2011年高考数学湖南文(word版含答案)

合集下载

2011年高考湖南卷文科数学试题和答案

2011年高考湖南卷文科数学试题和答案

正视图 侧视图俯视图2011年普通高等学校招生全国统一考试文科数学(湖南卷)参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=M ∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N= A .{1,2,3} B . {1,3,5} C . {1,4,5} D . {2,3,4} 2.若,a b R ∈,i为虚数单位,且()a i i b i +=+则 A .1a =,1b =B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-3.“1x >”是“1x >” 的A .充分不必要条件B .必要不充分条件C . 充分必要条件D .既不充分又不必要条件 4.设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B .3618π+C .9122π+ D .9182π+ 5 由22()()()()()n ad bc K a d c d a c b d -=++++ 算得,22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”6.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .17.曲线sin 1sin cos 2x y x x =-+在点M (4π,0)处的切线的斜路为A . 12-B .12C .2-D .28.已知函数2()1,()43xf x eg x x x =-=-+-,若有()()f a g b =,则b 的取值范围为A .22⎡⎣ B .22⎡-+⎣C . []1,3D . ()1,3二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题..卡.中对应题号后的横线上. (一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系xOy 中,曲线C 1的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为()cos sin 10ρθθ-+=,则C 1与C 2的交点个数为10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(二)必做题(11~16题)11.若执行如图2所示的框图,输入11x =,2342,4,8x x x ===则输出的数等于 12.已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=_________. 13.设向量a ,b 满足b=(2,1),且a 与b 的方向相反,则a 的坐标为________.14.设1,m >在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .15.已知圆22:12,C x y +=直线:4325.l x y +=(1)圆C 的圆心到直线l 的距离为 .(2)圆C 上任意一点A 到直线l 的距离小于2的概率为 .16.给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =-(1)设1k =,则其中一个函数f 在1n =处的函数值为 ;(2)设4k =,且当4n ≤时,2()3f n ≤≤,则不同的函数f 的个数为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A,B,C 所对的边分别为a ,b ,c ,且满足c sinA=acosC . (I )求角C 的大小;(II (B+4π)的最大值,并求取得最大值时角A 、B 的大小. 18.(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份是我降雨量X (单位:毫米)有关,据统计,当X=70时,Y=460;X 每增加10,Y 增加5.已知近20年X 的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160. (Ⅰ)完成如下的频率分布表概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.19.(本小题满分12分)如图3,在圆锥PO 中,已知PO O =的直径2,,AB C AB D AC =∠点在上,且CAB=30为的中点.(Ⅰ)证明:AC ⊥平面POD ;(Ⅱ)求直线 OC 和平面PAC 所成角的正弦值.20.(本小题满分13分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (Ⅰ)求第n 年初M 的价值n a 的表达式; (Ⅱ)设12...nn a a a A n+++=,若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.21.(本小题满分13分)已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相交于点,D E ,求,AD EB 的最小值.22.(本小题满分13分)设函数1()ln ()f x x a x a R x=--∈. (Ⅰ)讨论函数()f x 的单调性.(Ⅱ)若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k .问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.2011年普通高等学校招生全国统一考试(湖南卷)数学试题卷(文史类)参考答案一、选择题(共8小题,每小题5分,满分40分)1、(2011•湖南)设全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N=()A、{1,2,3}B、{1,3,5}C、{1,4,5}D、{2,3,4}考点:交、并、补集的混合运算。

2011年湖南省高考数学文科试题及答案

2011年湖南省高考数学文科试题及答案

2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试题卷包括选择题、填空题、解答题三部分,共6页,时量120分钟,满分150分参考公式:(1)()(|)()P AB P B A P A =,其中,A B 为两个基本事件,且()0P A >. (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (3)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5},{2,4},U U M N M C N ===U I 则N =( )A .{1,2,3}B .{1,3,5}C .{1,4,5}D . {2,3,4} 2. 若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B . 1,1a b =-=C . 1,1a b ==-D . 1,1a b =-=-3. “1x >”是“||1x >”的( )A .充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 4. 设图1是某几何体的三视图,则该几何体的体积为 ( )A .942π+B .3618π+C .9122π+ D .9182π+ 5. 通过询问110名性别不同的的大学生是否爱好某项运动,得到如下的列联表.由22()()()()()n ad bc K a b c d a c b d -=++++算得,22110(40302020)7.860506050K ⨯-⨯=≈⨯⨯⨯,附表如右下,参照附表,得到的正确结论( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6. 设双曲线2221(0)9x y a a -=>的渐近线方程为320x y =±,则a 的值为( ) A .4 B .3 C .2 D .1 7. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .-12B . 12C . -22D . 228. 已知函数2()1,()4 3.xf x eg x x x =-=-+-若有()()f a g b =,则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C . [1,3]D .(1,3)二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10两题中任选一题作答,如果全做,则按前一题记分)9. 在直角坐标系xOy 中,曲线1C的参数方程为2cos (x y ααα=⎧⎪⎨=⎪⎩为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos s i n )10ρθθ-+=,则1C 与2C 的交点个数为 .10. 已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 (只写出其中一个也正确). (二)必做题(11~16题)11. 若执行如图2所示的框图,输入12341,2,4,8,x x x x ==== 则输出的数等于 .12. 已知()f x 为奇函数,()()9g x f x =+,(2)3g -=,则(2)f = .13. 设向量a ,b 满足|a|=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为 .14. 设1m >,在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的大值为4,则m 的值为 。

