实数经典例题及习题。dos2.doc

合集下载

实数经典例题+习题(最全)

实数经典例题+习题(最全)

经典例题类型一.有关概念的识别1.下面几个数:,…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1 D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= …,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)的算术平方根是__________;平方根是)-27立方根是__________. 3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.- 1 B.1-C.2-D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) ||(2) |π|(3) |-|(4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

(完整word版)实数计算题专题训练(含答案),推荐文档

(完整word版)实数计算题专题训练(含答案),推荐文档

專題一計算題訓練一.计算题1.计算题: |﹣ 2|﹣〔 1+〕0+.2.计算题:﹣12021+4×〔﹣ 3〕2+〔﹣ 6〕÷〔﹣ 2〕3. 4. ||﹣.5..6.;7..8.9.计算题:.32211.| ﹣|+﹣10.〔﹣ 2〕 +〔﹣ 3〕×[〔﹣ 4〕 +2]﹣〔﹣ 3〕÷〔﹣ 2〕;12. ﹣12+×﹣213..1Fpg14. 求 x の值: 9x 2=121 .15.,求 x yの值.16. 比较大小:﹣ 2,﹣〔要求写过程说明〕 17.求 x の值:〔 x+10〕 2=1618. .19. m < n ,求 + の值;20. a < 0,求 + の值.参照答案与试题解析一.解答题〔共 13 小题〕1.计算题: |﹣ 2|﹣〔 1+〕 0+.Fpg解答: 解:原式 =2﹣ 1+2,=3.2.计算题:﹣ 12021+4 ×〔﹣ 3〕 2+〔﹣ 6〕÷〔﹣ 2〕解答:解:﹣ 12021+4 ×〔﹣ 3〕 2+〔﹣ 6〕 ÷〔﹣ 2〕,=﹣ 1+4×9+3 ,=38 .3. 4.||﹣.原式 =14﹣ 11+2=5 ; 〔 2〕原式 ==﹣ 1.议论: 此题主要观察了实数の综合运算能力,是各地中考题中常有の计算题型.解决此类题目の要点是熟练掌握二次根式、绝对值等考点の运算.5.计算题: .考点 : 有理数の混杂运算。

解析: 第一进行乘方运算、尔后依照乘法分配原那么进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式 =﹣ 4+8÷〔﹣ 8〕﹣〔 ﹣ 1〕=﹣ 4﹣1﹣〔﹣ 〕 =﹣ 5+ =﹣.议论: 此题主要观察有理数の混杂运算,乘方运算,要点在于正确の去括号,认真の进行计算即可.6.;7..考点 : 实数の运算;立方根;零指数幂;二次根式の性质与化简。

解析: 〔1〕注意: |﹣|=﹣ ;〔 2〕注意:〔π﹣ 2〕 =1.解答:解:〔 1〕〔= = ;( 2〕=1﹣ 0.5+2 .Fpg议论:保证一个数の绝对值是非负数,任何不等于0 の数の 0 次幂是 1,注意区分是求二次方根还是三次方根.8.〔精确到〕.考点:实数の运算。

