00022高等数学目录(工专)
全国高等数学工专自考试题及答案解析.doc
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精品自学考试资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯全国 2019 年 7 月高等教育自学考试高等数学(工专)试题课程代码: 00022一、单项选择题(本大题共30 小题, 1— 20 每小题 1 分, 21— 30 每小题 2 分,共 40 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题 1 分,共 20 分)1.函数y x 2 4x 3 的定义域是()A. , 3B. ,C. ,1 , 3,D.( 1, 3)2.函数 y=xsinx+cos2x+1 是()A. 奇函数B. 偶函数C.周期函数D.非奇非偶函数3.数列有界是数列收敛的()A. 充分条件B. 必要条件C.充分必要条件D.无关条件4. lim(1 n) 3()n 3 5n 2 1nA.01C.16B. D.5 55.曲线 y=sinx 在点, 3 处的法线斜率是()3 23 1 2D. -2 A. B. C.32 26.设 y=arcsinx+arccosx, 则 y′ =()A.02C.2 2B.x 2 x 2D.1 1 1 x 27.函数 f(x)=x 2+1 在0,1 上使拉格朗日中值定理结论成立的 c 是()A.11 1D.-1B. C.2 218.曲线 ye x2()A. 仅有垂直渐近线B. 仅有水平渐近线C.既有垂直渐近线又有水平渐近线D.无渐近线9.一条处处具有切线的连续曲线 y=f (x) 的上凹与下凹部分的分界点称为曲线的()A. 驻点B. 极大值点C.拐点D.极小值点10. ( 1+2x ) 3的原函数是( )A. 1(1 2x )4 B. (1 2x )48C. 1 (1 2x )4D. 6(1 2x )2411. 1()x 2 dx4A. arcsinxB. xCarcsin22C. ln xx 24D. ln xx 2 4 C12. 广义积分xe x 2 dx()1A.1B.12e2eC.eD.+∞13.2cos 3 xdx ()2A.2B.2C.44333D.314. 设物体以速度 v=t 2作直线运动, v 的单位为米 / 秒,物体从静止开始经过时间 T ( T>0 )秒后所走的路程为( )A.Tt 2米B. Tt 2 米C. T 3米D. T 3米23215. 直线x1y 2 z3位于平面()21A.x=1 内B.y=2 内C.z=3 内D.x-1=z-3 内16. 设函数 f (x,y)=(x 2-y 2)+arctg(xy 2),则 f x (1,0)()A.2B.1C.0D.-117. 函数 z 2x 2 y 2 在点( 0, 0)()2A. 取得最小值 2B. 取得最大值 2C.不取得极值D. 无法判断是否取极值18.区域(σ)为:x 2+y 2 -2x ≤ 0,二重积分x 2y 2 d 在极坐标下可化为累次积分 ()( )A.21 2d d B.22 cos2d d0 0C.22 cos2d dD.2cos2d d0 0219.级数1()n(nn11)A. 收敛B. 发散C.绝对收敛D. 无法判断敛散性20.微分方程 y2y 5y0 的通解为()A.y=C 1e x +C 2e -2xB.y=e -2x (C 1 cosx+C 2sinx)C.y=e x (C 1cos2x+C 2sin2x)D.y=e 2x (C 1cosx+C 2sinx)(二)(每小题 2 分,共 20 分)21.设 f (x )x 1)x,则 x=2 为 f (x) 的(2A. 可去间断点B. 连续点C.跳跃间断点D. 无穷间断点22.函数 y1 x 5 1x 3 单调减少的区间是()53A.[-1 , 1]B. ( -1, 0)C.( 0,1)D. ( 1, +∞)23.cos 3x sin xdx =( )A.1 c os 4 x C B.1 cos 4 x4 1 4 1C.cos 4 x CD.cos 4 x 4dy4()24.设 y 5+2y-x=0 ,则dxA. 5y 42B.125y 4C.1D.15y425y41325.设 f (x )x 1, x1,则 lim f (x ) ()2 x 2, x 1x 1A. 不存在B.-1C.0f (x 0 h)f (x 0 )(26.如果函数 f (x) 在点 x 0 可导,则 lim hhA. f (x 0 )B.f(x 0 )C.不存在27.曲线2x 2 3y 2 z 2 16x22y 2z2在 xoy 坐标平面上的投影方程为(12x 2 z 2 0x 2 z 2 A.B.0 xyx 2 y 2 4x 2 y 2 C.D.zxD.1 )D. f ( x 0 ))4428.用待定系数法求方程 y 3y 2y e 5x 的特解时,应设特解()A. y ae 5xB. y axe 5 xC. yax 2 e 5xD. y (ax b)e 5 x29.函数 f (x)1的麦克劳林级数为()1 2xA.2n x n , x 2B.( 2) n x n , x1n 0n2 C.2n x n , x 1D.2 n x n , x1 n 1n2dyy 2)30.微分方程y 4 是(dx xA. 一阶线性齐次方程B. 一阶线性非齐次方程C.二阶微分方程D.四阶非齐次微分方程二、计算题(本大题共7 小题,每小题 6 分,共 42 分)1 x3 x31.求 limx2 1 .x 1432.求xdx .1 x 4x a cost d 2 y33. 设y,求dy与dx2.b sin t dx34. 求 lim ln sin x 2 .x ( 2x )235. dysin x 的通解和满足初始条件y|x=0=1 的特解 .求微分方程dx36. 求x2 d ,其中区域(σ)由xy=1,y=x,x=2 所围成 .( )y37.将函数f (x ) 1x展开成 (x-3) 的幂级数 .三、应用和证明题(本大题共 3 小题,每小题 6 分,共 18 分)38. 设函数 f (x)=alnx+bx 2+x 在 x1=1 和 x2=2 都取得极值,试求出a, b 的值 ,并问此时 f (x) 在x1与 x2处取得极大值还是极小值?39. 一曲边梯形由 y=x 2-1, x 轴和直线 x=-1 ,x 1所围成 ,求此曲边梯形的面积 A. 240. 设 f (x , y)=x 4+y 4+4x 2y2验证: (1)f (tx , ty)=t 4f(x , y);(2) xf x yf y4f (x , y).5。
00022高等数学目录(工专)
