动态平衡中的三力问题宁波市鄞州中学
高中物理力学提升专题06三力动态平衡问题的处理技巧2
![高中物理力学提升专题06三力动态平衡问题的处理技巧2](https://img.taocdn.com/s3/m/97fd5e8cbb4cf7ec4bfed012.png)
专题06 三力动态平衡问题的处理技巧【专题概述】在分析力的合成与分解问题的动态变化时,用公式法讨论有时很繁琐,而用作图法解决就比较直观、简单,但学生往往没有领会作图法的实质和技巧,或平时对作图法不够重视,导致解题时存在诸多问题.用图解法和相似三角形来探究力的合成与分解问题的动态变化有时可起到事半功倍的效果动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一时刻均可视为平衡状态,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:化“动”为“静”,“静”中求“动”,【典例精讲】1. 图解法解三力平衡图解法分析物体动态平衡问题时,一般物体只受三个力作用,且其中一个力大小、方向均不变,另一个力的方向不变,第三个力大小、方向均变化典例1如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( )A.逐渐增大 B.逐渐减小C.先增大后减小 D.先减小后增大【答案】D典例2、如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向75°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是( )A.90° B.45° C.15° D.0°【答案】C2 . 相似三角形解动态一般物体只受三个力作用,且其中一个力大小、方向均不变,另外两个力的方向都在发生变化,此时就适合选择相似三角形来解题了,物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向典例3 半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力F N和绳对小球的拉力F T的大小变化的情况是( )A. F N不变,F T变小B. F N不变, F T先变大后变小C. F N变小,F T先变小后变大D. F N变大,F T变小【答案】A【解析】以小球为研究对象,分析小球受力情况:重力G,细线的拉力F T和半球面的支持力F N,作出F N、F T的合力F,典例4 如图所示,不计重力的轻杆OP能以O为轴在竖直平面内自由转动,P端挂一重物,另用一根轻绳通过滑轮系住P端,当OP和竖直方向的夹角α缓慢增大时(0<α<π),OP杆所受作用力的大小( )A.恒定不变B.逐渐增大C.逐渐减小D.先增大后减小【答案】A【解析】在OP杆和竖直方向夹角α缓慢增大时(0<α<π),结点P在一系列不同位置处于静态平衡,以结点P为研究对象,如图甲所示,3. 辅助圆图解法典例5 如图所示的装置,用两根细绳拉住一个小球,两细绳间的夹角为θ,细绳AC呈水平状态.现将整个装置在纸面内顺时针缓慢转动,共转过90°.在转动的过程中,CA绳中的拉力F1和CB绳中的拉力F2的大小发生变化,即 ( )A.F1先变小后变大 B.F1先变大后变小C.F2逐渐减小 D.F2最后减小到零【答案】BCD【解析】从上述图中可以正确【答案】是:BCD【提升总结】用力的矢量三角形分析力的最小值问题的规律(1)若已知F合的方向、大小及一个分力F1的方向,则另一分力F2的最小值的条件为F1⊥F2;(2)若已知F合的方向及一个分力F1的大小、方向,则另一分力F2的最小值的条件为F2⊥F合。
三力平衡问题的解决方法
![三力平衡问题的解决方法](https://img.taocdn.com/s3/m/081cdd16fad6195f312ba6f0.png)
我们努力做温州最好的教育(精品讲义)新高一物理衔接课程第12讲三力平衡问题的解决方法一、三力平衡条件1. 任意两个力的合力跟第三个力_________(合成法);2. 将某一个力分解到另外两个力的反方向上,得到的两个分力必定跟另外两个力_________ (分解法);3. 若三个力共面不平行,则三个力必_______ (“三力汇交”原理);二、平衡情景静态平衡、动态平衡、准静态平衡三、三力平衡问题的解决方法1. 平行四边形定则2. 正交分解3. 三角形定则:将两分力F1、F2首尾相连(有箭头的叫尾、无箭头的叫首),则合力F就是由F1的首端指向F2的尾端的有向线段所表示的力。
