中考数学真题上海市初中生统一学业考试数学试卷含详细答案
2022年上海市初中学业水平考试数学卷及答案
2022年上海市初中学业水平考试数学卷一.选择题(本大题共6题,每题4分,满分24分) 1. 8的相反数为( ) A .8 B . -8 C . D .- 2.下列运算正确的是…… ( )A .a ²+a ³=a 6B . (ab )2 =ab 2C . (a +b )²=a ²+b ²D . (a +b )(a -b )=a ² -b 2 3.已知反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能 经过这个函数为( )A . (2,3)B . (-2,3)C . (3,0)D . (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算 外卖费的总额的数据,则两种情况计算出的数据一样的是( ) A .平均数 B .中位数 C .众数 D .方差5.下列说法正确的是( )A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题 6.有一个正n 边形旋转90°后与自身重合,则n 为( ) A .6 B .9 C .12 D .15二.填空题(本大题共12题,每题4分,满分48分) 7.计算:3a -2a =_____. 8.已知f (x )=3x ,则f (1)=_____.9.解方程组的结果为_____. 10.已知x -x +m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,1818kx2213x y x y +=⎧⎨-=⎩则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的 频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人1-2小时 10人2-3小时14人3-4小时16人4-5小时6人),若共有200名学生,则该学校六年级 学生阅读时间不低于3小时的人数是_____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直 线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,则_____. 16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13, 则这个花坛的面积为_____.(结果保留)17. 如图,在△ABC 中,△A =30°,△B =90°,D 为AB 中点,E 在线段AC 上,,则_____.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把 这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时, 这个圆的半径为_____.,,BO a BC b ==DC =πAD DEAB BC=AEAC=三.解答题(本大题共7题,满分78分)19.(本大题满分10分)计算:20.(本大题满分10份)解关于x 的不等式组21.(本大题满分10分)一个一次函数的截距为-l ,且经过点A (2,3). (1)求这个一次函数的解析式;(2)点A ,B 在某个反比例函数上,点B 横坐标为6,将点B 向上平移2个单位得到点C ,求cos △ABC 的值。
2019-2020上海中考数学试卷及参考答案(2套)
D.甲的成绩的中位数比乙大
5.下列命题中,假命题是(
)
A.矩形的对角线相等
B.矩形对角线交点到四个顶点的距离相等
C.矩形的对角线互相平分
D.矩形对角线交点到四条边的距离相等
6.已知⊙ A 与⊙ B 外切,⊙ C与⊙ A、⊙B 都内切,且 AB=5,AC=6,BC=7,那么⊙的
半径长是(
)
A.11
B. 10
(2)解:延长 AD 交 BC于点 F.
∵AE=AB,∴∠ ABE=∠ E.
∵BE平分∠ ABC,∴∠ ABE=∠ CBE,∴∠ CBE=∠ E.
∴AE∥ BC. ∴∠ AFB=∠ FAE=90°, BF BD
AE DE
又∵ BD∶DE=2∶3 ∴ cos∠ABC= BF BD
AE DE
(3)解:△ ABC与△ ADE相似,且∠ DAE=90°,
S△ ABC
2019 年上海市初中毕业统一学业考试
数学试卷
考生注意:
1. 本试卷共 25 题.
2. 试卷满分 150 分, 考试时间 100 分钟 .
3. 答题时 , 考生务必按答题要求在答题纸规定的位置上作答 , 在草稿纸、本试卷上答题一律无效 .
4. 除第一、二大题外 , 其余各题如无特殊说明 , 都必须在答题纸的相应位置上写出证明或计算的主要步骤
C. 9
D.8
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
7.计算:(2a2) 2=
ቤተ መጻሕፍቲ ባይዱ
。
8.已知 f(x)= x2-1,那么 f(- 1)=
。
9.如果一个正方形的面积是 3,那么它的边长是=
。
10.如果关于 x 的方程 x2-x+m=0 没有实数根,那么实数 m的取值范围是=
上海市2023年初中学业水平考试中考数学真题试卷-含答案答案详解
第4题图上海市2023年中考数学试卷答案详解(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列运算正确的是().A 523a a a ;.B 336a a a ;.C 235a a ;.D a .【参考答案】A .【解析过程】52523a a aa ,A 选项正确;3332a a a ,B 选项错误; 23326a a a ,C 选a ,D 选项错误;故选A .2.在分式方程2221521x x x x).A 2550y y ;.B 25y y .2510y y .【参考答案】D .【解析过程】221x y x ,2221510x y y x ;故选D .3.下列函数中,函数值y 随x 的增大而减小的是().A 6y x ;.B 6y x ;.C 6y x;.D 6y x.【参考答案】B .【解析过程】对于正比例函数6y x ,60k , 函数值y 随x 的增大而增大,A 选项错误;对于正比例函数6y x ,60k ,函数值y 随x 的增大而减小,B 选项正确;对于反比例函数6y x,60k , 在每一象限内,函数值y 随x 的增大而减小,C 选项错误;对于反比例函数6y x ,60k , 在每一象限内,函数值y 随x 的增大而增大,D 选项错误;故选B .4.某学校的数学兴趣小组统计了不同时间段的车流量如图所示,则下列说法正确的是().A 小车的车流量与公车的车流量稳定;.B 小车的车流量的平均数较大;.C 小车与公车车流量在同一时间段达到最小值;.D 小车与公车车流量的变化趋势相同.【参考答案】B .【解析过程】观察图像可知:小车的车流量起伏较大不稳定,A 选项错误;小车的车流量每个时间段都比公车大,因此平均数较大,B 选项正确;小车与公车车流量在不同时间段达到最小值,C 选项错误;小车车流量先增大再减小再增大,公车车流量先增大再减小,因此变化趋势不同,D 选项错误;故选B .5.在四边形ABCD 中,//AD BC ,AB CD ,下列说法能使四边形ABCD 为矩形的是().A //AB CD ;.B AD BC ;.C A B ;.D A D .【参考答案】C .【解析过程】//AD BC ,AB CD , 四边形ABCD 是平行四边形或等腰梯形.若//AB CD ,只能判定四边形ABCD 是平行四边形,A 选项错误;若AD BC ,只能判定四边形ABCD 是平行四边形,B 选项错误;若A B ,//AD BC ,90A B ,又AB CD ,由平行线间的距离处处相等,可知CD AD ,因此6.//DC ,AD .同学们得出以下两个结论,其中判断正确的是()①AC .A .C DO ,AD C 7.分解因式:29n.【参考答案】 33n n .【解析过程】 2229333n n n n .8.化简:2211xx x的结果为.【参考答案】2.【解析过程】 21222221111x x x x x x x.9.已知关于x 2 ,则x.【参考答案】18.214418x x (经检验,18x 是原方程的解).10.函数 123f x x的定义域为.【参考答案】23x .【解析过程】由分式的分母不为零,可得23023x x .11.已知关于x 的一元二次方程2610ax x 没有实数根,那么a 的取值范围是.【参考答案】9a .【解析过程】由题意,可得093640a a a.12.在不透明的盒子中装有1个黑球、2个白球、3个红球、4个绿球,这10个球除颜色外完全相同,那么从中随机摸出一个球是绿球的概率是.13.,那么这个正多边形的边数为.3601820.14.满足0a ,0b ,0c 即可)0,0c ,又其对称轴左侧的部分是上升21y x .15.如图,在ABC 中,D 、E 分别在边AB 、AC 上,2BD AD ,且//DE BC .设AB a ,AC b,那么DE.(用a 、b表示)【参考答案】1133a b.【解析过程】由题意,可知13DE AD BC AB ,故13DE BC1111133333BA AC AB AC a b a b .第15题图第16题图16.“垃圾分类”是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.【参考答案】1500.【解析过程】由扇形统计图,可得可回收垃圾占比为150%29%1%20% ,故全市可收集的干垃圾总量为6050%10150020%吨.17.如图,在ABC 中,35C ,将ABC 绕点A 旋转 (0180 )度角,使点B 落在边BC 上的点D 处,若AD 平分BAC ,则 度.【参考答案】110.,,由三角形内角和得 ,18.在,⊙.又三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2133.【参考答案】6.【解析过程】原式22936.20.(本题满分10分)解关于x的不等式组:36152x xxx.【参考答案】34x.【解析过程】3626333422103124152x xx x xxxx x x xx.即原不等式组的解为34x.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在⊙O中,弦AB的长为8,点C在BO的延长线上,且4cos5ABC,2OB OC.(1)求⊙O的半径;(2)求BAC的正切值.【参考答案】(1)5;(2)94.【解析过程】(1)如图所示,作OD AB于点D,由垂径定理可得142AD DB AB.在Rt ODB中,44cos cos5DBABC OBDOB OB,解得5OB ,即⊙O的半径为5.(2)如图所示,作CE AB于点E,可得//OD CE,因此OD DB OBCE BE CB.又3OD ,2OB OC,故342233OCCE BE OC,解得92CE ,6BE .在Rt ACE中,992tan864CECAEAE,即BAC的正切值为94.第21题图第23题图某加油站现有面值为1000元的会员卡,购买该卡可以打九折.若用此卡内的金额来加油,则每升油在原价的基础上还可以减价0.3元.某人购买了此会员卡,并将卡内金额一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)假设优惠后该人加油的实际单价为y 元/升,每升油的原价为x 元/升,请写出y 关于x 的函数关系式(不必写出定义域);(3)若每升油原价为7.3元/升,那么优惠后的实际单价与原价的差值为多少?【参考答案】(1)900(元);(2)0.90.27y x ;(3)1(元).【解析过程】(1)由题意,可得100090%900 (元),即他实际花了900(元)购买会员卡.(2)该人实际花费900(元),实际单价为y 元/升,购买油量为900y升;会员卡面值为1000(元),会员卡加油每升为 0.3x 元/升,购买油量为10000.3x 升;由油量相等可列方程90010000.3y x ,化简得0.90.27y x ,即y 关于x 的函数关系式为0.90.27y x .(3)当7.3x 时,可得0.97.30.27 6.3y ,7.3 6.31x y ,即优惠后的实际单价与原价的差值为1(元).23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在梯形ABCD 中,//AD BC ,点F 、E 分别在线段BC 、AC 上,且FAC ADE ,AC AD .(1)求证:FC AE ;(2)若ABC CDE ,求证:2AF BF CE .【参考答案】(1)证明如下;(2)证明如下.【解析过程】(1)如图所示,//AD BC ,ACF DAE ,又AC AD ,FAC ADE ,ACF DAE ≌(..A S A ),FC AE .(2)如图所示,由外角可得AFB ACF FAC ,CED DAE ADE ,又ACF DAE ,FAC ADE ,AFB CED .又ABC CDE ,AFB CED ∽,AF BFCE DE.又ACF DAE ≌,AF DE .可得AF BF CE AF,即2AF BF CE .如图,在平面直角坐标系xOy 中,直线364y x与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上(不与点B 重合),以C 为顶点的抛物线2:M y ax bx c (0a )经过点B .(1)求点A 、B 的坐标;(2)求b 、c 的值;(3)平移抛物线M ,使得点C 平移至点P ,点B 平移至点D ,联结CD ,且//CD x 轴,如果点P 在x轴上,且新抛物线经过点B ,求新抛物线N 的表达式.【参考答案】(1) 8,0A , 0,6B ;(2)32b ,6c ;(3) 2316y x .时,解得8x ;当x (2)6 .在线段将a 242432.(3因为点 ,0P p 是由点3,64C t t平移得到的,因此抛物线M 向左或向右平移后再向下平移364t 个单位得到新抛物线N .又点D 是由点 0,6B 平移得到的,所以点D 的纵坐标为34t.又//CD x 轴,所以C D y y ,即364t 34t 4t .又3342416C b x t a a a,所以抛物线233:6162M y x x .设抛物线N 的顶点式为 2316y x p ,因为新抛物线经过点B ,将 0,6B 带入 2316y x p ,第25题图1第25题图2可得 236016p p ,故抛物线N 的表达式为 2316y x .25.(本题满分14分,第(1)小题4分,第(2)②小题5分,第(3)小题5分)已知在ABC 中,AB AC ,点O 在边AB 上,点F 为边OB 中点,以O 为圆心、OB 为半径的圆分别交BC 、AC 于点D 、E ,联结EF 交OD 于点G .(1)如图1,如果OG GD ,求证:四边形CEGD 为平行四边形;(2)如图2,联结OE ,如果90BAC 时,OFE DOE ,4AO ,求边OB 的长;(3)联结BG ,如果BGO 是以OB 为腰的等腰三角形,且AO OF ,求OGOD的值.【参考答案】(1)证明如下;(2)133【解析过程】(1)AB AC ,ABCOB OD ,OBD ODB .//ODB AC OD .又OG //BD .(2又 又90EAF OAE ,AFE AEO ∽,2AF AE AE AO AF AE AO.设OE OB x ,则1122OF OB x,1442AO AF x.又222216AE OE AO x ,因此221164423202x x x x.解得1x ,负舍,故1x .即边OB 的长为1(3)首先排除OB OG ,因为假如OB OG ,由OB OD ,可推得点G 、D 重合,从而推得G 、D 、C 、E 重合,此时点A 和点O 必重合,又点F 为边OB 中点,这与AO OF 矛盾,故舍.因此只能OB BG ,如图所示,倍长GF 至点'G ,由'GF FG ,'GFB G FO ,FB FO ,可得''GFB G FO GF G F ≌,'OG BG OB OE ,'OEG OG F .又//AC OD ,AO OF ,1'EG AOEG GF G F GF OF.由以上可得'OEG OG F OG OF ≌.又OF FB ,OD OB ,所以OG GD ,故12OG OD .。
2020年上海市中考数学试卷附答案解析版
1 0.2 ∴ AC 7 (米), 答:井深 AC 为 7 米。 15.【答案】 2a b
解:∵四边形 ABCD 是平行四边形, ∴ AD BC , AD∥BC , AB CD , AB∥CD , ∴ AD BC a ,
2 / 10
∵ CD CA AD b a ,
∵四边形 ABEF 向右平移可以与四边形 EFCD 重合,∴平行四边形 ABCD 是平移重合图形,故选:A。
二、
7.【答案】 6a2b 【解析】 2a3ab 6a2b 。故答案为: 6a2b 。
8.【答案】1
【解析】∵ f x 2 ,∴ f 3 2 1,故答案为:1。
x 1
3 1
1 / 10
9.【答案】减小
解得:
k b
70 400
,
∴s 70t 400 ; 当 t 15 时, s 1 450 ,
1800 1 450 350 , ∴当小明从家出发去学校步行 15 分钟时,到学校还需步行 350 米,
故答案为:350。 17.【答案】 3 3
2 【解析】如图,过点 E 作 EH⊥BC 于 H 。
息,当小明从家出发去学校步行 15 分钟时,到学校还需步行
米.