第一章函数§1.1实数一、实数与数轴二、区间与邻域三、绝对值习题1.1§1.2函数的定义及其表示法一、常量与变量二、函数的定义三、常用的函数表示法习题1.2§1.3函数的几种特性一、有界性二、单调性三、奇偶性四、周期性习题1.3§1.4反函数和复合函数一、反函数二、复合函数习题1.4§1.5初等函数一、基本初等函数二、初等函数三、非初等函敷的例子四、初等函数定义域的求法五、建立函数关系举例习题1.5§1.6本章内容小结与学习指导一、本章知识结构图二、内容小结—三、常见题型—四、典型例题解析第二章极限与连续§2.1数列及其极限一、数列的概念二、数列的极限三、收敛数列的性质四、数列极限的运算法则及存在准则习题2.1§2.2数项级数的基本概念一、数项级数的定义及敛散性二、级数的摹本性质和级数收敛的必要条件三、正项级数的敛散性判别习题2.2§2.3函数的极限一、自变量趋于无穷大时函数f(x)的极限二、自变量趋于有限值x时函数f(z)的极限三、函数极限的性质四,函数极限的运算法则及存在准则五,两个重要极限习题2.3§2.4无穷小量与无穷大量一、无穷小量的概念二,无穷小量的性质三、无穷小量的比较四、无穷大量习题2.4§2.5函数的连续性一、函数连续性的概念二、函数的间断点及其分类三、函数连续性的物理意义四、连续函数的运算与初等函数的连续性五,闭区间上连续函数的性质习题2.5§2.6本章内容小结与学习指导一、本章知识结构图二、内容小结三,常见题型四、典型例题解析第三章导数与微分§3.1导数的概念一、引例二、导数的定义三、导数的几何意义和物理意义四、可导与连续的关系习题3.1§3.2导数的运算一、基本初等函数的求导公式二、导数的四则运算法则三、反函数的求导法则四、复合函数的求导法则习题3.2§3.3几类特殊函数的求导方法一、幂指函数的求导方法二、隐函数的求导方法三、参数式函数的求导方法习题3.353.4高阶导数习题3.4§3.5微分及其运算一、引例二、微分的定义三、函数的导数与微分的关系四、微分的几何意义五、基本微分公式与微分运算法则六、微分的应用习题3.5§3.6本章内容小结与学习指导一、本章知识结构图二,内容小结三,常见题型四、典型例题解析第四章微分中值定理与导数的应用§4.1微分中值定理一、费马定理二、罗尔定理三、拉格朗日中值定理习题4.1§4.2洛必达法则一、和型型洛必达法则二、其他类型的未定式习题4.2§4.3函数的单调性习题4.3§4.4函数的极值及其求法习题4.4§4.5函数的最大值和最小值及其应用习题4.5§4.6曲线的凹凸性和拐点习题4.6§4.7函数的渐近线一、水平渐近线二、铅直渐近线习题4.7§4.8本章内容小结与学习指导一、本章知识结构图二、内容小结三、常见题型四、典型例题分析第五章一元函数积分学§5.1原函数与不定积分的概念一、原函数与不定积分二、基本积分公式三、不定积分的基本性质习题5.1§5.2不定积分的换元法一、第一换元法(凑微分法)二、第二换元积分法习题5.2§5.3分部积分法习题5.3§5.4微分方程初步一、微分方程的摹本概念二、可分离变量的微分方程三、一阶线性微分方程习题5.45.5定积分的概念及其几何意义一、引例二、定积分的概念三、定积分的存在定理习题5.5§5.6定积分的基本性质习题5.6§5.7微积分基本公式一、积分上限的函数及其导数二、微积分学摹本定理习题5.7§5.8定积分的换元法与分部积分法一、定积分的换元法二、定积分的分部积分法习题5.8§5.9无穷限反常积分习题5.9§5.10定积分的应用一、微元法二、定积分的几何应用三、定积分的物理应用习题5.10§5.11本章内容小结与学习指导一、本章知识结构图二、内容小结三、常见题型四、典型例题分析第六章线性代数初步§6.1二、三元线性方程组和二、三阶行列式一、二元和三元线性方程组二、二阶和三阶行列式习题6.1§6.2行列式的性质和计算一、行列式的基本性质二、行列式的按行(列)展开习题6.2§6.3矩阵的概念及矩阵的初等行变换一、矩阵的概念二、矩阵的初等行变换习题6.3§6.4三元线性方程组的消元法习题6.4§6.5矩阵的运算及其运算规则一、矩阵的加法与数乘运算二、矩阵的乘法三、矩阵的转置四、方阵的行列式性质习题6.5§6.6可逆矩阵与逆矩阵习题6.6§6.7本章内容小结与学习指导一、本章知识结构图二、内容小结三、常见题型四、典型例题分析习题参考答案与提示高等数学(工专)自学考试大纲高等数学(工专)参考样卷后记。
全国2005年1月高等教育自学考试高等数学(工专)试题 课程代码00022
浙00022# 高等数学(工专)试题 第 1 页(共 5 页)全国2005年1月高等教育自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题1分,共20分) 1.函数f(x)=2x1x 1--的定义域是( ) A.)1,1(-B.(]1,1-C.[)(]1,0,0,1-D.)1,0(),0,1(-2.函数f(x)=cos 2x 的周期是( ) A.2π B.π C.2πD.4π3.函数f(x)=xsinx+2x 2是( ) A.偶函数 B.奇函数 C.非奇非偶函数 D.有界函数4.=∞→x1sinx lim x ( )A.0B.1C.∞D.不存在 5.曲线y=sinx 在原点(0,0)的切线方程为( ) A.y=0 B.y=-x C.y=xD.x=06.设y=f(e 2x),则y '=( ) A.)e (f x 2' B.x 2x 2e )e (f ' C.)e (f 2x 2'D.x 2x 2e )e (f 2'7.设=⎩⎨⎧==π=4t dxdy ,t2cos y t sin x 则( )A.22-B.2-C.2D.22浙00022# 高等数学(工专)试题 第 2 页(共 5 页)8.函数y=e x -x-1单调增加的区间是( ) A.[)+∞-,1 B.()+∞∞-, C.(]0,∞-D.[)+∞,09.曲线y=lnx ( ) A.有1个拐点B.有两条渐近线C.无拐点D.无渐近线 10.曲线y=e 2(x+1)( )A.只有水平渐近线,它是y=0B.无渐近线C.有垂直渐近线D.有水平渐近线,它是x=-111.⎰=+dx x1x 2( )A.C x 12++-B.C x 12++C.ln(1+x 2)+CD.C )x 1(232++12.设函数f(x)在区间I 连续,那么f(x)在区间I 的原函数( ) A.不一定存在 B.有有限个存在 C.有唯一的一个存在 D.有无穷多个存在 13.下列广义积分中发散的是( ) A.dx ex-+∞⎰B.dx x 1120+⎰+∞C.dxx11⎰+∞D.dxx11⎰14.平面2x+3y-z+2=0与xoy 坐标平面的交线是( ) A.2x+3y+2=0B.⎩⎨⎧==++0z 02y 3x 2 C.⎩⎨⎧==+-0x 02z y 3 D.⎩⎨⎧==+-0y 02z x 2 15.设f(x,y)=x+y 22yx+-,则=')4,3(f x( ) A.52B.51C.52-D.53-浙00022# 高等数学(工专)试题 第 3 页(共 5 页)16.设f(x,y)=xarctgy,则f(x 2+y 2,xy)=( ) A.xyarctg(x 2+y 2)B.