2011年湖南省高考数学试卷(文科)答案与解析

2011年湖南省高考数学试卷(文科)答案与解析

2011年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•湖南)设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4}【考点】交、并、补集的混合运算.【分析】利用集合间的关系,画出两个集合的韦恩图,结合韦恩图求出集合N.【解答】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B【点评】本题考查在研究集合间的关系时,韦恩图是常借用的工具.考查数形结合的数学思想方法.2.(5分)(2011•湖南)若a,b∈R,i为虚数单位,且(a+i)i=b+i则()A.a=1,b=1 B.a=﹣1,b=1 C.a=1,b=﹣1 D.a=﹣1,b=﹣1【考点】复数相等的充要条件.【专题】计算题.【分析】根据所给的关于复数的等式,整理出等式左边的复数乘法运算,根据复数相等的充要条件,即实部和虚部分别相等,得到a,b的值.【解答】解:∵(a+i)i=b+i,∴ai﹣1=b+i,∴a=1,b=﹣1,故选C.【点评】本题考查复数的乘法运算,考查复数相等的条件,是一个基础题,这种题目一般出现在试卷的前几个题目中.3.(5分)(2011•湖南)“x>1”是“|x|>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【考点】充要条件.【专题】简易逻辑.【分析】解绝对值不等式,进而判断“x>1”⇒“|x|>1”与“|x|>1”⇒“x>1”的真假,再根据充要条件的定义即可得到答案.【解答】解:当“x>1”时,“|x|>1”成立,即“x>1”⇒“|x|>1”为真命题,而当“|x|>1”时,x<﹣1或x>1,即“x>1”不一定成立,即“|x|>1”⇒“x>1”为假命题,∴“x>1”是“|x|>1”的充分不必要条件.故选A.【点评】本题考查的知识点是充要条件,其中根据绝对值的定义,判断“x>1”⇒“|x|>1”与“|x|>1”⇒“x>1”的真假,是解答本题的关键.4.(5分)(2011•湖南)设如图是某几何体的三视图,则该几何体的体积为()A.9π+42 B.36π+18 C.D.【考点】由三视图求面积、体积.【专题】计算题.【分析】由三视图可知,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,分别做出两个几何体的体积相加.【解答】解:由三视图可知,几何体是一个简单的组合体,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,四棱柱的体积3×3×2=18,球的体积是,∴几何体的体积是18+,故选D.【点评】本题考查由三视图求面积和体积,考查球体的体积公式,考查四棱柱的体积公式,本题解题的关键是由三视图看出几何图形,是一个基础题.由算得,A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【考点】独立性检验的应用.【专题】计算题.【分析】根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.【解答】解:由题意知本题所给的观测值,∵7.8>6.635,∴这个结论有0.01=1%的机会说错,即有99%以上的把握认为“爱好该项运动与性别有关”故选A.【点评】本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要要考查运算能力,本题有所创新,只要我们看出观测值对应的意义就可以,是一个基础题.6.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的值为()A.4 B.3 C.2 D.1【考点】双曲线的简单性质.【专题】计算题.【分析】先求出双曲线的渐近线方程,再求a的值.【解答】解:的渐近线为y=,∵y=与3x±2y=0重合,∴a=2.故选C.【点评】本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.7.(5分)(2011•湖南)曲线在点M(,0)处的切线的斜率为()A. B.C.D.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;压轴题.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x=处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x==|x==故选B.【点评】本题主要考查了导数的几何意义,以及导数的计算,同时考查了计算能力,属于基础题.8.(5分)(2011•湖南)已知函数f(x)=e x﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b的取值范围为()A.B.(2﹣,2+)C.[1,3]D.(1,3)【考点】函数的零点与方程根的关系.【专题】计算题;压轴题.【分析】利用f(a)=g(b),整理等式,利用指数函数的性质建立不等式求解即可.【解答】解:∵f(a)=g(b),∴e a﹣1=﹣b2+4b﹣3∴﹣b2+4b﹣2=e a>0即b2﹣4b+2<0,求得2﹣<b<2+故选B【点评】本题主要考查了函数的零点与方程根的关系.二、填空题(共8小题,每小题5分,满分35分)9.(5分)(2011•湖南)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ﹣sinθ)+1=0,则C1与C2的交点个数为2.【考点】简单曲线的极坐标方程;直线的参数方程;椭圆的参数方程.【专题】计算题.【分析】先根据同角三角函数的关系消去参数α可求出曲线C1的普通方程,然后利用极坐标公式ρ2=x2+y2,x=ρcosθ,y=ρsinθ进行化简即可求出曲线C2普通方程,最后利用直角坐标方程判断C1与C2的交点个数即可.【解答】解:由曲线C2的方程为p(cosθ﹣sinθ)+1=0,∴x﹣y+1=0.即y=x+1;将曲线C1的参数方程化为普通方程为.∴消去y整理得:7x2+8x﹣8=0.△>0,∴此方程有两个不同的实根,故C1与C2的交点个数为2.故答案为2.【点评】本题主要考查椭圆的参数方程、简单曲线的极坐标方程,求直线与椭圆的交点个数,考查运算求解能力及转化的思想,属于基础题.10.(2011•湖南)【选做】已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是40或60(只写出其中一个也正确).【考点】分数法的最优性.【分析】由题知试验范围为[10,90],区间长度为80,故可把该区间等分成8段,利用分数法选取试点进行计算.【解答】解:由已知试验范围为[10,90],可得区间长度为80,将其等分8段,利用分数法选取试点:x1=10+×(90﹣10)=60,x2=10+90﹣60=40,由对称性可知,第二次试点可以是40或60.故答案为:40或60.【点评】本题考查的是分数法的简单应用.一般地,用分数法安排试点时,可以分两种情况考虑:(1)可能的试点总数正好是某一个(F n﹣1).(2)所有可能的试点总数大于某一(Fn﹣1),而小于(F n+1﹣1).11.(5分)(2011•湖南)若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8则输出的数等于.【考点】循环结构.【专题】算法和程序框图.【分析】先根据流程图分析出该算法的功能,然后求出所求即可.【解答】解:该算法的功能是求出四个数的平均数故输出的数==故答案为:【点评】根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图(从流程图中既要分析出计算的类型,又要分析出参与计算的数据建立数学模型),根据第一步分析的结果,选择恰当的数学模型解模.12.(5分)(2011•湖南)已知f(x)为奇函数,g(x)=f(x)+9,g(﹣2)=3,则f(2)=6.【考点】函数奇偶性的性质.【专题】计算题.【分析】将等式中的x用2代替;利用奇函数的定义及g(﹣2)=3,求出f(2)的值.【解答】解:∵g(﹣2)=f(﹣2)+9∵f(x)为奇函数∴f(﹣2)=﹣f(2)∴g(﹣2)=﹣f(2)+9∵g(﹣2)=3所以f(2)=6故答案为6【点评】本题考查奇函数的定义:对于定义域中的任意x都有f(﹣x)=﹣f(x)13.(5分)(2011•湖南)设向量,满足||=2,=(2,1),且与的方向相反,则的坐标为(﹣4,﹣2).【考点】平面向量共线(平行)的坐标表示;平面向量数量积的坐标表示、模、夹角.【专题】计算题.【分析】要求向量的坐标,我们可以高设出向量的坐标,然后根据与的方向相反,及||=2,我们构造方程,解方程得到向量的坐标.【解答】解:设=(x,y),∵与的方向相反,故=λ=(2λ,λ)(λ<0)又∵||=2,∴5λ2=20解得λ=﹣2则=(﹣4,﹣2).故答案为(﹣4,﹣2).【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,平面向量模的计算,其中根据与的方向相反,给出向量的横坐标与纵坐标之间的关系是解答本题的关键.14.(5分)(2011•湖南)设m>1,在约束条件下,目标函数z=x+5y的最大值为4,则m的值为3.【考点】简单线性规划的应用.【专题】计算题;压轴题;数形结合.【分析】根据m>1,我们可以判断直线y=mx的倾斜角位于区间(,)上,由此我们不难判断出满足约束条件的平面区域的形状,再根据目标函数z=x+5y在直线y=mx与直线x+y=1交点处取得最大值,由此构造出关于m的方程,解方程即可求出m 的取值范围.【解答】解:满足约束条件的平面区域如下图所示:目标函数z=x+5y可看做斜率为﹣的动直线,其纵截距越大z越大,由可得A点(,)当x=,y=时,目标函数z=x+5y取最大值为4,即;解得m=3.故答案为:3.【点评】本题考查的知识点是简单线性规划的应用,其中判断出目标函数z=x+my在点取得最大值,并由此构造出关于m的方程是解答本题的关键.15.(5分)(2011•湖南)已知圆C:x2+y2=12,直线l:4x+3y=25.(1)圆C的圆心到直线l的距离为5;(2)圆C上任意一点A到直线l的距离小于2的概率为.【考点】直线与圆的位置关系;几何概型;点到直线的距离公式.【专题】直线与圆.【分析】(1)根据所给的圆的标准方程,看出圆心,根据点到直线的距离公式,代入有关数据做出点到直线的距离.(2)本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,根据题意做出符合条件的弧长对应的圆心角是60°,根据几何概型概率公式得到结果.【解答】解:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d==5,(2)圆心C到直线l的距离是5,到直线l′的距离是3,则劣弧AB所对应的弧上的点到直线l的距离都小于2,优弧AB所对应的弧上的点到直线l的距离都大于2,∵AC=2,CD=3,∴AD==,AB=2,∴∠ACB=60°,根据几何概型的概率公式得到P==故答案为:5;.【点评】本题考查点到直线的距离,考查直线与圆的位置关系,考查几何概型的概率公式,本题是一个基础题,运算量不大.16.(5分)(2011•湖南)给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数n:f(n)=n﹣k(1)设k=1,则其中一个函数f(x)在n=1处的函数值为a(a为正整数);(2)设k=4,且当n≤4时,2≤f(n)≤3,则不同的函数f的个数为16.【考点】函数的概念及其构成要素;分步乘法计数原理.【专题】计算题;压轴题;探究型.【分析】题中隐含了对于小于或等于K的正整数n,其函数值也应该是一个正整数,但是对应法则由题意而定(1)n=k=1,题中给出的条件“大于k的正整数n”不适合,但函数值必须是一个正整数,故f(1)的值是一个常数(正整数);(2)k=4,且n≤4,与条件“大于k的正整数n”不适合,故f(n)的值在2、3中任选其一,再由乘法原理可得不同函数的个数.【解答】解:(1)∵函数f:N*→N*满足:对于任意大于k的正整数n:f(n)=n﹣k,∴对应法则f是正整数到正整数的映射,∵k=1,∴从2开始都是一一对应的,而且可以和任何一个正整数对应,∴其中一个函数f(x)在n=1处的函数值为a(a为正整数),∴f(1)=a(a为正整数)即f(x)在n=1处的函数值为a(a为正整数)(2)∵n≤4,k=4,f(n)为正整数且2≤f(n)≤3∴f(1)=2或3且f(2)=2或3且f(3)=2或3且f(4)=2或3根据分步计数原理,可得共24=16个不同的函数故答案为:a(a为正整数);16.【点评】本题题意有点含蓄,发现题中的隐含条件,是解决本题的关键,掌握映射与函数的概念是本题的难点.三、解答题(共6小题,满分75分)17.(12分)(2011•湖南)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求sinA﹣cos(B+)的最大值,并求取得最大值时角A、B的大小.【考点】三角函数的恒等变换及化简求值.【专题】三角函数的图像与性质.【分析】(1)利用正弦定理化简csinA=acosC.求出tanC=1,得到C=.(2)B=﹣A,化简sinA﹣cos (B+)=2sin(A+).因为0<A<,推出求出2sin(A+)取得最大值2.得到A=,B=【解答】解:(1)由正弦定理得sinCsinA=sinAcosC,因为0<A<π,所以sinA>0.从而sinC=cosC,又cosC≠0,所以tanC=1,C=.(2)有(1)知,B=﹣A,于是=sinA+cosA=2sin(A+).因为0<A<,所以从而当A+,即A=时2sin(A+)取得最大值2.综上所述,cos(B+)的最大值为2,此时A=,B=【点评】本题是中档题,考查三角形的有关知识,正弦定理的应用,三角函数的最值,常考题型.18.(12分)(2011•湖南)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(Ⅰ)完成如下的频率分布表水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【考点】频率分布表;互斥事件的概率加法公式.【专题】应用题;综合题.【分析】(Ⅰ)从所给的数据中数出降雨量为各个值时对应的频数,求出频率,完成频率分布图.(Ⅱ)将发电量转化为降雨量,利用频率分布表,求出发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【解答】解:(Ⅰ)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,则Y=460+×5=X+425,解可得,X<130或X>210;故P=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=.故今年六月份该水利发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为:.【点评】本题考查频率公式:频率=;考查将问题等价转化的能力.19.(12分)(2011•湖南)如图,在圆锥PO中,已知PO=,⊙OD的直径AB=2,点C在上,且∠CAB=30°,D为AC的中点.(Ⅰ)证明:AC⊥平面POD;(Ⅱ)求直线OC和平面PAC所成角的正弦值.【考点】直线与平面垂直的判定;二面角的平面角及求法.【专题】计算题;证明题.【分析】(I)由已知易得AC⊥OD,AC⊥PO,根据直线与平面垂直的判定定理可证(II)由(I)可证面POD⊥平面PAC,由平面垂直的性质考虑在平面POD中过O作OH⊥PD于H,则OH⊥平面PAC,∠OCH是直线OC和平面PAC所成的角,在Rt△OHC中,求解即可【解答】解(I)因为OA=OC,D是AC的中点,所以AC⊥OD又PO⊥底面⊙O,AC⊂底面⊙O所以AC⊥PO,而OD,PO是平面内的两条相交直线所以AC⊥平面POD(II)由(I)知,AC⊥平面POD,又AC⊂平面PAC所以平面POD⊥平面PAC在平面POD中,过O作OH⊥PD于H,则OH⊥平面PAC连接CH,则CH是OC在平面上的射影,所以∠OCH是直线OC和平面PAC所成的角在Rt△ODA中,OD=DA.sin30°=在Rt△POD中,OH=在Rt△OHC中,故直线OC和平面PAC所成的角的正弦值为【点评】本题主要考查了直线与平面垂直的判定定理的应用,空间直线与平面所成角的求解,考查了运算推理的能力及空间想象的能力20.(13分)(2011•湖南)某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.(Ⅰ)求第n年初M的价值a n的表达式;(Ⅱ)设,若An大于80万元,则M继续使用,否则须在第n年初对M更新.证明:须在第9年初对M更新.【考点】分段函数的应用;数列与函数的综合.【专题】综合题.【分析】(I)通过对n的分段讨论,得到一个等差数列和一个等比数列,利用等差数列的通项公式及等比数列的通项公式求出第n年初M的价值a n的表达式;(II)利用等差数列、等比数列的前n项和公式求出A n,判断出其两段的单调性,求出两段的最小值,与80比较,判断出须在第9年初对M更新.【解答】解:(I)当n<6时,数列{a n}是首项为120,公差为﹣10的等差数列a n=120﹣10(n﹣1)=130﹣10n当n≥6时,数列{a n}是以a6为首项,公比为的等比数列,又a6=70所以因此,第n年初,M的价值a n的表达式为(II)设S n表示数列{a n}的前n项和,由等差、等比数列的求和公式得当1≤n≤6时,S n=120n﹣5n(n﹣1),A n=120﹣5(n﹣1)=125﹣5n当n≥7时,由于S6=570故S n=S6+(a7+a8+…+a n)==因为{a n}是递减数列,所以{A n}是递减数列,又所以须在第9年初对M更新.【点评】本题考查等差数列的通项公式,前n项和公式、考查等比数列的通项公式及前n项和公式、考查分段函数的问题要分到研究.21.(13分)(2011•湖南)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.【考点】直线与圆锥曲线的综合问题;向量在几何中的应用;抛物线的定义.【专题】计算题;综合题;压轴题;分类讨论;函数思想;方程思想.【分析】(Ⅰ)设动点P的坐标为(x,y),根据两点间距离公式和点到直线的距离公式,列方程,并化解即可求得动点P的轨迹C的方程;(Ⅱ)设出直线l1的方程,理想直线和抛物线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,求出两根之和和两根之积,同理可求出直线l2的方程与抛物线的交点坐标,代入利用基本不等式求最值,即可求得其的最小值.【解答】解:(Ⅰ)设动点P的坐标为(x,y),由题意得,化简得y2=2x+2|x|.当x≥0时,y2=4x;当x<0时,y=0,所以动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).(Ⅱ)由题意知,直线l1的斜率存在且不为零,设为k,则l1的方程为y=k(x﹣1).由,得k2x2﹣(2k2+4)x+k2=0.设A,B的坐标分别为(x1,y1),(x2,y2),则x1+x2=2+,x1x2=1.∵l1⊥l2,∴直线l2的斜率为﹣.设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1.故====(x1+1)(x2+1)+(x3+1)(x4+1)=x1x2+(x1+x2)+1+x3x4+x3+x4+11+2++1+1+2+4k2+1=8+4(k2+)≥8+4×2=16,当且仅当k2=,即k=±1时,的最小值为16.【点评】此题是个难题.考查代入法求抛物线的方程,以及直线与抛物线的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.22.(13分)(2011•湖南)设函数f(x)=x﹣﹣alnx(a∈R).(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【专题】计算题;综合题;压轴题;分类讨论.【分析】(Ⅰ)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)假设存在a,使得k=2﹣a,根据(I)利用韦达定理求出直线斜率为k,根据(I)函数的单调性,推出矛盾,即可解决问题.【解答】解:(I)f(x)定义域为(0,+∞),f′(x)=1+,令g(x)=x2﹣ax+1,△=a2﹣4,①当﹣2≤a≤2时,△≤0,f′(x)≥0,故f(x)在(0,+∞)上单调递增,②当a<﹣2时,△>0,g(x)=0的两根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上单调递增,③当a>2时,△>0,g(x)=0的两根为x1=,x2=,当0<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x>x2时,f′(x)>0;故f(x)分别在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.(Ⅱ)由(I)知,a>2.因为f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),所以k==1+﹣a,又由(I)知,x1x2=1.于是k=2﹣a,若存在a,使得k=2﹣a ,则=1,即lnx1﹣lnx2=x1﹣x2,亦即(*)再由(I )知,函数在(0,+∞)上单调递增,而x2>1,所以>1﹣1﹣2ln1=0,这与(*)式矛盾,故不存在a,使得k=2﹣a.【点评】此题是个难题.考查利用导数研究函数的单调性和极值问题,对方程f'(x)=0有无实根,有实根时,根是否在定义域内和根大小进行讨论,体现了分类讨论的思想方法,其中问题(II)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.11。