17.(4 分)如图,在△ABC 中,AB 4 ,BC 7 ,∠B 60 ,点 D 在边 BC 上,CD 3 ,
联结 AD .如果将△ACD 沿直线 AD 翻折后,点 C 的对应点为点 E ,那么点 E 到直线
BD 的距离为
.
18.(4 分)在矩形 ABCD 中, AB 6 , BC 8 ,点 O 在对角线 AC 上,圆 O 的半径为
答 4.(4 分)已知反比例函数的图象经过点(2, 4) ,那么这个反比例函数的解析式是
2022年上海市初中毕业生统一学业考试数学试卷及参考答案
2022年上海市初中毕业生统一学业考试数学试卷一.选择题:〔本大题含I 、II 两组,每组各6题,每题4分,总分值24分〕I 组:供使用一期课改教材的考生完成1.以下运算中,计算结果正确的选项是〔A 〕x ·x 3=2x 3;〔B 〕x 3÷x =x 2;〔C 〕〔x 3〕2=x 5;〔D 〕x 3+x 3=2x 6.2.新建的北京奥运会体育场——“鸟巢〞能容纳91 000位观众,将91 000用科学记数法表示为 〔A 〕31091⨯;〔B 〕210910⨯;〔C 〕3101.9⨯;〔D 〕4101.9⨯.3.以下列图形中,既是轴对称图形,又是中心对称图形的是〔A 〕;〔B 〕;〔C 〕;〔D 〕.4.假设抛物线2)1x (y 2-+=与x 轴的正半轴相交于点A ,那么点A 的坐标为〔A 〕〔21--,0〕;〔B 〕〔2,0〕;〔C 〕〔-1,-2〕;〔D 〕〔21+-,0〕.5.假设一元二次方程1x 3x 42=+的两个根分别为1x 、2x ,那么以下结论正确的选项是〔A 〕43x x 21-=+,41x x 21-=⋅;〔B 〕3x x 21-=+,1x x 21-=⋅; 〔C 〕43x x 21=+,41x x 21=⋅; 〔D 〕3x x 21=+,1x x 21=⋅. 6.以下结论中,正确的选项是〔A 〕圆的切线必垂直于半径; 〔B 〕垂直于切线的直线必经过圆心;〔C 〕垂直于切线的直线必经过切点; 〔D 〕经过圆心与切点的直线必垂直于切线.II 组 :供使用二期课改教材的考生完成 1.以下运算中,计算结果正确的选项是〔A 〕x ·x 3=2x 3;〔B 〕x 3÷x =x 2;〔C 〕〔x 3〕2=x 5;〔D 〕x 3+x 3=2x 6.2.新建的北京奥运会体育场——“鸟巢〞能容纳91 000位观众,将91 000用科学记数法表示为 〔A 〕31091⨯;〔B 〕210910⨯;〔C 〕3101.9⨯;〔D 〕4101.9⨯.3.以下列图形中,既是轴对称图形,又是中心对称图形的是〔A 〕;〔B 〕;〔C 〕;〔D 〕. 4.一个布袋中有4个红球与8个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是〔A 〕121;〔B 〕31;〔C 〕32;〔D 〕21. 5.假设AB 是非零向量,那么以下等式正确的选项是〔A 〕AB =BA ;〔B 〕AB =BA ;〔C 〕AB +BA =0;〔D 〕AB +BA =0.6.以下事件中,属必然事件的是 〔A 〕男生的身高一定超过女生的身高;〔B 〕方程04x 42=+在实数范围内无解;〔C 〕明天数学考试,小明一定得总分值;〔D 〕两个无理数相加一定是无理数.二.填空题:〔本大题共12题,每题4分,总分值48分〕 [请将结果直接填入答题纸的相应位置]7.不等式2-3x>0的解集是.8.分解因式xy –x -y+1=.9.化简:=-321. 10.方程31x 2=-的根是.11.函数1x x y -=的定义域是. 12.假设反比例函数)0k (xk y <=的函数图像过点P 〔2,m 〕、Q 〔1,n 〕,那么m 与n 的大小关系是:mn 〔选择填“>〞 、“=〞、“<〞〕.13.关于x 的方程01mx mx 2=++有两个相等的实数根,那么m=.14.在平面直角坐标系中,点A 的坐标为〔-2,3〕,点B 的坐标为 O P x1 2y〔-1,6〕.假设点C 与点A 关于x 轴对称,那么点B 与点C 之间的距离为.15.如图1,将直线OP 向下平移3个单位,所得直线的函数解析式为.16.在⊿ABC 中,过重心G 且平行BC 的直线交AB 于点D ,那么AD:DB=.17.如图2,圆O 1与圆O 2相交于A 、B 两点,它们的半径都为2,圆O 1经过点O 2,那么四边形O 1AO 2B 的面积为.18.如图3,矩形纸片ABCD ,BC=2,∠ABD=30°.将该纸片沿对角线BD 翻折,点A 落在点E 处,EB 交DC 于点F ,那么点F 到直线DB 的距离为.三.解答题:〔本大题共7题,总分值78分〕19.〔此题总分值10分〕先化简,再求值:)b 1a 1(b a b ab 2a 2222-÷-+-,其中12b ,12a -=+=. 20.〔此题总分值10分〕 解方程251x x x 1x =---. 21.〔此题总分值10分,第〔1〕题总分值6分,第〔2〕题总分值4分〕如图4,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD=CD ,cosB=135,BC=26. 求〔1〕cos ∠DAC 的值;〔2〕线段AD 的长.22.〔此题总分值10分,第〔1〕题总分值3分,第〔2〕题总分值5分,第〔3〕题总分值2分〕 近五十年来,我国土地荒漠化扩展的面积及沙尘爆发生的次数情况如表1、表2所示.表1:土地荒漠化扩展的面积情况年代 50、60年代的20年 70、80年代的20年 90年代的10年 平均每年土地荒漠化扩展的面积〔km 2〕1560 2100 2460 表2:沙尘爆发生的次数情况年代 50年代的10年 60年代的10年 70年代的10年 80年代的10年 90年代的10年每十年沙尘爆发生次数5 8 13 14 23 〔1〕求出五十年来平均每年土地荒漠化扩展的面积; 〔2〕在图5中画出不同年代沙尘爆发生的次数的折线图;〔3〕观察表2或〔2〕所得的折线图,你认为沙尘爆发生次数呈〔选择“增加〞、“稳定〞或“减少〞〕趋势.23.〔此题总分值12分,每题总分值各6分〕 如图6,在⊿ABC 中,点D 在边AC 上,DB=BC ,点E 是CD 的中点,点F 是AB 的中点.〔1〕求证:EF=21AB ; 〔2〕过点A 作AG ∥EF ,交BE 的延长线于点G ,求证:⊿ABE ≌⊿AGE . 24.〔此题总分值12分,每题总分值各4分〕 如图7,在平面直角坐标系中,点O 为坐标原点,以点A 〔0,-3〕为圆心,5为半径作圆A ,交x 轴于B 、C 两点,交y 轴于点D 、E 两点.〔1〕求点B 、C 、D 的坐标;〔2〕如果一个二次函数图像经过B 、C 、D 三点,求这个二次函数解析式;〔3〕P 为x 轴正半轴上的一点,过点P 作与圆A 相离并且与x 轴垂直的直线,交上述二次函数图像于点F , O 1 O 2 B A 图2 F C B A 图3D E C B A 图4 DA B F E D C图6 50年代 60年代 70年代 80年代 90年代 25 20 15 10 5 次数 年代 图5 图7O D x C A . y B当⊿CPF 中一个内角的正切之为21时,求点P 的坐标. 25.〔此题总分值14分,第〔1〕题总分值3分,第〔2〕题总分值7分,第〔3〕题总分值4分〕 正方形ABCD 的边长为2,E 是射线CD 上的动点〔不与点D 重合〕,直线AE 交直线BC 于点G ,∠BAE的平分线交射线BC 于点O .〔1〕如图8,当CE=32时,求线段BG 的长; 〔2〕当点O 在线段BC 上时,设x EDCE =,BO=y ,求y 关于x 的函数解析式; 〔3〕当CE=2ED 时,求线段BO 的长.2022年上海市初中毕业生统一学业考试 数学模拟卷答案要点与评分标准说明: 1. 解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分; 2. 第一、二大题假设无特别说明,每题评分只有总分值或零分;3. 第三大题中各题右端所注分数,表示考生正确做对这一步应得分数; 4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对此题的评阅.如果考生的解答在某一步出现错误,影响后继局部而未改变此题的内容和难度,视影响的程度决定后继局部的给分,但原那么上不超过后继局部应得分数的一半;5. 评分时,给分或扣分均以1分为根本单位一.选择题:〔本大题含I 、II 两组,每组各6题,总分值24分〕I 组1、B ; 2、D ; 3、C; 4、D; 5、A; 6、D .II 组1、B ; 2、D ; 3、C; 4、C; 5、A; 6、B .二.填空题:〔本大题共12题,总分值48分〕7、32<x ; 8、(1)(1)x y --; 9、23+; 10、5=x ; 11、0≥x 且1≠x ; 12、>; 13、4; 14、23; 15、32-=x y ; 16、1:2(或2); 17、32; 18、233. 三.解答题:〔本大题共7题,总分值78分〕 19.解:原式=2()()()a b a b a b a b ab--÷+---------------------(3分) ba ab b a b a -⋅+-=----------------------- (2分) ba ab +=,---------------------------(2分) 当21,21a b =+=-时,原式=12.422=--------------(3分) 20.解:[方法一]设1x y x-=,-----------------------(2分) 那么原方程化为152y y +=,整理得22520y y -+=,---------- (2分) ∴112y =,22y =;-------------------------(2分) 当12y =时,112x x -=,得2x =,----------------(1分) 当2y =时,12x x-=得1x =-,----------------- (1分) A D B G EC 图8O 备用图 A B C D经检验 12x =,21x =-是原方程的根; ----------------(2分)[方法二]去分母得 222(1)25(1)x x x x -+=-, --------------〔3分〕 整理得 220x x --=, ------------------------〔2分〕 解得 12x =,21x =-,------------------------〔3分〕 经检验 12x =,21x =-是原方程的根.------------------〔2分〕21.解:〔1〕在Rt △ABC 中,90BAC ∠=,cos B =513AB BC =.--------- (1分) ∵BC =26,∴AB =10. ------------------------- (1分) ∴AC =2222261024BC AB -=-=.---------------- (2分) ∵AD //BC ,∴∠DAC =∠ACB .--------------------- (1分) ∴cos ∠DAC = cos ∠ACB =1213AC BC =;------------------ (1分) (2)过点D 作DE ⊥AC ,垂足为E .--------------------(1分)∵AD =DC , AE =EC =1122AC =.--------------------(1分) 在Rt △ADE 中,cos ∠DAE =1213AE AD =,----------------- (1分) ∴AD =13.------------------------------(1分)22.解:〔1〕平均每年土地荒漠化扩展的面积为 102020102460202100201560++⨯+⨯+⨯ 〔2分〕 1956=〔km 2〕, ---------(1分)答:所求平均每年土地荒漠化扩展的面积为1956 km 2;〔2〕右图;------------- (5分)〔3〕增加.--------------(2分)23.证明:(1) 连结BE ,---------- (1分)∵DB=BC ,点E 是CD 的中点,∴BE ⊥CD .(2分) ∵点F 是Rt △ABE 中斜边上的中点,∴EF=12AB ; ------------ (3分)(2)[方法一]在△ABG 中,AF BF =,//AG EF ,∴BE EG =.------〔3分〕 在△ABE 和△AGE 中,AE AE =,∠AEB =∠AEG=90°,∴△ABE ≌△AGE ;--(3分)[方法二]由(1)得,EF=AF ,∴∠AEF =∠FAE . -------------(1分) ∵EF//AG ,∴∠AEF =∠EAG . --------------------(1分) ∴∠EAF=∠EAG .-------------------------- (1分) ∵AE=AE ,∠AEB =∠AEG=90°,∴△ABE ≌△AGE .----------- (3分)24.解:〔1〕∵点A 的坐标为(0 ,3)-,线段5AD =,∴点D 的坐标(0 ,2).----(1分) 连结AC ,在Rt △AOC 中,∠AOC=90°,OA=3,AC=5,∴OC=4. -----(1分) ∴点C 的坐标为(4 ,0);------------------------(1分) 同理可得 点B 坐标为( 4 ,0)-.--------------------- (1分) 〔2〕设所求二次函数的解析式为2y ax bx c =++,由于该二次函数的图像经过B 、C 、D 三点,那么 0164,0164,2,a b c a b c c =-+⎧⎪=++⎨⎪=⎩------------------------〔3分〕50年代 60年代 70年代 80年代 90年代 25 20 15 10 5次数年代解得 1 ,80 ,2,a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴所求的二次函数的解析式为2128y x =-+;-------(1分) 〔3〕设点P 坐标为( ,0)t ,由题意得5t >,----------------(1分) 且点F 的坐标为21(,2)8t t -+,4PC t =-,2128PF t =-,∵∠CPF =90°,∴当△CPF 中一个内角的正切值为12时, ①假设12CP PF =时,即2411228t t -=-,解得 112t =, 24t =(舍);-------(1分) ②当12PF CP =时,2121842t t -=- 解得 10t =(舍),24t =(舍),------- (1分) 所以所求点P 的坐标为(12,0).--------------------- (1分)25.解:〔1〕在边长为2的正方形ABCD 中,32=CE ,得34=DE , 又∵//AD BC ,即//AD CG ,∴12CG CE AD DE ==,得1CG =.--------〔2分〕 ∵2BC =,∴3BG =; ------------------------〔1分〕 〔2〕当点O 在线段BC 上时,过点O 作AG OF ⊥,垂足为点F ,∵AO 为BAE ∠的角平分线, 90=∠ABO ,∴y BO OF ==.------〔1分〕在正方形ABCD 中,BC AD //,∴CG CE x AD ED==. ∵2=AD ,∴x CG 2=.-----------------------〔1分〕 又∵CE x ED =,2CE ED +=,得xx CE +=12.--------------〔1分〕 ∵在Rt △ABG 中,2AB =,22BG x =+,90B ∠=, ∴2222AG x x =++.∵2AF AB ==,∴22222FG AG AF x x =-=++-.----------〔1分〕 ∵OF AB FG BG =,即AB y FG BG =⋅,得122222+-++=x x x y ,)0(≥x ;〔2分〕(1分) 〔3〕当ED CE 2=时,①当点O 在线段BC 上时,即2=x ,由〔2〕得32102-==y OB ;--〔1分〕 ②当点O 在线段BC 延长线上时, 4CE =,2==DC ED ,在Rt △ADE 中,22=AE .设AO 交线段DC 于点H ,∵AO 是BAE ∠的平分线,即HAE BAH ∠=∠, 又∵CD AB //,∴AHE BAH ∠=∠.∴AHE HAE ∠=∠. ∴22==AE EH .∴224-=CH .---------------〔1分〕 ∵CD AB //,∴BO CO AB CH =,即BO BO 22224-=-,得222+=BO . 〔2分〕。
2022年上海市初中毕业统一学业考试数学试卷及参考答案
2022年上海市初中毕业统一学业考试数学试卷一、选择题〔每题4分,共24分〕1.计算23⋅的结果是〔B 〕.(A)5;(B)6;(C)23;(D)32.2.据统计,2022年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为〔C 〕.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是〔C 〕.(A)y=x2-1;(B)y=x2+1;(C)y=(x-1)2;(D)y=(x+1)2.4.如图,直线a、b被直线c所截,那么∠1的同位角是〔A 〕.〔此题图可能有问题〕(A)∠2;(B)∠3;(C)∠4;(D)∠5.5.某事测得一周PM2.5的日均值〔单位:〕如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是〔A 〕.(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,AC、BD是菱形ABCD的对角线,那么以下结论一定正确的选项是〔B 〕.(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题〔每题4分,共48分〕7.计算:a(a+1)=2a a+.8.函数11yx=-的定义域是1x≠.9.不等式组12,28xx->⎧⎨<⎩的解集是34x.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.如果关于x的方程x2-2x+k=0〔k为常数〕有两个不相等的实数根,那么k的取值范围是1k.12.传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.13.如果从初三〔1〕、〔2〕、〔3〕班中随机抽取一个班与初三〔4〕班进行一场拔河比赛,那么恰好抽到初三〔1〕班的概率是13.14.反比例函数k y x =〔k 是常数,k ≠0〕,在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是1(0y k x =-即可)〔只需写一个〕. 15.如图,在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =23a b -〔结果用a 、b 表示〕. 16.甲、乙、丙三人进行飞镖比赛,他们每人五次投得的成绩如下列图,那么三人中成绩最稳定的是乙.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b 〞,例如这组数中的第三个数“3〞是由“2×2-1〞得到的,那么这组数中y 表示的数为-9.18.如图,在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为23t 〔用含t 的代数式表示〕.三、解答题〔此题共7题,总分值78分〕19.〔此题总分值10分〕计算:131128233--+-.233= 20.〔此题总分值10分〕解方程:2121111x x x x +-=--+.0;1(x x ==舍) 21.〔此题总分值10分,第〔1〕小题总分值7分,第〔2〕小题总分值3分〕水银体温计的读数y 〔℃〕与水银柱的长度x 〔cm 〕之间是一次函数关系.现有一支水银体温计,其局部刻度线不清晰〔如图〕,表中记录的是该体温计局部清晰刻度线及其对应水银柱的长度. 水银柱的长度x 〔cm 〕 4.2 …8.2 9.8 体温计的读数y 〔℃〕 35.0… 40.0 42.0 〔1〕求y 关于x 的函数关系式〔不需要写出函数的定义域〕; 1.2529.75y x =+ 〔2〕用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.37.522.〔此题总分值10分,每题总分值各5分〕如图,Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .〔1〕求sin B 的值;5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==〔2〕如果CD =5,求BE 的值. 23.〔此题总分值12分,每题总分值各6分〕:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .(1) 求证:四边形ACED 是平行四边形;〔2〕联结AE ,交BD 于点G ,求证:DG DF GB DB=. 24.〔此题总分值12分,每题总分值各4分〕 在平面直角坐标系中〔如图〕,抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).〔1〕求该抛物线的表达式,并写出其对称轴;〔2〕点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;〔3〕点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.〔此题总分值14分,第〔1〕小题总分值3分,第〔1〕小题总分值5分,第〔1〕小题总分值6分〕 如图1,在平行四边形ABCD 中,AB =5,BC =8,cos B =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F 〔点F 在点E 的右侧〕,射线CE 与射线BA 交于点G .〔1〕当圆C 经过点A 时,求CP 的长;〔2〕联结AP ,当AP //CG 时,求弦EF 的长;〔3〕当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图。