(x 2+y 2)arctgxyC.x 2arctgy 2D.xyarctgxy17.设函数f(x,y)在区域(σ)连续,则下面四个不等式中正确的是( ) A.⎰⎰⎰⎰σσσ≥σ)()(d |)y ,x (f |d )y ,x (fB.⎰⎰⎰⎰σσσ≥σ)()(d |)y ,x (f |d )y ,x (fC.⎰⎰⎰⎰σσσ≤σ)()(d |)y ,x (f |d )y ,x (fD.⎰⎰⎰⎰σσσ>σ)()(d |)y ,x (f |d )y ,x (f18.下列方程所表示的曲面中是圆锥面的为( ) A.x 2+y 2-z 2=0 B.x 2+y 2-z=0 C.x 2+y 2+4z 2=1D.x 2+y 2-z 2=119.微分方程是4422yxy x dxdy +=( )A.非齐次方程B.一阶非齐次方程C.一阶线性方程D.齐次方程20.级数∑∞=+0n n2|)x |1(1的收敛区间为( ) A.),0(),0,(+∞-∞ B.(-1,1 ) C.)0,(-∞D.),0(+∞(二)(每小题2分,共20分)21.设f(x)=⎩⎨⎧≤<-≤≤2x 1,x 21x 0,x 2 ,则f(x)( )A.在x=1间断B.在区间[0,2]上连续C.在区间[0,2]上间断D.在区间[0,2]上无界22.设C 为任意常数,则=-xdx arcsin x122( )A.d(arcsinx)B.)C x 1(d 2+-C.)x 1(d 2-D.d[(arcsinx)2+C]23.设y=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则y (4)=( ) A.4!B.24a 4C.a 4D.0浙00022# 高等数学(工专)试题 第 4 页(共 5 页)24.=+∞→2x xx ln lim ( )A.1B.2C.0D.∞25.⎰=dx e 2x x ( ) A.C2ln 1e2xx++ B.2x e x+C C.2ln 1e2xx +D.2x e x26.=⎰→xdt t cos limx2x ( )A.∞B.-1C.0D.127.若直线n3z 32y 21x 4k z 22y 11x -=-=--=-=-与直线垂直相交,则其中的常数k 和n 分别是( ) A.k=3,n=-2 B.k=3,n=2 C.k=2,n=-3D.k=2,n=328.累次积分⎰⎰10xx2dydx )y ,x (f 交换积分顺序后是( )A.⎰⎰10yydx dy)y ,x (f B.⎰⎰10yy2d x d y)y ,x (f C.⎰⎰1yydx dy )y ,x (fD.⎰⎰10yy2dxdy)y ,x (f29.微分方程0y 3y 2y =+'+''的通解为( ) A.)x 2si nC x 2c o sC (e y 21x +=-B.)x si n C x c o s C (e y 21x +=-C.)x 2sin C x 2cos C (e y 21x +=D.)x 2cosC x 2sinC (e y 21x 2+=30.幂级数∑∞=1n n!n x n 2的收敛半径为( )A.R=1B.R=2C.R=+∞D.R=0二、计算题(本大题共7小题,每小题6分,共42分) 31.求).x13x11(lim 31x ---→浙00022# 高等数学(工专)试题 第 5 页(共 5 页)32.设f(x)=⎩⎨⎧≥<0x ,x 0x ,x sin ,求).0(f '33.求.dx )x 1(x 13⎰+34.计算.dx xex2ln 0-⎰35.判定级数∑∞=1n 5nn 2cos 的敛散性.36.设z=usinv,u=xy,v=x 2+y 2,求.yz xz ∂∂∂∂和37.求微分方程(x 2+y 2)dx-xydy=0的通解.三、应用和证明题(本大题共3小题,每小题6分,共18分)38.求函数f(x,y)=4(x-y)-x 2-y 2的极值.39.求曲面z=x 2+y 2与平面z=1所围的空间立体的体积V . 40.证明:当x>1时,e x>e ·x.。
2011年7月浙江自考真题高等数学(工专)
第 1 页2011年7月浙江自考真题高等数学(工专) 7高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1-20每小题1分,21-30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题1分,共20分) 1.函数xx )x (f -+=11 的定义域是( ) A .(-∞,+∞) B .(0,+∞) C .(-1,1)D .[)11,-2.函数3x )x (f =,则=+)y x (f ( ) A .)y (f )x (f B .)x (f 2 C .)x (fD .)y (f3.函数|x |)x (f -=2是( ) A .偶函数 B .非奇非偶函数 C .奇函数D .周期函数4.=→x x x 1sinlim 20( ) A .1 B .∞ C .0D .不存在 5.曲线y =sin x 在点(π,0)处的法线斜率为( ) A .-1 B .1 C .0D .26.设x)x(f =1,则=')x (f ( ) A .1 B .21xC .-21xD .2x7.设⎪⎩⎪⎨⎧-==t y t x 122,则=dydx ( )第 2 页A .tB .-1C .-t1D .-t8.函数x x y -=sin 在[0,2π]上( ) A .单调减少 B .单调增加 C .无界D .没有最大值 9.曲线y=x 4( ) A .的拐点为(0,0) B .有两个拐点 C .有一个拐点D .没有拐点10.曲线xx y ln 2=的垂直渐近线是( ) A .x =0 B .x =1 C .y =0D .y =111.=⎰)dx )x (f (d 1( ) A .dx )x (f B .dx )x (f x21-C .dx )x(f x112-D .dx)x(f 112.=⎰dx x x 2( ) A .C x +2992 B .C x +2772C .2992xD .2772x13.广义积分⎰+∞22ln )x (x dx( ) A .发散 B .收敛于1C .收敛于2ln 1D .的敛散性不能判定14.过点(2,-1,2)且与直线211z y x =-=垂直的平面方程为( )A .072=-+-z y xB .02=+-z y xC .032=+-+z y xD .0922=-+-z y x15.设)y x (e )y ,x (f x +=arctg ,则='),(f y 10( ) A .0B .1第 3 页C .2D .2116.区域(σ)由抛物线2x y =与直线x y =围成,函数)y ,x (f 在(σ)上连续,二重积分⎰⎰)(d )y ,x (f σσ化为累次积分应为( ) A .⎰⎰102xxdydx )y ,x (f B .⎰⎰12xxdydx)y ,x (f C .⎰⎰101dydx )y ,x (fD .⎰⎰xxdydx)y ,x (f 2117.