初二(下)实数的知识点与练习题

初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

实数经典测试题及答案

实数经典测试题及答案

实数经典测试题及答案一、选择题1.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D【答案】B【解析】【分析】 3 1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】3 1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268, 所以3-表示的点与点B 最接近,故选B.2.已知一个正方体的表面积为218dm ,则这个正方体的棱长为( )A .1dmB 3dmC 6dmD .3dm【答案】B【解析】【分析】设正方体的棱长为xdm ,然后依据表面积为218dm 列方程求解即可.【详解】设正方体的棱长为xdm .根据题意得:2618(0)x x =>, 解得:3x 3dm .故选:B .【点睛】此题考查算术平方根的定义,依据题意列出方程是解题的关键.3.在2,﹣1,0,5,这四个数中,最小的实数是( )A .2B .﹣1C .0D .5 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】 四个数大小关系为:1025-<<<,则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.4.估计的值在( ) A .0到1之间B .1到2之间C .2到3之间D .3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】=﹣2. 因为9<11<16,所以3<<4. 所以1<﹣2<2. 所以估计的值在1到2之间. 故选:B .【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.5.下列六个数:0315,9,,,0.13π•-中,无理数出现的频数是( ) A .3 B .4 C .5 D .6【答案】A【解析】【分析】根据无理数的定义找出无理数,根据频数的定义可得频数.【详解】因为六个数:0、315,9,,,0.13π•-中,无理数是35,9,π 即:无理数出现的频数是3故选:A【点睛】考核知识点:无理数,频数.理解无理数,频数的定义是关键.6.对于实数a 、b 定义运算“※”:22()()a ab a b a b ab b a b ⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x ,y 是方程组33814x y x y -=⎧⎨-=⎩的解,则y ※x 等于( ) A .3 B .3- C .1-D .6- 【答案】D【解析】【分析】先根据方程组解出x 和y 的值,代入新定义计算即可得出答案.【详解】解:∵33814x y x y -=⎧⎨-=⎩∴21x y =⎧⎨=-⎩所以()()2y x=-12=-12-2=-2-4=-6⨯※※.故选:D .【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.7.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=4由于23,∴1<42.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.8.在实数范围内,下列判断正确的是()A m=n B.若22>,则a>ba bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.9.若a、b分别是2a-b的值是()A.B.C D.【答案】C【解析】根据无理数的估算,可知34,因此可知-4<-3,即2<3,所以可得a为2,b为2a-b=4-(故选C.10.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A2-1 B2+1 C2D2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】22+=-1和A2.112∴点A2.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.若a30=3,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【答案】B【解析】【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【详解】∵25<30<36,∴5306,∴5−3303<6−3,即2303<3,∴a的值所在的范围是2<a<3.故选:B.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.如图,数轴上A,B两点表示的数分别为-13,点B关于点A的对称点为C,则点C所表示的数为()A.-2-3B.-1-3C.-2+3D.1+3【答案】A【解析】【分析】由于A,B两点表示的数分别为-1和3,先根据对称点可以求出OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,|-1|+|3|=1+3,∴OC=2+3,而C点在原点左侧,∴C表示的数为:-2-3.故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.13.如图,已知x2=3,那么在数轴上与实数x对应的点可能是()A.P1B.P4C.P2或P3D.P1或P4【答案】D【解析】试题解析:∵x2=3,∴3根据实数在数轴上表示的方法可得对应的点为P1或P4.故选D.14.若x2=16,则5-x的算术平方根是()A.±1 B.±3 C.1或9 D.1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x 2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x 的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.17.下列说法:①36的平方根是6; ②±9的平方根是3; 164±; ④ 0.01是0.1的平方根; ⑤24的平方根是4; ⑥ 81的算术平方根是±9.其中正确的说法是( )A .0B .1C .3D .5 【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;16=4164±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.18.估计值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.的值是在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】B【解析】解:由于16<19<25,所以4<5,因此6<7.故选B.点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.20.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.。

实数练习题(含答案)

实数练习题(含答案)

实数练习题(含答案)篇一:实数练习题基础篇附答案实数练习题一、判断题(1分×10=10分)1. 3是9的算术平方根() 2. 0的平方根是0,0的算术平方根也是0()23.(-2)的平方根是?2 () 4. -是的一个平方根()5.a是a的算术平方根( )6. 64的立方根是?4() 7. -10是1000的一个立方根()8. -7是-343的立方根() 9.无理数也可以用数轴上的点表示出来() 10.有理数和无理数统称实数()二、选择题(3分×6=18分) 11.列说法正确的是() A 、1是的一个平方根 B、正数有两个平方根,且这两个平方根之和等于0 42C、 7的平方根是7D、负数有一个平方根 12.如果y?,那么y的值是()A、 B、 ?、、? 13.如果x是a的立方根,则下列说法正确的是() A、?x也是a的立方根 B、?x是?a的立方根 C、x是?a 的立方根 D、等于a 14.?、322?可,无理数的个数是()、?、、、A 、1个 B、 2个 C、 3个 D、 4个 15.与数轴上的点建立一一对应的是()(A、全体有理数B、全体无理数C、全体实数D、全体整数16.如果一个实数的平方根与它的立方根相等,则这个数是() A、0 B、正实数 C、0和1 D 、1三、填空题(1分×30=30分)的平方根是,10的算术平方根是。

3.?是的平方根?3是的平方根;(?2)的算术平方根是24.正数有个平方根,它们;0的平方根是;负数平方根。

5.?125的立方根是,?8的立方根是,0的立方根是。

6.正数的立方根是数;负数的立方根是数;0的立方根是。

7.2的相反数是,??= ,8.比较下列各组数大小:⑴⑵?64?1⑶?2 2四、解下列各题。

1.求下列各数的算术平方根与平方根(3分×4=12分)⑴225 ⑵1212⑶⑷ (?4) 1442.求下列各式值(3分×6=18分)⑴225⑵? ⑶?144⑷⑸ ?125 ⑹?272893.求下列各式中的x:(3分×4=12分)2⑴x?49 ⑵x?225333⑶x?3?⑷(x?2)?125 818附加题:(10分×2=20分)1.怎样计算边长为1的正方形的对角线的长?2.如图平面内有四个点,它们的坐标分别是 A(1,22) B(3,22) C(4,2) D(1,2) ⑴依次连接A、B、C、D,围成的四边形是什么图形?并求它的面积⑵将这个四边形向下平移22一、选择题(3分×8=24分) 1.实数8 ? 421025 其中无理数有() 3A、 1个B、 2个C、 3个D、 4个1的平方根是() 91111A、 B、 ? C、 ? D、?333812.3.如果x?16,则的值是()A、 4B、 -4C、 ?4D、 ?24.下列说法正确的是()A、 25的平方根是5B、?2的算术平方根是2C、的立方根是D、22525是的一个平方根 6365.下列说法⑴无限小数都是无理数⑵无理数都是无限小数⑶带根号的数都是无理数⑷两个无理数的和还是无理数。

