).①点A到BC的距离是线段AD的长度;②线段AB的长度是点B到AC的距离;③点C到AB的垂线段是线段AB.16.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以11颗的取出,那么正好取完,则盒子里共有颗糖.三.解答题(共2小题,满分10分,每小题5分)17.(5分)某学习小组学习了幂的有关知识发现:根据a m=b,知道a、m可以求b的值.如果知道a、b可以求m的值吗?他们为此进行了研究,规定:若a m=b,那么T(a,b)=m.例如34=81,那么T(3,81)=4.(1)填空:T(2,64)=;(2)计算:;(3)探索T(2,3)+T(2,7)与T(2,21)的大小关系,并说明理由.18.(5分)因式分解:(1)m3﹣16m(2)9a2(x﹣y)+4b2(y﹣x)四.解答题(共2小题,满分12分,每小题6分)19.(6分)已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.20.(6分)计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y =3五.解答题(共2小题,满分14分,每小题7分)21.(7分)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中点A,B,C分别和点A1,B1,C1对应;(2)平移△ABC,使得点A在x轴上,点B在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中点A,B,C分别和点A2,B2,C2对应;(3)直接写出△ABC的面积.22.(7分)已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.六.解答题(共2小题,满分16分,每小题8分)23.(8分)如图,EF⊥BC于点F,∠1=∠2,DG∥BA,若∠2=40°,则∠BDG是多少度?24.(8分)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?七.解答题(共2小题,满分20分,每小题10分)25.(10分)某校初级中学数学兴趣小组为了解本校学生年龄情况,随机调查了本校部分学生的年龄,根据所调查的学生的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为,图①中m的值为;(Ⅱ)求统计的这组学生年龄数据的平均数、众数和中位数.26.(10分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:∵2a=5,2b=3.2,2c=6.4,2d=10,∴2a+b+c+d=5×3.2×6.4×10=16×64=210,∴a+b+c+d=10.故选:B.2.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.3.解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选:D.4.解:捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.5.解:x2﹣9y2=(x+3y)(x﹣3y),故选:B.6.解:有两种情况,如图:(1)直线a与c的距离是3厘米+5厘米=8厘米;(2)直线a与c的距离是5厘米﹣3厘米=2厘米;故选:C.7.解:3a(x2﹣1)﹣3b(x2﹣1)=3(x2﹣1)(a﹣b)=3(x+1)(x﹣1)(a﹣b),∵x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:益,爱,我,数,学,广,∴3(x+1)(x﹣1)(a﹣b)对应的信息可能是我爱广益,故选:C.8.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:(2+1)(22+1)(24+1)(28+1)+1,=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=216.10.解:原式=x2﹣2x故答案为:x2﹣2x11.解:∵(m﹣2)x n+=0是二元一次方程,∴m2﹣3=1且m﹣2≠0且n=1,解得:m=﹣2,n=1,∴m+n=﹣2+1=﹣1,故答案为:﹣1.12.解:∵s2=[(3.2﹣)2+(5.7﹣)2+(4.3﹣)2+(6.8)2],∴是3.2、5.7、4.3、6.8的平均数,∴=(3.2+5.7+4.3+6.8)÷4=20÷4=5故答案为:5.13.解:∵AB∥CD,∴∠DFE=∠AEF,∠DFE+∠BEF=180°,故①正确,∵ME平分∠BEF,MF平分∠DFE,∴∠MEF=∠BEF,∠MFE=∠DFE,∴∠MEF+∠MFE=(∠BEF+∠DFE)=90°,∴∠EMF=90°,故②正确,∵EG平分∠AEF,∴∠GEF=∠AEF,∵∠AEF=∠DFE,∴∠GEF=∠MFE,∴EG∥MF,故③正确,无法判断∠AEF=∠EGC,故④错误.故答案为:①②③.14.解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.15.解:∵AD⊥BC,∴点A到BC的距离是线段AD的长度,①正确;∵∠BAC=90°,∴AB⊥AC,∴线段AB的长度是点B到AC的距离,②正确∵AB⊥AC,∴C到AB的垂线段是线段AC,③不正确.其中正确的为①②,故答案是:①②.16.解:已知如果每次11颗地取出正好取完,则盒子内糖数必为11的倍数.又知盒子里装有不多于200颗糖,则盒子内糖数可能为11、22、33、44、55、66、77、88、99、110、121、132、143、154、165、176、187、198.又已知如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,则盒子内糖数为12的倍数+1.又知盒子里装有不多于200颗糖则盒子内糖数可能为13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193.取上面两组数的交集可得121,故盒子里共有121颗糖.故答案为:121.三.解答题(共2小题,满分10分,每小题5分)17.解:(1)∵26=64,∴T(2,64)=6;故答案为:6.(2)∵,(﹣2)4=16,∴=﹣3+4=1.(3)相等.理由如下:设T(2,3)=m,可得2m=3,设T(2,7)=n,根据3×7=21得:2m•2n=2k,可得m+n=k,即T(2,3)+T(2,7)=T(2,21).18.解:(1)m3﹣16m=m(m2﹣16)=m(m+4)(m﹣4);(2)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(3a+2b)(3a﹣2b)(x﹣y).四.解答题(共2小题,满分12分,每小题6分)19.解:(1)把和代入方程得:,①×2+②得:15n=15,解得:n=1,把n=1代入①得:m=2,则方程组的解为;(2)当时,原方程变为:2x﹣3y=5,解得x=,∵x<﹣2,∴<﹣2,解得y<﹣3.故y的取值范围是y<﹣3.20.解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.五.解答题(共2小题,满分14分,每小题7分)21.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)△ABC的面积为3×3﹣×1×3﹣×1×2﹣×2×3=.22.证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).六.解答题(共2小题,满分16分,每小题8分)23.解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.24.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.七.解答题(共2小题,满分20分,每小题10分)25.解:(Ⅰ)本次接受调查的学生人数为:14÷28%=50(人),m%=×100%=12%,则m=12;故答案为:50,12;(Ⅱ)这组学生年龄数据的平均数是:=14(岁),∵15岁出现的次数最多,出现了18次,∴众数是15岁;将这组数据按从小到大排列,处于中间的两个数都是14,则这组数据的中位数是=14岁.26.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.。