4. 封闭矢量三角形=三个力合力为零,则其必组成一个封闭的矢量三角形.(首尾相连)5. 勾股定理、余弦定理、正弦定理、拉密定理⑴勾股定理:F=⑵余弦定理:FαF1sinαF1sin2F1F2cos(180-F2+F122F2+F122)α-=⑶正弦定理:βF2sinβF2sin=γF3sinγF3sin==⑷拉密定理:6. 矢量三角形和几何结构三角形相似思考与练习:1.如图,一个物体受到三个共点力F1、F2、F3的作用,这三个力的大小和方向刚好构成三角形,则这个物体所受的合力是( 答案:D ) A.2F1 B.F2 C.F3 D.2F3解析:由力的三角形法则可知:力F1和F2的合力为F3,与另一个力F3大小相等,方向相同,所以力F1、F2、F3的合力为2F3,故选项D正确.此题如果将力F3改为反向,则F1、F2、F3的合力为零,表示三力的有向线段顺次首尾相接.2.如图,A、B为竖直墙面上等高的两点,AO、BO为长度相等的两根轻绳,CO为一根轻杆(即:杆在O端所受的力沿杆OC方向).转轴C在AB中点D的正下方,AOB在同一水平面内,∠AOB=90°,∠COD=60°.若在O点处悬挂一个质量为m的物体,则平衡后绳AO所受的拉力为( 答案:D )A.mgB.1mg C.mg 36mg 6解析:如图甲,对O点,绳AO、BO对O点的拉力的合力为T2,则T2=36;如图乙,则绳AO所受的拉力为. 36=2tg β.α.试证明:tg ααα、βα3.如图,重为G的一根均匀硬棒AB,杆的A端被细绳吊起,在杆的另一端B作用一水平力F把杆拉向右边,整个系统平衡后,细线、棒与竖直方向的夹角分别为=β证明硬棒受到三个力作用平衡,则三个力的作用线必交于一点,如图1- 72所示。
动态平衡受力分析专题
![动态平衡受力分析专题](https://img.taocdn.com/s3/m/b0be59d165ce050877321328.png)
专题动态平衡中的三力问题图解法分析动态平衡在相关物体平衡的问题中.冇一类涉及动态平衡c 这类问題中的一部分力足变力.是动态力.力的大小和方向 均耍发生变化.故这是力平衡问惣中的一类难趣c 縣决这类问题的一般思路足:把“动”化为“焙”,“焙”中 求“动”。
根据现行髙考耍求.物体受到往往足三个共点力问趣,利用三力平衡特点讨论动态平衡问题足力学 中一个重点和逼点.很多问学因不能学握其规律往往无从下手.很多多考书的讨论常忽略几中倩况.作者楚理 后介绍如下。
伶点:三用形图赛法则适用于物体所受的三个力中.冇一力的大小、方向均不变(通常为重力. 也可能是 其它力).另一个力的方向不变.大小变化. 笫三个力则大小、方向均发生变化的问题。
方独:先准确分折物体所受的三个力. 将三个力的矢好甘足相连构成闭合三用形。
然后将方向不变的力的 矢录延长. 根据物体所受三个力中二个力变化而又维対平衡关系时. 这个闭合三用形总足存升. 只不过形状发 生改变而已. 比校这些不间形状的矢母三用形.各力的大小及变化就一目了然了。
P 例1・1如ES 1所示.一个童力G 的匀质球放在光 滑斜面上.斜面倾用为.在斜面上升一光滑的不 计厚反的木板挡住球. 使之处于舲止状态° 今使 板与斜面的夹用媛慢增大.问:在此过程中.扌当 板和斜面对球的压力大小如何变化?鮮析:取球为研究对寥,如图1-2所示,球受还力 态.故三个力的合力始终为零,将三个力矢好构成封闭的三用形。
用的方向不变.但方向不变.始终与斜面垂Ac E 的大小、方向均改变. 瓯若挡板逆时针耳专动时.E 的方向也逆时针转动. 动态矢好三用形图1-3中一画 出的一系列虚线表示变化的庄Q 由此可知.E 先减小后增大.巧随增大而始终减小° 同ft典SSL :例1・2所示.小球械轻质细绳系若.斜吊若放在光滑斜面上.小球质好 为 m 9 斜面倾用为 夕.向右缓慢推动斜面,宜到细线与斜面平行. 在这个过程.中. 绳上张力、斜面对小球的支対力的变化倩况?(答案:绳上张力减小.斜面对小球 的支持力增大)轸点:相似三用形法适用于物体所受的三个力中. 一个力大小、方向不变. 其 它二个力的方向均发生变化,且三个力中没冇二力保持垂克关系.但能够找到力构成的矢好三用形相似的几何 三用形的问题 M3K :先准确分析物体的受力,画出受力分析EQ. 将三个力的矢漳首尾相连构成闭合三用开勺 卉寻找与 力的三用形相似的几何三用形.利用相似三用形的性质. 建立比例关系. 把力的大小变化问憑转化为几何三用 瑶析:取B0杆的B 端为研究对致.受到绳子拉力(大小为 R 、B0杆的支対力 尺料悬挂重物的绳子的拉力(大小 为G )的作用.将尺与G 合成.其合力与尸芳值反向.如图2-2所示.将三个力矢好构成封 闭的三用形(如图中画斜线部分),力的三用形与几何三用形OBA 相似.利用相似三用形对 应边成比例可得:(如图2-2所示.设A0高为圧B0长为厶 绳长厶)° _ /,_ F .式 H L I中 G H. Z 均不变,[遥渐变小,所以可知尺不变.尸逐渐变小。
三力动态平衡问题
![三力动态平衡问题](https://img.taocdn.com/s3/m/842a86158bd63186bdebbcc5.png)
三力动态平衡问题1.除重力外,若有一个力的方向不变,可考虑用“动态三角形法则”例1(2013年天津卷)如图1所示,小球用细绳系住,绳的另一端固定于O 点。