空间区域(V )由抛物面22y x z +=与平面z =1围成,三重积分⎰⎰⎰++)V (dV )z y x (222可化为累次积分( )A .⎰⎰⎰+πρθρρ20101222d dzd )z( B .⎰⎰⎰+πρθρρρ20101222d dzd )z ( C .⎰⎰⎰+πθρρρ2010122d dzd )z (D .⎰⎰⎰+πρθρρρ20101222d dzd )z (18.微分方程023=+'-''y y y 的通解为( ) A .x x e C e C y 221+= B .x x e C e C y 221+=- C .x x e C e C y -+=221D .x x e C e C y --+=22119.级数∑∞=++-111n n nn )(( ) A .绝对收敛 B .发散C .收敛D .的部分和S n 无界20.幂级数∑∞=-01n n n nx )(的收敛半径为( )A .R =0B .R =1C .R =2D .R =+∞(二)(每小题2分,共20分) 21.=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯+∞→)n )(n (15451161111161611lim n ( )A .1B .61C .51D .41第 4 页22.设⎪⎩⎪⎨⎧>-=<=010001x ,x ,,x ,)x (f ,则x =0为)x (f 的( )A .连续点B .无穷间断点C .可去间断点D .跳跃间断点23.设)x (y +=1ln ,则=)(y )(09( ) A .8! B .-9! C .-8!D .9!24.⎰=-dx x112( )A .|x |1ln 2-B .C |x |+-1ln 2 C .|x x |11ln 21-+D .C|x x |++-11ln 2125.=⎰→2x sin lim xtdtx( ) A .∞ B .0 C .21D .126.直线521221+=-+=-z y x 与平面034=-+z y x 的关系是( ) A .直线与平面垂直 B .直线在平面上C .直线与平面无公共点D .直线与平面相交于一点27.设y x z 2=,则=dz ( ) A .xdy x dx x y y y ln 22212+∙- B .dy x dx x y y y 21222+∙- C .dy x dx x y y 222+D .dy x dx x y y 22+28.设区域(σ)为42π≤22y x +≤2π,则⎰⎰++)(d yx yxσσ2222cos=( )A .0B .π2C .-π2D .π329.微分方程xyy dxdy +=62是( )A .一阶线性齐次方程B .一阶线性非齐次方程第 5 页C .二阶线性微分方程D .六阶线性微分方程30.级数∑∞=12sinn nπ( )A .发散B .的部分和n S 无界C .是交错级数D .收敛二、计算题(本大题共7小题,每小题6分,共42分) 31.求2301cos lim/x xx -+→.32.设⎪⎩⎪⎨⎧=≠=0001sin2x x ,xx )x (f , ,求)x (f '.33.求) (022>++⎰a dx xax a .34.计算⎰1xarctgxdx .35.求方程 011=+-+xydy yxdx 满足10=)(y 的特解.36.计算⎰⎰)(d xy σσ3,其中(σ)是由直线x y ,y ==2及y 轴围成的三角区域.37.判别级数∑∞=12n nnn!n 的敛散性.三、应用和证明题(本大题共3小题,每小题6分,共18分) 38.求心形线)a ()cos (a 01>-= θρ所围成的平面图形的面积. 39.求函数y x y xy x )y ,x (f --+-=22的极值. 40.证明:当x >0时,e x >1+x .。
【2021年全国自考】高等数学(工专)00022最新历年试题汇编20套真题
1. 全国 2020 年 8 月高等教育自学考试试题 2. 全国 2019 年 4 月高等教育自学考试试题 3. 全国 2018 年 4 月高等教育自学考试试题 4. 全国 2017 年 4 月高等教育自学考试试题 5. 全国 2016 年 4 月高等教育自学考试试题 6. 全国 2015 年 10 月高等教育自学考试试题 7. 全国 2015 年 4 月高等教育自学考试试题 8. 全国 2014 年 10 月高等教育自学考试试题 9. 全国 2014 年 4 月高等教育自学考试试题 10. 全国 2013 年 4 月高等教育自学考试试题 11. 全国 2013 年 1 月高等教育自学考试试题 12. 全国 2012 年 10 月高等教育自学考试试题 13. 全国 2012 年 4 月高等教育自学考试试题 14. 全国 2012 年 1 月高等教育自学考试试题 15. 全国 2011 年 10 月高等教育自学考试试题 16. 全国 2011 年 4 月高等教育自学考试试题 17. 全国 2011 年 1 月高等教育自学考试试题 18. 全国 2010 年 10 月高等教育自学考试试题 19. 全国 2010 年 4 月高等教育自学考试试题 20. 全国 2009 年 10 月高等教育自学考试试题 21. 【赠】全国 2009 年 4 月高等教育自学考试试题 22. 【赠】全国 2008 年 10 月高等教育自学考试试题 23. 【赠】全国 2008 年 4 月高等教育自学考试试题
二、填空题(本大题共 10 小题,每小题 3 分,共 30 分)
6.函数 y =1 − 1 − x2 的定义域为________. x
7.级数 −1 +
1 3
−
1 32
自考科目代码
233009077.xls
E016 F009 F010 E017 E018 G010 F011 G011 A001 B005 D005 D006 G012 A002 B006 C003 E019 F012 E020 C004 A003 F013 G013 H018 E021 F014 H019 H020 F015 G014 00239 狱政管理学 00245 刑法学 00246 国际经济法概论 00247 国际法 00249 国际私法 00258 保险法 00259 公证与律师制度 00260 刑事诉讼法学 00266 社会心理学(一) 00272 社会工作概论 00273 社会工作实务 00275 社会问题 00277 行政管理学 00282 个案社会工作 00283 社会行政 00284 心理卫生与心理咨询 00292 市政学 00315 当代中国政治制度 00318 公共政策 00321 中国文化概论 00345 秘书学概论 00355 公安秘书学 00357 治安管理学 00360 预审学 00369 警察伦理学 00370 刑事证据学 00371 公安决策学 00383 学前教育学 00386 幼儿文学(一) 00387 幼儿园组织与管理 第 3 页,共 17 页 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 省卷 省卷 省卷 省卷 全国卷 省卷 省卷 省卷 全国卷 全国卷 全国卷 省卷 省卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 省卷 全国卷