八年级数学_实数习题精选(含答案).doc

八年级数学_实数习题精选(含答案).doc

实数单元测试题 姓名(本题共10小题,每小题3分,共30分)2仁-6 的算术平方根是 __________________2、 3— 兀 +4— 兀= __________ 。

3、 2的平方根是 ___________ 。

4、 实数a , b , c 在数轴上的对应点如图所示化简 a + a + b - b —c = __5、若m n 互为相反数,则 m — J5 + n = 。

6、 右 J m —1 +(n —2) = 0,贝U m=__________________________________________, n = _________________________________________7、若 = -a ,■则 a _____ o8、J 2 —1的相反数是 __________9、3 匸8 = __________ , - V8 = _____________10、绝对值小于 n 的整数有______________________________________________二、选择题:(本题共10小题,每小题3分,共30分)11、代数式X 2 +1,V x ,y , (m —1)2, Vx 3中一定是正数的有( A 1个B 、2个C 、3个D 、4个 12、若3x - 7有意义, 则 x 的取值范围是()) 77 7 r 7 A x >B 、x > - -一C 、x >D 、x > 3 3 3 313、若x ,y 都是实数,且..2x -1 J -2x ^4,则xy 的值(1A 0B 、 2C 、2 D、不能确定 14、下列说法中,错误的是 ()。

A 4的算术平方根是2B 、 .81的平方根是土 3C 、8的立方根是土 2D 、立方根等于—1的实数是—1 15、64的立方根是()。

A 、土 4B 、4C 、一4D 、16-Q ------------ O ------------- 0 b c 03厂2 v a 16、已知 (a -3)2 +|b -4 =0,则一生的值是()b17、计算 3。