人教版七年级数学上册第一章《有理数》综合测试卷【含答案】

人教版七年级数学上册第一章《有理数》综合测试卷【含答案】

人教版七年级数学上册第一章《有理数》综合测试卷一.选择题(共12小题,满分36分,每小题3分)1.2021的相反数是( )A.﹣2021B.2021C.D.﹣2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有( )个.A.1B.2C.3D.44.近似数35.04万精确到( )A.百位B.百分位C.万位D.个位5.在下列气温的变化中,能够反映温度上升5℃的是( )A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃6.下列说法正确的是( )A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数7.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是( )A.B.C.D.8.绝对值大于2小于5的正整数有( )个.A.2B.3C.4D.59.用分配律计算()×,去括号后正确的是( )A.﹣B.﹣C.﹣D.﹣10.计算(﹣2)200+(﹣2)201的结果是( )A.﹣2B.﹣2200C.1D.220011.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A .a +b >0B .a +b <0C .ab >0D .|a |>|b |12.若a 2=25,|b |=3,则a +b 所有可能的值为( )A .8B .8或2C .8或﹣2D .±8或±2二.填空题(共8小题,满分32分,每小题4分)13.有理数中,最大的负整数是 .14.比较大小:﹣2 ﹣3.(填“<”或“>”)15.若m 与﹣2互为相反数,则m 的值为 .16.1.95≈ (精确到十分位);≈ (精确到万位).17.数轴上表示数﹣5和表示﹣14的两点之间的距离是 .18.填空:|﹣1+|+|﹣+|+|﹣+|+…+|﹣+|= .19.规定图形表示运算a ﹣b ﹣c ,图形表示运算x ﹣z ﹣y +w .则+= .20.若a 、b 为整数,且|a ﹣2|+(b +3)2020=1,则b a = .三.解答题(共7小题,满分52分)21.(8分)把下列各数填在相应的大括号内:﹣35,0.1,,0,,1,4.01001000…,22,﹣0.3,,π.正 数:{  …};整 数:{  …};负{  …};非负整数:{  …}.22.(6分)计算:(1)8+(﹣6)+5+(﹣8). (2)0.47﹣4﹣(﹣1.53)﹣1.23.(8分)计算:(1)(﹣+﹣)×36 (2)(﹣3)2×(﹣)+4+22×24.(8分)把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,25.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?26.(8分)已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.27.(8分)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3= (4)计算:113+123+133+…+203的值.答案一.选择题(共12小题,满分36分,每小题3分)1.解:2021的相反数是:﹣2021.故选:A.2.解:4 400 000 000=4.4×109,故选:B.3.解:下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有:﹣,﹣0.7,﹣7.3,共3个,故选:C.4.解:∵35.04万末尾数字4表示4百,∴近似数35.04万精确到百位.故选:A.5.解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.6.解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选:D.7.解:已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选:D.8.解:绝对值大于2小于5的正整数有3,4,共2个,故选:A.9.解:()×=,故选:D.10.解:(﹣2)201=(﹣2)×(﹣2)200,所以(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)×(﹣2)200=﹣(﹣2)200=﹣2200.故选:B.11.解:由数轴可知,a为正数,b为负数,且|a|<|b|,∴a+b应该是负数,即a+b<0,又∵a>0,b<0,ab<0,故答案A、C、D错误.故选:B.12.解:∵a2=25,|b|=3,∴a=±5,b=±3,a=5,b=3时,a+b=5+3=8,a=5,b=﹣3时,a+b=5+(﹣3)=2,a=﹣5,b=3时,a+b=﹣5+3=﹣2,a=﹣5,b=﹣3时,a+b=﹣5+(﹣3)=﹣8,综上所述,a+b所有可能的值为±8或±2.故选:D.二.填空题(共8小题,满分32分,每小题4分)13.解:有理数中,最大的负整数是﹣1,故﹣1.14.解:∵|﹣2|<|﹣3|,∴﹣2>.故>.15.解:∵﹣2的相反数是2,∴m=2.故2.16.解:1.95≈2.0(精确到十分位);≈58万(精确到万位),故2.0;58万.17.解:|﹣5﹣(﹣14)|=9.18.解:原式=1﹣+﹣+﹣+…+﹣=1﹣=,故19.解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故﹣820.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.三.解答题(共7小题,满分52分)21.解:正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,,…};负{,,﹣0.3,…};非负整数:{0,1,22,,…}.故0.1,1,4.01001000…,22,,π;﹣35,0,1,22,;,,﹣0.3;0,1,22,.22.解:(1)原式=8+(﹣8)+(﹣6)+5=0+(﹣1)=﹣1;(2)原式=0.47+1.53﹣(4+1)=2﹣6=﹣4.23.解:(1)原式=﹣6+27﹣15=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣﹣+4=﹣.24.解:如图所示:数轴上的点表示的数右边的总比左边的大,得<0.5<+3.5.25.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).26.解:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=﹣8,b=﹣2,则a+b=10或﹣10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=﹣2;a=﹣8,b=2,则a+b=6或﹣6.27.解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=41075.故(1)3025;(2)44100;(3);(4)41075。