2022年上海市初中毕业统一学业考试数学试卷及答案
2022年上海市初中毕业统一学业考试数学试卷及答案数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列式子中,属于最简二次根式的是()(A)9;(B)7;(C)20;(D)2.下列关于某的一元二次方程有实数根的是()(A)某10;(B)某某10;(C)某某10;(D)某某10.3.如果将抛物线y某2向下平移1个单位,那么所得新抛物线的表达式是()(A)y(某1)2;(B)y(某1)2;(C)y某1;(D)y某3.4.数据0,1,1,3,3,4的中位线和平均数分别是()(A)2和2.4;(B)2和2;(C)1和2;(D)3和2.5.如图1,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()(A)5∶8;(B)3∶8;(C)3∶5;(D)2∶5.6.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()(A)∠BDC=∠BCD;(B)∠ABC=∠DAB;(C)∠ADB=∠DAC;(D)∠AOB=∠BOC.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.因式分解:a1=_____________.2222221.32222ADEBF图1C8.不等式组某10的解集是____________.2某3某3b2a=___________.9.计算:ab10.计算:2(a─b)+3b=___________.11.已知函数f某2,那么f2=__________.某112.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为___________.3第1页13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.y(升)__________升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.318.如图5,在△ABC中,ABAC,BC8,tanC=,如果将△ABC2沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为__________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分)[将下列各题的解答过程,做在答题纸的相应位置上]19.计算:8BA图2图5C1210()1.某y220.解方程组:2某某y2y02.y1某b经2121.已知平面直角坐标系某oy(如图6),直线y过第一、二、三象限,与y轴交于点B,点A(2,1)在这条直线上,联结AO,△AOB的面积等于1.(1)求b的值;k(k是常量,k0)某的图像经过点A,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图7-1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图7-2所示,其示意图如图7-3所示,其中AB⊥BC,EF∥BC,EAB1430,ABAE1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:in37°≈0.60,co37°≈0.80,tan37°≈0.75.)第2页FEFE023.如图8,在△ABC中,ABC=90,BA,点D为边AB的中点,DE∥BCEFAAAAC于点E,交CF∥AB交DE的延长线于点F.(1)求证:DEEF;图7-1图7-2(2)联结CD,过点D作DC的垂线交CF的延长线于点G,求证:BADGC.图7-3CA2DEF24.如图9,在平面直角坐标系某oy中,顶点为M的抛物线ya 某b某(a0)经过点A和某轴正半轴上的点B,AOOB=2,AOB120.0B图8C(1)求这条抛物线的表达式;(2)联结OM,求AOM的大小;(3)如果点C在某轴上,且△ABC与△AOM相似,求点C的坐标.于点Q,25.在矩形ABCD中,点P是边AD上的动点,联结BP,线段BP的垂直平分线交边BCyA垂足为点M,联结QP(如图10).已知AD13,AB5,设AP 某,BQy.(1)求y关于某的函数解析式,并写出某的取值范围;OB某M (2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求某图的值;9(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EFEC4,求某的值.ADBQ图10备用图CBC第3页第4页。
2022年上海市中考数学试题(含答案解析)
2022年上海市初中学业水平考试数学试卷考生注意:1.本试卷共25题,试卷满分150分,考试时间100分钟。
2.答题时,考生务必按要求在答题纸上作答,在草稿纸、本试卷上答题一律无效。
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是A. 8-B. 8C. 18D.18-2.下列运算正确的是A. a²+a³=a6B. (ab)2 =ab2C. (a+b)²=a²+b²D. (a+b)(a-b)=a² -b23.已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为A. (2,3)B. (-2,3)C. (3,0)D. (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是A. 平均数B. 中位数C. 众数D. 方差5.下列说法正确的是A. 命题一定有逆命题B. 所有的定理一定有逆定理C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题6.有一个正n边形旋转90后与自身重合,则n为A. 6B. 9C. 12D. 15二、填空题(本大题共12题,每题4分,满分48分)7.计算:3a-2a=__________.8.已知f(x)=3x,则f(1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 10.已知x -23x +m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数 据含最小值,不含最大值)(0-1小时4人,1-2小时10人, 2-3小时14人,3-4小时16人,4-5小时6人),若共有200名 学生,则该学校六年级学生阅读时间不低于3小时的人数是 _____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____.16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛面积为_____.(结果保留π) 17.如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC上,AD DE AB BC=,则AEAC =_____. 18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大 时,这个圆的半径为_____.三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:11221|()123--+-20.(本题满分10分)解关于x 的不等式组34423x x xx >-⎧⎪+⎨>+⎪⎩21.(本题满分10分,每小题满分各5分)一个一次函数的截距为1,且经过点A (2,3). (1)求这个一次函数的解析式;(2)点A ,B 在某个反比例函数上,点B 横坐标为6,将点B 向上平移2个单位得到点C ,求cos ∠ABC 的值.22.(本题满分10分,每小题满分各5分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB 底部a 米的点D 处,测角仪高为b米,从C 点测得A 点的仰角为α,求灯杆AB 的高度.(用含a ,b ,a的代数式表 示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG 放在灯杆AB 前,测得其影长CH 为1米,再将木 杆沿着BC 方向移动1.8米至DE 的位置,此时测得其影长DF 为3米,求灯杆AB 的高度23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,AE ²=AQ ·AB 求证: (1)∠CAE =∠BAF ; (2)CF ·FQ =AF ·BQ24.(本题满分12分,第(1)小题满分4分,第(2)小题①满分4分,第(2)小题②满分4分) 已知:212y x bx c =++经过点()21A --,,()03B -,. (1)求函数解析式;(2)平移抛物线使得新顶点为(),P m n (m >0).①倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围; ②P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠=时,求P 点坐标.25.(本题满分14分,第(1)小题①满分4分,第(1)小题②满分4分,第(2)小题满分6分)平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,连接CE . (1)若AE CE =,①证明ABCD 为菱形;②若5AB =,3AE =,求BD 的长.(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F ,且2CE AE =.若F 在直线CE 上,求ABBC的值.2022年上海初中学业水平考试数学试题参考答案一、选择题(本大题共6题,每题4分,满分24分) 1.A2.D3.B4.D5.A6.C二、填空题(本大题共12题,每题4分,满分48分)7.a 8.39.21x y =⎧⎨=-⎩10.m <3 11.1312.20% 13.88 14.2y x =-+(答案不唯一) 15.2a b -+16.400π17.12或1418.22三、解答题(本大题共7题,满分78分) 19.解:11221|()123--+--=1 20.解:34423x x x x >-⎧⎪⎨+>+⎪⎩①②,解①得:x >-2, 解②得:x <-1, ∴-2<x <-1.21.(1)解:设这个一次函数的解析式y =kx +1,把A (2,3)代入,得3=2k +1, 解得:k =1,∴这个一次函数的解析式为y =x +1;(2)解:如图,设反比例函数解析式为y =m x, 把A (2,3)代入,得3=2m , 解得:m =6,∴反比例函数解析式为y =6x, 当x =6时,则y =66=1,∴B (6,1),∴AB =22(62)(13)25-+-=, ∵将点B 向上平移2个单位得到点C , ∴C (6,3),BC =2, ∵A (2,3),C (6,3), ∴AC ∥x 轴,∵B (6,1),C (6,3), ∴BC ⊥x 轴, ∴AC ⊥BC , ∴∠ACB =90°,∴△ABC 是直角三角形, ∴cos ∠ABC =25525BC AB ==. 22.(1)解:如图由题意得BD =a ,CD =b ,∠ACE =α ∠B =∠D =∠CEB =90° ∠四边形CDBE 为矩形, 则BE =CD =b ,BD =CE =a , 在Rt ∆ACE 中,tan α=AECE, 得AE =CE =CE ×tan α=a tan α 而AB =AE +BE ,故AB = a tan α+b答:灯杆AB 的高度为a tan α+b 米 (2)解:由题意可得,AB ∥GC ∥ED ,GC =ED =2,CH =1,DF =3,CD =1.8 由于AB ∥ED , ∠∆ABF ~∆EDF ,此时ED ABDF BF = 即2=3 1.83ABBC ++∠, ∠AB ∠GC ∠∆ABH ~∆GCH , 此时AB GCBH CH=, 211AB BC =+ ∠ 联立∠∠得24.8321AB BC AB BC ⎧=⎪⎪+⎨⎪=⎪+⎩, 解得: 3.80.9AB BC =⎧⎨=⎩答:灯杆AB 的高度为3.8米23.(1)证明:∵AB =AC ,∴∠B =∠C , ∵CF =BE , ∴CE =BF ,在△ACE 和△ABF 中,AC ABC B CE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ABF (SAS ), ∴∠CAE =∠BAF ;(2)证明:∵△ACE ≌△ABF ,∴AE =AF ,∠CAE =∠BAF , ∵AE ²=AQ ·AB ,AC =AB ,∴AE AB AQ AE =,即AE ACAQ AF =, ∴△ACE ∽△AFQ , ∴∠AEC =∠AQF , ∴∠AEF =∠BQF , ∵AE =AF , ∴∠AEF =∠AFE , ∴∠BQF =∠AFE , ∵∠B =∠C , ∴△CAF ∽△BFQ , ∴CF AFBQ FQ=,即CF ·FQ =AF ·BQ . 24.(1)解:把()21A --,,()03B -,代入212y x bx c =++,得 1223b c c -=-+⎧⎨-=⎩,解得:03b c =⎧⎨=-⎩, ∠函数解析式为:2132y x =-; (2)解:∠∠2132y x =-, ∠ 顶点坐标为(0,-3),即点B 是原抛物线的顶点, ∠ 平移抛物线使得新顶点为(),P m n (m >0). ∠ 抛物线向右平移了m 个单位, ∠ 1332OPB S m =⨯=△, ∠ m =2,∠ 平移抛物线对称轴为直线x =2,开口向上, ∠ 在x k =的右侧,两抛物线都上升, 又∠ 原抛物线对称轴为y 轴,开口向上,∠ k ≥2,∠ 把P (m ,n )代入2132y x =-,得n =2132m -, ∠ P (m ,2132m -) 根据题意,得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3, ∠ Q (0,m 2-3), ∠ B (0,-3), ∠ BQ =m 2,BP 2=2222411(33)24m m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m m +---=+,∠ BP =PQ ,如图,过点P 作PC ∠y 轴于C ,则PC =|m |,∠ BP =PQ ,PC ∠BQ ,∠ BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,∠ tan∠BPC = tan 60°=2123||mBC PC m ==,解得:m =±23,∠ n =2132m -=3,故P 的坐标为(23,3)或(-23,3)25.(1)①证明:如图,连接AC 交BD 于O ,∵平行四边形ABCD , ∴OA =OC , ∵AE =CE ,OE =OE , ∴△AOE ≌△COE (SSS), ∴∠AOE =∠COE ,∵∠AOE +∠COE =180°, ∴∠COE =90°, ∴AC ⊥BD ,∵平行四边形ABCD , ∴四边形ABCD 是菱形; (1)②∵OA =OC ,∴OB 是△ABC 的中线, ∵P 为BC 中点, ∴AP 是△ABC 的中线, ∴点E 是△ABC 的重心, ∴BE =2OE , 设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2, 在Rt △AOB 中,由勾股定理,得OA 2=AB 2-OB 2=52-(3x )2=25-9x 2, ∴9-x 2=25-9x 2,解得:x ,∴OB =3x , ∵平行四边形ABCD ,∴BD =2OB ; (2)解:如图,∵⊙A 与⊙B 相交于E 、F , ∴AB ⊥EF ,由(1)②知点E 是△ABC 的重心, 又F 在直线CE 上, ∴CG 是△ABC 的中线, ∴AG =BG =12AB ,GE =12CE ,∵CE AE ,∴GE =2AE ,CG =CE +GE =2AE , 在Rt △AGE 中,由勾股定理,得AG2=AE2-GE E=AE2-(22AE)2=12AE2,∴AG=22AE,∴AB=2AG=2AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=12AE2+(322AE)2=5AE2,∴BC=5AE,∴21055AB AEBC AE.2022年初中学业水平考试数学试卷第11页(共11页)。
上海市中考数学试题及参考答案(word解析版)
上海市中考数学试题及参考答案(word解析版)中考真题,详细解析,精心整理,word编辑。
2022年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x2x=x C.3x?2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m2>n2 C.2m>2n D.2m>2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=C.y=D.y=4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x21,那么f(1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2x+m=0没有实数根,那么实数m的取值范围是.1中考真题,详细解析,精心整理,word编辑。
211.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y ℃,那么y 关于x 的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l 2,含30°角的三角板的直角顶点C 在l 1上,30°角的顶点A 在l 2上,如果边AB 与l 1的交点D 是AB 的中点,那么∠1=度.16.如图,在正边形ABCDEF 中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD 中,E 是边AD 的中点.将△ABE 沿直线BE 翻折,点A 落在点F 处,联结DF ,那么∠EDF 的正切值是.中考真题,详细解析,精心整理,word编辑。
上海市2022年中考数学真题试题(含扫描答案)