Hale Waihona Puke 33009077.xlsG034 H046 A016 E039 E040 G035 F034 D017 G036 F035 G037 B019 H047 H048 F036 H049 F037 E041 G038 E042 E043 H050 B020 G039 F038 E044 G040 A017 E045 H051 02141 计算机网络技术 02151 工程制图 02173 无机化学(二) 02182 文献检索 02183 机械制图(一) 02185 机械设计基础 02187 电工与电子技术 02191 机械制造技术 02197 概率论与数理统计(二) 02198 线性代数 02200 现代设计方法 02204 经济管理 02205 微型计算机原理与接口技术 02209 机械制造装备设计 02234 电子技术基础(一) 02238 模拟、数字及电力电子技术 02243 计算机软件基础(一) 02245 机电一体化系统设计 02275 计算机基础与程序设计 02316 计算机应用技术 02318 计算机组成原理 02323 操作系统概论 02324 离散数学 02325 计算机系统结构 02326 操作系统 02335 网络操作系统 02354 信号与系统 02358 单片机原理及应用 02365 计算机软件基础(二) 02368 通信英语 第 8 页,共 17 页 全国卷 全国卷 省卷 省卷 全国卷 全国卷 全国卷 省卷 全国卷 全国卷 全国卷 省卷 全国卷 省卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 全国卷 省卷 全国卷 全国卷 全国卷 全国卷 省卷 全国卷 全国卷
最新10月自考高等数学(工专)试题及答案解析
2018年10月自考高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列函数中在所给的区间上是有界函数的为( )A. f (x )=e -x (-∞,+∞)B. f (x )=cot x (0,π)C. f (x )=sin x1 (0,+∞) D. f (x )= x 1 (0,+∞) 2.函数y =lg(x -1)的反函数是( )A.y =e x +1B.y =10x +1C.y =x 10-1D.y =x -10+1 3.级数∑∞=+1)1(1n n n 的前9项的和s 9为( ) A.9001 B.32 C.0.9 D.14.下列无穷限反常积分收敛的是( ) A.⎰+∞dx x 211 B.⎰+∞dx x11 C. ⎰+∞xdx ln 1 D. ⎰+∞dx e x 1 5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=z y x A 000000,则行列式|-2A |的值为( )A.2xyzB.-2xyzC.8xyzD.-8xyz二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.=+∞→xx x arctan lim _______. 7.设f (x )=⎪⎪⎩⎪⎪⎨⎧>=<+.0,2sin ,0,,0,1x xx x k x e x 在x =0处连续,则常数k =______.8.⎰=-dx x 211________.9.设y =e x +sin x ,则dy =______.10.曲线y =2ln 33-+xx 的水平渐近线方程为________. 11.设函数)2)(1()(-+=x x x x f ,则方程0)(='x f 的两个根所在的区间分别为_______.12.A ,B 均为3阶方阵,且|A |=3,|B |=-2,则|B A '|=_______.13.设方程y -xe y =0确定了隐函数y =y (x ),则dxdy =_______. 14.=⎰→x dt t x x 20cos 0lim _______. 15.设⎥⎦⎤⎢⎣⎡-2001X =⎥⎦⎤⎢⎣⎡-1021,则矩阵X =______. 三、计算题(本大题共8小题,每小题6分,共48分)16.求极限3lim xe xx +∞→. 17.求曲线⎩⎨⎧==ty t x 2cos sin 在6π=t 处相应的点处的切线方程和法线方程. 18.求不定积分⎰-.)sin (cos 2dx x x19.求微分方程x e x y y sin cos -=+'满足初始条件0)0(=y 的特解.20.已知⎪⎩⎪⎨⎧π≤<ππ-π≤≤-=,2,2,2,sin )(x x x x x x f 求⎰ππ-2.)(dx x f21.确定函数0)(x x8x 2y >+=的单调区间. 22.求曲线2x e y -=的拐点.23.用消元法求解线性方程组⎪⎩⎪⎨⎧=-+=--=--.x x x ,x x x ,x x x 05231322321321321四、综合题(本大题共2小题,每小题6分,共12分)24.求函数x x f(x)-+=1在区间[-5,1]上的最大值和最小值.25.求由曲线xy =1与直线y=2,x =3所围成的平面图形的面积.。
自考高等数学工本教材目录
自考高等数学工本教材目录一、导论1. 高等数学的定义与概念2. 数学与科学的关系3. 数学的基本运算4. 数学的应用领域二、数列与数学归纳法1. 数列的概念与表示方法2. 数列的性质与分类3. 数学归纳法的基本原理与应用4. 递推数列与通项公式三、函数与极限1. 函数的定义与性质2. 基本初等函数及其性质3. 极限的概念与性质4. 极限的运算法则四、导数与微分1. 导数的定义与性质2. 基本初等函数的导数3. 高阶导数与导数运算法则4. 微分的定义与应用五、不定积分与定积分1. 不定积分的定义与性质2. 基本积分公式及其应用3. 定积分的定义与性质4. 定积分的运算法则与应用六、微分方程与应用1. 微分方程的定义与分类2. 一阶常微分方程的解法3. 高阶常微分方程的解法4. 微分方程在实际问题中的应用七、向量与空间解析几何1. 向量的定义与性质2. 向量的运算法则3. 空间解析几何的基本概念4. 点、直线和平面的方程八、级数与幂级数1. 级数的定义与性质2. 收敛级数与发散级数3. 幂级数的收敛域与求和函数4. 幂级数在实际问题中的应用九、多元函数与偏导数1. 多元函数的定义与性质2. 偏导数的概念与计算方法3. 高阶偏导数与混合偏导数4. 多元函数的极值与条件极值十、重积分与曲线积分1. 重积分的定义与性质2. 二重积分与三重积分的计算方法3. 曲线积分的定义与性质4. 曲线积分的计算方法与应用十一、常微分方程1. 高阶线性微分方程的解法2. 非齐次线性微分方程的应用3. 欧拉方程与常系数线性微分方程4. 常微分方程在实际问题中的应用十二、数学统计基础1. 随机事件与随机变量2. 概率分布函数与概率密度函数3. 统计量与样本分布4. 数理统计的基本概念与应用以上是自考高等数学工本教材的目录,涵盖了数学的各个重要主题,帮助学习者系统地了解和掌握高等数学的基础知识和方法。