华师版七年级数学上册第一、二章综合测试卷含答案

华师版七年级数学上册第一、二章综合测试卷含答案

华师版七年级数学上册第一、二章综合测试卷一、选择题(每题3分,共24分) 1.-37的相反数是( )A .-73B.37C.73D.-472. 如图,数轴上被墨水遮盖的数可能为( )A .-1B .-1.5C .-3D .-4.2(第2题) (第5题)3.我们每天都与时间打交道,根据钟表就能知道具体时间了,时针1小时转过的角度是( ) A .180°B .90°C .60°D .30°4.某市开展“情系学子,寄望未来”福彩慈善公益助学活动,帮助困难家庭优秀学子圆大学梦,共发放助学款57.5万元.将57.5万用科学记数法表示为( ) A .0.575×106 B.5.75×105 C .5.75×106D.57.5×1045. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( ) A .Φ45.02B.Φ44.9C.Φ44.98D.Φ45.016. 若a 是最小的自然数,b 是最大的负整数,c 是倒数等于它本身的数,则a +b+c =( ) A .0B.-2C .0或-2D.-1或17.计算217+⎝ ⎛⎭⎪⎫-2 34+4 67+⎝ ⎛⎭⎪⎫-7 14时,运算律用得正确且最恰当的是( )A.⎣⎢⎡⎦⎥⎤2 17+⎝ ⎛⎭⎪⎫-7 14+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-2 34+4 67 B.⎝ ⎛⎭⎪⎫2 17+4 67+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-2 34+⎝ ⎛⎭⎪⎫-7 14 C.⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-2 34+7 14+⎝ ⎛⎭⎪⎫2 17+4 67D.⎝ ⎛⎭⎪⎫-7 14+2 34+⎝ ⎛⎭⎪⎫2 17+4 67 8. a 为有理数,定义“※”:当a >-2时,※a =-a ;当a <-2时,※a =a ;当a =-2时,※a =0,根据这个定义,则※[4+※(2-5)]的值为( ) A .1 B .-1 C .7D .-7二、填空题(每题3分,共18分)9. 一名运动员某次跳水的最高点离跳板2 m ,记作+2 m ,则水面离跳板3 m 可以记作________ m.10. 计算-33-(-3)×[-(-2)3]的结果为________. 11. 如果a 与1互为相反数,则|a +2|等于________.12. 小华在计算14-a 时,误把“-”看成“+”,求得结果为-5,则14-a =________.13. 如图,一质点P 从距原点1个单位长度的点A 处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从点A 1跳动到OA 1的中点A 2处,第三次从点A 2跳动到OA 2的中点A 3处,…,如此不断跳动下去,则第五次跳动后,该质点到原点O 的距离为________.(第13题)14. 根据“二十四点”游戏的规则,用仅含有加、减、乘、除及括号的算式,使2,3,-4,6的运算结果等于24:____________________(写出一个算式即可). 三、解答题(15,16题每题8分,17,18题每题9分,19,20题每题12分,共58分)15.把下列各数分别填在相应的数集内:-11,5%,-2.3,16,0,-π,-34,2 023,-9. 整数集:{ …}; 分数集:{ …}; 负数集:{ …};有理数集:{ …}. 16.计算:(1)-16-(-12)-24+18; (2)-32÷94-(-5)×85+2;(3)⎝ ⎛⎭⎪⎫18+113-2.75×(-24)-1;(4)-12 024+⎝ ⎛⎭⎪⎫-13×(-3)3-0.25×(-3)×(-2)4.17. 科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销.小王把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总质量是多少千克?(3)若小王按8元/千克销售柚子,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?18. 定义一种新运算,规定:a⊙b=|a+b|+|a-b|.(1)计算1⊙(-3)的值;(2)表示数m的点M在数轴上的位置如图所示,且2⊙m=6,求m的值.(第18题)19. 如图,一只甲虫在5×5的方格(每小格边长为1)纸上沿着网格线运动,它从A处出发去看望B,C,D处的其他甲虫.规定:向上向右走为正,向下向左走为负.例如从A到B记为A→B(+1,+4),从D到C记为D→C(-1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),D→A(-4,-2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P处的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(第19题) 20.有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,若a1=-12,从第二个数起,每个数都等于1与它前面那个数的差的倒数.(1)试计算a2,a3,a4的值.(2)根据以上计算结果,你能猜出a2 023和a2 024的值吗?说说你的理由.答案一、1.B 2.C 3.D 4.B 5.B 6.C 7.B8. B 点拨:因为2-5=-3<-2,所以※(2-5)=※(-3)=-3,则原式=※(4-3)=※1=-1. 二、9.-3 10.-3 11.112.33 点拨:由题意知14+a =-5,则a =-5-14=-19,所以14-a =14-(-19)=33.13.125 点拨:第一次跳动到OA 的中点A 1处,即在离原点的12处,第二次从点A 1跳动到点A 2处,即在离原点的122处,…,则跳动n 次后,即跳到了离原点的12n 处,则第五次跳动后,该质点到原点O 的距离为125.故答案为125. 14.(3-6)×2×(-4)=24(答案不唯一)三、15.解:整数集:{-11,0,2 023,-9,…};分数集:⎩⎨⎧⎭⎬⎫5%,-2.3,16,-34,…;负数集:⎩⎨⎧⎭⎬⎫-11,-2.3,-π,-34,-9,…; 有理数集:⎩⎨⎧⎭⎬⎫-11,5%,-2.3,16,0,-34,2 023,-9,… .16.解:(1)原式=-16+12-24+18=(-16-24)+(12+18) =-40+30 =-10.(2)原式=-9×49+8+2 =-4+8+2 =6.(3)原式=18×(-24)+43×(-24)+114×24-1 =-3+(-32)+66-1 =30.(4)原式=-1+⎝ ⎛⎭⎪⎫-13×(-27)-14×(-3)×16=-1+9+12=20.17.解:(1)13-(-7)=13+7=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克. (2)3-5-2+11-7+13+5+100×7=18+700=718(千克). 答:小王第一周实际销售柚子的总质量是718千克. (3)718×(8-3)=718×5=3 590(元).答:小王第一周销售柚子一共收入3 590元. 18.解:(1)1⊙(-3)=|1+(-3)|+|1-(-3)|=|-2|+|4| =2+4 =6.(2)因为2⊙m =6, 所以|2+m |+|2-m |=6, 由数轴知m <-2, 所以-2-m +2-m =6, 解得m =-3.19.解:(1)+3;+4;+2;0(2)P 处位置如图所示.(第19题)(3)根据已知条件可知A →B (+1,+4),B →C (+2,0),C →D (+1,-2). 则该甲虫走过的路程为1+4+2+1+2=10. 20.解:(1)由题意,得a 2=11-⎝ ⎛⎭⎪⎫-12=23,a 3=11-23=3,a 4=11-3=-12.(2)a 2 023=-12,a 2 024=23.理由如下:由(1)可知,这若干个数是按3个一组循环的.因为2 023÷3=674……1,2 024÷3=674……2, 所以a 2 023=a 1=-12,a 2 024=a 2=23.。