2011年湖南省高考数学文科试题及答案

2011年湖南省高考数学文科试题及答案

2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试题卷包括选择题、填空题、解答题三部分,共6页,时量120分钟,满分150分参考公式:(1)()(|)()P AB P B A P A =,其中,A B 为两个基本事件,且()0P A >. (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (3)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5},{2,4},U U M N M C N ===U I 则N =( )A .{1,2,3}B .{1,3,5}C .{1,4,5}D . {2,3,4} 2. 若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B . 1,1a b =-=C . 1,1a b ==-D . 1,1a b =-=-3. “1x >”是“||1x >”的( )A .充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 4. 设图1是某几何体的三视图,则该几何体的体积为 ( )A .942π+B .3618π+C .9122π+ D .9182π+ 5. 通过询问110名性别不同的的大学生是否爱好某项运动,得到如下的列联表.由22()()()()()n ad bc K a b c d a c b d -=++++算得,22110(40302020)7.860506050K ⨯-⨯=≈⨯⨯⨯,附表如右下,参照附表,得到的正确结论( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6. 设双曲线2221(0)9x y a a -=>的渐近线方程为320x y =±,则a 的值为( ) A .4 B .3 C .2 D .1 7. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .-12B . 12C . -22D . 228. 已知函数2()1,()4 3.x f x e g x x x =-=-+-若有()()f a g b =,则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C . [1,3]D .(1,3)二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10两题中任选一题作答,如果全做,则按前一题记分)9. 在直角坐标系xOy 中,曲线1C的参数方程为2cos (x y ααα=⎧⎪⎨=⎪⎩为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos sin )10ρθθ-+=,则1C 与2C 的交点个数为 .10. 已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 (只写出其中一个也正确). (二)必做题(11~16题)11. 若执行如图2所示的框图,输入12341,2,4,8,x x x x ==== 则输出的数等于 .12. 已知()f x 为奇函数,()()9g x f x =+,(2)3g -=,则(2)f = .13. 设向量a ,b 满足|a|=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为 .14. 设1m >,在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的大值为4,则m 的值为 。

2011年湖南高考数学答案(文科)

2011年湖南高考数学答案(文科)

思睿教育五年级(下)英语试卷一. 单词填空(20分)1. 晨练2. 晚餐3. 八月4. 第三5. 听音乐6. 大象7. 照相8. 周末9. 晴朗的10. 天空二. 选择填空(20分)1. ----- do you do?----- I am a nurse.A. WhatB. WhenC. Why2. ---- Which season do you like best?---- I like .A. fly kitesB. warmC. spring3. February is the month of the year.A. firstB. secondC. third4. I always play football my friends.A. andB. withC. or5. ---- When do you play sports?---- 3:30 in the afternoon.A. AtB. InC. On6. Hello! Zhang Peng. May I speak to Mike, please?A. This isB. I amC. He is7. The tigers are .A. runB. runingC. running8. He catching butterflies in the woods.A. amB. isC. are9. They are picking apples.A. fromB. upC. for10. Do you want to the Children’s Center?A. to goB. goC. going三. 连词成句(20分)1. do What you on weekend do the?2. Which best season you do like?3. water is She drinking.4. favourite is Fall my season.5. I dinner eat 7:00 at.四. 情景对话(20分)()1. 当对方在电话时Hello, 你应该这样回答:_____________。

2011年全国高考文科数学试题及答案-湖南-推荐下载

2011年全国高考文科数学试题及答案-湖南-推荐下载

110 (40 30 20 30)2
60 50 60 50
0.010 ,故由独立性检验的意义可知选
x)

0, 则 a 的值为(
(sin
x
1 cos
x)2
,所以

7.8

二、填空题:本大题共 8 小题,考生作答 7 小题,每小题解分,共青团员 5 分,把答案填
在答题卡中对应题号后的横线上.
A.充分不必要条件 B.必要不充分条件
C.充分必要条件
答案:A
解析:因" x 1" " | x | 1",反之
" | x | 1" " x 1或x 1" ,不一定有" x 1" 。
4.设图1是某几何体的三视图,则该几何体的体积为
A. 9 42 B. 36 18

4

y'

(sin
sin x cos x 2
1
B.
2
cos
4
x(sin
1 cos )2
x
4
C. 2 2
cos (sin

x) sin x(cos x cos x)2
1

2
4
2
D.
2
8.已知函数 f (x) ex 1, g(x) x2 4x 3, 若有 f (a) g(b), 则 b 的取值范围为
B.有 99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别无关”

2011年全国高考文科数学试题(湖南卷)

2011年全国高考文科数学试题(湖南卷)