通过学习这本教材,学生将能够在数学领域有扎实的理论基础,为日后的学习和应用打下坚实的基础。
00022高等数学工专教材
00022高等数学工专教材一、导论高等数学是一门重要的基础学科,对于工科专业来说尤为重要。
本教材旨在为高等数学工科专业的学习者提供系统、全面的知识框架,并通过清晰的讲解和大量的例题,帮助学生理解和掌握高等数学的关键概念和方法。
二、前言本教材根据课程要求,采用了模块化的教学设计,将高等数学知识分为多个单元,并对每个单元进行详细而全面的讲解。
重要的概念和定理都会得到强调,并通过例题来帮助学生巩固和应用所学内容。
三、基础知识单元3.1 实数与数列3.2 函数与极限3.3 导数与微分3.4 积分与不定积分3.5 微分方程本教材以这五个单元为基础,系统地介绍了高等数学的核心概念和方法。
每个单元都包含了必要的定义、定理和公式,并通过相关例题和习题来辅助学生巩固所学知识。
四、教学方法本教材采用了多种教学方法,以帮助学生更好地理解和掌握高等数学知识。
例如,我们通过具体的图示和实例来说明抽象概念和定理,以便学生能够形象地理解。
此外,我们还鼓励学生进行实际问题的应用练习,以帮助他们将所学知识应用于实际工程问题中。
五、教学辅助资源为了进一步提高教学效果,本教材提供了一系列教学辅助资源。
这些资源包括教学视频、习题解析和练习册等,以供学生在课外进行深入学习和练习。
此外,我们还建议学生积极参与课堂讨论和小组活动,以促进合作学习和互动交流。
六、学习指导对于学生来说,高等数学可能是一门相对复杂和抽象的学科。
为了帮助学生更好地学习,本教材提供了学习指导,包括学习方法和技巧,以及常见问题的解答。
我们鼓励学生养成良好的学习习惯,积极主动地参与学习过程,并及时向教师和同学寻求帮助。
七、总结高等数学是一门关键的学科,对于工科专业的学生来说尤为重要。
本教材旨在为学生提供全面、系统的高等数学知识,帮助他们理解和掌握该学科的核心概念和方法。
通过合理的教学方法和辅助资源,我们相信学生能够在学习中取得良好的成绩,并为将来的工程实践奠定坚实的基础。
2024下半年河南省自学考试时间及课程安排
00055企业会计学
00043经济法概论(财经类)
00018计算机应用基础
00065国民经济统计概论
00066货币银行学
00075证券投资与管理
03707毛泽东思想、邓小平理论和三个代表重要思想概论
03706思想道德修养与法律基础
04729高校语文
保险(专科)
00009政治经济学(财经类)
体育教化(专科)
00485运动解剖学
00429教化学(一)
00487体育心理学
00494中学体育教学法
03706思想道德修养与法律基础
03707毛泽东思想、邓小平理论和三个代表重要思想概论
04729高校语文
秘书(专科)
00345秘书学概论
00341公文写作与处理
00182公共关系学
00509机关管理
00020高等数学(一)
00165劳动就业概论
00043经济法概论(财经类)
00018计算机应用基础
00065国民经济统计概论
03707毛泽东思想、邓小平理论和三个代表重要思想概论
00071社会保障概论
00147人力资源管理(一)
04729高校语文
00163管理心理学
03706思想道德修养与法律基础
04729高校语文
04732微型计算机及接口技术
电子技术(专科)
02269电工原理
00022高等数学(工专)
02198线性代数
00012英语(一)
02342非线性电子电路
02348电子测量
02277微型计算机原理及应用
03706思想道德修养与法律基础
03707毛泽东思想、邓小平理论和三个代表重要思想概论
高等数学(工专)考试试题及答案
1全国2010年10月自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数y=ln x 1在(0,1)内( )A.是无界的B.是有界的C.是常数D.是小于零的2.极限=-+∞→x x e lim ( )A.∞B.0C.e -1D.-∞3.设f (x )=1+x xsin ,则以下说法正确的是( )A.x =0是f (x )的连续点B.x =0是f (x )的可去间断点C.x =0是f (x )的跳跃间断点D.x =0是f (x )的第二类间断点 4.[]⎰+dx x x dx d)sin (cos =( )A.cos x +sin x +CB.cos x -sin xC.cos x +sin xD.cos x -sin x +C5.矩阵⎥⎦⎤⎢⎣⎡=1021A 的逆矩阵是( )A.⎥⎦⎤⎢⎣⎡--1021 B.⎥⎦⎤⎢⎣⎡-1021 C.⎥⎦⎤⎢⎣⎡-1021 D.⎥⎦⎤⎢⎣⎡-1021 二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
26.如果级数的一般项恒大于0.06,则该级数的敛散性为__________.7.若20)(lim x x f x →=2,则x x f x cos 1)(lim 0-→=____________.8.设f (x )=e x +ln4,则)(x f '=____________.9.函数f (x )=(x +2)(x -1)2的极小值点是________________。
10.行列式10011y x yx =_________________________.11.设⎪⎩⎪⎨⎧==3232t y t x ,则=dx dy___________________.12.如果在[a ,b ]上f (x )≡2,则⎰ba dx x f )(2=_______________________.13.若F (x )为f (x )在区间I 上的一个原函数,则在区间I 上,⎰dx x f )(=_______.14.无穷限反常积分⎰+∞e x x dx2ln =_____________________.15.设A 是一个3阶方阵,且|A |=3,则|-2A |_________________.三、计算题(本大题共8小题,每小题6分,共48分)16.求极限200coslim x tdtt xx ⎰→.17.求微分方程y xdx dy=的通解.18.设y =y (x )是由方程e y +xy =e 确定的隐函数,求0=x dx dy.19.求不定积分⎰dx xe x .20.求曲线y =ln(1+x 2)的凹凸区间和拐点.21.设f (x )=x arctan x -)1ln(212x +,求)1(f '.22.计算定积分dx x x x ⎰-+++012241133.23.求解线性方程组3⎪⎩⎪⎨⎧=++-=++=++.02315,9426,323321321321x x x x x x x x x四、综合题(本大题共2小题,每小题6分,共12分)24.求函数f (x )=x 4-8x 2+5在闭区间[0,3]上的最大值和最小值.25.计算由曲线y =x 2,y =0及x =1所围成的图形绕x 轴旋转而成的旋转体的体积.2010年10月自考高等数学(工专)参考答案45678。