七年级数学上册期末复习综合测试题(含答案)

七年级数学上册期末复习综合测试题(含答案)

七年级数学上册期末复习综合测试题(含答案)一.精心选择(本大题有12小题,每小题2分,共24分)1.12021-的倒数是( ) A .2021- B .12021- C .2021 D .120212.关于直线,下列说法正确的是( )A .可以量长度B .有两个端点C .可以用两个小写字母来表示D .没有端点 3.下列说法不正确的是( )A .2a 是2个数a 的和B .2a 是2和a 的积C .2a 是偶数D .2a 是单项式4.下列各组中的两项,是同类项的为( ) A .25x y 与xyB .25x y -与2yxC .25ax 与2yx D .38与3x5.在下列方程中:①0x =;②21x y -=;③20n n +=;④532yy =+;⑤221x x -=+.其中一元一次方程的个数是( ). A .1 B .2 C .3 D .46.钟表上的时间指示为两点半,这时时针和分针之间的夹角为( ) A .120° B .105° C .100° D .90° 7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .12-B .12C .56-D .568.图(1)是一个长为2a ,宽为2b (a b >)的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的正方形的面积是( )A .abB .2()a b +C .22a b - D .2()a b -9.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,31px qx ++的值为( ) A .2019- B .2021- C .2020 D .202110.如图,将一副三角板的直角顶点重合放置于点A 处(两块三角板看成在同一平面内),将其中一块三角板绕点A 旋转的过程中,下列结论一定成立的是( )A .BAD DAC ∠=∠B .BAD EAC ∠≠∠C .90BAE DAC ∠-∠=︒D .180BAE DAC ∠+∠=︒11.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .0.7160%6()3x x +=- B .0.7160%6()3x x +=+ C .0.7160%6(3)x x +=-D .0.7160%6(3)x x +=+12.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是( )A .150B .200C .355D .505二.准确填空(本大题有6个小题,每小题3分,共18分)13.如果零上2℃记为2+℃,那么3-℃表示_______________. 14.3015︒'=__________°.15.一个长方形的宽为cm x ,长比宽的2倍多1 cm ,这个长方形的周长为__________cm .16.若27x a b 与3ya b -的和为单项式,则xy =_______.17.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为32cm ,若12AP PB =,则这条绳子的原长为__________cm .18.做一个数字游戏:第一步:取一个自然数18n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ;…,以此类推,则2021a =__________.三.细心解答(本大题有8个小题,共58分)19.(本小题满分6分)计算:()32142⎛⎫-⨯- ⎪⎝⎭20.(本小题满分6分)已知232A a ab b =-+-,22B a ab =-,化简2A B -.21.(本小题满分6分) 以下是小明解方程1323x x +--=1的解答过程. 解:去分母,得31231()()x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.小明的解答过程是否有错误?如果有错误,写出正确的解答过程. 22.(本小题满分6分)已知:如图,点D 、C 、E 是线段AB 上依次排列的三点,当点C 、D 分别是AB 和AE 的中点,且15AB =, 4.5CE =时,求线段CD 的长.23.(本小题满分8分)将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五个数,所框五个数的和能等于2020吗?若能,写出这五个数;如不能,请说明理由. 24.(本小题满分8分)为了预防新冠肺炎的发生,学校免费为师生提供防疫物品.某校购进洗手液与84消毒液共400瓶.已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶,总共消费了7200元.该校购进洗手液和84消毒液各多少瓶?25.(本小题满分9分)已知:点O 是直线AB 上的一点,90COD ∠=︒.OE 是BOD ∠的平分线. (1)当点C 、D 、E 在直线AB 的同侧(如图)时,①若35COE ∠=︒,求AOD ∠的度数. ②若COE α∠=,则AOD ∠=________.(用含α的式子表示) (2)当点C 与点D 、E 在直线AB 的两侧(如图)时,(1)中②的结论是否仍然成立?请给你的结论并说明理由.26.(本小题满分9分)如图,甲、乙两人(看成点)分别在数轴3-和5的位置上,沿数轴做移动游戏.每次的移动游戏规则如下:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若第一次移动游戏,甲、乙两人都猜对了,则甲、乙两人之间的距离是_______个单位; (2)若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终停留的位置对应的数为m .请你用含n 的代数式表示m ; (3)经过_______次移动游戏,甲、乙两人相遇。