现用水平力F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N 以及绳对小球的拉力F T 的变化情况是D A .F N 保持不变,F T 不断增大 B .F N 不断增大,F T 不断减小 C .F N 保持不变,F T 先增大后减小 D .F N 不断增大,F T 先减小后增大2.除重力外,若另外两个力的方向都在变,可考虑用“相似三角形法则”例2.(2015江西模考)如图所示,质量均可忽略的轻绳与轻杆承受弹力的最大值一定,杆的A 端用铰链固定,光滑轻小滑轮在A 点正上方,B 端吊一重物G ,现将绳的一端拴在杆的B 端,用拉力F 将B 端缓缦上拉,在AB 杆达到竖直前(均未断),关于绳子的拉力F 和杆受的弹力F N 的变化,判断正确的是B A .F 变大 B .F 变小 C .F N 变大 D .F N 变小3.除重力外,若有一个力的大小不变,可考虑用“辅助圆R ”例3(云南模考)如图8所示,一个木块套在粗糙的水平杆上,小球通过轻绳与木块连接,绳子B 端用拉力F 拉住,初始时刻,整个系统处于静止状态, OB 段绳子水平,OA 段绳子与竖直方向的夹角小于450,现在保持拉力F 的大小不变,缓慢的将OB 绳子逆时针转到竖直方向,该过程中木块始终保持静止。
下列说法中正确的是AD A .木块所受的摩擦力逐渐减小 B .木块所受的摩擦力先增大后减小 C . OA 段绳与竖直方向的夹角逐渐减小 D . OA 段绳与竖直方向的夹角先增大后减小4.除重力外,若另外两个力的夹角不变,可考虑用“辅助圆G ”例4(2017年新课标I 卷)如图11所示,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N ,初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(π2α>)。
利用生活中的现象求解三力动态平衡问题
![利用生活中的现象求解三力动态平衡问题](https://img.taocdn.com/s3/m/4d7da58384868762caaed515.png)
利用生活中的现象求解三力动态平衡问题【摘要】物体的平衡是静力学的核心部分,是每年高考的必考内容,考题形式主要是以选择题形式为主,主要涉及弹簧的弹力、摩擦力、共点力的合成与分解,物体的平衡条件等,难度较为适中。
【关键词】西游记图解法相似三角形【中图分类号】 g633.7 【文献标识码】 a 【文章编号】 1674-4772(2012)12-064-01共点力作用下物体的平衡平衡状态:物体保持匀速直线运动或静止状态,叫平衡状态。
物体所处的平衡状态有三种:静止、匀速运动、准静止(缓慢移动)状态。
物体的速度为零和物体处于静止状态是一回事吗?物体处于静止状态,不但速度为零,而且加速度(或合外力)为零。
有时,物体速度为零,但加速度不一定为零,如竖直上抛的物体到达最高点时;摆球摆到最高点时,加速度都不为零,都不属于平衡状态。
因此,物体的速度为零与静止状态不是一回事。
常用较难的理解三个共点力的平衡问题方法:图解法:“两个不变”是指三个力中有一个力的大小、方向都不变,有一个力的方向不变,大小要变。
相似三角形法:在没有计算以前就只有这样理解“两个不变”,在缓慢运动过程中有两个边的实际长度不变。
(1)图解法:常用于处理三个共点力的平衡问题,第一个力为恒力,恒力的大小、方向都不变比喻为唐僧,因为唐僧什么都不会变,就相当于大小、方向都不变;第二个力的方向不变、大小在变,这个力比喻为猪八戒,因为猪八戒在变女孩时肚子变不了,就相当于力的方向不变、只有大小变;第三个力大小和方向都要变,比喻成孙悟空什么都可以变,就相当于大小和方向都要变。
这样可以帮助学生理解,而且上课自然就有兴趣了!“动态平衡”是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
例1:如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( d )a.逐渐增大b.逐渐减小c.先增大后减小d.先减小后增大解析:对应比喻g比喻唐僧、n比喻为猪八戒、t比喻为孙悟空现用矢量三角形法解,因为g、n、t三力共点平衡,故三个力可以构成一个矢量三角形,其中g的大小和方向始终不变就是唐僧,n 的方向也不变,大小可变就是猪八戒,t的大小、方向都在变就是孙悟空,在绳向上偏移的过程中,可以作出一系列矢量三角形如图乙所示,显然易见在t变化到与n垂直前,t是逐渐变小的,然后t又逐渐变大,故应选d。
动态平衡问题(含解析)
![动态平衡问题(含解析)](https://img.taocdn.com/s3/m/e2e21d568f9951e79b89680203d8ce2f006665e0.png)
动态平衡问题 类型一 动态平衡问题1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态.2.常用方法 (1)解析法对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. (2)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况.一般按照以下流程分析: 受力分析―――――――→化“动”为“静”画不同状态下的平衡图――――――→“静”中求“动”确定力的变化 (3)相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例求解(构建三角形时可能需要画辅助线).