实数计算题带答案

实数计算题带答案

实数计算题带答案篇一:实数计算题专题训练(含答案)专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+3.6.9.计算题:10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2); 11. |12. ﹣1+2322)+0. 2.计算题:﹣12009+4×(﹣3)+(﹣6)÷(﹣2) 2 4 . ||﹣.5..; 7..8. .﹣|+﹣×﹣213. .114. 求x的值:9x2=121. 15. 已知16. 比较大小:﹣2,﹣(要求写过程说明)18. .19. 已知m<n,求+的值;20.已知a<0,求+的值.参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.2 ,求xy的值.求x的值:(x+10)2=1617.3.4. ||﹣. 200925.计算题:.6.7.;.38.(精确到).9.计算题:.10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);3222 413..14求x的值:9x=121.15已知,求x的值.16比较大小:﹣2,﹣(要求写过程说明)2y17. 求x的值:(x+10)=1618.. 25篇二:第十三章实数计算题专题训练(含答案)专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+2.计算题:﹣13.4 . ||﹣. 2009)+0. +4×(﹣3)+(﹣6)÷(﹣2) 2 5.计算题:6.计算题:(1)78.9.计算题:(精确到).;...10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);11.|﹣|+﹣12. ﹣1+2322×﹣213.14. 求x的值:9x=121.15. 已知16. 比较大小:﹣2,﹣22.,求x的值. y(要求写过程说明) 17.求x的值:(x+10)=1618.19. 已知m<n,求20.已知a<0,求+的值. +的值;.保沙中学专题一计算题训练参考答案与试题解析一.解答题(共13小题)200923.4. ||﹣. 5.计算题:.6.7.;.保沙中学8.(精确到).9.计算题:.10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);322保沙中学.14求x的值:9x=121.15已知,求x的值.16比较大小:﹣2,﹣(要求写过程说明)2y17. 求x的值:(x+10)=1618.保沙中学2.篇三:实数练习题(含答案)实数练习题一一.选择题1.下列说法不正确的是()A.1是1的平方根 B.-1是1的平方根 C.±1是1的平方根的平方根是1 2.9的平方根是()A.±9 B.± 3.4的算术平方根是()A.±2 C.±24.下列各数:π,(?2)2,-∣-3∣,-(-5),π-,2,0,-1,其中有平方根的有()A.3个个个个 5.下列几种说法:()①任何数的平方根都有两个②只有正数才有平方根;③因为负数没有平方根,所以平方根不可能为负;④不是正数的数都没有平方根. 其中正确的有()A.3个个个个 6.下列计算正确的是()A.(?2)2=2 ? =?5D.?(?2)2??2 7.一个正整数的算术平方根是a,则比这个正整数大2的数的算术平方根是() A.a+2B. a2?2 C. a2?2 D. a?2 8.已知?n是正整数,则整数n的最大值为() A.12 19.下列各数中,-2,,,72,-π,无理数的个数是()A.2个个个个10.下列说法正确的是() A.无理数都是实数,实数都是无理数B.无限小数都是无理数; C.无理数是无限小数 D.两个无理数的和一定是无理数二.填空题1.平方根等于本身的数是,算术平方根等于本身的数是 .立方根等于它本身的数是.2.(1)一个数的平方是49,这个数是,它叫做49的 .(2)()2=99(3)(?25)2开平方的结果是,的平方根是,64643.13是m的一个平方根,则m的另一个平方根是,m= . 4.的整数部分为,小数部分为 . 5.若x+1是36的算术平方根,那么x=. 6.∣?517∣的平方根是2的算术平方根是1697.绝对值最小的实数是,a和它的相反数的差是 . 8.若无理数a满足2<a<5,请写出两个你熟悉的无理数a为 . 9.在两个连续整数a和b之间,即a<<b,则a,b的值分别是 . 10.一个数的算术平方根是x,那么比它大1的数的立方根是. 三.计算题1.求下列各数的平方根:(1)144 (2)121(3) 4(4)(?)2 (5)?(4)2 (6)?(?(7)2?122(8)2.求下列各数的立方根:92) 16(1)- (2)3 (3)(-4)3383.计算:(1)??(精确到)(2)7??π?(3)23?(2?)(精确到)(4)四.问答题1.某农场有一块长30米,宽为20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?2.若球的半径为R,则球的体积V与R的关系式为V=4πR3 .已知一个足球的体积为31(保留4个有效数字); 4?2?23(保留3个有效数字). 36280cm3,试计算足球的半径.(π取,精确到)3.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截取8个大小相同的小正方体,使截后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?答案; 一、选择题1、D;2、B;3、B;4、D;5、D;6、A;7、B;8、B;9、A; 10、C;二、填空题; 0,1; 0,1,-1;3932、①、±7;平方根;②、(±)2=;±;③、±5;86483、-13;169;4、5;-5;5、5或﹣7;956、±;;437、0;2a; 8、;4; 9、a=3;b=4; 10、(x2+1)371三、1①、=±12;②=±;③.0625=;④;;⑤;-4;24⑥;﹣9;⑦;±5;⑧;0; 162、①、﹣;②、;③、﹣64;3、计算:1、10;2、≈;3、4;实数练习题二一.选择题11.下列说法不正确的是()A.0是整数是有理数是无理数是实数512.?,?2,?,-π/2四个数中,最大的数是()3A.? B.-2C.?3 D.-π/2 13.下列说法正确的是() A.带根号的数是无理数53B.无限小数是无理数 C.分数都不是无理数D.不能在数轴上表示的数是无理数 14.(?3)2的相反数是()A.6 B.- D.-9 15.设?a,则下列结论正确的是()A.<a< <a<<a<<a<16.下列四个结论:①绝对值等于它本身的实数只有零;②相反数等于它本身的实数只有零;③算术平方根等于它本身的实数只有1;④倒数等于它本身的实数只有1.其中正确的有()A.0个个个个 17.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.负数没有立方根 D.一个数有立方根,它也有平方根 D.立方根的符号与被开立方数的符号相同 18.下列计算不正确的是()A.(?3)2??3 (?3)3??3 C..001? D.(?2)3??2 19.下列说法正确的是()A.一个数总大于它的立方根 B.非负数才有立方根 C.任何数和它的立方根的符号相同 D.任何数都有两个立方根 20.下列各式:3(?()二.填空题A.0个个个个 9.因为()3=-27,所以?2710.的立方根是.272311)?,?(?27)3??27,31?1,64??4,计算正确的有8264411/ 11。