初一上册数学综合测试卷及答案【三篇】

初一上册数学综合测试卷及答案【三篇】

【导语】本⽂由⽆忧考为您整理的初⼀上册数学综合测试卷及答案【三篇】,希望对⼤家有帮助。

初⼀上册数学有理数综合测试卷及答案 ⼀.选择题(每⼩题3分,共24分) 1.-2的相反数是() A.2B.-2C.D. 2.│3.14-|的值是(). A.0B.3.14-C.-3.14D.3.14+ 3.⼀个数和它的倒数相等,则这个数是() A.1B.C.±1D.±1和0 4.如果,下列成⽴的是() A.B. C.D. 5.⽤四舍五⼊法按要求对0.05019分别取近似值,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位) C.0.05(保留两个有效数字)D.0.0502(精确到0.0001) 6.计算的值是() A.B.C.0D. 7.有理数a、b在数轴上的对应的位置如图所⽰: 则() A.a+b<0B.a+b>0 C.a-b=0D.a-b>0 8.下列各式中正确的是() A.B. C.D. ⼆.填空(每题3分,共24分) 9.在数+8.3、-4、-0.8、、0、90、、中,________是正数,_________不是整数。

10.+2与-2是⼀对相反数,请赋予它实际的意义:_________. 11.的倒数的绝对值是___________. 12.+4=; 13.⽤科学记数法表⽰13040000,应记作_______________. 14.若a、b互为相反数,c、d互为倒数,则(a+b)3.(cd)4=__________. 15.⼤肠杆菌每过20分便由1个分裂成2个,经过3⼩时后这种⼤肠杆菌由1个分裂成__________个. 16.在数轴上与-3距离四个单位的点表⽰的数是__________. 三.解答题(每题6分,共12分) 17.(-0.9)+(+4.4)+(-8.1)+(+5.6) 18. 四.解答题(每题8分,共40分) 19.把下列各数⽤“”号连接起来: ,-0.5,,,-(-0.55), 20.如图,先在数轴上画出表⽰2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表⽰的数,以及B,C两点间的距离. 21.求+的最⼩值 22.某公司去年1~3⽉平均每⽉亏损1.5万元,4~6⽉平均每⽉赢利2万元,7~10⽉平均每⽉赢利1.7万元,11~12⽉平均每⽉亏损2.3万元,问:这个公司去年总的盈、亏情况如何? 23.某⾷品⼚从⽣产的袋装⾷品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不⾜的部分分别⽤正、负数来表⽰,记录如下表: 与标准质量的差值 (单位:g)520136 袋数143453 这批样品的平均质量⽐标准质量多还是少?多或少⼏克?若每袋标准质量为450克,则抽样检测的总质量是多少? 参考答案 ⼀.选择题 1.A 2.C 3.C 4.D 5.C 6.D 7.A 8.A ⼆.填空题 9.+8.3、90;+8.3、、、. 10.向前⾛2⽶记为+2⽶,向后⾛2⽶记为⽶。

七年级数学综合测试卷

七年级数学综合测试卷

一、选择题(每题4分,共40分)1. 下列各数中,最小的正整数是()A. -3B. 0C. 1D. 22. 如果a=3,b=-2,那么a-b的值是()A. 5B. -5C. 1D. -13. 下列各数中,有理数是()A. √4B. √-1C. πD. 0.1010010001……4. 下列各数中,无理数是()A. √9B. √-4C. πD. 2/35. 如果x=5,那么x-3的值是()A. 2B. 8C. 12D. 56. 下列各式中,正确的有()A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 2xD. 2x - 3 = 2x7. 如果a+b=5,a-b=3,那么a和b的值分别是()A. a=4,b=1B. a=3,b=2C. a=2,b=3D. a=1,b=48. 下列各式中,方程是()A. 2x + 3 = 7B. 3x - 2 = 7C. 2x + 3 = 2xD. 3x - 2 = 2x9. 如果x=2,那么2x+1的值是()A. 5B. 3C. 4D. 210. 下列各式中,比例是()A. 2x + 3 = 7B. 3x - 2 = 7C. 2x : 3 = 6 : 9D. 3x - 2 = 2x二、填空题(每题4分,共40分)11. 3的平方根是______,5的立方根是______。