上海市 2022年中考数学真题试题考生注意:1.本试卷共25题.2.试卷总分值150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题〔本大题共6题,每题4分,总分值24分〕 1.182的结果是〔 〕A. 4B.3C.222 2.以下对一元二次方程230x x +-=根的情况的判断,正确的选项是〔 〕 A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根3.以下对二次函数2y x x =-的图像的描述,正确的选项是〔 〕A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧局部是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是〔 〕A.25和30B.25和29C.28和30D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,30POQ ∠=︒,点A 、B 在射线OQ 上〔点A 在点O 、B 之间〕,半径长为2的A 与直线OP 相切,半径长为3的B 与A 相交,那么OB 的取值范围是〔 〕 A. 59OB << B. 49OB << C. 37OB << D. 2二、填空题〔本大题共12题,每题4分,总分值48分〕 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是 .10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元〔用含字母a 的代数式表示〕. 11.反比例函数1k y x-=〔k 是常数,1k ≠〕的图像有一支在第二象限,那么k 的取值范围是 .图1PBA O12.某学校学生自主建立了一个学习用品义卖平 台,九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 . 13.从2,,37π选出的这个数是无理数的概率为 .14.如果一次函数3y kx =+〔k 是常数,0k ≠〕的图像经过点〔1,0〕,那么y 的值随着x 的增大而 〔填“增大〞或“减小〞〕15.如图3,平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.17.如图4,正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点〔如图5〕,那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 . 三、解答题〔共7题,总分值78分〕19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.O -4-2321y x金额(元)人数805030105040302010O图2图4 图3 图5 图6 D B A GF A ED A20.先化简,再求值:2221211a a a a a a+⎛⎫-÷ ⎪-+-⎝⎭,其中5a =.21.如图7,ABC ∆中,AB =BC =5,3tan 4ABC ∠=. 〔1〕求AC 的长;〔2〕设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y 〔升〕与行驶路程x 〔千米〕之间是一次函数关系,其局部图像如图8所示.〔1〕求y 关于x 的函数关系式〔不需要写定义域〕;〔2〕当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?图8 C B A图723.:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F.〔1〕求证:EF =AE -BE ; 〔2〕联结BF ,假设AF DFBF AD=,求证:EF =EP .24.在平面直角坐标系xOy 中〔如图10〕,抛物线解析式212y x bx c =-++经过点A〔-1,0〕和点5(0,)2B ,顶点为点C. 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处. 〔1〕求抛物线的表达式; 〔2〕求线段CD 的长度;〔3〕将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.图10 O yx 图9PFEDCBA25.O 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F.〔1〕如图11,如果AC =BD ,求弦AC 的长;〔2〕如图12,如果E 为弦BD 的中点,求ABD ∠的余切值;〔3〕联结BC 、CD 、DA ,如果BC 是O 的内接正n 边形的一边,CD 是O 的内接正(n+4)边形的一边,求ACD ∆的面积.图12图11备用图OFE D C B A OFEDCBA参考答案2022中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午, 2022年上海市初中毕业统一学业考试数学科目顺利开考。
2024年上海市中考数学真题卷及答案解析
2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B. 290x -=C. 2660x x -+= D. 2690x x -+=4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯.形6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含B. 相交C. 外切D. 相离二、填空题(每题4分,共48分)7 计算:()324x =___________.8 计算()()a b b a +-=______.9.1=,则x =___________.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b的式子表示).16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人...17. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18. 对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为__________.三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)19.计算:102|1|24(1-++--.20. 解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.21. 在平面直角坐标系xOy 中,反比例函数ky x=(k 常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠值.22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三为的角板互不重叠),直角三角形斜边上的高都为h .(1)求:①两个直角三角形的直角边(结果用h 表示);②小平行四边形的底、高和面积(结果用h 表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23. 如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC =⋅;(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =.24. 在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.25. 在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-【答案】C 【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠【答案】D 【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可得到答案,熟练掌握求函数定义域的方法是解决问题的关键..【详解】解:函数2()3xf x x -=-的定义域是30x -≠,解得3x ≠,故选:D .3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B. 290x -=C. 2660x x -+= D. 2690x x -+=【答案】D 【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类【答案】B 【解析】【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形 B. 矩形C. 直角梯形D. 等腰梯形【答案】A 【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBC OAD S S ∴= ,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBC OAD S S OC BF OB CH OD AE OA DG∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形,故选:A .6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含 B. 相交C. 外切D. 相离【答案】B 【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解: 圆A 半径为1,圆P 半径为3,圆A 与圆P 内切,∴圆A 含在圆P 内,即312PA =-=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB =325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7. 计算:()324x=___________.【答案】664x 【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8. 计算()()a b b a +-=______.【答案】22b a -【解析】【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9. 1=,则x =___________.【答案】1【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)【答案】3810⨯【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键.【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍,故答案为:3810⨯.11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)【答案】减小【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =-,结合正比例函数的性质,即可得出y 的值随x 的增大而减小.【详解】解: 正比例函数y kx =的图象经过点(7,13)-,137k ∴-=,解得:137k =-,又1307k =-< ,y ∴的值随x 的增大而减小.故答案为:减小.12. 菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 菱形,∴AB BC =,∴()()11180180665722BAC ACB ABC ∠=∠=︒-∠=︒-︒=︒,在是故答案为:57︒.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个,∵摸到绿球的概率是35,∴球的总数为3355x x ÷=个,∴白球的数量为532x x x -=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 为正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b 的式子表示).【答案】23a b - 【解析】【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+ .【详解】解: 四边形ABCD 是平行四边形,DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE a b =+=-=-,∴23DC a b =- ,故答案为:23a b - .16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解,∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=,由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=,∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人),故答案为:200017. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.【答案】27或47##47或27【解析】【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB 之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折性质知:FCD FC D ''∠=∠,CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。
2021年上海市初中毕业生统一考试(中考)数学试卷及解析
2021年上海市初中毕业生统一考试(中考)数学试卷一.选择题1.(2021•上海)下列实数中,有理数是( )A .12B .13C .14D .152.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A .ECB .CEC .ED D .DE6.(2021•上海)如图,长方形ABCD 中,4AB =,3AD =,圆B 半径为1,圆A 与圆B 内切,则点C 、D 与圆A 的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外二.填空题7.(2021•上海)计算:72x x÷=.8.(2021•上海)已知6()f xx=,那么(3)f=.9.(2021•上海)已知43x+=,则x=.10.(2021•上海)不等式2120x-<的解集是.11.(2021•上海)70︒的余角是.12.(2021•上海)若一元二次方程2230x x c-+=无解,则c的取值范围为.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为.14.(2021•上海)已知函数y kx=经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得元.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 .三.解答题19.(2021•上海)计算:1129|12|28-+--⨯.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC的值; (2)若2DE =,3OE =,求CD 的长.2021年上海市初中毕业生统一考试(中考)数学试卷参考答案与试题解析一.选择题1.(2021•上海)下列实数中,有理数是( )A B C D 【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:=,不是有理数,不合题意;B =12C =,是有理数,符合题意;D = 故选:C .【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.(2021•上海)下列单项式中,23a b 的同类项是( )A .32a bB .233a bC .2a bD .3ab【分析】依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【解答】解:A 、字母a 、b 的次数不相同,不是同类项,故本选项不符合题意;B 、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C 、字母b 的次数不相同,不是同类项,故本选项不符合题意;D 、相同字母a 的次数不相同,不是同类项,故本选项不符合题意;故选:B .【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.3.(2021•上海)将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,以下错误的是( )A .开口方向不变B .对称轴不变C .y 随x 的变化情况不变D .与y 轴的交点不变【分析】由于抛物线平移后的形状不变,对称轴不变,a 不变,抛物线的增减性不变.【解答】解:A 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,a 不变,开口方向不变,故不符合题意.B 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,顶点的横坐标不变,对称轴不变,故不符合题意.C 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,抛物线的性质不变,自变量x 不变,则y 随x 的变化情况不变,故不符合题意.D 、将函数2(0)y ax bx c a =++≠的图象向下平移两个单位,与y 轴的交点也向下平移两个单位,故符合题意.故选:D .【点评】本题主要考查了二次函数图象与几何变换,二次函数的性质,注意:抛物线平移后的形状不变,开口方向不变,顶点坐标改变.4.(2021•上海)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适( )A .2/kg 包B .3/kg 包C .4/kg 包D .5/kg 包【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【解答】解:由图知这组数据的众数为1.5~2.5kg kg ,取其组中值2kg ,故选:A .【点评】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a =,AD b =,E 为AB 中点,则1(2a b += )A.EC B.CE C.ED D.DE 【分析】根据相等向量的几何意义和三角形法则解答.【解答】解:AB a=,∴12a EB=,四边形ABCD是平行四边形,∴BC AD b==,∴12a b EB BC EC+=+=,故选:A.【点评】本题考查平面向量,三角形法则,平行四边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.6.(2021•上海)如图,长方形ABCD中,4AB=,3AD=,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外【分析】两圆内切,圆心距等于半径之差的绝对值,得圆A的半径等于5,由勾股定理得5AC=,由点与圆的位置关系,可得结论.【解答】解:两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则:1AB R=-,4AB =,圆B 半径为1,5R ∴=,即圆A 的半径等于5,4AB =,3BC AD ==,由勾股定理可知5AC =,5AC R ∴==,3AD R =<,∴点C 在圆上,点D 在圆内,故选:C .【点评】本题考查了点与圆的位置关系、圆与圆的位置关系勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.二.填空题7.(2021•上海)计算:72x x ÷= 5x .【分析】根据同底数幂的除法法则进行解答即可.【解答】解:72725x x x x -÷==,故答案为:5x .【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键.8.(2021•上海)已知6()f x x=,那么f =【分析】将x ==【解答】解:由题意将x ==则有:f ==故答案为:【点评】本题考查函数求值问题,只需将自变量的取值代入函数表达式.9.(20213=,则x = 5 .【分析】根据算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 进行解答即可.【解答】解:3=,49x ∴+= 5x ∴=.故答案为:5.【点评】此题考查的是算术平方根的概念,掌握其概念是解决此题关键.10.(2021•上海)不等式2120x -<的解集是 6x < .【分析】不等式移项,把x 系数化为1,即可求出解集.【解答】解:移项,得:212x <,系数化为1,得:6x <,故答案为6x <.【点评】此题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.11.(2021•上海)70︒的余角是 20︒ .【分析】根据余角的定义即可求解.【解答】解:根据定义一个角是70︒,则它的余角度数是907020︒-︒=︒,故答案为,20︒.【点评】本题主要考查了余角的概念,掌握互为余角的两个角的和为90度是解决此题关键,12.(2021•上海)若一元二次方程2230x x c -+=无解,则c 的取值范围为 98c > . 【分析】根据根的判别式的意义得到△224(1)0a =-⨯⨯-<,然后求出a 的取值范围. 【解答】解:一元二次方程2230x x c -+=无解,△2(3)420c =--⨯⨯<, 解得98c >, c ∴的取值范围是98c >. 故答案为:98c >. 【点评】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式△24b ac =-:当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.13.(2021•上海)已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 13. 【分析】用偶数的个数除以数的总数即可求得答案. 【解答】解:共有9个数据,其中偶数有3个,∴从这些数据中选取一个数据,得到偶数的概率为3193=,故答案为:13. 【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.14.(2021•上海)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式 2y x =- .【分析】根据正比例函数的性质以及正比例函数图象是点的坐标特征限即可求解.【解答】解:函数y kx =经过二、四象限,0k ∴<.若函数y kx =经过(1,1)-,则1k =-,即1k =-,故函数y kx =经过二、四象限,且函数不经过(1,1)-时,0k <且1k ≠-, ∴函数解析式为2y x =-,故答案为2y x =-.【点评】考查了正比例函数图象上点的坐标特征,熟练掌握正比例函数的性质是解题的关键.15.