题型例析1 图解法例1 (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小 题型例析2 解析法例2 (2020·广东中山市月考)如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,木板对球的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计一切摩擦,在此过程中( )A.F N1先增大后减小,F N2始终减小B.F N1先增大后减小,F N2先减小后增大C.F N1始终减小,F N2始终减小D.F N1始终减小,F N2始终增大题型例析3相似三角形法例3(2020·山西大同市开学考试)如图所示,AC是上端带光滑轻质定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重力为G的物体,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BCA>90°,现使∠BCA缓慢变小,直到∠BCA=30°.此过程中,轻杆BC所受的力()A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大变式训练1(单个物体的动态平衡问题)(多选)(2020·广东惠州一中质检)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小变式训练2(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图所示,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加类型二平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“恰能”“恰好”等.临界问题常见的种类:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力F N=0.2.极值问题平衡中的极值问题,一般指在力的变化过程中的最大值和最小值问题.3.解题方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,根据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例4(2020·广东茂名市测试)如图所示,质量分别为3m和m的两个可视为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花板上的O点相连,为使小球a和小球b均处于静止状态,且Oa 细线向右偏离竖直方向的夹角恒为37°,需要对小球b朝某一方向施加一拉力F.若已知sin 37°=0.6,cos 37°=0.8.重力加速度为g,则当F的大小达到最小时,Oa细线对小球a的拉力大小为()A.2.4mgB.3mgC.3.2mgD.4mg例5如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.跟踪训练1.(2020·河南驻马店市第一学期期终)质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示.设绳OA段拉力的大小为F T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()A.F先变大后变小,F T逐渐变小B.F先变大后变小,F T逐渐变大C.F先变小后变大,F T逐渐变小D.F先变小后变大,F T逐渐变大2.(多选)如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬挂于O 点,A球固定在O点正下方,当小球B平衡时,细绳所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时细绳所受的拉力为F T2,弹簧的弹力为F2.则下列关于F T1与F T2、F1与F2大小的比较,正确的是()A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F23.(多选)(2016·全国卷Ⅰ·19)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化4.(2020·安徽黄山市高三期末)如图所示,在水平放置的木棒上的M、N两点,系着一根不可伸长的柔软轻绳,绳上套有一光滑小金属环.现将木棒绕其左端逆时针缓慢转动一个小角度,则关于轻绳对M、N两点的拉力F1、F2的变化情况,下列判断正确的是()A.F1和F2都变大B.F1变大,F2变小C.F1和F2都变小D.F1变小,F2变大5.(2020·广东高三模拟)如图所示,竖直墙上连有细绳AB,轻弹簧的一端与B相连,另一端固定在墙上的C 点.细绳BD与弹簧拴接在B点,现给BD一水平向左的拉力F,使弹簧处于伸长状态,且AB、CB与墙的夹角均为45°.若保持B点不动,将BD绳绕B点沿顺时针方向缓慢转动,则在转动过程中BD绳的拉力F的变化情况是()A.