材料力学压杆的稳定性 ppt课件

合集下载

《材料力学压杆稳定》课件

《材料力学压杆稳定》课件

05
压杆稳定性设计原则与实例
压杆稳定性设计原则
压杆稳定性是指压杆在受到外力作用 时,能够保持其原有平衡状态的能力 。
压杆稳定性设计原则是确保压杆在使 用过程中能够承受外力作用,避免发 生失稳和破坏的关键。
设计压杆时,应遵循以下原则:选择 合适的材料、确定合理的截面尺寸、 优化压杆长度和形状、避免过大的偏 心载荷等。
本课程介绍了多种稳定性分析方法,包括欧拉公式法、经验公式法、能量法等。通过这些 方法的学习和应用,我们能够根据不同情况选择合适的分析方法,对杆件进行准确的稳定 性评估。
实际应用与案例分析
本课程结合实际工程案例,对压杆稳定问题进行了深入的探讨和分析。通过这些案例的学 习,我们了解了压杆稳定问题在实际工程中的重要性和应用价值,提高了解决实际问题的 能力。
不同截面形状的压杆,其临界载荷和失稳形态 存在差异。
支撑条件
支撑刚度、支撑方式等对压杆的稳定性有重要 影响。

提高压杆稳定性的措施
选择合适的材料
选择具有高弹性模量和合适泊松 比的材料,以提高压杆的稳定性

优化截面形状与尺寸
通过改变截面形状或增加壁厚等 方法,提高压杆的稳定性。
改善支撑条件
采用具有足够刚度的支撑,并合 理布置支撑位置,以提高压杆的
的比率。
03
压杆稳定性的定义与分类
压杆稳定性的定义
压杆稳定性是指压杆在受到轴向 压力时,保持其平衡状态而不发
生弯曲或屈曲变形的能力。
压杆稳定性问题主要关注的是压 杆在轴向压力作用下,是否能够 保持直线形状而不发生弯曲变形

压杆的稳定性取决于其自身的力 学特性和外部作用力的大小和分
布。
压杆稳定性的分类

《材料力学压杆稳定》PPT课件

《材料力学压杆稳定》PPT课件
当 s 时,就发生强度失效,而不是失稳。
所以应有: 4 压杆分类
cr
P A
s
不同柔度的压杆,需应用不同的临界应力的公
式。可根据柔度将压杆分为三类
(1) 大柔度杆(细长杆) (2) 中柔度杆
p 的压杆 s p 的压杆 29
4 压杆分类
不同柔度的压杆,需应用不同的临界应力的公 式。可根据柔度将压杆分为三类
l
i
柔度 是压杆稳定问题中的一个重要参数,它全
面反映了压杆长度、约束条件、截面尺寸和形
状对临界应力的影响。
22
柔度 (长细比)
l
i
柔度 是压杆稳定问题中的一个重要参数,它全 面反映了压杆长度、约束条件、截面尺寸和形 状对临界应力的影响。
则临界应力为
cr
2E 2
2 欧拉公式的适用范围
欧拉公式
2
§9. 1 压杆稳定的概念
前面各章节讨论了构件的强度和刚度问题。 本章讨论受压杆件的稳定性问题。
稳定性问题的例子
平衡形式突然改变
丧失稳定性
失稳3
平衡形式突然改变
丧失稳定性
失稳
构件的失稳通常突然发生,所以,其危害很大。
1907年加拿大劳伦斯河上,跨度为548米的魁北 克大桥,因压杆失稳,导致整座大桥倒塌。
其中,A为杆中点的挠度。 l
A的数值不确定。
欧拉公式与精确解曲线
精确解曲线
P 1.152Pcr时,
0.3l
理想受压直杆 非理想受压直杆
11
§9. 3 不同杆端约束下细长压杆的临界力的 欧拉公式.压杆的长度因数
1. 一端固支一端自由的压杆
由两端铰支压杆的临界
压力公式
Pcr

压杆的稳定性PPT课件

压杆的稳定性PPT课件
l 2
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。

cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩

材料力学之压杆稳定课件

材料力学之压杆稳定课件
变形量等,绘制 压力与变形关系曲线。
分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核