(2021•上海)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本5元/千克,现以8元卖出,挣得 335k 元.【分析】根据图像求出函数关系式,计算售价为8元时卖出的苹果数量,即可求解.【解答】解:设卖出的苹果数量y 与售价x 之间的函数关系式为y mx n =+,5410m n k m n k +=⎧⎨+=⎩, 解得:357m k n k⎧=-⎪⎨⎪=⎩,375y kx k ∴=-+, 8x =时,3118755y k k k ==-⨯+=, ∴现以8元卖出,挣得1133(85)55k k -⨯=,故答案为:335k.【点评】此题主要考查了函数图象,能够得出卖出的苹果数量y与售价x之间的函数关系式是解题关键.16.(2021•上海)如图所示,已知在梯形ABCD中,//AD BC,12ABDBCDSS∆∆=,则BOCBCDSS∆∆=23.【分析】过D作DM BC⊥于M,过B作BN AD⊥于N,由四边形BMDN是矩形,可得DM BN=,12ADBC=,根据//AD BC,可得12OD ADOB BC==,23OBBD=,即可得到23BOCBCDSS∆∆=.【解答】解:过D作DM BC⊥于M,过B作BN AD⊥于N,如图://AD BC,DM BC⊥,BN AD⊥,∴四边形BMDN是矩形,DM BN=,12ABDBCDSS∆∆=,∴112122AD BNBC DM⋅=⋅,∴12ADBC=,//AD BC,∴12OD ADOB BC==,∴23OBBD=,∴23BOCBCDSS∆∆=,故答案为:23.【点评】本题考查三角形的面积,涉及基本的相似三角形判定与性质,掌握同(等)底三角形面积比等于高之比,同(等)高的三角形面积比等于底之比是解题的关键.17.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 332.【分析】利用ABG BCH ∆≅∆得到AG BH =,再根据含30度的直角三角形三边的关系得到2BG AG =,接着证明HG AG =可得结论.【解答】解:如图,ABG BCH ∆≅∆,AG BH ∴=,30ABG ∠=︒,2BG AG ∴=,即2BH HG AG +=,1HG AG ∴==,∴小两个正六边形的面积23336142=⨯⨯=, 故答案为:332.【点评】本题考查了含30度角的直角三角形:在直角三角形中,30︒角所对的直角边等于斜边的一半.也考查了正多边形与圆,解题的关键是求出HG .18.(2021•上海)定义:平面上一点到图形最短距离为d ,如图,2OP =,正方形ABCD 边长为2,O 为正方形中心,当正方形ABCD 绕O 旋转时,则d 的取值范围为 221d .【分析】由题意以及正方形的性质得OP 过正方形ABCD 各边的中点时,d 最大,OP 过正方形ABCD 的顶点时,d 最小,分别求出d 的值即可得出答案.【解答】解:如图:设AB 的中点是E ,OP 过点E 时,点O 与边AB 上所有点的连线中,OE 最小,此时d PE =最大,OP 过顶点A 时,点O 与边AB 上所有点的连线中,OA 最大,此时d PA =最小,如图①:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,1OE ∴=,2OP =,1d PE ∴==;如图②:正方形ABCD 边长为2,O 为正方形中心,1AE ∴=,45OAE ∠=︒,OE AB ⊥,2OA ∴=2OP =,22d PA ∴==;d ∴的取值范围为221d . 故答案为:221d .【点评】本题考查正方形的性质,旋转的性质,根据题意得出d 最大、最小时点P 的位置是解题的关键.三.解答题19.(2021•上海)计算:1129|12-+--【分析】直接利用算术平方根、负整数指数幂、绝对值的性质分别化简得出答案.【解答】解:119122-⨯1912=+182=. 【点评】此题主要考查了实数的混合运算,正确掌握相关运算法则是解题关键.20.(2021•上海)解方程组:22340x y x y +=⎧⎨-=⎩. 【分析】解方程组的中心思想是消元,在本题中,只能用代入消元法解题.【解答】解:22340x y x y +=⎧⎨-=⎩①②, 由①得:3y x =-,把3y x =-代入②,得:224(3)0x x --=,化简得:(2)(6)0x x --=,解得:12x =,26x =.把12x =,26x =依次代入3y x =-得:11y =,23y =-,∴原方程组的解为121226,13x x y y ==⎧⎧⎨⎨==-⎩⎩. 【点评】本题以解高次方程组为背景,旨在考查学生对消元法的灵活应用能力.21.(2021•上海)如图,已知ABD ∆中,AC BD ⊥,8BC =,4CD =,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.【分析】(1)解锐角三角函数可得解;(2)连接CF ,过F 作BD 的垂线,垂足为E ,根据直角三角形斜边中线等于斜边一半,可得CF FD =,由勾股定理可得213AD =,2EF =,即可求tan FBD ∠.【解答】解:(1)4cos 5BC ABC AB ∠==, 8BC =,10AB ∴=,AC BD ⊥, 在Rt ACB ∆中,由勾股定理得,22221086AC AB BC =-=-=,即AC 的长为6; (2)如图,连接CF ,过F 点作BD 的垂线,垂足E ,BF 为AD 边上的中线,即F 为AD 的中点,12CF AD FD ∴==, 在Rt ACD ∆中,由勾股定理得,222264213AD AC CD =+=+=三角形CFD 为等腰三角形,FE CD ⊥,122CE CD ∴==, 在Rt EFC ∆中,221343EF CF CE =-=-=,33tan 10FE FBD BE BC CE ∴∠===+. 【点评】本题考查解直角三角形,解本题关键根据题意作辅助线,熟练掌握解直角三角函数和勾股定理等基本知识点.22.(2021•上海)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.【分析】(1)先根据扇形统计图求出三月份所占百分比,即可利用总数乘以三月份所占百分比求解;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.根据“下载一部1000MB 的电影,5G 比4G 要快190秒”,列方程求解即可. 【解答】解:(1)80(130%25%)36⨯--=(万部),答:三月份生产了36万部手机;(2)设5G 手机的下载速度是每秒x MB .则4G 手机的下载速度是每秒(95)x MB -.1000100019095x x +=-, 解得:1100x =,25x =-(不合题意,舍去),经检验,1100x =是原方程的解,答:5G 手机的下载速度是每秒100MB .【点评】此题主要考查的是如何观察扇形统计图并且从统计图中获取信息,分式方程的应用,理解题意,找出正确的等量关系列出方程是解题的关键.24.(2021•上海)已知抛物线2(0)y ax c a =+≠经过点(3,0)P 、(1,4)Q .(1)求抛物线的解析式;(2)若点A 在直线PQ 上,过点A 作AB x ⊥轴于点B ,以AB 为斜边在其左侧作等腰直角三角形ABC . ①当Q 与A 重合时,求C 到抛物线对称轴的距离;②若C 在抛物线上,求C 的坐标.【分析】(1)(3,0)P 、(1,4)Q 代入2y ax c =+即可得抛物线的解析式为21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,A 与(1,4)Q 重合时,4AB =,1GH =,由ABC ∆是等腰直角三角形,得122CH AH BH AB ====,C 到抛物线对称轴的距离是1CG =; ②过C 作CH AB ⊥于H ,先求出直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,3C y m =-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+解得12m =或3m = (与P 重合,舍去),即可求出5(2,)2C -. 【解答】解:(1)(3,0)P 、(1,4)Q 代入2y ax c =+得:094a c a c =+⎧⎨=+⎩,解得1292a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:21922y x =-+; (2)①过C 作CH AB ⊥于H ,交y 轴于G ,如图:当A 与(1,4)Q 重合时,4AB =,1GH =,ABC ∆是等腰直角三角形,ACH ∴∆和BCH ∆也是等腰直角三角形,122CH AH BH AB ∴====, 1CG CH GH ∴=-=,而抛物线21922y x =-+的对称轴是y 轴(0)x =, C ∴到抛物线对称轴的距离是1CG =;②过C 作CH AB ⊥于H ,如图:设直线PQ 解析式为y kx b =+,将(3,0)P 、(1,4)Q 代入得:034k b k b =+⎧⎨=+⎩,解得26k b =-⎧⎨=⎩, ∴直线PQ 为26y x =-+,设(,26)A m m -+,则26AB m =-+,132CH AH BH AB m ∴====-+, 3C y m ∴=-+,(3)23C x m m m =--+-=-,将(23,3)C m m --+代入21922y x =-+得: 2193(23)22m m -+=--+, 解得12m =或3m = (与P 重合,舍去), 12m ∴=,232m -=-,532m -+=, 5(2,)2C ∴-. 【点评】本题考查二次函数综合应用,涉及解析式、对称轴、等腰直角三角形、一次函数等知识,解题的关键是用含字母的代数式表示C 的坐标.25.(2021•上海)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,AD CD =,O 是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于点E .(1)当点E 在CD 上,①求证:DAC OBC ∆∆∽;②若BE CD ⊥,求AD BC 的值; (2)若2DE =,3OE =,求CD 的长.【分析】(1)①由等腰三角形的性质得出DAC DCA ∠=∠,由平行线的性质得出DAC ACB ∠=∠,由直角三角形的性质得出OBC OCB ∠=∠,根据相似三角形的判定定理可得出结论;②得出30OCE OCB EBC ∠=∠=∠=︒.过点D 作DH BC ⊥于点H ,设2AD CD m ==,则2BH AD m ==,则可得出答案;(2)①如图3,当点E 在AD 上时,证明四边形ABCE 是矩形.设AD CD x ==,由勾股定理得出方程,解方程即可得出答案;②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,由相似三角形的性质得出2x OC m BC =,证明EOC ECB ∆∆∽,得出比例线段OE EC OC EC EB CB ==,可得出方程3223x OC x m CB -==-+,解方程可得出答案.【解答】(1)①证明:如图1,AD CD =,DAC DCA ∴∠=∠.//AD BC ,DAC ACB ∴∠=∠.BO 是Rt ABC ∆斜边AC 上的中线,OB OC ∴=,OBC OCB ∴∠=∠,DAC DCA ACB OBC ∴∠=∠=∠=∠,DAC OBC∴∆∆∽;②解:如图2,若BE CD⊥,在Rt BCE∆中,OCE OCB EBC∠=∠=∠,30OCE OCB EBC∴∠=∠=∠=︒.过点D作DH BC⊥于点H,设2AD CD m==,则2BH AD m==,在Rt DCH∆中,2DC m=,CH m∴=,3BC BH CH m∴=+=,∴2233 AD mBC m==;(2)①如图3,当点E在AD上时,//AD BC,EAO BCO∴∠=∠,AEO CBO∠=∠,O是AC的中点,OA OC∴=,()AOE COB AAS∴∆≅∆,OB OE∴=,∴四边形ABCE是平行四边形,又90ABC∠=︒,∴四边形ABCE是矩形.设AD CD x ==,2DE =,2AE x ∴=-,3OE =,6AC ∴=,在Rt ACE ∆和Rt DCE ∆中, 222CE AC AE =-,222CE CD DE =-,22226(2)2x x ∴--=-, 解得119x =+,或119x =- (舍去).119CD ∴=+.②如图4,当点E 在CD 上时,设AD CD x ==,则2CE x =-,设OB OC m ==,3OE =,3EB m ∴=+,DAC OBC ∆∆∽,∴DC AC OC BC =, ∴2x OC m BC =, ∴2OC x BC m=. 又EBC OCE ∠=∠,BEC OEC ∠=∠,EOC ECB ∴∆∆∽,∴OE EC OC EC EB CB ==, ∴3223x OC x m CB -==-+, ∴32232x x x m m-==-+, 226x x m -∴=,将226x xm-=代入3223xx m-=-+,整理得,26100x x--=,解得3x=+,或3x=(舍去).3CD∴=综合以上可得CD的长为13+【点评】本题是相似形综合题,考查了等腰三角形的性质,直角三角形的性质,相似三角形的判定与性质,矩形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.。
2020年上海市中考数学试题及参考答案(word解析版)
2020年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=03.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣5.下列命题中,真命题是()A.对角线互相垂直的梯形是等腰梯形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线平分一组对角的梯形是直角梯形6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆二、填空题:(本大题共12题,每题4分,满分48分)7.计算:2a•3ab=.8.已知f(x)=,那么f(3)的值是.9.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)10.如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为米.15.如图,AC、BD是平行四边形ABCD的对角线,设=,=,那么向量用向量、表示为.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行米.17.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD =3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:27+﹣()﹣2+|3﹣|.20.(10分)解不等式组:21.(10分)如图,在直角梯形ABCD中,AB∥DC,∠DAB=90°,AB=8,CD=5,BC=3.(1)求梯形ABCD的面积;(2)联结BD,求∠DBC的正切值.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.(12分)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.24.(12分)在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.25.(14分)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.答案与解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列二次根式中,与是同类二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义,先化简,再判断.【解题过程】解:A.与的被开方数不相同,故不是同类二次根式;B.,与不是同类二次根式;C.,与被开方数相同,故是同类二次根式;D.,与被开方数不同,故不是同类二次根式.故选:C.【总结归纳】此题主要考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=0【知识考点】换元法解分式方程.【思路分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2﹣2y+1=0即可求解.【解题过程】解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.【总结归纳】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.3.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图【知识考点】频数(率)分布直方图;频数(率)分布折线图;扇形统计图;条形统计图.【思路分析】根据统计图的特点判定即可.【解题过程】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.【总结归纳】本题考查了统计图,熟练掌握各统计图的特点是解题的关键.4.已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.【思路分析】已知函数图象上一点的坐标求反比例函数解析式,可先设出解析式y=,再将点的坐标代入求出待定系数k的值,从而得出答案.【解题过程】解:设反比例函数解析式为y=,将(2,﹣4)代入,得:﹣4=,解得k=﹣8,所以这个反比例函数解析式为y=﹣,故选:D.【总结归纳】本题主要考查待定系数法求反比例函数解析式,用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.5.下列命题中,真命题是()A.对角线互相垂直的梯形是等腰梯形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线平分一组对角的梯形是直角梯形【知识考点】命题与定理.【思路分析】利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.【解题过程】解:A、对角线相等的梯形是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、正确;D、对角线平分一组对角的梯形是菱形,故错误;故选:C.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【知识考点】平移的性质.【思路分析】证明平行四边形是平移重合图形即可.【解题过程】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形,故选:A.【总结归纳】本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:2a•3ab=.【知识考点】单项式乘单项式.【思路分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解题过程】解:2a•3ab=6a2b.故答案为:6a2b.【总结归纳】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.已知f(x)=,那么f(3)的值是.【知识考点】函数值.【思路分析】根据f(x)=,可以求得f(3)的值,本题得以解决.【解题过程】解:∵f(x)=,∴f(3)==1,故答案为:1.【总结归纳】本题考查函数值,解答本题的关键是明确题意,利用题目中新定义解答.9.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)【知识考点】正比例函数的性质.【思路分析】根据正比例函数的性质进行解答即可.【解题过程】解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.【总结归纳】此题主要考查了正比例函数的性质,关键是掌握正比例函数的性质:正比例函数y =kx(k≠0)的图象是一条经过原点的直线,当k>0时,该直线经过第一、三象限,且y的值随x的值增大而增大;当k<0时,该直线经过第二、四象限,且y的值随x的值增大而减小.10.如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是.【知识考点】根的判别式.【思路分析】一元二次方程有两个相等的实根,即根的判别式△=b2﹣4ac=0,即可求m值.【解题过程】解:依题意,∵方程x2﹣4x+m=0有两个相等的实数根,∴△=b2﹣4ac=(﹣4)2﹣4m=0,解得m=4,故答案为:4.【总结归纳】此题主要考查的是一元二次方程的根判别式,当△=b2﹣4ac=0时,方程有两个相等的实根,当△=b2﹣4ac>0时,方程有两个不相等的实根,当△=b2﹣4ac<0时,方程无实数根.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是.【知识考点】概率公式.【思路分析】根据从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,得出是5的倍数的数据,再根据概率公式即可得出答案.