12. 如果a=5,b=-3,那么a-b的值是______。

13. 下列各数中,无理数是______。

14. 下列各式中,正确的有______。

15. 如果x=4,那么2x-3的值是______。

16. 下列各式中,方程是______。

17. 如果a+b=8,a-b=2,那么a和b的值分别是______。

18. 下列各式中,比例是______。

19. 下列各数中,有理数是______。

20. 下列各式中,正确的有______。

三、解答题(每题10分,共30分)21. 解方程:3x - 2 = 7。

2024届浙江省温州市南浦实验中学七年级数学第一学期期末综合测试试题含解析

2024届浙江省温州市南浦实验中学七年级数学第一学期期末综合测试试题含解析

2024届浙江省温州市南浦实验中学七年级数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如图,AB=8cm,AD=BC=5cm,则CD等于()A.1cm B.2cm C.3cm D.4cm2.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9 3.当x=1时,的值为−2,则的值为A.− 16 B.− 8 C.8 D.164.已知y是x的一次函数,下表中列出了部分对应值,则m的值等于()x -1 0 my 1 -2 -5A.1 B.12C.0 D.-15.如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF位置的变化而变化6.下列说法正确的是( )A.将310万用科学记数法表示为3.1×107B.用四舍五入法将1.097精确到百分位为1.10C .近似数2.3与2.30精确度相同D .若用科学记数法表示的数为2.01×105,则其原数为20 1007.如图,是一个正方体的表面积展开图,相对面上所标的两个数互为倒数,那么a b c +=( )A .1516-B .1716C .1716-D .15168.一列火车正匀速行驶,它先用20秒的速度通过了一条长为160米的隧道(即从车头进入入口到车尾离开出口),又用15秒的时间通过了一条长为80米的隧道,求这列火车的长度,设这列火车的长度为x 米,根据题意可列方程为( )A .16028022015x x ++= B .160802015x x ++= C .16028022015x x --= D .1602802015x x --= 9.当1x =时,代数式31px qx ++的值为2019,则当1x =-时,代数式31px qx ++的值为( )A .-2017B .-2019C .2018D .201910.下列各组数比较大小,判断正确的是( )A .64->-B .31->+C .90->D .2537->- 11.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A .5.5×106千米B .5.5×107千米C .55×106千米D .0.55×108千米12.下列判断:①2πxy -不是单项式;②3x y -是多项式;③0不是单项式;④1x x + 是整式.其中正确的有( ) A .2个 B .1个 C .3个 D .4个二、填空题(每题4分,满分20分,将答案填在答题纸上)13.松桃县城某商店把一件商品按成本价提高50%后标价,又打8折销售,现售价为240元,设这件商品的成本价为x 元,则可列方程:______.14.有依次排列的三个数:“2,5-,8”对这三个数作如下操作:对任何相邻的两个数,都用左边的数减去右边的数,将所得之差写在这两个数之间,即可产生一个新数串:“2,7,-5,-13,8”称为第一次操作;做第二次同样的操作后又产生一个新数串:“2,-5,7,12,-5,8,-13,-21,8”……依次继续操作下去,直到第2020次操作后停止操作.则第2020次操作所得新数串中所有各数的和为_____.15.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.16.阅读理解:a b c d ,,,是有理数,我们把符号a b c d 称为22⨯阶行列式,并且规定:a b ad bc c d =-,则满足等式112321xx +=的x 的值是____________. 17.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)已知:如图,AOB ∠是直角,AOC ∠在AOB ∠的外侧,且40AOC ∠=︒,ON 是AOC ∠的平分线,OM 是BOC ∠的平分线.(1)求MON ∠的大小;(2)当锐角AOC ∠的大小为x ︒时,试猜想(1)中MON ∠的大小是否发生改变?并通过计算说明理由.19.(5分)化简:1(93)2(1)3x x --+.20.(8分)解方程:(1)82(32)6x x -+=; (2)11223x x x -+-=-. 21.(10分)(1)()22222333a ab a ab ⎛⎫+-+- ⎪⎝⎭(2)先化简,在求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中2x =-,23y =. 22.(10分)阅读下列材料:时间利用调查以自然人为调查对象,通过连续记录被调查者一天24小时的活动,获得居民在工作学习、家务劳动、休闲娱乐等活动上花费的时间,为分析居民身心健康和生活质量等提供数据支撑.2008年,我国第一次开展了时间利用调查,相距十年后的2018年,开展了第二次时间利用调查.2018年5月,北京调查总队对全市1700户居民家庭开展了入户调查,下面是根据此次调查的结果对北京市居民时间利用的特点和变化进行的分析. 北京市居民一天的时间分布情况统计图北京市居民2008年上下班的交通时间为1小时29分钟,2018年依然为1小时29分钟;2008年人均家庭劳务时间为2小时32分钟,2018年为2小时52分钟;2008年人均自由支配时间为4小时17分钟,2018年为4小时34分钟;2008年上网时间为25分钟,2018年上网时间是2008年的7.44倍.