实数考试题及答案

实数考试题及答案

实数考试题及答案一、选择题(每题3分,共30分)1. 下列实数中,最小的数是()。

A. -3B. 0C. 2D. 1答案:A2. 实数a和b中,若a < b,则下列不等式中正确的是()。

A. a+1 < b+1B. a-1 < b-1C. a*2 < b*2D. a/2 < b/2答案:A3. 若x是实数,且|x|=3,则x的值是()。

A. 3B. -3C. 3或-3D. 0答案:C4. 下列实数中,绝对值最大的是()。

A. 0B. -5C. 3D. 2答案:B5. 下列实数中,是无理数的是()。

B. √2C. 2/3D. 0.33333答案:B6. 下列实数中,是负数的是()。

A. -1B. 0C. 1D. 2答案:A7. 下列实数中,是整数的是()。

A. √2B. 0.5D. 0.33333答案:C8. 下列实数中,是正数的是()。

A. -1B. 0C. 1D. -0.5答案:C9. 下列实数中,是分数的是()。

A. √2B. 0.5C. 3D. 0.33333答案:B10. 下列实数中,是正有理数的是()。

A. -1B. 0C. 1D. 0.5答案:D二、填空题(每题3分,共30分)11. 绝对值等于5的实数是_________。

答案:±512. 两个负数中,绝对值大的反而_________。

答案:小13. 若a < b < 0,则ac < bc(c为实数)。

答案:×14. 一个数的相反数等于它本身,则这个数是_________。

答案:015. 一个数的倒数等于它本身,则这个数是_________。

答案:±116. 一个数的平方等于它本身,则这个数是_________。

答案:0或117. 一个数的立方等于它本身,则这个数是_________。

答案:-1、0或118. 一个数的绝对值等于它的相反数,则这个数是_________。

实数经典例题及习题(精编文档).doc

实数经典例题及习题(精编文档).doc

【最新整理,下载后即可编辑】实数复习(一)经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、类型二.计算类型题2.设,则下列结论正确的是()A. B. C. D.举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________. 2)-27立方根是__________. 3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4| (2) |π-3.142| (3) |-|举一反三:【变式1】化简:类型五.实数非负性的应用5.已知:=0,求实数a, b的值。

分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。

解:由题意得由(2)得a2=49 ∴a=±7 由(3)得a>-7,∴a=-7不合题意舍去。

∴只取a=7把a=7代入(1)得b=3a=21∴a=7, b=21为所求。

实数计算题带答案

实数计算题带答案

实数计算题带答案篇一:实数计算题专题训练(含答案)专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+3.6.9.计算题:10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2); 11. |12. ﹣1+2322)+0. 2.计算题:﹣12009+4×(﹣3)+(﹣6)÷(﹣2) 2 4 . ||﹣.5..; 7..8. .﹣|+﹣×﹣213. .114. 求x的值:9x2=121. 15. 已知16. 比较大小:﹣2,﹣(要求写过程说明)18. .19. 已知m<n,求+的值;20.已知a<0,求+的值.参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.2 ,求xy的值.求x的值:(x+10)2=1617.3.4. ||﹣. 200925.计算题:.6.7.;.38.(精确到).9.计算题:.10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);3222 413..14求x的值:9x=121.15已知,求x的值.16比较大小:﹣2,﹣(要求写过程说明)2y17. 求x的值:(x+10)=1618.. 25篇二:第十三章实数计算题专题训练(含答案)专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+2.计算题:﹣13.4 . ||﹣. 2009)+0. +4×(﹣3)+(﹣6)÷(﹣2) 2 5.计算题:6.计算题:(1)78.9.计算题:(精确到).;...10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);11.|﹣|+﹣12. ﹣1+2322×﹣213.14. 求x的值:9x=121.15. 已知16. 比较大小:﹣2,﹣22.,求x的值. y(要求写过程说明) 17.求x的值:(x+10)=1618.19. 已知m<n,求20.已知a<0,求+的值. +的值;.保沙中学专题一计算题训练参考答案与试题解析一.解答题(共13小题)200923.4. ||﹣. 5.计算题:.6.7.;.保沙中学8.(精确到).9.计算题:.10.(﹣2)+(﹣3)×[(﹣4)+2]﹣(﹣3)÷(﹣2);322保沙中学.14求x的值:9x=121.15已知,求x的值.16比较大小:﹣2,﹣(要求写过程说明)2y17. 求x的值:(x+10)=1618.保沙中学2.篇三:实数练习题(含答案)实数练习题一一.选择题1.下列说法不正确的是()A.1是1的平方根 B.-1是1的平方根 C.±1是1的平方根的平方根是1 2.9的平方根是()A.±9 B.± 3.4的算术平方根是()A.±2 C.±24.下列各数:π,(?2)2,-∣-3∣,-(-5),π-,2,0,-1,其中有平方根的有()A.3个个个个 5.下列几种说法:()①任何数的平方根都有两个②只有正数才有平方根;③因为负数没有平方根,所以平方根不可能为负;④不是正数的数都没有平方根. 其中正确的有()A.3个个个个 6.下列计算正确的是()A.(?2)2=2 ? =?5D.?(?2)2??2 7.一个正整数的算术平方根是a,则比这个正整数大2的数的算术平方根是() A.a+2B. a2?2 C. a2?2 D. a?2 8.已知?n是正整数,则整数n的最大值为() A.12 19.下列各数中,-2,,,72,-π,无理数的个数是()A.2个个个个10.下列说法正确的是() A.无理数都是实数,实数都是无理数B.无限小数都是无理数; C.无理数是无限小数 D.两个无理数的和一定是无理数二.填空题1.平方根等于本身的数是,算术平方根等于本身的数是 .立方根等于它本身的数是.2.(1)一个数的平方是49,这个数是,它叫做49的 .(2)()2=99(3)(?25)2开平方的结果是,的平方根是,64643.13是m的一个平方根,则m的另一个平方根是,m= . 4.的整数部分为,小数部分为 . 5.若x+1是36的算术平方根,那么x=. 6.∣?517∣的平方根是2的算术平方根是1697.绝对值最小的实数是,a和它的相反数的差是 . 8.若无理数a满足2<a<5,请写出两个你熟悉的无理数a为 . 9.在两个连续整数a和b之间,即a<<b,则a,b的值分别是 . 10.一个数的算术平方根是x,那么比它大1的数的立方根是. 三.计算题1.求下列各数的平方根:(1)144 (2)121(3) 4(4)(?)2 (5)?(4)2 (6)?(?(7)2?122(8)2.求下列各数的立方根:92) 16(1)- (2)3 (3)(-4)3383.计算:(1)??(精确到)(2)7??π?(3)23?(2?)(精确到)(4)四.问答题1.某农场有一块长30米,宽为20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?2.若球的半径为R,则球的体积V与R的关系式为V=4πR3 .已知一个足球的体积为31(保留4个有效数字); 4?2?23(保留3个有效数字). 36280cm3,试计算足球的半径.(π取,精确到)3.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截取8个大小相同的小正方体,使截后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?答案; 一、选择题1、D;2、B;3、B;4、D;5、D;6、A;7、B;8、B;9、A; 10、C;二、填空题; 0,1; 0,1,-1;3932、①、±7;平方根;②、(±)2=;±;③、±5;86483、-13;169;4、5;-5;5、5或﹣7;956、±;;437、0;2a; 8、;4; 9、a=3;b=4; 10、(x2+1)371三、1①、=±12;②=±;③.0625=;④;;⑤;-4;24⑥;﹣9;⑦;±5;⑧;0; 162、①、﹣;②、;③、﹣64;3、计算:1、10;2、≈;3、4;实数练习题二一.选择题11.下列说法不正确的是()A.0是整数是有理数是无理数是实数512.?,?2,?,-π/2四个数中,最大的数是()3A.? B.-2C.?3 D.-π/2 13.下列说法正确的是() A.带根号的数是无理数53B.无限小数是无理数 C.分数都不是无理数D.不能在数轴上表示的数是无理数 14.(?3)2的相反数是()A.6 B.- D.-9 15.设?a,则下列结论正确的是()A.<a< <a<<a<<a<16.下列四个结论:①绝对值等于它本身的实数只有零;②相反数等于它本身的实数只有零;③算术平方根等于它本身的实数只有1;④倒数等于它本身的实数只有1.其中正确的有()A.0个个个个 17.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.负数没有立方根 D.一个数有立方根,它也有平方根 D.立方根的符号与被开立方数的符号相同 18.下列计算不正确的是()A.(?3)2??3 (?3)3??3 C..001? D.(?2)3??2 19.下列说法正确的是()A.一个数总大于它的立方根 B.非负数才有立方根 C.任何数和它的立方根的符号相同 D.任何数都有两个立方根 20.下列各式:3(?()二.填空题A.0个个个个 9.因为()3=-27,所以?2710.的立方根是.272311)?,?(?27)3??27,31?1,64??4,计算正确的有8264411/ 11。