10月全国自考高等数学(工专)试题及答案解析
1全国2018年10月高等教育自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题1分,共20分)1.函数y=arcsin 22x -的定义域是( ) A.[-2,2]B.[0,4]C.[-2,0]D.[0,2] 2.下列函数中是奇函数的为( ) A.y=|sinx| B.y=2x+cosx C.y=xD.y=sin x3.下列函数中不是初等函数的为( ) A.y=x 2+sin2x B.y=x x C.y=ln(x+1x 2+)D.f(x)=⎩⎨⎧>≤0x ,10x ,04.=→x xsin lim0x ( )A.0B.1C.2D.∞5.=-∞→n 2n )n 11(lim ( ) A.e -2 B.e -1 C.e D.e 2 6.抛物线y=x 2上(1,1)点处的切线方程为( ) A.y-1=2(x-1) B.y-1=2x(x-1) C.y-1=-2(x-1) D.y-1=x 2(x-1)7.设f(x)=cos2x,则=π')4(f ( )A.2B.0C.-1D.-28.设=⎪⎩⎪⎨⎧==-dxdyey e x tt 则( ) A.e 2tB.-e 2t2C.e -2tD.-e -2t9.如果函数f(x)在[a,b]上满足罗尔定理的条件,则至少存在一点c,使得0)c (f =',其中c 满足( )A.a ≤c ≤bB.a<c<bC.2ba c +=D.2ab c -=10.函数32x y =的单调增加的区间是( ) A.()+∞∞-, B.(]0,∞- C.[)+∞,0D.[)+∞-,111.函数y=lnx 的图形( ) A.仅有垂直渐近线 B.仅有水平渐近线 C.既有垂直渐近线又有水平渐近线D.无渐近线12.函数y=e x 的图形在()+∞∞-,( ) A.下凹 B.上凹C.有拐点D.有垂直渐近线13.⎰=-2x41dx ( )A.arcsin2x+CB.arcsin2xC.x 2arcsin 21D.C x 2arcsin 21+ 14.⎰=+dx 1xx 62( )A.arctgx 3+CB.arctgx 3C.C arctgx 313+D.3arctgx 3115.设Φ(x)=Φ'=⎰)1(,dt e t x 02则( ) A.0 B.e C.2eD.4e16.⎰π=π+20dx )2x sin(( ) A.-2 B.-1 C.1D.217.设z=yx 2+e xy ,则=∂∂)2,1(y z( )A.1+e 2B.2+e 23C.4+2e 2D.1+2e 2 18.设f(x,y)=x 3+2y 3,则对任何x,y 均有f(-x,-y)=( ) A.f(x,y) B.-f(x,y) C.f(y,x) D.-f(y,x) 19.微分方程的通解为x1dx dy =( ) A.C x 12+-B.C x 12+ C.ln|x|D.ln|x|+C20.若级数∑∞=+1n 2p n1发散,则( )A.p ≤-1B.p>-1C.p ≤0D.p>0(二)(每小题2分,共20分) 21.设f(x)1x 12-=,则f(1-0)==-→)x (f lim 1x ( )A.∞B.0C.1D.222.设⎪⎩⎪⎨⎧≥+<=0x ,1x 0x ,x xsin )x (f 2则f(x)( )A.在x=0间断B.是有界函数C.是初等函数D.是连续函数23.设e x +xy=1,则=dxdy( ) A.-e xB.x e y x +C.xe y x +-D.xe x -24.n 为正整数,则=+∞→nx x xln lim( ) A.∞ B.不存在 C.1 D.0 25.函数y=x 3+3x 2-1的单调减少的区间是( )A.(]2,-∞-B.[-2,0]C.[)+∞-,2D.[)+∞,026.过点(2,-8,3)且垂直于平面x+2y-3z-2=0的直线方程为( )4A.33z 28y 12x -+=-=+ B.(x-2)+2(y+8)-3(z-3)=0 C.(x+2)+2(y-8)-3(z+3)=0 D.33z 28y 12x --=+=- 27.设积分域(σ)可表示成:a ≤x ≤b,)x (1ϕ≤y ≤)x (2ϕ,则二重积分⎰⎰σσ)(d )y ,x (f 化成先对y 积分后再对x 积分的累次积分为( ) A.⎰⎰ϕϕba)x ()x (21dx )y ,x (f dyB.⎰⎰ϕϕba)x ()x (y d )y ,x (f dx21C.⎰⎰ϕϕ)x ()x (ba21dx )y ,x (f dyD.⎰⎰ϕϕ)x ()x (ba21dy )y ,x (f dx28.设y 1与y 2是二阶线性非齐次方程)0)x (f )(x (f y )x (Q y )x (P y ≠=+'+''的任意两个线性无关的特解,则对应的齐次方程0y )x (Q y )x (P y =+'+''的解为( ) A.y 1+y 2B.)y y (2121+ C.C 1y 1+C 2y 2D.y 1-y 229.用待定系数法求方程1x y 2y 2-='+''的特解时,应设特解( ) A.)c bx ax (x y 2++=B.c bx ax y 2++=C.x 22e )c bx ax (x y -++=D.)c ax (x y 2+=30.级数∑∞=1n 2n1sin ( )A.发散B.的敛散性不能确定C.收敛D.的部分和无极限 二、计算题(本大题共7小题,每小题6分,共42分)31.求.x xtgx lim 30x -→ 32.求⎰-+.dx x1x arccos 1233.设).0(f 0x ,00x ,x1sin x )x (f 2'⎪⎩⎪⎨⎧=≠=求34.计算⎰+10x.dx e 11535.计算二重积分⎰⎰σσ++π)(2222d y x )y x sin(,其中(σ)是:1≤x 2+y 2≤4.36.把函数f(x)=ln(1+x)展开成麦克劳林级数. 37.设.dxyd ,x a y 2222求-=三、应用和证明题(本大题共3小题,每小题6分,共18分)38.求一曲线的方程,它通过原点,且曲线上任意点(x,y)处的切线斜率等于2x+y.39.求曲线x1y =与直线x=1,x=2及y=0所围成的平面图形绕x 轴旋转而成的旋转体的体积. 40.设.xy zy x z ),1x ,0x (x z 22y∂∂∂=∂∂∂≠>=验证。
教辅书籍图书编码
教辅书籍图书编码00009 政治经济学(财)
00020 高等数学(一)
00022 高等数学(工专)
00023 高等数学(工本)