【解题过程】解:∵从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∴取到的数恰好是5的倍数的概率是=.故答案为:.【总结归纳】此题主要考查了概率公式,概率=所求情况数与总情况数之比求出是解决问题的关键.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是.【知识考点】二次函数图象与几何变换.【思路分析】直接根据抛物线向上平移的规律求解.【解题过程】解:抛物线y=x2向上平移3个单位得到y=x2+3.故答案为:y=x2+3.【总结归纳】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为.【知识考点】用样本估计总体.【思路分析】用样本中会游泳的学生人数所占的比例乘总人数即可得出答案.【解题过程】解:8400×=3150(名).答:估计该区会游泳的六年级学生人数约为3150名.故答案为:3150名.【总结归纳】本题主要考查样本估计总体,熟练掌握样本估计总体的思想及计算方法是解题的关键.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为米.【知识考点】相似三角形的应用.【思路分析】根据相似三角形的判定和性质定理即可得到结论.【解题过程】解:∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△DBE,∴,∴=,∴AC=7(米),答:井深AC为7米.【总结归纳】本题考查了相似三角形的应用,正确的识别图形是解题的关键.15.如图,AC、BD是平行四边形ABCD的对角线,设=,=,那么向量用向量、表示为.【知识考点】平行四边形的性质;平面向量.【思路分析】利用平行四边形的性质,三角形法则求解即可.【解题过程】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∴==,∵=+=+,∴==+,∵=+,∴=++=2+,故答案为:2+.【总结归纳】本题考查平行四边形的性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行米.【知识考点】一次函数的应用.【思路分析】当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案.【解题过程】解:当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故答案为:350.【总结归纳】本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并熟练掌握待定系数法求一次函数的解析式.17.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.【知识考点】勾股定理;翻折变换(折叠问题).【思路分析】如图,过点E作EH⊥BC于H.首先证明△ABD是等边三角形,解直角三角形求出EH即可.【解题过程】解:如图,过点E作EH⊥BC于H.∵BC=7,CD=3,∴BD=BC﹣CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°,∵DE=DC=3,∴EH=DE•sin60°=,∴E到直线BD的距离为,故答案为.【总结归纳】本题考查翻折变换,勾股定理,等边三角形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是.【知识考点】矩形的性质;直线与圆的位置关系.【思路分析】根据勾股定理得到AC=10,如图1,设⊙O与AD边相切于E,连接OE,如图2,设⊙O与BC边相切于F,连接OF,根据相似三角形的性质即可得到结论.【解题过程】解:在矩形ABCD中,∵∠D=90°,AB=6,BC=8,∴AC=10,如图1,设⊙O与AD边相切于E,连接OE,则OE⊥AD,∴OE∥CD,∴△AOE∽△ACD,∴,∴=,∴AO=,如图2,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF∥AB,∴△COF∽△CAB,∴=,∴=,∴OC=,∴AO=,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是<AO<,故答案为:<AO<.【总结归纳】本题考查了直线与圆的位置关系,矩形的性质,相似三角形的判定和性质,正确的作出图形是解题的关键.三、解答题:(本大题共7题,满分78分)19.(10分)计算:27+﹣()﹣2+|3﹣|.【知识考点】实数的运算;分数指数幂;负整数指数幂.【思路分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【解题过程】解:原式=(33)+﹣2﹣4+3﹣=3+﹣2﹣4+3﹣=0.【总结归纳】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.20.(10分)解不等式组:【知识考点】解一元一次不等式组.【思路分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解题过程】解:,解不等式①得x>2,解不等式②得x<5.故原不等式组的解集是2<x<5.【总结归纳】本题考查解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(10分)如图,在直角梯形ABCD中,AB∥DC,∠DAB=90°,AB=8,CD=5,BC=3.(1)求梯形ABCD的面积;(2)联结BD,求∠DBC的正切值.【知识考点】直角梯形;解直角三角形.【思路分析】(1)过C作CE⊥AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到CE==6,于是得到梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH⊥BD于H,根据相似三角形的性质得到,根据勾股定理得到BD===10,BH===6,于是得到结论.【解题过程】解:(1)过C作CE⊥AB于E,∵AB∥DC,∠DAB=90°,∴∠D=90°,∴∠A=∠D=∠AEC=90°,∴四边形ADCE是矩形,∴AD=CE,AE=CD=5,∴BE=AB﹣AE=3,∵BC=3,∴CE==6,∴梯形ABCD的面积=×(5+8)×6=39;(2)过C作CH⊥BD于H,∵CD∥AB,∴∠CDB=∠ABD,∵∠CHD=∠A=90°,∴△CDH∽△DBA,∴,∵BD===10,∴=,∴CH=3,∴BH===6,∴∠DBC的正切值===.【总结归纳】本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.【知识考点】一元二次方程的应用.【思路分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解题过程】解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【总结归纳】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(12分)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.【知识考点】全等三角形的判定与性质;菱形的性质;相似三角形的判定与性质.【思路分析】(1)想办法证明∠BCE=∠H即可解决问题.(2)利用平行线分线段成比例定理结合已知条件解决问题即可.【解题过程】(1)证明:∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,CD∥AB,∵DF=BE,∴△CDF≌CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H=∠DCF,∴∠BCE=∠H,∵∠B=∠B,∴△BEC∽△BCH.(2)证明:∵BE2=AB•AE,∴=,∵AG∥BC,∴=,∴=,∵DF=BE,BC=AB,∴BE=AG=DF,即AG=DF.【总结归纳】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(12分)在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.【知识考点】二次函数综合题.【思路分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,﹣m+5),则BC=|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=﹣10a,代入抛物线解析式中得出顶点D坐标为(5,﹣25a),即可得出结论.【解题过程】解:(1)针对于直线y=﹣x+5,令x=0,y=5,∴B(0,5),令y=0,则﹣x+5=0,∴x=10,∴A(10,0),∴AB==5;(2)设点C(m,﹣m+5),∵B(0,5),∴BC==|m|,∵BC=,∴|m|=,∴m=±2,∵点C在线段AB上,∴m=2,∴C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得,∴,∴抛物线y=﹣x2+x;(3)∵点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,∴b=﹣10a,∴抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,∴抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣x+5中,得y=﹣×5+5=,∵顶点D位于△AOB内,∴0<﹣25a<,∴﹣<a<0;【总结归纳】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.25.(14分)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【知识考点】圆的综合题.【思路分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则==,推出==,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解题过程】(1)证明:连接OA.∵AB=AC,∴=,∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD,∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述,∠C的值为67.5°或72°.(3)如图3中,作AE∥BC交BD的延长线于E.则==,∴==,设OB=OA=4a,OH=3a,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25﹣49a2=16a2﹣9a2,∴a2=,∴BH=,∴BC=2BH=.【总结归纳】本题属于圆综合题,考查了垂径定理,等腰三角形的性质,解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.。
上海市2021年中考数学试题及答案(Word版)
2021年上海市初中毕业统一学业考试数学试卷一、选择题〔每题4分,共24分〕1.计算23⋅的结果是〔B 〕.(A) 5;(B) 6;(C) 23;(D) 32.2.据统计,2021年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为〔C 〕.(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是〔C 〕.(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,直线a、b被直线c所截,那么∠1的同位角是〔A 〕.〔此题图可能有问题〕(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值〔单位:〕如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是〔A 〕.(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,AC、BD是菱形ABCD的对角线,那么以下结论一定正确的选项是〔B 〕.(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题〔每题4分,共48分〕7.计算:a(a+1)=2a a+.8.函数11yx=-的定义域是1x≠.9.不等式组12,28xx->⎧⎨<⎩的解集是34x.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.如果关于x的方程x2-2x+k=0〔k为常数〕有两个不相等的实数根,那么k的取值范围是1k.12.传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.13.如果从初三〔1〕、〔2〕、〔3〕班中随机抽取一个班与初三〔4〕班进行一场拔河比赛,那么恰好抽到初三〔1〕班的概率是13.14.反比例函数kyx=〔k是常数,k≠0〕,在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是1(0y kx=-即可)〔只需写一个〕.15.如图,在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=23a b-〔结果用a、b表示〕.16.甲、乙、丙三人进行飞镖比赛,他们每人五次投得的成绩如下图,那么三人中成绩最稳定的是乙.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b〞,例如这组数中的第三个数“3〞是由“2×2-1〞得到的,那么这组数中y表示的数为-9.18.如图,在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为23t〔用含t的代数式表示〕.三、解答题〔此题共7题,总分值78分〕19.〔此题总分值10分〕 计算:131128233--+-.233= 20.〔此题总分值10分〕解方程:2121111x x x x +-=--+.0;1(x x ==舍) 21.〔此题总分值10分,第〔1〕小题总分值7分,第〔2〕小题总分值3分〕水银体温计的读数y 〔℃〕与水银柱的长度x 〔cm 〕之间是一次函数关系.现有一支水银体温计,其局部刻度线不清晰〔如图〕,表中记录的是该体温计局部清晰刻度线及其对应水银柱的长度. 水银柱的长度x 〔cm 〕 4.2 …8.2 9.8 体温计的读数y 〔℃〕 35.0… 40.0 42.0 〔1〕求y 关于x 的函数关系式〔不需要写出函数的定义域〕; 1.2529.75y x =+ 〔2〕用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.37.522.〔此题总分值10分,每题总分值各5分〕如图,Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .〔1〕求sin B 的值;5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴== 〔2〕如果CD =5,求BE 的值.5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23.〔此题总分值12分,每题总分值各6分〕:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .(1) 求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DACA CDE ABDCDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为〔2〕联结AE ,交BD 于点G ,求证:DG DF GB DB =. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24.〔此题总分值12分,每题总分值各4分〕在平面直角坐标系中〔如图〕,抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).〔1〕求该抛物线的表达式,并写出其对称轴;〔2〕点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;〔3〕点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.〔此题总分值14分,第〔1〕小题总分值3分,第〔1〕小题总分值5分,第〔1〕小题总分值6分〕如图1,在平行四边形ABCD中,AB=5,BC=8,cos B=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F〔点F在点E的右侧〕,射线CE与射线BA交于点G.〔1〕当圆C经过点A时,求CP的长;〔2〕联结AP,当AP//CG时,求弦EF的长;〔3〕当△AGE是等腰三角形时,求圆C的半径长.图1 备用图。
2021年上海市数学中考真题含答案解析(含答案)
2021年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1的结果是( ).(A)。
(B) 。
(C) 。
(D) .2.据统计,2021年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108。
(B) 60.8×109。
(C) 6.08×1010。
(D) 6.08×1011.3.如果将抛物线y =x 2向右平移1个单位,那么所得的抛物线的表达式是( ).(A) y =x 2-1。
(B) y =x 2+1。
(C) y =(x -1)2。
(D) y =(x +1)2.4.如图,已知直线a 、b 被直线c 所截,那么∠1的同位角是().(A) ∠2。
(B) ∠3。
(C) ∠4。
(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是( ).(A)50和50。
(B)50和40。
(C)40和50。
(D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ).(A)△ABD 与△ABC 的周长相等。
(B)△ABD 与△ABC 的周长相等。
(C)菱形的周长等于两条对角线之和的两倍。
(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a (a +1)=_________.8.函数的定义域是_________.9.不等式组的解集是_________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是_________.11y x =-12,28x x ->⎧⎨<⎩12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设,,那么=_________(结果用、表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为__________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为______________(用含t 的代数式表示).ky x=AB a = BC b =DE a b三、解答题(本题共7题,满分78分)19.(本题满分10分)20.(本题满分10分)解方程:.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x(cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm ) 4.2…8.2来源学科网ZXXK]9.8体温计的读数y (℃)35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域)。
2021年上海市中考数学试卷(2021年初中毕业生学业考试数学试卷附答案解析)