(说明:以上内容摘自北京市统计局官网),根据以上材料解答下列问题:(1)2018年采用的调查方式是;(2)图中m的值为;(3)①利用统计表,将2008年和2018年北京市居民上下班的交通时间、人均家庭劳务时间、人均自由支配时间和上网时间表示出来;②根据以上信息,说明十年间北京市居民时间利用变化最大的是,请你分析变化的原因是.23.(12分)如图,已知点C为AB上一点,AC=12cm,CB=12AC,D、E分别为AC、AB的中点,求DE的长.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、B【解题分析】试题分析:首先根据已知条件求出线段DB的长度,再求出线段CD长度即可.解:∵AB=8cm,AD=5cm,∴BD=AB﹣AD=3cm,∵BC=5cm,∴CD=CB﹣BD=2cm,故选B.考点:直线、射线、线段.2、D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【题目详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D .【题目点拨】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.3、A【解题分析】试题分析:∵当x=1时,的值为﹣2,∴,∴,∴=(﹣3﹣1)×(1+3)=﹣1.故选A .考点:整式的混合运算—化简求值.4、A【分析】设一次函数解析式为y=kx+b ,找出两对x 与y 的值代入计算求出k 与b 的值,即可确定出m 的值.【题目详解】解:设一次函数解析式为y=kx+b , 将x=-1,y=1;x=0,y=-2代入得:12k b b -+⎧⎨-⎩== , 解得:k=-3,b=-2,∴一次函数解析式为y=-3x-2,令y=-5,得到x=1,则m=1,故选:A .【题目点拨】此题考查待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键. 5、C【分析】先根据折叠的性质得出CFG EFG ∠=∠,再根据角平分线的定义得出12EFH BFE ∠=∠,然后根据平角的定义、角的和差即可得.【题目详解】由折叠的性质得:CFG EFG ∠=∠ 12EFG CFE ∴∠=∠ ∵FH 平分BFE ∠12EFH BFE ∴∠=∠ ∴GFH EFG EFH ∠=∠+∠1122CFE BFE =∠+∠ 1()2CFE BFE =∠+∠1180902=⨯︒=︒即90α=︒故选:C.【题目点拨】本题考查了折叠的性质、角平分线的定义等知识点,掌握并熟记各性质与定义是解题关键.6、B【分析】A、利用科学记数法进行验证即可;B、利用四舍五入法进行验证即可;C、利用精确度的概念进行验证即可;D、利用科学记数法进行验证即可.【题目详解】解:A、将310万用科学记数法表示为3.1×106,故此选项错误;B、用四舍五入法将1.097精确到百分位为1.10,故此选项正确;C、近似数2.3精确到十分位,近似数2.30精确到百分位,所以近似数2.3与2.30精确度不同,故此选项错误;D. 若用科学记数法表示的数为2.01×105,则其原数为20 1000,故此选项错误.故选B.【题目点拨】本题考查了科学记数法与近似数,理解科学记数法的表示方法和近似数的相关概念是解决此题的关键.7、A【分析】根据正方体的展开图分别判断出a、b、c的对面,即可求出a、b、c的值,然后代入求值即可.【题目详解】解:由正方体的展开图可知:a和14是对面,b和-1是对面,c和-2是对面∴a=4,b=-1,c=1 2 -∴41151216 ab c⎛⎫+=-+-=-⎪⎝⎭故选A.【题目点拨】此题考查的是根据正方体的展开图,判断一个面的相对面和有理数的混合运算,掌握正方体相对面的判断方法和有理数的运算法则是解决此题的关键.8、B【分析】设这列火车的长度为x米,根据速度=路程÷时间结合火车的速度不变,即可得出关于x的一元一次方程,此题得解.【题目详解】设这列火车的长度为x 米,依题意,得:160802015x x ++=. 故选:B .【题目点拨】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.9、A【分析】代入后求出p+q=2018,变形后代入,即可求出答案.【题目详解】∵当x=1时,代数式px 3+qx+1的值为2019,∴代入得:p+q+1=2019,∴p+q=2018,∴当x=-1时,代数式px 3+qx+1=-p-q+1=-(p+q )+1=-2018+1=-2017,故选:A .【题目点拨】此题考查求代数式的值,能够整体代入是解题的关键.10、D【分析】根据正数大于负数和0,0大于负数,两个负数绝对值大的反而小,即可解答.【题目详解】A. 64-<-,故错误B. 31-<+,故错误C. 90-<,故错误D. ∵25371415=-=-2121--, 又∵14152121< ∴2537->-,故正确 故选:D【题目点拨】本题考查了实数比较大小,解决本题的关键是根据正数大于负数和0,0大于负数,两个负数绝对值大的反而小. 11、B【解题分析】科学记数法的表示形式为a ×10n 的形式.其中1≤|a |<10,n 为整数,确定n 的值时,用原数的整数位数减1,即5500万=5.5×1.故选B .12、B【分析】根据单项式、多项式及整式的定义,结合所给式子即可得出答案.【题目详解】(1) 2πxy -是单项式,故(1)错误; (2) 3x y -是多项式,故(2)正确; (3)0是单项式,故(3)错误; (4)1x x +不是整式,故(4)错误; 综上可得只有(2)正确.故选B.【题目点拨】此题考查单项式,整式,多项式,解题关键在于掌握各性质定义.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、00(150)0.8240x +⨯=【分析】设这件商品的成本价为x 元,则标价为00(150)x +元,打8折为00(150)0.8x +⨯,再根据打8折销售,现售价为240元即可列出方程.【题目详解】解:设这件商品的成本价为x 元,根据题意可得,00(150)0.8240x +⨯=. 故答案为:00(150)0.8240x +⨯=.【题目点拨】本题属于一元一次方程的应用,找出题目中的等量关系是解题的关键.14、-12115【分析】根据题意分别计算出第1次、第2次、第3次操作后增加的和,发现每次操作后和均增加-6,进而推出规律,求出第2020次操作所得新数串中所有各数的和.