2011年全国高考文科数学试题-湖南卷1.设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M N ⋂=ð,则N =______. A. {}1,2,3B. {}1,3,5C. {}1,4,5D. {}2,3,4答案:B分析:画出韦恩图,可知{}1,3,5N =.2.若,a b R ∈,为虚数单位,且()a i i b i +=+,则_____.A. 1,1a b ==B. 1,1a b =-=C. 1,1a b ==-D. 1,1a b =-=- 答案:C分析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-.3.“1x >”是“1x >” 的_____.A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件 答案:A分析:因“1x >”⇒“1x >”,反之“1x >”⇒“1x >或1x <-”,不一定有1x >.4.设图1是某几何体的三视图,则该几何体的体积为( )A. 942π+B. 3618π+C. 9122π+D. 9182π+ 答案:D分析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439()33218322V ππ=+⨯⨯=+.5.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc k a d c d a c b d -=++++ 算得22110(40302020)7.860506050k ⨯⨯-⨯=≈⨯⨯⨯, 附表:参照附表,得到的正确结论是( )A. 有99%以上的把握认为“爱好该项运动与性别有关”B. 有99%以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案:A分析:由27.8 6.635k ≈>,而()26.6350.010P k >=,故由独立性检验的意义可知选A .6.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A. 4 B. 3 C. 2 D. 1 答案:C分析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.7.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A. 12-B. 12 C. D.答案:B 分析:()()()()22cos sin cos sin cos sin 1sin cos sin cos x x x x x x y x x x x +--'==++,所以2411|2(sincos )44x y πππ='==+.8.已知函数2()1,()43xf x eg xx x =-=-+-,若有()()f ag b =,则b 的取值范围为( )A. [2B. (2C. []1,3 D. ()1,3答案:B分析:由题可知()11xf x e =->-,()22()43211g x x x x =-+-=--+≤,若有()()fa gb =,则()(]1,1g b ∈-,即2431b b -+->-,解得22b <<+9.在直角坐标系xOy 中,曲线1C 的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩ (α为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10p θθ-+=,则1C 的交点个数为____. 答案:2分析:曲线221:143x y C +=,曲线2:1C x y -=,联立方程消y 得27880x y +-=,易得0∆>,故有2个交点.10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是_____. 答案:40或60分析:有区间长度为80,可以将其等分8段,利用分数法选取试点:()18109010605x =+⨯-=,210906040x =+-=,由对称性可知,第二次试点可以是40或60.11.若执行如图所示的框图,输入12341,2,4,8x x x x ====,则输出的数等于_____.答案:154分析:由框图功能可知,输出的数等于12341544x x x x x +++==.12.已知()f x 为奇函数,()()9,(2)3g x f x g =+-= 则(2)f =______. 答案:6分析:(2)(2)93g f -=-+=,则(2)6f -=-, 又()f x 为奇函数,所以(2)(1)6f f =--=.13.设向量,a b 满足()||2,1a b ==,且a 与b 的方向相反,则a的坐标为_______.答案:(4,2)--分析:由题||b == (4,2)-=--.14.设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为_____. 答案:3分析:画出可行域,可知5z x y =+在点1(,)11m m m++,取最大值为4,解得3m =.15.已知圆22:12C x y +=直线:4325l x y +=.(1)圆C 的圆心到直线l 的距离为_____.(2)圆C 上任意一点A 到直线l 的距离小于2的概率为_____ .答案:5,16分析:(1)由点到直线的距离公式可得5d ==;(2)由(1)可知圆心到直线的距离为5,要使圆上点到直线的距离小于2,即1:4315l x y +=, 与圆相交所得劣弧上,由半径为圆心到直线的距离为3,可知劣弧所对圆心角为3π,故所求概率为1326P ππ==.16.给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =-.(1)设1k =,则其中一个函数f 在1n =处的函数值为______ ;(2)设4k =,且当4n ≤时,()23f n ≤≤,则不同的f 函数的个数为_____.答案:见解析分析:(1)由题可知()*f n N ∈,而1k =时,1n > 则()*1f n n N =-∈,故只须*(1)f N ∈,故()1f a =(a 为正整数);(2)由题可知4k =,4n > 则()*4f n n N =-∈,而4n ≤时,()23f n ≤≤即(){}2,3f n ∈,即{}1,2,3,4n ∈,(){}2,3f n ∈,由乘法原理可知,不同的函数f 的个数为4216=.。

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解湖南文

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解湖南文

2011年湖南文一、选择题(共8小题;共40分)1. 设全集U=M∪N=1,2,3,4,5,M∩∁U N=2,4,则N= A. 1,2,3B. 1,3,5C. 1,4,5D. 2,3,42. 若a,b∈R,i为虚数单位,且a+i i=b+i,则 A. a=1,b=1B. a=−1,b=1C. a=−1,b=−1D. a=1,b=−13. “ x>1”是“ x >1”的 A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件4. 如图是某几何体的三视图,则该几何体的体积为 A. 9π+42B. 36π+18C. 92π+12 D. 92π+185. 通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由K2=n ad−bc2a+b c+d a+c b+d 算得K2=110×40×30−20×20260×50×60×50≈7.8附表:P K2≥k0.0500.0100.001k 3.841 6.63510.828参照附表,得到的正确结论是 A. 在犯错误的概率不超过0.1%的前提下,认为"爱好该项运动与性别有关"B. 在犯错误的概率不超过0.1%的前提下,认为"爱好该项运动与性别无关"C. 有99%以上的把握认为"爱好该项运动与性别有关"D. 有99%以上的把握认为"爱好该项运动与性别无关"6. 设双曲线x2a −y29=1a>0的渐近线方程为3x±2y=0,则a的值为 A. 4B. 3C. 2D. 17. 曲线y=sin xsin x+cos x −12在点Mπ4,0处的切线的斜率为 A. −12B. 12C. −22D. 228. 已知函数f x=e x−1,g x=−x2+4x−3,若有f a=g b,则b的取值范围为 A. 2−2,2+2B. 2−2,2+2C. 1,3D. 1,3二、填空题(共8小题;共40分)9. 在直角坐标系xOy中,曲线C1的参数方程为x=2cosαy=3sinα α为参数,在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρcosθ−sinθ+1=0,则C1与C2的交点个数为.10. 已知某试验范围为10,90,若用分数法进行4次优选试验,则第二次试点可以是.11. 若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于.12. 已知f x为奇函数,g x=f x+9,g−2=3,则f2=.13. 设向量a,b满足a=2b=2,1,且a与b的方向相反,则a的坐标为.14. 设m>1,在约束条件y≥xy≤mxx+y≤1下,目标函数z=x+5y的最大值为4,则m的值为.15. 已知圆C:x2+y2=12,直线l:4x+3y=25.①圆C的圆心到直线l的距离为;②圆C上任意一点A到直线l的距离小于2的概率为.16. 给定k∈N∗,设函数f:N∗→N∗满足:对于任意大于k的正整数n,f n=n−k.(1)设k=1,则其中一个函数f在n=1处的函数值为;(2)设k=4,且当n≤4时,2≤f n≤3,则不同的函数f的个数为.三、解答题(共6小题;共78分)17. 在△ABC中,角A,B,C所对的边分别为a,b,c,且满足c sin A=a cos C.(1)求角C的大小;(2)求3sin A−cos B+π4的最大值,并求取得最大值时角A,B的大小.18. 某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.19. 如图,在圆锥PO中,已知PO=⊙O的直径AB=2,点C在AB上,且∠CAB=30∘,D为AC的中点.(1)证明:AC⊥平面POD;(2)求直线OC和平面PAC所成角的正弦值.20. 某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.(1)求第n年初M的价值a n的表达式;(2)设A n=a1+a2+⋯+a nn,若A n大于80万元,则M继续使用,否则须在第n年初对M更新.证明:须在第9年初对M更新.21. 已知平面内一动点P到点F1,0的距离与点P到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求AD⋅EB的最小值.−a ln x a∈R.22. 设函数f x=x−1x(1)讨论函数f x的单调性.(2)若f x有两个极值点x1和x2,记过点A x1,f x1,B x2,f x2的直线斜率为k.问:是否存在a,使得k=2−a ?若存在,求出a的值;若不存在,请说明理由.答案第一部分1. B2. D 【解析】因为a+i i=−1+a i=b+i,根据复数相等的条件可知a=1,b=−1.3. A 【解析】因“ x>1” ⇒“ x >1”,反之“ x >1” ⇒“ x>1或x<−1”,不一定有“ x>1”.4. D 【解析】由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π323+3×3 ×2=92π+18.5. C【解析】由题意K2=7.8>6.635,有0.01=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”.同时,在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”;6. C 【解析】由双曲线方程可知渐近线方程为y=±3ax,故可知a=2.7. B 【解析】yʹ=cos x sin x+cos x−sin x cos x−sin xsin x+cos x2=1sin x+cos x2,所以yʹx=π4=1sinπ+cosπ2=12.8. B 【解析】由题可知f x=e x−1>−1,g x=−x−22+1≤1.若有f a=g b,则−b2+4b−3>−1,解得2−2<b<2+2.第二部分9. 2【解析】曲线C1:x24+y23=1,曲线C2:x−y+1=0,联立方程消y得7x2+8x−8=0,易得Δ>0,故有2个交点.或者由直线C2上的点0,1在椭圆C1内部,所以直线与椭圆必有两个交点.10. 40或60【解析】由区间长度为80,可以将其等分8段,利用分数法选取试点:x1=10+5×90−10=60,x2=10+90−60=40.由对称性可知,第二次试点可以是40或60.11. 154【解析】输出的数等于x=x1+x2+x3+x44=154.12. 6g−2=f−2+9=3,则f−2=−6,又f x为奇函数,所以f2=−f−2=6.13. −4,−214. 3【解析】画出可行域,如图,可知z=x+5y在点A11+m ,m1+m处取最大值4,解得m=3.15. 5,16【解析】①由点到直线的距离公式可得d=42+32=5;②可求与直线4x+3y=25平行且距离为2,与圆相交的直线方程为4x+3y=15.由①可知圆心到直线的距离为5,所以圆心到直线4x+3y=15的距离为3,从而直线4x+3y=15与圆x2+y2=12相交所得的弦长为23,对应劣弧所对的圆心角为π3,故所求概率为P=π32π=16.16. m m∈N∗,16【解析】(1)由题可知f n∈N∗,而k=1时,n>1则f n=n−1∈N∗,故只须f1∈N∗,故f1=m,m∈N∗;(2)由题可知k=4,n>4,则f n=n−4∈N∗,而n≤4时,2≤f n≤3,即f n∈2,3,即n∈1,2,3,4,f n∈2,3,故不同的函数f的个数为24=16.17. (1)由正弦定理得sin C sin A=sin A cos C.因为0<A<π,所以sin A>0,从而sin C=cos C,又cos C≠0,所以tan C=1,则C=π4.(2)由(1)知B=3π4−A.于是3sin A−cos B+π=3sin A−cosπ−A=3sin A+cos A=2sin A+π6.因为0<A<3π4,所以π<A+π<11π,从而当A+π6=π2,即A=π3时,2sin A+π6取最大值2.综上所述,3sin A−cos B+π4的最大值为2,此时A=π3,B=5π12.18. (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率的分布表为:降雨量70110140160200220频率120320420720320220(2)P=P Y<490 或 Y>530=P X<130 或 X>210=120+320+220=3 10,故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.19. (1)因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO.又因为OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.(2)由(1)知,AC⊥平面POD,又AC⊂平面PAC,所以平面POD⊥平面PAC,如图,在平面POD中,过O作OH⊥PD于H.则OH⊥平面PAC.连接CH,则CH是OC在平面PAC上的射影,所以∠OCH是直线OC和平面PAC所成的角.在Rt△POD中,OH=PO⋅OD PO2+OD2=2×122+4=2 3 ,在Rt△OHC中,sin∠OCH=OH=2.20. (1)当n≤6时,数列a n是首项为120,公差为−10的等差数列.a n=120−10n−1=130−10n;当n≥6时,数列a n是以a6为首项,公比为34的等比数列,又a6=70,所以a n=70×34n−6.因此,第n年初,M的价值a n的表达式为a n=130−10n,n≤6, 70×3n−6,n≥7.(2)设S n表示数列a n的前n项和,由等差及等比数列的求和公式得:当1≤n≤6时,S n=120n−5n n−1,A n=120−5n−1=125−5n;当n≥7时,S n=S6+a7+a8+⋯+a n=570+70×34×4×1−34n−6=780−210×3n−6,A n=780−210×34n−6 n.因为a n是递减数列,所以A n是递减数列,又A8=780−210×348−68=824764>80,A9=780−210×349−6=7679<80,所以须在第9年初对M更新.21. (1)设动点P的坐标为x,y,由题意有− x =1.化简得y2=2x+2 x ,当x≥0时,y2=4x;当x<0时,y=0.所以动点P的轨迹C的方程为:y2=4x x≥0 和 y=0x<0.(2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为y=k x−1.由y=k x−1,y2=4x,得k2x2−2k2+4x+k2=0.设A x1,y1,B x2,y2,则x1,x2是上述方程的两个实根,于是x1+x2=2+4k2,x1x2=1.因为l1⊥l2,所以l2的斜率为−1k.设D x3,y3,E x4,y4,则同理可得x3+x4=2+4k2,x3x4=1,所以AD⋅EB= AF+FD⋅ EF+FB=AF⋅EF+AF⋅FB+FD⋅EF+FD⋅FB=AF⋅FB+FD⋅EF=x1+1x2+1+x3+1x4+1=1+2+42+1+1+2+4k2+1=8+4 k2+1 k2≥8+4×2k2⋅1 2=16.当且仅当k2=1k,即k=±1时,AD⋅EB取最小值16.22. (1)f x的定义域为0,+∞,fʹx=1+1x2−ax=x2−ax+1x2.令g x=x2−ax+1,其判别式Δ=a2−4.①当a ≤2时,Δ≤0,fʹx≥0,故f x在0,+∞上单调递增.②当a<−2时,Δ>0,g x=0的两根都小于0,在0,+∞上,fʹx>0,故f x在0,+∞上单调递增.③当a>2时,Δ>0,g x=0的两根为x1=a− a2−42,x2=a+ a2−4,当0<x<x1时,fʹx>0;当x1<x<x2时,fʹx<0;当x>x2时,fʹx>0.故f x分别在0,x1,x2,+∞上单调递增,在x1,x2上单调递减.综上知,当a≤2时,f x在定义域0,+∞上单调递增;当a>2时,f x在区间0,a− a2−42与a+ a2−42,+∞ 上单调递增;在区间a− a2−42,a+ a2−42上单调递减.(2)由(1)知,a>2. x1,x2与(1)中相同.因为f x1−f x2=x1−x2+x1−x212−a ln x1−ln x2,所以普通高等学校招生全国统一考试高考数学教师精校版含详解完美版k=f x1−f x212=1+112−a⋅ln x1−ln x212.又由(1)知,x1x2=1.于是k=2−a⋅ln x1−ln x212.若存在a,使得k=2−a.则ln x1−ln x212=1,即ln x1−ln x2=x1−x2,亦即x2−1x2−2ln x2=0x2>1∗.再由(1)知,函数 t=t−1t−2ln t在0,+∞上单调递增,而x2>1,所以x2−12−2ln x2>1−1−2ln1=0,这与∗式矛盾.故不存在a,使得k=2−a.。