[PPT]材料力学课件之压杆稳定

[PPT]材料力学课件之压杆稳定

一、工程背景
自动翻斗车中的活塞杆也 有类似的问题。
如图示塔吊,立柱承受压力,当 压力过大时,立柱也有可能从直 线的平衡构形变成弯曲的平衡构 形。除此之外,组成塔吊的桁架 中受压力的杆子也可能从直线的 平衡构形变成弯曲的平衡构形, 也就是稳定性问题。
一、工程背景
如图示紧凑型超高压输电线路相间绝缘 间隔棒,当它受压从直线的平衡构形变成 弯曲的平衡构形时是否一定丧失正常功能 呢?这需要经过实验确定,观察在不同的 力的作用下弯曲到什么程度。

l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B

D

线 形
C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
2
Pcr
2EI
(0.7l)
2
Pcr
2EI
(0.5l ) 2
Pcr (22lE) 2I
长度系数μ =1 0.7 =0.5 =2
即: cr
2E 2
i I ——惯性半径。 A
注:如果压杆在不同平面内失稳,且各平面内支承约束条件不
同,则应分别计算在各平面内失稳时的l,并按其大者来
计算 cr ,因压杆总是在柔度较大的平面内失稳。
3.柔度:
L ——杆的柔度(或长细比)
i
l综合地反映了压杆的长度(l)、支承方式(m)与截面 几何性质(i)对临陆界应力的影响。
EIk 2
4.492 l2
EI
2EI
(0.7l)2

材料力学课件(压杆稳定性)

材料力学课件(压杆稳定性)

2 EI
2 a2
改变力F指向,BD成为压杆,临界压力
F2
2 EI
2a 2
Fcr
比较:Fcr Fcr
1 2 EI
2FAB FBD 2 a 2
例9-4.一端固定一端自由压杆,长为 l,弯曲刚度
为EI,设挠曲线方程
w
2l 3
(3lx 2
x3)
,为自由
端挠度。试用能量法去定临界压力的近似值。
思考: P 3169-4,习题9-11,13,14,18
练习: P 319习题9-10,12,15,17
(3)合理稳定性设计
[ ]st

L
i
成反比
合理截面:约束性质接近时,iminimax ——组合截面 提高 i ——使截面积远离形心
增强约束:缩短相当长度
思考:含有压杆的超静定问题
温度变化引起的稳定性问题
、[]st与 成反比
值:木杆——式(9 11,12)
钢杆——表 92,3
(2)稳定性条件
F A
[ ]st
[ ]
稳定性r 或 与 或 i 为非线性关系,选择截面
尺寸时需用迭代法
例9-5. Q235钢连杆,工字型截面A=552mm2,Iz= 7.40×104mm4,Iy=1. 41×104mm4,有效长度l= 580mm,两端柱形铰约束,xy平面失稳μz=1,xz 平面失稳μy=0.6,属 a 类压杆,轴向压力F=35kN, [σ]=206MPa。试求稳定许用应力,并校核稳定性。
思考:比较一根杆的柔度与柔度的界限值
影响大柔度、中柔度和小柔度杆临 界应力因素的异同
3. 压杆的稳定性条件与合理设计
(1)稳定许用应力
实际压杆与理想压杆的差异:初曲率、压力偏心、 材料缺陷等

材料力学课件 第十章压杆稳定

材料力学课件 第十章压杆稳定

sinkL0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2
EImin L2
14
Pcr
2
EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
三、其它支承情况下,压杆临界力的欧拉公式
29
我国钢结构柱子曲线
二、 受压构件的稳定公式
利用最大强度准则确定出轴心受压构件的临界应力 cr ,引入抗力分项系数 R ,则轴心受压构件的稳定计算公式如下:
N cr cr f y f A R R fy
f :钢材的强度设计值
(10.24)
30
例6
如图所示,两端简支,长度l 5m 的压杆由两根槽钢组成,若限定两个槽钢腹板
Iy [73.3 (51.8)2 21.95]2 2176.5cm4
33
若失稳将仍会在 xoy平面内,有
imin iz
Iz A
1732.4 6.28cm 43.9
max
l imin
500 79.6 6.28
查表得2 0.733
此时3 与3 已经很接近,按两个 16a 槽钢计算压杆的许可压力,有
20
[例3] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
=1.0,
I
y
b3h 12
,
②绕 z 轴,左端固定,右端铰支:
b
Pcry
2EI L22
y
=0.7,

材料力学压杆稳定PPT

材料力学压杆稳定PPT
面(xz平面)内两端为弹性固定,长度因数μy=0.8。试求此
压杆的临界应力;又问b与h的比值等于多少才是合理的。
b
解: 1)求临界应力
y
h
z
y
x
在xy平面内: z
iz
Iz
bh3 /12
A
bh
h 60 1.73m 2 m 12 12
z
zl
iz
1200011.55 17.32
在xz平面内:
iy
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯
一的平衡状态;
稳定: 理想中心压杆能够保持稳定的(唯一的) (Stable) 直线平衡状态;
失稳: 理想中心压杆丧失稳定的(唯一的)直 (Unstable) 线平衡状态;
临界力
(Critical force)
=69 kN
[FN BC]120kN FNBC4.5q≤Fcr =69
得:q=15.3 kN/m
§9-3 不同杆端约束下细长压杆临界力的 欧拉公式 · 压杆的长度因数
π2EI
Fcr ( l )2
μ称为长度因数。
约束越强,μ系数越小, 临界力Fcr越高,稳定性越好;
约束越弱, μ系数越大, 临界力Fcr越低, 稳定性越差。
2) 柔度越大, 压杆越细柔,临界应力Fcr越低, 稳定
性越差。
cr
π2E
2
p
p
π2E π E
p
p
λp仅与材料有关。
对于Q235钢λp=100。 可以使用欧拉公式计算压杆的临界力的条件是:
p
越是细柔的压杆, 柔度λ越大, 越可以使用欧拉