2021年初中毕业生学业考试数学试卷上海中考数学一、选择题(本大题共6题.每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是()A.12B.13C.14D.152.下列单项式中,23a b的同类项是()32A.a b23B.3a b2C.a b3D.ab3.将函数2y a bx c(a0)x的图像向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变B.y随x的变化情况不变 D.与y轴的交点不变4.商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包5.如图,已知AB a,AD b,E为AB中点,则1a b2=()A.ECB.CEC.EDD.DE6.如图长方形ABCD中,AB=4,AD=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】728.已知6f (x)x ,那么f (3) . 9.已知x 43,则x= .10.不等式2x-12<0的解集是 .11.70°的余角是 °.12. 若一元二次方程22-3x+c=0x 无解,则c 的取值范围为 .13. 已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 .14. 已知函数y kx 的图像经过二、四象限,且不经过(-1,1),请写出一个符合条件的函数解析式 .15. 某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,挣得 元.16如图所示,已知在梯形ABCD 中,AD ∥BC ,ABD BCD 1=2S S △△,则BOC BCD=S S △△ . 17.六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,则中间正六边形的面积为 .18.定义:平面上一点到图形的最短距离为d,如图,OP=2,正方形ABCD 的边长为2,O 为正方形中心,当正方形ABCD绕O 旋转时,d 的取值范围是 .三、解答题(本大题共7题,满分78分)19.计算:112+|12|892---16. 解方程组:22x y 340y x -21.如图,已知在△ABD 中,AC ⊥BD ,BC=8,CD=4,4cos ABC 5,BF 为AD 边上的中线. (1)求AC 的长;(2)求tan ∠FBD 的值.22. 现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月的生产情况如下图.(1) 求3月份生产了多少部手机?(2) 5G 手机速度很快,比4G 下载速度每秒多95MB,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.23.已知:在圆O 内,弦AD 与弦BC 相交于点G,AD=CB ,M 、N 分别是CB 和AD 的中点,联结MN 、OG.(1)证明:OG ⊥MN;(2)联结AB 、AM 、BN ,若BN ∥OG ,证明:四边形ABNM 为矩形。
2024年上海市中考数学试卷正式版含答案解析
绝密★启用前2024年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如果x>y,那么下列正确的是( )A. x+5≤y+5B. x−5<y−5C. 5x>5yD. −5x>−5y的定义域是( )2.函数f(x)=2−xx−3A. x=2B. x≠2C. x=3D. x≠33.以下一元二次方程有两个相等实数根的是( )A. x2−6x=0B. x2−9=0C. x2−6x+6=0D. x2−6x+9=04.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )A. 甲种类B. 乙种类C. 丙种类D. 丁种类5.四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形6.在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是( )A. 内含B. 相交C. 外切D. 相离第II 卷(非选择题)二、填空题:本题共12小题,每小题4分,共48分。
7.计算:(4x 2)3= ______. 8.计算(a +b)(b −a)= ______. 9.已知√ 2x −1=1,则x = ______.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的______倍.(用科学记数法表示)11.若正比例函数y =kx 的图象经过点(7,−13),则y 的值随x 的增大而______.(选填“增大”或“减小”) 12.在菱形ABCD 中,∠ABC =66°,则∠BAC = ______°.13.某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为______万元.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有______个绿球.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC ⃗⃗⃗⃗⃗ =a ⃗ ,BE ⃗⃗⃗⃗⃗ =b ⃗ ,若AE =2EC ,则DC ⃗⃗⃗⃗⃗ = ______(结果用含a ,b ⃗ 的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR 增强讲解的人数约有______人.17.在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cos∠ABC=______.18.对于一个二次函数y=a(x−m)2+k(a≠0)中存在一点P(x′,y′),使得x′−m=y′−k≠0,则称2|x′−m|为该抛物线的“开口大小”,那么抛物线y=−12x2+13x+3“开口大小”为______.三、解答题:本题共7小题,共78分。
最新整理上海市初中毕业生统一业考试数试卷及详细答案.doc
上海市初中毕业生统一学业考试数学试卷一、填空题(本大题共14题,满分42分) 1、 计算:()22x=2、 分解因式:22a a -= 3、计算:)11=4、函数y =的定义域是5、 如果函数()1f x x =+,那么()1f =6、 点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是7、 如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是8、 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程) 9、 如果关于x 的方程240x x a ++=有两个相等的实数根,那么a = 10、 一个梯形的两底长分别为6和8,这个梯形的中位线长为 11、 在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC ,如果AD =2,DB =4,AE =3,那么EC = 12、 如图1,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角比表示).13、 如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是 14、 在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图2),折痕DE 的长为二选择题:(本大题共4题,满分12分) 15、 在下列实数中,是无理数的为 ( ) A 、0 B 、-3.5 C D 16、 六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为 ( )A 、3B 、4C 、5D 、6 17、 已知Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )图1A 、2sin 3B =B 、2cos 3B =C 、23tgB =D 、23ctgB = 18、 在下列命题中,真命题是 ( )A 、两个钝角三角形一定相似B 、两个等腰三角形一定相似C 、两个直角三角形一定相似D 、两个等边三角形一定相似 三、(本大题共3题,满分24分) 19、 (本题满分8分) 解不等式组:()315216x xx x+>-⎧⎨+-<⎩,并把解集在数轴上表示出来.20、(本题满分8分)解方程:228124x x x x x +-=+--21、 (本题满分8分,每小题满分各为4分)(1)在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ; (2)在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1x-5-4-3-2-15432O1四、(本大题共4题,满分42分) 22、 (本题满分10分,每小题满分各为5分)在直角坐标平面中,O 为坐标原点,二次函数2y x bx c =++的图象与x 轴的负半轴相交于点C (如图5),点C 的坐标为(0,-3),且BO =CO (1) 求这个二次函数的解析式; (2) 设这个二次函数的图象的顶点为M ,求AM 的长.23、 (本题满分10分)已知:如图6,圆O 是△ABC 的外接圆,圆心O 在这个三角形的高CD 上,E 、F 分别是边AC 和BC 的中点,求证:四边形CEDF 是菱形.24、 (本题满分10分,第(1)、(2)、(3)小题满分各为2分,第(4)小题满分4分) 小明家使用的是分时电表,按平时段(6:00-22:00)和谷时段(22:00-次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里 1月至5月的平时段和谷时段的用电量分别用折线图表示(如图7),同时将前4个月的用电量和相应电费制成表格(如表1)根据上述信息,解答下列问题:(1) 计算5月份的用电量和相应电费,将所得结果填入表1中; (2) 小明家这5个月的月平均用电量为 度;(3) 小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4) 小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25、 (本题满分12分,每小题满分各为4分)在△ABC 中,∠ABC =90°,AB =4,BC =3,O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E ,作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F 。
2022年上海市中考数学试卷及答案(上海市中考数学真题)
2022年上海市初中学业水平考试数学试卷一.选择题(本大题共6题,每题4分,满分24分) 1. 8的相反数为( ) A .8 B . -8 C .18 D .-182.下列运算正确的是…… ( )A .a ²+a ³=a 6B . (ab )2 =ab 2C . (a +b )²=a ²+b ²D . (a +b )(a -b )=a ² -b 2 3.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能 经过这个函数为( )A . (2,3)B . (-2,3)C . (3,0)D . (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算 外卖费的总额的数据,则两种情况计算出的数据一样的是( ) A .平均数 B .中位数 C .众数 D .方差5.下列说法正确的是( )A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题 6.有一个正n 边形旋转90°后与自身重合,则n 为( ) A .6 B .9 C .12 D .15二.填空题(本大题共12题,每题4分,满分48分) 7.计算:3a -2a =_____. 8.已知f (x )=3x ,则f (1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.10.已知x -+m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同, 则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人 1-2小时 10人 2-3小时14人 3-4小时16人 4-5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是_____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直 线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____. 16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13, 则这个花坛的面积为_____.(结果保留π)17. 如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DEAB BC=,则AEAC=_____.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把 这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时, 这个圆的半径为_____.三.解答题(本大题共7题,满分78分)19.(本大题满分10分)计算:11221312.331-⎛⎫-- ⎪-⎝⎭20.(本大题满分10份)解关于x的不等式组3442 3x xxx>-⎧⎪+⎨>+⎪⎩21.(本大题满分10分)一个一次函数的截距为-l,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年上海市初中毕业生统一学业考试数学试卷一、填空题(本大题共14题,满分42分) 1、 计算:()22x=2、 分解因式:22a a -= 3、计算:)11=4、函数y =的定义域是5、 如果函数()1f x x =+,那么()1f =6、 点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是7、 如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是8、 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程) 9、 如果关于x 的方程240x x a ++=有两个相等的实数根,那么a = 10、 一个梯形的两底长分别为6和8,这个梯形的中位线长为 11、 在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC ,如果AD =2,DB =4,AE =3,那么EC =12、 如图1,自动扶梯AB 段的长度为20米,倾斜角A为α,高度BC 为 米(结果用含α的三角比表示). 13、 如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是14、 在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图2),折痕DE 的长为二、选择题:(本大题共4题,满分12分)15、 在下列实数中,是无理数的为 ( ) A 、0 B 、-3.5 CD16、 六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为 ( )A 、3B 、4C 、5D 、617、 已知Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )图1图2A 、2sin 3B =B 、2cos 3B =C 、23tgB =D 、23ctgB = 18、 在下列命题中,真命题是 ( )A 、两个钝角三角形一定相似B 、两个等腰三角形一定相似C 、两个直角三角形一定相似D 、两个等边三角形一定相似 三、(本大题共3题,满分24分) 19、 (本题满分8分) 解不等式组:()315216x xx x +>-⎧⎨+-<⎩,并把解集在数轴上表示出来.20、 (本题满分8分) 解方程:228124x x x x x +-=+--x-5-4-3-2-15432O 121、 (本题满分8分,每小题满分各为4分)(1)在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ; (2)在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1四、(本大题共4题,满分42分)22、 (本题满分10分,每小题满分各为5分)在直角坐标平面中,O 为坐标原点,二次函数2y x bx c =++的图象与x 轴的负半轴相交于点C (如图5),点C 的坐标为(0,-3),且BO =CO (1) 求这个二次函数的解析式; (2) 设这个二次函数的图象的顶点为M ,求AM 的长.23、(本题满分10分)已知:如图6,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是菱形.24、 (本题满分10分,第(1)、(2)、(3)小题满分各为2分,第(4)小题满分4分) 小明家使用的是分时电表,按平时段(6:00-22:00)和谷时段(22:00-次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图7),同时将前4个月的用电量和相应电费制成表格(如表1) 根据上述信息,解答下列问题:(1) 计算5月份的用电量和相应电费,将所得结果填入表1中; (2) 小明家这5个月的月平均用电量为 度;(3) 小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4) 小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.用电量(度)月份5月4月3月2月1月25、 (本题满分12分,每小题满分各为4分)在△ABC 中,∠ABC =90°,AB =4,BC =3,O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E ,作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F 。
(1) 如图8,求证:△ADE ∽△AEP ;(2) 设OA =x ,AP =y ,求y 关于x 的函数解析式,并写出它的定义域; (3) 当BF =1时,求线段AP 的长.图9(备用图)图8BCC2005年上海市初中毕业生统一学业考试数学试卷参考答案()4221.;2.(2);3.1;4.0;5.2;6.()2;7.()21;8.0;9.4;10.7;11.6;12.20sin ;13.5;14.1;15.16.17.18..315119.2162:144,1;222-6,414x a a x f x x f x x x x C B C D x x x x x x x x x x α-≥==+-=+>-⎧⎨+-<⎩>>+<<∴<<一.填空二.选择三解答()()解由()得由()得原不等式组的解集为23322222820.124(1)(2)(2)(2)(2)(2)(1)(2)8(1)44444889161209161200,x x x x x x x x x x x x x x x x x x x x x x x x x x x +-=+--++-+--+++=+-------=+---=++=∆<∴解:两边同乘以,整理得:原方程无解21.(1):(1),(2);(1),(3)(2)如图:222.1(0,3),|3|3,3,3,(3,0)9330,630,2()232(2)122(1)1234,(1,0)(1,4)C OC c OC BO BO B b b b f x x x b a f A M AM -=-=∴=-=∴=∴+-=+==-∴=----=-==--=---∴==解:()又23.1122AB CD AB CD AD BD CD CD CAD CBD A B AC BC E F AC BC D AB DF CE AE DE CF BC DE DF CE CF CEDF ⊥∴==∴∆≅∆∴∠=∠⇒=∴====∴===∴证明:为弦,为直径所在的直线且又又,分别为,的中点,为中点,,四边形为菱形24、1110,53.15(2)99(3)4500-)0.610.3(500-)2430.611500.32430.3193300,500-200300200x x x x x x x x x +=++-====解:()上升,上升()设平时段度,谷时用(度答:平时段度,谷时用度25.1909090AP D ODA PED OD OE ODE OEDODE OED EDA PEA A A ADE AEP∴∠=∠=︒=∴∠=∠∴︒+∠=︒+∠∴∠=∠∠=∠∴∆∆()证明:连结OD切半圆于,又,,又22334,555846416584525555(0)OD CB OA AC OD OD x OE AD x x ADE AEP xAP AE y xy x y xAE AD x x x ==⇒===∆∆∴=⇒=⇒=⇒=>()同理可得:(3)5(46,90512661255E C x AP AB DO BE H DHE DJEHD x PBE PDH PFB PHD PB PB AP x x >>∆≅∆∴=∠=∠=︒∴∆∆∴=⇒=⇒=由题意可知存在三种情况但当在点左侧时BF显然大于4所以不合舍去当时如图)延长,交于易证54,1261255422x P B DO PE H DHE EJD PBF PDHBP BP x x AP <∆≅∆∆∆∴=⇒=∴=-=当时点在点的右侧延长交于点同理可得J2006年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)题号一二三 四总分17 18 19 20 21 22 23 24 25 得分考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤. 