2011年高考试题——数学文(湖南卷)解析版

2011年高考试题——数学文(湖南卷)解析版

2011年普通高等学校招生全国统一考试(湖南卷)文史类本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分.参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{1,2,3,4,5},{2,4},U U MN MC N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4} 答案:B解析:画出韦恩图,可知N ={1,3,5}。

2.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=- 答案:C解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

3."1""||1"x x >>是的A .充分不必要条件 B.必要不充分条件C .充分必要条件D .既不充分又不必要条件 答案:A正视图侧视图俯视图图1解析:因"1""||1"x x >⇒>,反之"||1""11"x x x >⇒><-或,不一定有"1"x >。

4.设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B.3618π+ C.9122π+ D.9182π+ 答案:D解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。

5.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030)7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得, 附表:参照附表,得到的正确结论是( ) A .有99%以上的把握认为“爱好该项运动与性别有关”B . 有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案:A解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选A.6.设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( )A .4B .3C .2D .1 答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

3.2011高考数学湖南卷

3.2011高考数学湖南卷

2011年普通高等学校招生全国统一考试(湖南卷)文史类本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{1,2,3,4,5},{2,4},U U MN MC N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4} 2.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则 A.1,1a b ==B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=-3."1""||1"x x >>是的A .充分不必要条件 B.必要不充分条件C .充分必要条件D .既不充分又不必要条件 4.设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B.3618π+ C.9122π+ D.9182π+5.通过随机询问110名不同的大学生是否爱好某项运动,由2222()110(40302030)7.8()()()()60506050n ad bc K K a b cd a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得,附表:A . 有99%以上的把握认为“爱好该项运动与性别有关”B . 有99%以上的把握认为“爱好该项运动与性别无关”C . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”正视图侧视图俯视图 图16.设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( ) A .4 B .3 C .2 D .1 7.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C.2- D.28.已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A.[2 B.(2 C .[1,3] D .(1,3)二、填空题:本大题共8小题,考生作答7小题,每小题解分,共青团员5分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9,10两题中任选一题作答,如果全做,则按前一题记分) 9.在直角坐标系x O y 中,曲线1C 的参数方程为2c o s(s i n x y ααα=⎧⎪⎨=⎪⎩为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 .10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 . (二)必做题(11-16题)11.若执行如图2所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 12.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .13.设向量,a b 满足||25,(2,1),a b ==且a b 与的方向相反,则a 的坐标为 .14.设1,m >在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .15.已知圆22:12,C x y +=直线:4325.l x y +=图2(1)圆C 的圆心到直线l 的距离为 .(2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 .16、给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =- (1)设1k =,则其中一个函数f 在1n =处的函数值为 ;(2)设4k =,且当4n ≤时,2()3f n ≤≤,则不同的函数f 的个数为 。

2011年高考数学全国数学文(word版含答案)

2011年高考数学全国数学文(word版含答案)