材料力学之压杆稳定(ppt 39页)

材料力学之压杆稳定(ppt 39页)
原因:忽略了对桥梁重量的精确计算导致悬臂桁架中个别 受压杆失去稳定产生屈曲,造成全桥坍塌;
NEXT
压杆稳 定
该桥计算时疏忽了对风荷载的验算,桥建成试通车后, 发现桥面已发生扭曲,于是委托麻省理工大学进行检测,麻 省理工大学制作了一个原桥的模型,进行风荷载试验,发现 桥面扭曲的直接原因是风荷载,于是麻省理工大学用6天时 间另搞了一个完善设计,在桥主梁侧面打开一些空洞,以减 少风荷载的影响,可惜这一方案尚未实施完毕,桥面已出现 剧烈扭曲,通过桥梁的最后一辆车是一辆轿车,受桥面扭曲 影响。在桥面上已无法行驶,在相关营救人员的援助下,车 主逃脱险境,之后不久桥就全部损坏。
NEXT
(2)沪东中华造船集团有限公司
十几秒中36人丧生
• 01年7月17日上午8点,在上海市 沪东中华造船(集团)有限公司由 上海电力建筑工程公司承担的 600吨门式起重机在吊装过程中 发生特大事故。
• 36人死亡、3人受伤,同济大学9 人不幸全部遇难
• 早晨,机械学院的几位打算去沪 东造船厂指挥安装龙门起重机的 老师回机械南馆取资料,守门的 师傅替他们开了门。谁曾想,一 个多小时后,他们都在沪东造船 厂的事故中遇难。一行9人中, 有53岁的老教授,也有才30岁风 华正茂的博士后。
(a) 稳定平衡 (b) 不稳定平衡
(c) 随遇平衡
RETURN
压杆稳
定 9.1.3 压杆失稳与临界压力 :
1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 2.压杆的稳定平衡与不稳定平衡:
P Pcr









P Pcr
见稳定平衡.AVI
见不稳定平衡.AVI
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
压杆的稳定性
压杆的稳定性
压杆的稳定性
压杆的稳定性
1907年加拿大圣劳伦斯河上的魁北克桥
(倒塌前正在进行悬臂法架设中跨施工)
2020/10/28
9
压杆的稳定性
倒塌后成为一片废墟
2020/10/28
10
2020/10/28
压杆的稳定性
1925年苏联莫兹尔 桥在试车时因桥梁 桁架压杆失稳导致破 坏时的情景。
压杆的稳定性
稳定平衡
压杆平衡的稳定性
F<FF<cr Fcr
F>Fcr F>Fcr
F=FF=crFcr
稳定平衡状态
2020/10/28
不稳定平衡状态
随遇平衡状态 (临界状态)
15
四 临界压力Pcr的概念
压杆的稳定性
• 临界状态是压杆从稳定平衡向不稳定平衡转化的 极限状态。
• 压杆处于临界状态时的轴向压力称为临界压力或 临界载荷,一般用Pcr表示。 它和多方面因素有关,是判断压杆是否失稳的一 个指标。
23
其他支座条件下细长压杆的临界压力
F cr
B
l
4
D
l
2
C
l
A
4
两端固定
Fcr
2EI
(0.5l)2
2020/10/28
F cr
B
0 .7 l l
C
A
一端固定 一端铰支
Fcr
2EI
(0.7l ) 2
24
其他支座条件下细长压杆的临界压力
y
F
O
x
l
两端铰支
F
x
2EI
Fcr (l)2
欧拉公式的普遍形式:
11
压杆的稳定性
这是1966年我国广东鹤地水库弧门由于大风导致 支臂柱失稳的实例。
2020/10/28
12
1983年10月4日,高 54.2m、长17.25m、总重 565.4KN大型脚手架局部 失稳坍塌,5人死亡、7人
受伤 。
2020/10/28
压杆的稳定性
13
三 平衡的稳定性 Байду номын сангаас遇平衡 不稳定平衡
选择一个半波: n=1,
P 2EI
cr
l2
欧拉公式
2020/10/28
19
关于欧拉公式的讨论:
1、适用条件:
•理想压杆(轴线为直线,压力与轴线 重合,材料均匀)
•线弹性,小变形 •两端为铰支座
1)
Pcr
1 l2
2) Pcr E
3) Pcr I
压杆的稳定性
P 2EI
cr
l2
E—压杆材料的弹性模量 I—压杆失稳方向的惯性矩 l—压杆长度
2、欧拉公式适用范围