实数经典例题及习题。dos2(可编辑修改word版)

实数经典例题及习题。dos2(可编辑修改word版)

a一、实数的概念及分类1、实数的分类第二章 实数综合练习题正有理数 有理数零整数、有限小数和无限循环小数实数负有理数 正无理数 无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1) 开方开不尽的数,如 7, 3 2 等;π (2) 有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001…等;二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数, 则有 a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则 a≥0;若|a|=-a ,则 a≤0。

3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。

倒数等于本身的数是 1 和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数 x 的平方等于 a ,即 x 2=a ,那么这个正数 x 就叫做 a 的算术平方根。

特别地,0 的算术平方根是 0。

表示方法:记作“ ”,读作根号 a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数 x 的平方等于 a ,即 x 2=a ,那么这个数 x 就叫做 a 的平方根(或二次方根)。

表示方法:正数 a 的平方根记做“ ”,读作“正、负根号 a ”。

实数练习题与答案

实数练习题与答案

实数练习题及答案一、选择题(每小题3分,共30分)1.下列各式中无意义的是()A.B.C.D.2.10的平方根是±-2是4的平方根是④0.01的算术平方根是0.1;⑤,其中正确的有()A.1个B.2个C.3个D.4个3.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.的立方根是()A.B.C.D.5.现有四个无理数,,,,其中在实数+1与+1之间的有()A.1个B.2个C.3个D.4个6.实数,-2,-3的大小关系是()A.B.C.D.7.已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.78.若,则的大小关系是()A.B.C.D.9.已知是169的平方根,且,则的值是()A.11B.±11C.±15D.65或10.大于且小于的整数有()A.9个B.8个C.7个D.5个二、填空题(每小题3分,共30分)10.绝对值是,的相反数是.11.的平方根是,的平方根是,-343的立方根是,的平方根是.12.比较大小:(1);(2);(3);(4)2.13.当时,有意义。

14.已知=0,则=.15.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是.16.已知且,则的值为。