一.填空题:(本大题共12题,满分36分)【只要求直接写出结果,每个空格填对得3分,否则得零分】 1=__________.2.计算:12x x+=__________.3.不等式60x ->的解集是__________.4.分解因式:2x xy +=__________. 5.函数13y x =-的定义域是__________. 61=的根是__________.7.方程2340x x +-=的两个实数根为1x ,2x ,则12x x =__________.8.用换元法解方程2221221x x x x -+=-时,如果设221x y x =-,那么原方程可化为__________.9.某型号汽油的数量与相应金额的关系如图1所示,那么这种汽油的单价是每升__________元.10.已知在ABC △和111A B C △中,11AB A B =,1A A =∠∠,要使111ABC A B C △≌△,还需添加一个条件,这个条件可以是__________.11.已知圆O 的半径为1,点P 到圆心O 的距离为2,过点P 引圆O 的切线,那么切线长是__________.12.在中国的园林建筑中,很多建筑图形具有对称性.图2是一个破损花窗的图形,请把它补画成中心对称图形.数量(单位:升) 图1二.选择题:(本大题共4题,满分16分)【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得4分;不选、错选或者多选得零分】 13.在下列方程中,有实数根的是( ) A.2310x x ++=1=- C.2230x x ++=D.111x x x =-- 14.二次函数()213y x =--+图象的顶点坐标是( ) A.()13-,B.()13,C.()13--,D.()13-,15.在ABC △中,AD 是BC 边上的中线,G 是重心.如果6AG =,那么线段DG 的长为( ) A.2 B.3 C.6 D.12 16.在下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形 D.两条对角线互相垂直且相等的四边形是正方形 三.(本大题共5题,满分48分) 17.(本题满分9分)先化简,再求值:2111x x x -⎛⎫+÷ ⎪⎝⎭,其中x =18.(本题满分9分) 解方程组:23010x y x y --=⎧⎨++=⎩,.19.(本题满分10分,每小题满分各5分)已知:如图3,在ABC △中,AD 是边BC 上的高,E 为边AC 的中点,14BC =,12AD =,4sin 5B =.求(1)线段DC 的长;(2)tg EDC ∠的值.20.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某市在中心城区范围内,选取重点示范路口进行交通文明状况满意度调查,将调查结果的满意度分为:不满意、一般、较满意、满意和非常满意,依次以红、橙、黄、蓝、绿五色标识.今年五月发布的调查结果中,橙色与黄色标识路口数之和占被调查路口总数的15%.结合未画完整的图4中所示信息,回答下列问题: (1)此次被调查的路口总数是__________;(2)将图4中绿色标识部分补画完整,并标上相应的路口数;(3)此次被调查路口的满意度能否作为该市所有路口交通文明状况满意度的一个随机样本?答:____________________.21.(本题满分10分)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图5所示.请你帮他们求出滴水湖的半径.AE CD B 图3红橙黄 蓝绿标识图4图5四.(本大题共4题,满分50分) 22.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图6,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A . (1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且OB AB =,求这个一次函数的解析式. 23.(本题满分12分,每小题满分各6分)已知:如图7,在梯形ABCD 中,AD BC ∥,AB DC =.点E ,F ,G 分别在边AB ,BC ,CD 上,AE GF GC ==.(1)求证:四边形AEFG 是平行四边形;(2)当2FGC EFB =∠∠时,求证:四边形AEFG 是矩形.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图8,在直角坐标系中,O 为原点.点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,tg 2OAB =∠.二次函数22y x mx =++的图象经过点A ,B ,顶点为D .(1)求这个二次函数的解析式;图6 B E A D G图7 F△绕点A顺时针旋转90后,点B落到点C的位置.将上述二次函数图象沿(2)将OABy 轴向上或向下平移后经过点C .请直接写出点C 的坐标和平移后所得图象的函数解析式; (3)设(2)中平移后所得二次函数图象与y 轴的交点为1B ,顶点为1D .点P 在平移后的二次函数图象上,且满足1PBB △的面积是1PDD △面积的2倍,求点P 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分3分)已知点P 在线段AB 上,点O 在线段AB 延长线上.以点O 为圆心,OP 为半径作圆,点C 是圆O 上的一点.(1)如图9,如果2AP PB =,PB BO =.求证:CAO BCO △∽△; (2)如果AP m =(m 是常数,且1m >),1BP =,OP 是OA ,OB 的比例中项.当点C 在圆O 上运动时,求:AC BC 的值(结果用含m 的式子表示); (3)在(2)的条件下,讨论以BC 为半径的圆B 和以CA 为半径的圆C 的位置关系,并写出相应m 的取值范围.2006年上海市初中毕业生统一学业考试CA PB O 图9数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数.评分时,给分或扣分均以1分为单位. 答案要点与评分标准 一.填空题:(本大题共12题,满分36分) 1.2; 2.3x; 3.6x >;4.()x x y +;5.3x ≠;6.1;7.4-; 8.2210y y -+=(或12y y+=);9.5.09;10.1B B =∠∠(或1C C =∠∠,或11AC A C =); 1112.答案见图1.二.选择题:(本大题共4题,满分16分) 13.A; 14.B; 15.B;16.C.三.(本大题共5题,满分48分)17.解:原式211x x x x+-=÷ ····································································· (2分) ()()111x x x x x +-+=÷ ·························································· (2分) ()()111x xx x x +=+- ···························································· (1分)11x =-, ············································································ (2分)当x =1==. ············································· (2分)图118.解:消去y 得220x x +-=, ····························································· (3分) 得12x =-,21x =, ··································································· (3分) 由12x =-,得15y =-, ······························································ (1分) 由21x =,得22y =-, ······························································· (1分) ∴原方程组的解是1125x y =-⎧⎨=-⎩,;2212x y =⎧⎨=-⎩,.············································ (1分) 19.解:(1)在Rt BDA △中,90BDA =∠,12AD =,4sin 5AD B AB ==, ··· (1分) 15AB ∴=. ················································································· (1分)9BD ∴==. ·········································· (2分) 1495DC BC BD ∴=-=-=. ······················································ (1分) (2)[方法一]过点E 作EF DC ⊥,垂足为F ,EF AD ∴∥. ··········· (1分) AE EC =,1522DF DC ∴==,162EF AD ==. ························· (2分) ∴在Rt EFD △中,90EFD =∠,12tg 5EF EDC DF ==∠. ················· (2分) [方法二]在Rt ADC △中,90ADC =∠,12tg 5AD C DC ==. ············ (2分) DE 是斜边AC 上的中线,12DE AC EC ∴==. ····························· (1分)EDC C ∴=∠∠. ········································································· (1分)12tg tg 5EDC C ∴==∠. ······························································· (1分) 20.(1)60; ························································································ (3分) (2)图略(条形图正确,得2分;标出数字10,得2分); ························ (4分) (3)不能.······················································································· (3分) 21.解:设圆心为点O ,连结OB ,OA ,OA 交线段BC 于点D . ·················· (1分)AB AC =,AB AC ∴=.OA BC ∴⊥,且11202BD DC BC ===. ································································································ (1分) 由题意,5DA =. ······································································ (1分) 在Rt BDO △中,222OB OD BD =+, ··········································· (2分) 设OB x =米, ············································································ (1分) 则()2225120x x =-+, ······························································ (2分)1442.5x ∴=. ·········································································· (1分) 答:滴水湖的半径为1442.5米. ···················································· (1分) 四.(本大题共4题,满分50分) 22.解:(1)由题意,设点A 的坐标为()3a a ,,0a >. ································ (1分)点A 在反比例函数12y x =的图象上,得123a a=, ···························· (1分) 解得12a =,22a =-, ·································································· (1分) 经检验12a =,22a =-是原方程的根,但22a =-不符合题意,舍去. ···· (1分) ∴点A 的坐标为()26,. ·································································· (1分)(2)由题意,设点B 的坐标为()0m ,. ··········································· (1分)0m >,m ∴=··················································· (2分)解得103m =,经检验103m =是原方程的根,∴点B 的坐标为1003⎛⎫⎪⎝⎭,. ·· (1分)设一次函数的解析式为103y kx =+, ················································· (1分) 由于这个一次函数图象过点()26A ,,10623k ∴=+,得43k =. ············ (1分) ∴所求一次函数的解析式为41033y x =+. ·········································· (1分)23.证明:(1)在梯形ABCD 中,AB DC =,B C ∴=∠∠. ···················· (2分) GF GC =,C GFC ∴=∠∠. ····················································· (1分) B GFC ∴=∠∠,AB GF ∴∥,即AE GF ∥. ································ (1分) AE GF =,∴四边形AEFG 是平行四边形. ··································· (2分) (2)过点G 作GH FC ⊥,垂足为H . ············································ (1分)GF GC =,12FGH FGC ∴=∠∠. ············································· (1分) 2FGC EFB =∠∠,FGH EFB ∴=∠∠.····································· (1分)90FGH GFH +=∠∠,90EFB GFH ∴+=∠∠. ······················ (1分)90EFG ∴=∠. ·········································································· (1分)四边形AEFG 是平行四边形,∴四边形AEFG 是矩形. ···················· (1分)24.解:(1)由题意,点B 的坐标为()02,, ················································ (1分)2OB ∴=,tg 2OAB =∠,即2OBOA=. 1OA ∴=.∴点A 的坐标为()10,. ··················································· (2分) 又二次函数22y x mx =++的图象过点A ,2012m ∴=++.解得3m =-, ··············································································· (1分) ∴所求二次函数的解析式为232y x x =-+. ······································ (1分) (2)由题意,可得点C 的坐标为()31,, ············································ (2分) 所求二次函数解析式为231y x x =-+. ············································· (1分) (3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,那么对称轴直线32x =不变,且111BB DD ==. ····································· (1分)点P 在平移后所得二次函数图象上,设点P 的坐标为()231x x x -+,.在1PBB △和1PDD △中,112PBB PDD S S =△△,∴边1BB 上的高是边1DD 上的高的2倍.①当点P 在对称轴的右侧时,322x x ⎛⎫=-⎪⎝⎭,得3x =,∴点P 的坐标为()31,; ②当点P 在对称轴的左侧,同时在y 轴的右侧时,322x x ⎛⎫=- ⎪⎝⎭,得1x =, ∴点P 的坐标为()11-,;③当点P 在y 轴的左侧时,0x <,又322x x ⎛⎫-=-⎪⎝⎭,得30x =>(舍去), ∴所求点P 的坐标为()31,或()11-,. ················································ (3分) 25.(1)证明:2AP PB PB BO PO ==+=,2AO PO ∴=.2AO POPO BO∴==. ········································································ (2分) PO CO =, ··············································································· (1分) AO COCO BO∴=.COA BOC =∠∠,CAO BCO ∴△∽△.················· (1分) (2)解:设OP x =,则1OB x =-,OA x m =+,OP 是OA ,OB 的比例中项, ()()21x x x m ∴=-+, ·································································· (1分) 得1m x m =-,即1mOP m =-. ························································· (1分) 11OB m ∴=-. ············································································· (1分) OP 是OA ,OB 的比例中项,即OA OPOP OB=, OP OC =,OA OCOC OB∴=. ·························································· (1分) 设圆O 与线段AB 的延长线相交于点Q ,当点C 与点P ,点Q 不重合时, AOC COB =∠∠,CAO BCO ∴△∽△. ······································ (1分) AC OCBC OB∴=. ············································································· (1分) AC OC OP m BC OB OB ∴===;当点C 与点P 或点Q 重合时,可得AC m BC =, ∴当点C 在圆O 上运动时,:AC BC m =; ········································ (1分) (3)解:由(2)得,AC BC >,且()()11AC BC m BC m -=->,()1AC BC m BC +=+,圆B 和圆C 的圆心距d BC =,显然()1BC m BC <+,∴圆B 和圆C 的位置关系只可能相交、内切或内含. 当圆B 与圆C 相交时,()()11m BC BC m BC -<<+,得02m <<,1m >,12m ∴<<; ·································································· (1分)。