选择题1.设集合U ={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U M N ð(∩)=( ).(A){}12,(B){}23,(C){}2,4(D){}1,42.函数0)y x =≥的反函数为( ).(A)2()4x y x =∈R (B)2(0)4x y x =≥C .24y x =()x ∈R(D)24(0)y x x =≥3.设向量,a b 满足1||||1,2==⋅=-a b a b ,则2+=a b ( ).4.若变量,x y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为( ).(A)17(B)14(C)5(D)35.下面四个条件中,使a >b 成立的充分而不必要的条件是( ).(A)a >1b + (B)a >1b - (C)2a >2b (D)3a >3b6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k = ( ).(A) 8 (B) 7 (C) 6 (D) 57.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( ).(A)13(B) 3 (C) 6 (D) 98.已知直二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB =2,1AC BD ==,则CD =( ).(A)2(D)19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( ). (A)12种 (B)24种 (C)30种 (D)36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=( ).(A) 12-(B)1 4-(C)14(D)1211.设两圆1C ,2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =( ).(A)4(B)(C)8(D)12.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N .若该球的半径为4,圆M 的面积为4π,则圆N 的面积为( ). (A)7π (B)9π (C)11π (D)13π填空题13.10(1)x -的二项展开式中,x 的系数与9x 的系数之差为 . 14.已知α∈(3,2ππ),tan 2,cos αα=则= . 15.已知正方体1111ABCD A BC D -中,E 为11C D 的中点,则异面直线AE 与BC 所成角的余弦值为 .16.已知12,F F 分别为双曲线C : 221927x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2AF = . 解答题17.设等比数列{}n a 的前n 项和为n S .已知26,a =13630,a a +=求n a 和n S .18.△ABC 的内角,,A B C 的对边分别为,,a b c .己知sin sin sin sin ,a A c C C b B += (Ⅰ)求B ;(Ⅱ)若75,2,A b ==求a c ,.19.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I )求该地1位车主至少购买甲、乙两种保险中的1种的概率;(II )求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.20.如下图,四棱锥S ABCD -中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(I )证明:SD ⊥平面SAB ; (II )求AB 与平面SBC 所成的角的大小.21.已知函数32()3(36)124()f x x ax a x a a =++---∈R . (I )证明:曲线()0y f x x ==在处的切线过点(2,2);(II )若0()f x x x =在处取得极小值,0(1,3)x ∈,求a 的取值范围.22.如下图,已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于,A B 两点,点P 满足.OA OB OP ++=0(Ⅰ)证明:点P 在C 上;(II )设点P 关于O 的对称点为Q ,证明:,,,A P B Q 四点在同一圆上.参考答案1.D提示:由于{2,3}M N =,所以(){1,4}U MN =ð;2.B提示:由y =x ≥0),得x =24y (y ≥0).故所求反函数为y =24x (x ≥0).3.B提示:222441423,+=++⋅=+-=a b a b a b 即2+=a b4.C提示:如下图,约束条件所表示的可行域为阴影部分,把直线2x +3y =0平移,当它过点A (1,1)时,函数23z x y =+的值达到最小,所以z min =2×1+3×1=5;5.A提示:这需要逐个判断和辨别:对于(B ),1a b >-是a b >成立的必要不充分条件;对于(C ),22a b >是a b >成立的既不充分又不必要条件;对于(D ),33a b >是a b >成立的充要条件;只有(A ),1a b >+是使a b >成立的充分而不必要条件. 6.D提示:因为212111()[(1)]2(21)k k k k S S a a a kd a k d a k d +++-=+=++++=++, 所以22(21)24k ++=,解得k =5. 7.C提示:两个图像能再次重合,说明平移的单位长度3π应为最小正周期的整数倍,即23kT k ωππ==⋅,k ∈Z ,得ω=6k ,k ∈Z .故正数ω的最小值为6. 8.C提示:如下图,依题意可知AC β⊥,故AC BC ⊥.又2,1,AB AC BD ===,可得BC =CD9.B提示:本题可分两步,第一步是从4位同学中选出2人选修课程甲,有24C 种不同的方法;第二步是剩下的2位同学选乙或丙课程,有2×2种不同的方法.根据分步计数原理,不同的选法共有24C 2224⨯⨯=种.10.A提示:5511111()(+2)=()=()=2(1)2222222f f f f -=----⨯-=-⨯.11.C提示:依题意,这样的圆必位于第一象限,设半径为r ,则圆心为(r ,r ),所以2224+1-)r r r -=()(,即210170r r -+=.若两圆的半径分别为12,r r ,则两圆心的距离128C C ====.12.D提示:如下图,圆M 的半径是2,球的半径为4,故球心O 到圆M 的距离为322422=-=OM .又圆N 所在平面与圆M 所在平面成60︒二面角,所以球心O 到圆N 的距离为32==OMON ,所以圆N 的半径1334222=-=-=ON R r ,于是面积为2r ππ=13.13.0A B lC D αβE提示:通项公式11010()(1)r r r r r r T C x C x +=-=-,故x 的系数是110C -,9x 的系数是910C -,根据组合数性质191010C C =,所以系数之差为0. 14. 提示:由()2α3π∈π,,tan 2α=,得541t a n1s e c 2-=+-=+-=αα,故55s e c 1c o s -==αα; 15.23提示:如下图,连结DE ,则DAE ∠就是异面直线AE 与BC 所成的角,易得32231c o s ===∠AE AD DAE .16.6提示:由1(6,0)F - ,2(6,0)F ,(2,0)M ,知1284MF MF ==,.根据角平分线定理,得22121==MF MF AF AF ,即212AF AF =.又根据双曲线的定义,知6221==-a AF AF ,解得62=AF . 17.解:设{}n a 的公比为q ,由题设得12116,630.a q a a q =⎧⎨+=⎩解得113,2,2, 3.a a q q ==⎧⎧⎨⎨==⎩⎩或当113,2,32,3(21);n n n n a q a S -===⨯=⨯-时 当112,3,23,3 1.n n n n a q a S -===⨯=-时18.解:(I)由正弦定理得222.a c b +=由余弦定理得2222cos .b a c ac B =+-故cos 45.B B ==︒因此(II )sin sin(3045)A =︒+︒s i n 30c o s 45c o s 30s i n 45=︒︒+︒︒=故sin 1sin A a b B =⨯==+sin sin 602sin sin 45C c b B ︒=⨯=⨯=︒19.记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买. (I )()0.5,()0.3,,P A P B C A B ===+()()()()0.8P C P A B P A P B =+=+= . (II ),()1()10.80.2,D C P D P C ==-=-=123()0.20.80.384.P E C =⨯⨯=20.解:(I )如下图所示,取AB 的中点E ,连结DE ,则四边形BCDE 为矩形,2DE CB ==. 连结SE,则,SE AB SE ⊥ 又1SD =,故222ED SE SD =+, 所以DSE ∠为直角. 由,,AB DE AB SE DESE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥. SD 与两条相交直线AB ,SE 都垂直. 所以SD ⊥平面SAB .(II )由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD,2SD SE SF DE ⨯==. 作FG BC ⊥,垂足为G ,则FG =DC =1. 连结SG ,则SG BC ⊥. 又,BC FG SGFG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG .作FH SG ⊥,H 为垂足,则FH ⊥平面SBC .S F F G FH SG ⨯==,即F 到平面SBC.由于ED //BC ,所以ED //平面SBC ,E 到平面SBC 的距离d 也为7.设AB 与平面SBC 所成的角为α,则sin arcsin77d EB αα===.21.解:(I )2'()3636.f x x ax a =++-由(0)124,'(0)36f a f a =-=-得曲线()0y f x x ==在处的切线方程为(36)124y a x a =-+-,由此知,曲线()0y f x x ==在处的切线过点(2,2)(II )由2'()02120.f x x ax a =++-=得(i )当11,()a f x ≤≤时没有极小值;(ii )当11,'()0a a f x ><=或时由,得12x a x a =-=-+故02.x x =由题设知,1 3.a <-当1a >时,不等式13a <-无解;当1a <时,解不等式513, 1.2a a <-<-<<得综合(i )(ii ),得a 的取值范围是5(,1).2-22.解:(I )由题知(0,1)F ,则直线l 的方程为1y =+,代入2212y x +=并化简,得2410x --=.设112233(,),(,),(,),A x y B x y P x y则12,44x x ==121212)212x x y y x x +=+=++=.由题意,得312312()()12x x x y y y =-+=-=-+=-. 所以点P的坐标为(1)-. 经验证,点P的坐标为(1)-满足方程221,2y x +=故点P 在椭圆C 上. (II)由(1)2P --和题设知,(2Q ,PQ 的垂直平分线1l 的方程为2y x =.①设AB 的中点为M,则1()42M ,AB 的垂直平分线2l 的方程为14y x =+.②由①,②得12,l l的交点为1()8N .21||8||||2||||||NP AB x x AM MN NA ===-======故||||NP NA =.又||||NP NQ =,||||NA NB =,所以||||||||NA NP NB NQ ===,由此知,,,A P B Q 四点在以N 为圆心,NA 为半径的圆上.。

2011年湖南高考数学文科试卷带详解

2011年湖南高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,,则 ( )A. B. C. D.【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算.给出全集与交集求.【参考答案】B【试题解析】画出韦恩图可知,2.若,为虚数单位,且则 ( )A. B. C. D.【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式,进行四则运算,根据实数只有实部没有虚部的特征,判断的的值.【参考答案】C【试题解析】因,根据复数相等的条件可知.3. “”是“” 的 ( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【测量目标】命题的基本关系,充分条件与必要条件.【考查方式】主要考查命题的基本关系以及充分必要条件.【参考答案】A【试题解析】因,反之或,不一定有.4.如图是某几何体的三视图,则该几何体的体积为 ( )A. B. C. D.【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法.【考查方式】给出几何体的三视图,直接考查对其三视图的判断,画出立体图形求其体积.【参考答案】D【试题解析】有三视图可知该几何体是一个长方体和球组成的组合体,其体积5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,附表:0.0500.0100.0013.841 6.63510.828参照附表,得到的正确结论是 ( )A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”【测量目标】变量间的相关关系,独立性检验.【考查方式】给出随机变量,根据卡方统计量计算出其观测值,并且的值越大,说明两者有关系成立的可能性越大,可根据表格判断.【参考答案】A【试题解析】由,而,故由独立性检验的意义可知选A.6.设双曲线的渐近线方程为,则的值为 ( )A.4 B.3 C.2 D.1【测量目标】双曲线标准方程,渐近线方程.【考查方式】给出双曲线渐近线方程,求双曲线标准方程的.【参考答案】C【试题解析】由双曲线方程可知渐近线方程为,故可知.7.曲线在点M(,0)处的切线的斜率为 ( )A. B. C. D.【测量目标】同角三角函数的基本关系式,导数的几何意义.【考查方式】给出曲线方程进行变换,根据在某点的切线的斜率即为在该点的导数值求出结果.【参考答案】B【试题解析】,.8.已知函数,若有,则b的取值范围( )A. B.C. D.【测量目标】指数函数、一元二次函数的值域、定义域,一元二次不等式.【考查方式】给出两个复合函数表达式,结合一元二次不等式求解.【参考答案】B【试题解析】由题意知,,,若有,则,即,解得.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系中,曲线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为.【测量目标】参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化.【考查方式】给出曲线的参数方程与曲线的极坐标方程,将其转化为直角坐标系下的方程,判断两曲线的交点.【参考答案】2个【试题解析】曲线,曲线,联立方程消去得,易知,故有个交点.10.已知某试验范围为,若用分数法进行次优选试验,则第二次试点可以是.【测量目标】分数法.【考查方式】利用分数法解决实际的优选问题.【参考答案】40或60【试题解析】有区间长度为80,可以将其等分8段,利用分数法选取试点:,,由对称性可知,第二次试点可以是40或60。