17.已知一个正数的两个平方根是和,则=,=.18.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上从左至右的顺序是.19.若无理数满足1,请写出两个符合条件的无理数.三、解答题(共40分)20.(8分)计算:(1);(2);(3);(4);21.(12分)求下列各式中的的值:(1);(2);(3);(4);22.(6分)已知实数、、在数轴上的对应点如图所示,化简:23.(7分)若、、是有理数,且满足等式,试计算的值。

实数 练习题(带答案

实数 练习题(带答案


故选 .
【标注】【知识点】无理数的估算
21. 已知整数 满足
,则 的值为

【答案】
【解析】 ∵ ∴ 又∵ ∴.
, .
【标注】【知识点】无理数的估算
7
22. 若
,且 , 为两个连续的正整数,则 的值是

【答案】
Байду номын сангаас
【解析】 ∵ ∴ ∴
, ,,

【标注】【知识点】无理数的估算
23. 已知 的算术平方根是 , 的立方根是 , 是 的整数部分,求
13. 写出一个大于 的无理数:

【答案】 答案不唯一,如:
【解析】
,并且 是无理数.
故答案为: ,但是不唯一.
【标注】【知识点】无理数大小的比较
14. 比较大小:

【答案】 ;
【解析】 ∴

, . , . .
【标注】【知识点】二次根式比较大小
15. 如图,在数轴上标注了四段范围,则表示 的点落在( ).
A.
B.
C.
D.
【答案】 B
【解析】 由图可知,点 所表示的数在 和 之间.



,故排除 ;



故排除 ;
又由图可知点 所表示的数在 和 之间,






故排除 ,选择 .
11
故选 . 【标注】【知识点】实数与数轴
12
【标注】【知识点】无理数的估算
17. 比较大小:

【答案】
【解析】


∵被开方数越大,数越大,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数综合练习题、实数的概念及分类1、实数的分类「正有理数r「有理数3 零卜整数、有限小数和无限循环小数实数' L负有理数」「正无理数rL无理数Y 卜无限不循环小数L负无理数」2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如J7,扼等;(2)有特定意义的数,如圆周率兀,或化简后含有兀的数,如兰+8等;3(3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果&与4互为相反数, 则有a+b=0, a=—b,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(lalNO)。

零的绝对值是它本身,也可看成它的相反数,若lal=a,则Q0;若lal=-a,则龙0。

3、倒数如果a与b互为倒数,则有ab=l,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一•对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一•般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算木平方根。

特别地,。

的算术平方根是0。

表示方法:记作“西”,读作根号a。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

表示方法:正数a的平方根记做“土石”,读作“正、负根号a”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方°4ab = y[a •4b {a > 0,b > 0)-a(a < 0) ( 4 脖辛5>0)注意石的双重非负性:3、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。

表示方法:记作插性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:-如,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的儿种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a、b是实数,a-h>O<^>a>b, a-b = O = ci = b, a-b <0 a <b(3)平方法:设a、b是两负实数,则a2 >b2 ^>a<b o五、算术平方根有关计算(二次根式)1、含有二次根号“、厂”;被开方数a必须是非负数。

2、性质:(1 ) (V^)2=a(a>0)( 3 )(4a • 4b = 4ah(a > 0,。

> 0))仁a (a > 0)(2) 4^ = Cl = Y4b3、最简二次根式:运算结果若含有形式,必须满足:乘法交换律乘法结合律ab = ba (ab)c =a(hc)(1)9的平方根是()。

-3 B. 3 C. ±3 D. 81(2) 16算术平方根是( )o A. ±4 B. -4 C.4 D. 2Jx- 3y+ I 3.己知w 1x 2- 9x+ 3)2aV-bVbV-a-bVaOaVbaV-bV —aVbD ・-bVaVbV-a6.求下列各式中的x 。

(1)(2"沪16=0;(2)3疽+81125(1) 被开方数的因数是整数,因式是整式; (2) 被开方数中不含能开得尽方的因数或因式 六、实数的运算(1) 六种运算:加、减、乘、除、乘方、开方 (2) 实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3) 运算律:运算律在无理数范围内仍然适用 力n 法交换律 a + h = h +a加法结合律 (。

+幻+ c =。

+ (Z? + c )乘法对加法的分配律Q (b + c ) = ab + ac1.实数a 、b 、c 在数轴上的对应点如图,求a+|o+Z?|- ■ \b- c|的值。