cr
2E 2
p
即 2E p
令 1
2E p
1
欧拉公式只适用于大柔度压杆
2020/10/28
31
欧拉公式的使用范围 临界应力总图
3、中小柔度杆临界应力计算
当 s crp 即 21(中柔度杆)
经验公式
(直线公式)
ab cr
a、b — 材料常数
cr s
a s
b
Fcr
π 2 EI
(l)2
长度系数(无量纲)
l 相当长度(相当于两端铰支杆)
2020/10/28
25
其他支座条件下细长压杆的临界压力
2020/10/28
26
构件约束形式的简化
1)柱形铰约束 xy平面简化两端铰支 μ=1 xz平面简化两端固定 μ=0.5
2)焊接或铆接 μ=1
2020/10/28
2020/10/2(8a)
(b)
2
精品资料
压杆的稳定性
稳定性:构件在外力作用下保持其原有平衡状态的 能力,是杆件承载能力的一个方面。
本章主要针对细长压杆稳定性
失稳(屈曲):杆件因不能保持原有的直线平衡 状态,丧失了继续承载的能力。
2020/10/28
4
二、工程示例
压杆的稳定性
2020/10/28
压杆的稳定性
分析: 1)I 如何确定 ?
压杆总是在抗弯能力最小的纵向平面内弯曲
I I min
y
FP
h b
x FP z
上图矩形截面的压杆应在哪个平面内失稳弯曲?
2020/10/28
(绕哪个轴转动)
21
对于矩形截面:
压杆的稳定性
y
y
h b
x
h
z
z
Iz
1 12
bh 3 ,
I
y
1 12
hb3
b
hb
边界条件:
y
y 0, y 0 Pcr
y
Pcr
x0
xl
(i) B0 (ii) 0Asinkl
x
l
A 0 , s i n k l 0
解的形式为: k lπ n, (n1 ,2 ,3 ,......)
k2
(nπ)2
P cr
l EI
π2n2EI
P
cr
l2
n称为半波数
压杆的稳定性
• 临界力是使压杆在微小弯曲状态下平衡的最小轴 向压力
Iz Iy
所以该矩形截面压杆应在xz平面内
失稳弯曲;即,绕
2020/10/28
y
轴转动。
22
11.3 其他支座条件下细长压杆的临界压力
对于其他支座条件下细长压杆,求临界压力有两种方法:
1、从挠曲线微分方程入手
2、比较变形曲线
B
l
A
l
C
2020/10/28
一端固定一端自由
Fcr
2 EI
(2l ) 2
x
F
x
F
l1
y
l2
z
27
3)螺母和丝杆连接
l 0 1 . 5 简化为固定铰
d0
l0 3 d0
简化为固定端
d0 l0
1.5 l0 3 简化为非完全铰,可选取 μ=0.7
d0
4)千斤顶
FP
FP
μ=2
2020/10/28
28
5) 工作台 μ=1
6) 弹性支承 弹簧刚度: C=0 μ=2 C=0~∞ μ=2~0.7 C=∞ μ=0.7
2020/10/28
1
11.1 压杆稳定的概念
一、概述
(a): 木杆的横截面为矩形(12cm), 高为 3cm,当荷载重量为6kN时杆还不致 破坏。
(b): 木杆的横截面与(a)相同,高为1.4m (细长压杆),当压力为0.1KN时杆 被压弯,导致破坏。
(a)和(b)竟相差60倍,为什么?
拉压杆的强度条件为: = —F—N [ ] A
2020/10/28
16
压杆的稳定性
11.2 两端铰支细长压杆的临界力 欧拉方法
y
推导:
Pcr
y
PPcr
x l
临界载荷作用下的弯矩方程:
M (x)Py cr
当 p

k2
P cr
EI
d2yM(x)Pcry dx2 EI EI
d2y k2y 0 dx2
压杆的稳定性
通解: yAsikn xBco ksx

2
a
s
b
2 (小柔度杆) cr s
2020/10/28
32
欧拉公式的使用范围 临界应力总图
•压杆柔度 l μ四种取值情况, i I
i
A
•临界柔度
1
2E P
P — 比例极限
2020/10/28
FP
FP FP μ=2 FP μ=2~0.7
FP μ=0.7
29
11.4 欧拉公式的使用范围 临界应力总图
1、临界应力
cr
2E 2
2020/10/28
30
欧拉公式的使用范围 临界应力总图
{ l 杆长
约束条件
i 截面形状尺寸
集中反映了杆长、约束条件、
截面形状尺寸对 cr 的影响。
相关文档
最新文档