2011年湖南高考数学文科试卷带详解

2011年湖南高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U M N == , {}2,4U M N = ð,则N = ( ) A .{}1,2,3 B . {}1,3,5 C . {}1,4,5 D . {}2,3,4 【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算.给出全集与交集求N . 【参考答案】B【试题解析】画出韦恩图可知,{}1,3,5N =2.若,R a b ∈,i 为虚数单位,且(i)i i a b +=+则 ( ) A .1,1a b == B . 1,1a b =-= C . 1,1a b ==- D . 1,1a b =-=- 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式,进行四则运算,根据实数只有实部没有虚部的特征,判断的,a b 的值. 【参考答案】C【试题解析】因(i)i 1i i a a b +=-+=+,根据复数相等的条件可知1,1a b ==-. 3. “1x >”是“1x >” 的 ( ) A .充分不必要条件 B .必要不充分条件 C . 充分必要条件 D .既不充分又不必要条件 【测量目标】命题的基本关系,充分条件与必要条件. 【考查方式】主要考查命题的基本关系以及充分必要条件. 【参考答案】A【试题解析】因"1""1"x x >⇒>,反之"1"x >⇒"1x >或1"x <-,不一定有"1"x >. 4.如图是某几何体的三视图,则该几何体的体积为 ( )A .9π42+B .36π18+C .9π122+ D .9π182+ 【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法. 【考查方式】给出几何体的三视图,直接考查对其三视图的判断,画出立体图形求其体积. 【参考答案】D【试题解析】有三视图可知该几何体是一个长方体和球组成的组合体,其体积3439π()332π+18322V =⨯+⨯⨯=. 5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由2()()()()()n ad bc K a d c d a c b d -=++++ 算得,22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:( ) A . 有99%以上的把握认为“爱好该项运动与性别有关” B . 有99%以上的把握认为“爱好该项运动与性别无关”C . 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D . 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关” 【测量目标】变量间的相关关系,独立性检验.【考查方式】给出随机变量,根据卡方统计量计算出其观测值k ,并且k 的值越大,说明两者有关系成立的可能性越大,可根据表格判断. 【参考答案】A【试题解析】由27.8 6.635K ≈>,而2( 6.635)0.010P K =…,故由独立性检验的意义可知选A .6.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 ( )A .4B .3C .2D .1 【测量目标】双曲线标准方程,渐近线方程.【考查方式】给出双曲线渐近线方程,求双曲线标准方程的a .【参考答案】C【试题解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =. 7.曲线sin 1sin cos 2x y x x =-+在点M (π4,0)处的切线的斜率为 ( )A . 12-B . 12C .2- D .2【测量目标】同角三角函数的基本关系式,导数的几何意义.【考查方式】给出曲线方程进行变换,根据在某点的切线的斜率即为在该点的导数值求出结果.【参考答案】B 【试题解析】22cos (sin cos )sin (cos sin )1(sin cos )(sin cos )x x x x x x y x x x x +--'==++, ∴π2411ππ2(sincos )44x y ='==+. 8.已知函数2()e 1,()43x f x g x x x =-=-+-,若有()()f a g b =,则b 的取值范围( ) A .2⎡+⎣ B .(2+C . []1,3D . ()1,3【测量目标】指数函数、一元二次函数的值域、定义域,一元二次不等式. 【考查方式】给出两个复合函数表达式,结合一元二次不等式求解. 【参考答案】B【试题解析】由题意知,()e 11x f x =->-,22()43(2)11g x x x x =-+-=--+…,若有()()f a g b =,则(]()1,1g b ∈-,即2431b b -+->-,解得22b <<+二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题..卡.中对应号后的横线上. (一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系xOy 中,曲线1C的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10-+=ρθθ,则1C 与2C 的交点个数为 . 【测量目标】参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化.【考查方式】给出曲线1C 的参数方程与曲线2C 的极坐标方程,将其转化为直角坐标系下的方程,判断两曲线的交点. 【参考答案】2个【试题解析】曲线221:143x y C +=,曲线2:10C x y -+=,联立方程消去y 得27880x x +-=,易知0∆>,故有2个交点.10.已知某试验范围为[]10,90,若用分数法进行4次优选试验,则第二次试点可以是 . 【测量目标】分数法.【考查方式】利用分数法解决实际的优选问题. 【参考答案】40或60【试题解析】有区间长度为80,可以将其等分8段,利用分数法选取试点:1510(9010)608x =+⨯-=,210906040x =+-=,由对称性可知,第二次试点可以是40或60。

2011年湖南省高考数学试题(含答案)

2011年湖南省高考数学试题(含答案)
的列联表.由 算得,
,附表如右下,参照附表,得到的正确
结论( )


总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
0.050
0.010
0.001
3.841
6.635
10.828
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
1.若 为虚数单位,且 ,则( )
A. B. C. D.
2.设集合 ,则“ ”是“ ”的( )
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
3. 如图1是某几何体的三视图,则该几何体的体积为( )
A. B. C. D.
4.通过询问110名性别不同的大学生是否爱好某项运动,得到如下
解法1 记 则 当 时, ,因此 在 上递增,则 在 内至多只有一个零点.又因为 则 在 内有零点.所以 在 内有且只有一个零点.记此零点为 ,则当 时, 当 时, .
所以,当 时, 单调递减.而 ,则 在 内无零点;
当 时, 单调递增,则 在 内至多只有一个零点;
从而 在 内至多只有一个零点;
综上所述, 有且只有两个零点.
因此 时, 成立.
故对任意的 成立.
(2)当 时,由(Ⅰ)知 在 上递增.则 ,即 .从而
,即 .由此猜想: .下面用数学归纳法证明.
①当 时, 显然成立.
②假设 时, 成立,
则当 时,由 ,知 .
因此 时, 成立.
故对任意的 成立.

2011年普通高等学校招生全国统一考试(湖南卷)数学试题 (文科)(解析版)

2011年普通高等学校招生全国统一考试(湖南卷)数学试题 (文科)(解析版)

2011年普通高等学校招生全国统一考试(湖南卷)数学(文)试题解析本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4} 答案:B解析:画出韦恩图,可知N ={1,3,5}。

2.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=- 答案:C解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

3."1""||1"x x >>是的( )A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 答案:A解析:因"1""||1"x x >⇒>,反之 "||1""11"x x x >⇒><-或,不一定有"1"x >。

4.设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+答案:D解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。