x0,求一的值。

y4.若 a+bVO, a<0, b>0,则 a, -a, b, -b 的大小关系为()。

B i际-i5.估计与0.5大小关系是 0.5 (填”或“<)°227.比较V2 4- V7与®指的大小.8.某化工厂一种球形储气罐的体积为9850m3,试求该球体的直径.(球的体积公式为4V=-p/?2, Q取3. 14,结果保留3个有效数字)10.若a>0, — <0,则 ~ -/?+1)~ 的结果是().A. -3B. 3C. 2a+2b+3 C. -2a+2b-511.(大连中考)若\-\[a-4b,y= V^+ Vb ,则xy的值为().L2y/a B.2 而 C. a+b D. a-b12.(盐城中考)计算|1・ 2|-J^+(- 2)'2- (V3- 2)°.八年级数学实数•、选择题1.要使J4o+ ]有意义,a的值为().A. 0 B. -2 C.-l D. -42.实数a, b在数轴上的位如图2-*3,则有().A. a>b>cb>a>ca>c> bb>c>a5.若m 是16的平方根,n=(V4),则 m,n 的关系是( A. m=±n B. m=n C. m=-nD. \m 1 \n6.已知a, b 互为相反数, c, d 互为倒数,e 是非零数,则5/3(a+ b)- —cd- 2e°的值为A. 0B.2 C.-—55 D.-2A. o+ b\> |/?|B. \a > \b\ , 9 彳C. - a< b - b< a图2~C-33.下列叙述正确的是( ).A.任何实数都有互为相反数的2个平方根B.零的立方根为0C. ?的平方根就是匹C.无理数就是带根号的数16V164. 已知a=,0=i,S=?,则a, b, c 三个数的大小关系是( )二、填空题7.在数轴上与原点的距离是2后的点所表示的实数是. 8. - V3的相反数 是,绝对值是,倒数是.9. 49的平方根是, 64的算术平方根是, -64的立方根是. 10. 已知旷2,贝U 代数式2插-勺*的值等于—.a- \la11. -个正数的平方根为x+3与2x-6,则x 二,这个正数是. 三、解答题12. 求 X 的值(1) ?= 9;(2)(X+ 1)2= 37;(3)3(心 1)2=9(1)-帅+海.§H+亦 2)2+寸(-3尸;(2) - ^27- (^1)'+ V225- V625;V125;(4)—- 扼 + Vo.r 7- (- 2)' V0064 12514.化简:(1 )后,(2) (V7- 2V2)(2V2+ V7):15. (3)(4- 5右『 (4):+ 辰.x/H2-例1.求使--3 +二+力^有意义的a 的取值范围。

一3 j4-o13. 计算:15.若实数a, b 互为相反数,c, d 互为倒数,m 的绝对值为2,求a 2-b 2+ (cd) - (l-2m+m 2) 的值。

例2.已知正土匕纣=o ,求7 (x + y) 一20的立方根。

例3.已知a, b 均为有理数,且满足等式5-V2^=2b+|V2-。

,求a, b 的值例4.已知:x, y, z 满足关系式」3x + y-i-2+」2x + y-i = Jx+y-2012 +j2012-x-y ,试求x, y, z的值。

例5.比较下列各组数的大小。

(1)与-3? (2)关匝与23 2 8例6.已知5 +防的小数部分是a, 5-/7的小数部分是b,求a+b的值。

例7.已知a 满足|2008-a| + J刀一2009 二a,求a-20082的值。

1 .如图,数轴上点P 表示的数可能是-3-2-10 1 2 3个大正方形,这个大正方形的边长是12.已知々是小于3 + V5的整数,且2-。

="—2,那么□的所有可能值是一个正方形的面积变为原来的〃倍,则边长变为原来的 倍;一个立方体的体积变为原来的〃倍,则棱长变为原来的 倍。

练习题:2. A.而 B.・ J7 C. -710 D. J7 2.已知0<x<1,那么在%, —中最大的是()XA. xB. -C.五D. x 2X 3.等式7x 2-i成立的条件是( )A. x > 1B. x > -1C. -1<%<1D. xZl 或 xV ・l 4. 已知 g = ci,m = b,则J0.063 二(),ab- 3ab ab 、 3abA. —B. --C. -------D. --------1010 100 1005. 使等式(_JM)2=X 成立的X 的值( )A.是正数B.是负数C.是0D.不能确定6. ________________________________________________ 已知实数】满足,匚匚+奸盲,则。

的取值范围是 ___________________________________V 4 —。

7. 若 y/~X + \f —X 有意义,则 Jx +1 —8. 实数a 、b 、c 在数轴上对应的位置如下: 则』(a -b )2 + “ + c\ - V (c + r )3 =9. 现在要将一个边长为 插m 的正方形的铁板锻造成一个面积是它2倍的圆形铁板(厚度一 样),则这个铁板的半径10. 如图所示,将两个边长为扼的正方形沿对角线剪开,拼成一 11. 如果〃5。

+ 32 +2=0,则x+17的平方根是14.点A在数轴上和原点相距3个单位,点B在数轴上和原点相距右个单位,则A, B两点之间的距离是—15.点A在x轴上,且到y轴的距离为打,B与A点关于点(1, 0)对称,,则B点坐标为一16.已知x、y是有理数,且x、y满足2_?+3y + y次=23-3扼,则x+y=17.在实数范围内,设“=(兰L +姓二牛H)20】2,求,的个位数字是什么?X + ]|2 - M18.已知:Z7<V3^r + V^3+-,化简:”一2| + |38 — 1| + 序19.已知2o-1的算术平方根是3, 3。

相关文档
最新文档