00043 经济法概论(财)
00048 财政与金融
00051 管理系统中计算机应用
00055 企业会计学
00065 国民经济统计概论
00066 货币银行学
00067 财务管理学
00071 社会保障概论
00075 证券投资与管理
00076 国际金融
00077 金融市场学
00088 基础英语
00090 国际贸易实务(一)
00092 中国对外贸易
00094 外贸函电(实践)
00098 国际市场营销学
00100 国际运输与保险
00101 外经贸经营与管理00102 世界市场行情00137 农业经济学(一) 00138 中国近现代经济史00142 计量经济学
00143 经济思想史
00147 人力资源管理(一) 00149 国际贸易理论与实务00156 成本会计
00159 高级财务会计00161 财务报表分析(一) 00162 会计制度设计。
广东专科高等数学目录
XX专科高等数学目录第1章函数、极限与连续 1
1.1 函数的概念与简单性质 1
1.1.1 集合、常量与变量 1
1.1.2 函数的概念 3
1.1.3 函数的简单性质 5
1.1.4 反函数和复合函数 7
1.1.5 初等函数 8
习题1-1 13
1.2 数列的极限 15
1.2.1 数列极限的定义 15
1.2.2 收敛数列极限的性质 19
1.2.3 数列极限的存在准则 19
1.2.4 数列极限的四则运算法则 21
习题1-2 22
1.3 函数的极限 23
1.3.1 x→时函数的极限 23
1.3.2 x→x0时函数的极限 24
1.3.3 函数极限的运算法则 26
1.3.4 两个重要极限 28
习题1-3 31
1.4 无穷小量和无穷大量 33
1.4.1 无穷小量 33
1.4.2 无穷大量 37
习题1-4 37
1.5 函数的连续性 38
1.5.1 函数的连续性 38
1.5.2 函数的间断点 39
1.5.3 初等函数的连续性及连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章函数
§1.1实数
一、实数与数轴
二、区间与邻域
三、绝对值
习题1.1
§1.2函数的定义及其表示法
一、常量与变量
二、函数的定义
三、常用的函数表示法
习题1.2
§1.3函数的几种特性
一、有界性
二、单调性
三、奇偶性
四、周期性
习题1.3
§1.4反函数和复合函数
一、反函数
二、复合函数
习题1.4
§1.5初等函数
一、基本初等函数
二、初等函数
三、非初等函敷的例子
四、初等函数定义域的求法
五、建立函数关系举例
习题1.5
§1.6本章内容小结与学习指导
一、本章知识结构图
二、内容小结—
三、常见题型—
四、典型例题解析
第二章极限与连续
§2.1数列及其极限
一、数列的概念
二、数列的极限
三、收敛数列的性质
四、数列极限的运算法则及存在准则
习题2.1
§2.2数项级数的基本概念
一、数项级数的定义及敛散性
二、级数的摹本性质和级数收敛的必要条件
三、正项级数的敛散性判别
习题2.2
§2.3函数的极限
一、自变量趋于无穷大时函数f(x)的极限
二、自变量趋于有限值x时函数f(z)的极限
三、函数极限的性质
四,函数极限的运算法则及存在准则
五,两个重要极限
习题2.3
§2.4无穷小量与无穷大量
一、无穷小量的概念
二,无穷小量的性质
三、无穷小量的比较
四、无穷大量
习题2.4
§2.5函数的连续性
一、函数连续性的概念
二、函数的间断点及其分类
三、函数连续性的物理意义
四、连续函数的运算与初等函数的连续性
五,闭区间上连续函数的性质
习题2.5
§2.6本章内容小结与学习指导
一、本章知识结构图
二、内容小结
三,常见题型
四、典型例题解析
第三章导数与微分
§3.1导数的概念
一、引例
二、导数的定义
三、导数的几何意义和物理意义
四、可导与连续的关系
习题3.1
§3.2导数的运算
一、基本初等函数的求导公式
二、导数的四则运算法则
三、反函数的求导法则
四、复合函数的求导法则
习题3.2
§3.3几类特殊函数的求导方法
一、幂指函数的求导方法
二、隐函数的求导方法
三、参数式函数的求导方法
习题3.3
53.4高阶导数
习题3.4
§3.5微分及其运算
一、引例
二、微分的定义
三、函数的导数与微分的关系
四、微分的几何意义
五、基本微分公式与微分运算法则
六、微分的应用
习题3.5
§3.6本章内容小结与学习指导
一、本章知识结构图
二,内容小结
三,常见题型
四、典型例题解析
第四章微分中值定理与导数的应用
§4.1微分中值定理
一、费马定理
二、罗尔定理
三、拉格朗日中值定理
习题4.1
§4.2洛必达法则
一、和型型洛必达法则
二、其他类型的未定式
习题4.2
§4.3函数的单调性
习题4.3
§4.4函数的极值及其求法
习题4.4
§4.5函数的最大值和最小值及其应用
习题4.5
§4.6曲线的凹凸性和拐点
习题4.6
§4.7函数的渐近线
一、水平渐近线
二、铅直渐近线
习题4.7
§4.8本章内容小结与学习指导
一、本章知识结构图
二、内容小结
三、常见题型
四、典型例题分析
第五章一元函数积分学
§5.1原函数与不定积分的概念
一、原函数与不定积分
二、基本积分公式
三、不定积分的基本性质
习题5.1
§5.2不定积分的换元法
一、第一换元法(凑微分法)
二、第二换元积分法
习题5.2
§5.3分部积分法
习题5.3
§5.4微分方程初步
一、微分方程的摹本概念
二、可分离变量的微分方程
三、一阶线性微分方程
习题5.4
5.5定积分的概念及其几何意义
一、引例
二、定积分的概念
三、定积分的存在定理
习题5.5
§5.6定积分的基本性质
习题5.6
§5.7微积分基本公式
一、积分上限的函数及其导数
二、微积分学摹本定理
习题5.7
§5.8定积分的换元法与分部积分法
一、定积分的换元法
二、定积分的分部积分法
习题5.8
§5.9无穷限反常积分
习题5.9
§5.10定积分的应用
一、微元法
二、定积分的几何应用
三、定积分的物理应用
习题5.10
§5.11本章内容小结与学习指导
一、本章知识结构图
二、内容小结
三、常见题型
四、典型例题分析
第六章线性代数初步
§6.1二、三元线性方程组和二、三阶行列式
一、二元和三元线性方程组
二、二阶和三阶行列式
习题6.1
§6.2行列式的性质和计算
一、行列式的基本性质
二、行列式的按行(列)展开
习题6.2
§6.3矩阵的概念及矩阵的初等行变换
一、矩阵的概念
二、矩阵的初等行变换
习题6.3
§6.4三元线性方程组的消元法
习题6.4
§6.5矩阵的运算及其运算规则
一、矩阵的加法与数乘运算
二、矩阵的乘法
三、矩阵的转置
四、方阵的行列式性质
习题6.5
§6.6可逆矩阵与逆矩阵
习题6.6
§6.7本章内容小结与学习指导
一、本章知识结构图
二、内容小结
三、常见题型
四、典型例题分析
习题参考答案与提示
高等数学(工专)自学考试大纲
高等数学(工专)参考样卷
后记。