由222()110(40302030)7.8()()()()60506050n ad bc K K ab c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得, 附表:正视图 侧视图俯视图图1参照附表,得到的正确结论是( )A. 有99%以上的把握认为“爱好该项运动与性别有关”B. 有99%以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案:A解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选A.6.设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( ) A .4 B .3 C .2 D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【选择题】【1】.设全集{}{}1,2,3,4,5,2,4,U U M N M N ==∪∩=ð则N =( ). (A ){}1,2,3 (B ){}1,3,5 (C ){}1,4,5(D ){}2,3,4【2】.若,a b ∈R ,i 为虚数单位,且(i)i i a b +=+,则( ). (A )1,1a b == (B )1,1a b =-= (C )1,1a b ==-(D )1,1a b =-=-【3】.“1x >”是“1x >”的( ).(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分又不必要条件 【4】.设下图是某几何体的三视图,则该几何体的体积为( ).(A )942π+ (B )3618π+(C )9122π+ (D )9182π+【5】.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++ 算得,22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是( ). (A )有99%以上的把握认为“爱好该项运动与性别有关” (B )有99%以上的把握认为“爱好该项运动与性别无关”(C )在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”(D )在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【6】.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ).(A )4(B )3(C )2(D )1【7】.曲线sin 1sin cos 2x y x x=-+在点M (4π,0)处的切线的斜率为( ).(A ) 12-(B ) 12 (C ) 2- (D )2【8】.已知函数2()e 1,()43x f x g x x x=-=-+-,若有()()f a g b =,则b 的取值范围为( ).(A ) 2⎡⎣(B ) (22+(C )[]1,3 (D )()1,3【填空题】【9】.(选做题)在直角坐标系xOy 中,曲线1C 的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 .【10】.(选做题)已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 .【11】.(必做题)若执行如下图所示的框图,输入11x =,2342,4,8x x x ===,则输出的数等于 .【12】.(必做题)已知()f x 为奇函数,()()9g x f x =+,(2)3g -=,则(2)f =_________. 【13】.(必做题)设向量,a b 满足|ab =(2,1),且a 与b 的方向相反,则a 的坐标为________. 【14】.(必做题)设1,m >在约束条件,,1y x y mx x y ⎧⎪⎨⎪+⎩≥≤≤下,目标函数5z x y =+的最大值为4,则m 的值为 .【15】.(必做题)已知圆2212C xy +=:,直线4325.l x y +=: (1)圆C 的圆心到直线l 的距离为 .(2)圆C 上任意一点A 到直线l 的距离小于2的概率为 . 【16】.(必做题)给定*k ∈N ,设函数**f →N N :满足:对于任意大于k 的正整数n ,().f n n k =-(1)设1k =,则其中一个函数f 在1n =处的函数值为 ;(2)设4k =,且当n ≤4时,2≤()f n ≤3,则不同的函数f 的个数为 . 【解答题】【17】.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =. (1)求角C 的大小; (2)求cos()4A B π-+的最大值,并求取得最大值时角,A B 的大小.【18】.某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关,据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160,220, 140, 160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表:(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【19】.如图1,在圆锥PO 中,已知PO O =的直径2AB =,点C 在AB 上,且∠CAB =30°,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面PAC 所成角的正弦值.【20】.某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (1)求第n 年初M 的价值n a 的表达式;(2)设12···nn a a a A n+++=,若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新.证明:须在第9年初对M 更新.【21】.已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1. (1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相图1交于点,D E ,求,AD EB 的最小值.【22】.设函数1()ln ()f x x a x a x=--∈R . (1)讨论()f x 的单调性.(2)若()f x 有两个极值点1x 和2x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k .问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.【参考答案】 【1】.B 提示:由{}1,2,3,4,5U MN ==,{}2,4U MN =ð,得N ={}135,,.故选(B ). 【2】.C提示:由(i)i i a b +=+得1i i a b -+=+,则1,1a b ==-.故选(C ). 【3】.A提示:由1x >可推出1x >,而由1x >推不出1x >.故选(A ).【4】.D提示:由已知可得该空间几何体为一球和一四棱柱组成,四棱柱的底面为边长为3的正方形,高为2,体积为23318⨯⨯=,球的体积为3439()322⨯π⨯=π,所以该几何体的体积为9182π+.故选(D ). 【5】.A提示:26.635K >,所以有99%以上的把握认为“爱好该项运动与性别有关”.故选(A ). 【6】.C提示:令22209x y a -=,则有30x ay ±=,所以2a =.故选(C ). 【7】.B 提示::''sin 11()sin cos 21sin 2x y x x x=-=++,所以1121sin(2)4k ==π+⨯.故选(B ). 【8】.B 提示:()e 11x fx =-->,若()()f a g b =,则()2431g b b b =-+-->,解得22b <.故选(B ). 【9】.2提示:将参数方程2cos ,x y αα=⎧⎪⎨=⎪⎩化为普通方程为22143x y +=,将(cos sin )10ρθθ-+=化为直角坐标方程为10x y -+=,联立方程组221,4310,x y x y ⎧+=⎪⎨⎪-+=⎩消去y 得27880x x +-=,因为0>Δ,故交点有2个.【10】.40或60提示:区间长度为80,可以将其等分8段,利用分数法选取试点:则试点可选为1310(9010)408x =+-=或2510(9010)608x =+-=,由对称性可知,第二次试点可以是40或60.故填40或60. 【11】.154提示:先求和123415x x x x x =+++=,然后再求平均数,输出154x =.【12】.6 提示:()()(2)2929g f f -=-+=-+,所以()26f =.【13】.(4,2)--提示:设(,)x y =a ,由a 与b 的方向相反可设(0)λλ=<a b ,所以2,,x y λλ=⎧⎨=⎩代入2220x y +=,解得2λ=-,则a 的坐标为(4,2)--.【14】.3提示:画出可行域,利用图解法求解;或,,y x y mx =⎧⎨=⎩1,,x y y mx +=⎧⎨=⎩1,,x y y x +=⎧⎨=⎩求出三个区域端点111(0,0),(,),(,)1122m m m ++,当且仅当直线5z x y =+过点1(,)11mm m ++时有最大值5141m z m +==+,解得3m =.【15】.(1)5;(2)16. 提示:(1)圆C 的圆心到直线l 的距离为2555d==;(2)由(1)知圆心到直线l 的距离为5,要使圆上的点到直线l 的距离小于2,即1:4315l x y +=与圆相交所得的劣弧上,由半径为3可知劣弧所对的圆心角为3π,故所求的概率为1326P π==π.【16】.(1)a (a 为正整数);(2)16. 提示:(1)由题可知()f n ∈*N ,而1k =时,1n >,则()1f n n =-∈*N ,故只须()1f ∈*N ,故(1)f a =(a 为正整数).(2)由题可知4k =,4n >,则()4f n n =-∈*N ,而n ≤4时,2≤()f n ≤3即(){2,3}f n ∈,即{1,2,3,4}n ∈,(){2,3}f n ∈,则不同的函数f 的个数为4216=.【17】.解:(1)由正弦定理得sin sin sin cos .C A A C =因为0A π<<,所以s i n 0A >.从而s i n cos .C C =又cos 0C ≠,所以tan 1C =,则4C π=. (2)由(1)知,34B A π=-cos()cos()4A B A A π-+=-π-=πcos 2sin()6A A A +=+.因为304A π<<,所以11.6612A πππ+<<从而当62A ππ+=,即3A π=时,2sin()6A π+取最大值2.cos()4A B π-+的最大值为2,此时5,.312A B ππ==【18】.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为(2)P (“发电量低于490万千瓦时或超过530万千瓦时”)(490530)(130210)(70)(110)(220)1323.20202010P Y Y P X X P X P X P X =<>=<>==+=+==++=或或故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310. 【19】.解:(1)如图2,因为OA OC =,D 是AC 的中点,所以AC OD ⊥. 又⊥PO 底面O ,AC ⊂底面O ,所以AC PO ⊥,而OD ,PO 是平面POD 内的两条相交直线,所以AC ⊥平面POD .(2)由(1)知,AC ⊥平面POD ,又AC ⊂平面PAC ,所以平面POD ⊥平面PAC ,在平面POD 中,过O 作OH PD ⊥于H ,则OH ⊥平面PAC .连结CH , 则CH 是OC 在平面PAC 上的射影,所以OCH ∠是直线OC 和平面PAC 所成的角.在Rt △ODA 中,1sin 30.2OD OA =⋅=在Rt △POD中,3OH==在Rt △OHC中,sin 3OH OCHOC ∠== 故直线OC 和平面PAC所成角的正弦值为3【20】.解:(1)当n ≤6时,数列{}n a 是首项为120,公差为10-的等差数列,12010(1)13010;n a n n =--=-当n ≥6时,数列{}n a 是以6a 为首项,公比为34的等比数列, 又670a =,所以6370()4n n a -=⨯.因此,第n 年初,M 的价值n a 的表达式为613010,6,370(),7.4n n n n a n --≤⎧⎪=⎨⨯≥⎪⎩ (2)设n S 表示数列{}n a 的前n 项和,由等差及等比数列的求和公式得, 当6n 1≤≤时,1205(1),1205(1)1255;nn S n n n A n n =--=--=-当n ≥7时,由于6S =570,故667833()570704[1()]44n n n S S a a a -=++++=+⨯⨯⨯-63780210(),4n -=-⨯ 63780210()4n n A n--⨯=.因为{}n a 是递减数列,所以{}n A 是递减数列,又283780210()4748280,864A -⨯==>393780210()7947680,996A -⨯==< 所以须在第9年初对M 更新.【21】.解:(1)如图,设动点P 的坐标为(,)x y|| 1.x = 化简得222.y x x =+当x ≥0时,24y x =,当0x <时,0.y =图2所以,动点P 的轨迹C 的方程为24(0)y x x =≥和0(0).y x =<(2)由题意知,直线1l 的斜率存在且不为0,设为k ,则1l 的方程为(1)y k x =-.由2(1),4,y k x y x =-⎧⎨=⎩得2222(24)0.k x k x k -++= 设1122(,),(,),A x y B x y 则12,x x 是上述方程的两个实根,于是1212242,1x x x x k +=+=. 因为12l l ⊥,所以2l 的斜率为1k-.设3344(,),(,),D x y E x y 则同理可得2343424,1x x k x x +=+=.故()()AD EB AF FD EF FB ⋅=+⋅+AF EF AF FB FD EF FD FB =⋅+⋅+⋅+⋅AF FB FD EF =⋅+⋅1234(1)(1)(1)(1)x x x x =+++++ 12123434()+1++()+1x x x x x x x x =+++2241(2)11(24)1k k=+++++++22184()8416k k =+++⨯=≥. 当且仅当221k k =,即1k =±时,AD EB ⋅取最小值16. 【22】.解:(1)()f x 的定义域为(0,),+∞22211'()1a x ax f x x x x-+=+-=. 令2()1,g x x ax =-+其判别式2 4.a -Δ=当0()0.a f x '2≤时,≤,≥Δ故()(0,)f x +∞在内单调递增.当0()0a g x <-2>=时,,Δ的两根都小于0.在(0,)+∞上,'()0f x >,故()(0,)f x +∞在内单调递增.当0()0a g x >2>=时,,Δ的两根为12x x ==.当10x x <<时, '()0f x >;当12x x x <<时,'()0f x <;当2x x >时,'()0f x >,故()f x 分别在12(0,),(,)x x +∞内单调递增,在12(,)x x 内单调递减.(2)由(1)知,2a >. 因为1212121212()()()(ln ln )x x f x f x x x a x x x x --=-+--, 所以1212121212()()ln ln 11f x f x x x k a x x x x x x --==+-⋅--. 又由(1)知,121x x =.于是1212ln ln 2x x k a x x -=-⋅-. 若存在a ,使得2,k a =-则1212ln ln 1x x x x -=-.即1212ln ln x x x x -=-.亦即222212ln 0(1).x x x x --=> (*)再由(1)知,函数1()2ln h t t t t =--在(0,)+∞上单调递增,而21x >,所以 222112ln 12ln10.1x x x -->--=这与(*)式矛盾. 故不存在a ,使得2.k a =-【End 】。

相关文档
最新文档