【题目详解】解:第1次操作后增加数字:7,-13,第1次操作后增加的和为:7+(-13)=-6;第2次操作后增加数字:-5,12,8,-21,第2次操作后增加的和为:-5+12+8+(-21)=-6;第3次操作后增加数字:7,-12,-5,17,-13,21,8,-29,第3次操作后增加的和为:7+(-12)+(-5)+17+(-13)+21+8+(-29)=-6;……,即每次操作后和增加-6,∴第2020次操作后和增加2020×(-6)=-12120,∴第2020次操作所得新数串中所有各数的和为2+(-5)+8+(-12120)=-12115.故答案为:-12115.【题目点拨】本题考查数字变化类规律,先分别计算出第1次、第2次、第3次操作后增加的和,从而得到:每次操作后和增加-6,是解题的关键.15、两点确定一条直线【分析】由直线公理可直接得出答案.【题目详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【题目点拨】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.16、-1【分析】根据新定义运算得到关于x的方程进行求解.【题目详解】∵11 2321x x+=∴()211 23xx+-=解得x=-1故答案为:-1.【题目点拨】此题主要考查一元一次方程的应用,解题的关键是根据题意得到方程.17、40%【解题分析】试题分析:从条形统计图可知:甲、乙、丙、丁四个兴趣小组的总人数为200人,甲、丙两个小组的人数为80人,所以报名参加甲组和丙组的人数之和占所有报名人数的百分比为80÷200×100%=40%.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)45°;(2)∠MON的大小不发生改变,即∠MON=45°,理由见解析.【解题分析】(1)根据∠AOB 是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM 是∠BOC 的平分线,ON 是∠AOC 的平分线,即可求得答案.(2)根据∠BOC=∠AOB+∠AOC=90°+x ︒,∠MON=∠MOC-∠NOC ,可得∠MON =12∠AOB =45°. 【题目详解】(1)∵∠AOB 是直角,∠AOC=40°.∴∠BOC=∠AOB+∠AOC=90°+40°=130° ∵ON 是∠AOC 的平分线,OM 是∠BOC 的平分线∴∠COM=12∠BOC=12×130°=65°,∠CON=12∠AOC=12×40°=20°, ∴∠MON=∠COM-∠CON=65°-20°=45° (2)当锐角∠AOC 的大小为x ︒时,∠MON 的大小不发生改变,即∠MON=45°理由:当∠AOC=x ︒时,∠BOC=∠AOB+∠AOC=90°+x ︒ ∵ON 是∠AOC 的平分线,OM 是∠BOC 的平分线∴∠COM=12∠BOC=12×(90°+x ︒)=45°+12x ︒,∠CON=12∠AOC=12x ︒, ∴∠MON=∠COM-∠CON=45°+12x ︒-12x ︒=45° 【题目点拨】本题考查了角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题19、3x -【分析】根据整式的加减运算法则即可求解. 【题目详解】1(93)2(1)3x x --+ 3122x x =---3x =-【题目点拨】此题主要考查整式的加减,解题的关键是熟知其运算法则.20、(1)5x =;(2)75x = 【分析】(1)去括号,移项后系数化为1即可求解;(2)方程两边同时乘6后去分母,去括号,移项合并,将x 系数化为1,即可求出解.【题目详解】解:(1)8646x x --=8664x x -=+210x =5x =故答案为:5x =.(2)()()6311221x x x --=-+6331222x x x -+=--6321223x x x -+=--57x =75x = 故答案为:75x =. 【题目点拨】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求解;熟练掌握一元一次方程的解法是解题的关键.21、(1)232a ab ++(2)23x y -+;589【分析】(1)根据整式的加减运算法则即可求解;(1)根据整式的加减运算法则进行化简,再代入x,y 即可求解.【题目详解】(1)()22222333a ab a ab ⎛⎫+-+-⎪⎝⎭ =2246332a ab a ab +--+=232a ab ++(2)22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭ =22123122323x x y x y -+-+ =23x y -+把2x =-,23y =代入原式=()4329-⨯-+=458699+=. 【题目点拨】此题主要考查整式的化简求值,解题的关键是熟知整式的加减运算法则.22、(1)抽样调查;(2)1;(3)①答案见解析;②上网时间;答案不唯一.【分析】(1)根据抽样调查的定义判断即可;(2)根据扇形统计图中,所有百分比的和为1计算;(3)①利用列表法解决问题即可;②利用表格中的数据判断即可.【题目详解】解:(1)抽样调查.(2)m=100-38-4-8-3-14-11-2=1,故答案为1.(3)①十年间北京市居民时间利用的变化统计表(单位:分钟)②上网时间.答案不唯一,理由合理即可,例如:生活水平提高了.【题目点拨】本题考查扇形统计图,频数分布表等知识,解题的关键是读懂题意,熟练掌握基本知识.23、DE的长3cm【分析】根据CB、AC的关系求出AC的长度,再根据线段中点的定义可得AD=12AC,AE=12AB,然后根据DE=AE-AD计算即可得解.【题目详解】因为AC=12cm,所以CB=12AC=12×12=6 cm,所以AB=AC+ CB=12+6=18cm.因为点E为AB的中点,所以AE=12AB=9cm,因为点D为AC的中点,所以AD=12AC=6cm,所以DE=AE﹣AD=9﹣6=3cm,所以DE的长3cm.【题目点拨】本题考查了两点间的距离、中点定义,解题关键是中点定义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档