变小B.变大C.先变小后变大D.先变大后变小6.(2020·河南信阳市高三上学期期末)如图所示,足够长的光滑平板AP与BP用铰链连接,平板AP与水平面成53°角固定不动,平板BP可绕水平轴在竖直面内自由转动,质量为m的均匀圆柱体O放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g.在使BP板由水平位置缓慢转动到竖直位置的过程中,下列说法正确的是()A.平板AP受到的压力先减小后增大B.平板AP受到的压力先增大后减小C.平板BP受到的最小压力为0.6mg7.(2020·黑龙江哈尔滨市三中高三模拟)如图所示,斜面固定,平行于斜面处于压缩状态的轻弹簧一端连接物块A,另一端固定,最初A静止.在A上施加与斜面成30°角的恒力F,A仍静止,下列说法正确的是()A.A对斜面的压力一定变小B.A对斜面的压力可能不变C.A对斜面的摩擦力一定变大D.A对斜面的摩擦力可能变为零8.(多选)如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜劈的斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的定滑轮1固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而物体a与斜劈始终静止,则()A.细线对物体a的拉力增大B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大9.(多选)(2019·河北唐山一中综合测试)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有()A.轻绳对小球的拉力逐渐增大B.小球对斜劈的压力先减小后增大C.竖直杆对小滑块的弹力先增大后减小D.对小滑块施加的竖直向上的拉力逐渐增大10.(多选)如图所示装置,两根细绳拴住一小球,保持两细绳间的夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力F1、CB绳的拉力F2的大小变化情况是()A.F1先变小后变大B.F1先变大后变小C.F2一直变小D.F2最终变为零11.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施加一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.512.(2020·山西“六校”高三联考)跨过定滑轮的轻绳两端分别系着物体A和物体B,物体A放在倾角为θ的斜面上,与A相连的轻绳和斜面平行,如图所示.已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(最大静摩擦力等于滑动摩擦力).参考答案类型一动态平衡问题题型例析1图解法例1【答案】BC【解析】对小球受力分析知,小球受到重力mg、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B、C正确,A、D错误.故选BC。
2024届高考物理微专题:动态平衡问题
![2024届高考物理微专题:动态平衡问题](https://img.taocdn.com/s3/m/98264e11905f804d2b160b4e767f5acfa0c7834c.png)
微专题13动态平衡问题1.三力动态平衡常用解析法、图解法、相似三角形法、正弦定理法等:(1)若一力恒定还有一个力方向不变,第三个力大小、方向都变时可用图解法;(2)若另两个力大小、方向都变,且有几何三角形与力的三角形相似的可用相似三角形法;(3)若另外两个力大小、方向都变,且知道力的三角形中各角的变化规律的可用正弦定理;(4)若另外两个力大小、方向都变,且这两个力的夹角不变的可用等效圆周角不变法或正弦定理.2.多力动态平衡问题常用解析法.1.光滑斜面上固定着一根刚性圆弧形细杆,小球通过轻绳与细杆相连,此时轻绳处于水平方向,球心恰位于圆弧形细杆的圆心处,如图所示.将悬点A 缓慢沿杆向上移动,直到轻绳处于竖直方向,在这个过程中,轻绳的拉力()A .逐渐增大B .大小不变C .先减小后增大D .先增大后减小答案C 解析方法一图解法:在悬点A 缓慢向上移动的过程中,小球始终处于平衡状态,小球所受重力mg 的大小和方向都不变,支持力的方向不变,对小球进行受力分析如图甲所示,由图可知,拉力F T 先减小后增大,C 正确.方法二解析法:如图乙所示,由正弦定理得F T sin α=mg sin β,得F T =mg sin αsin β,由于mg 和sin α不变,而sin β先增大后减小,可得F T 先减小后增大,C 正确.2.质量为m 的球置于倾角为θ的光滑固定斜面上,被与斜面垂直的光滑挡板挡着,如图所示.当挡板从图示位置沿逆时针缓慢转动至水平位置的过程中,挡板对球的弹力F N1和斜面对球的弹力F N2的变化情况是()A.F N1先增大后减小B.F N1先减小后增大C.F N2逐渐增大D.F N2逐渐减小答案D解析对球受力分析如图,当挡板逆时针缓慢转动到水平位置时,挡板对球的弹力逐渐增大,斜面对球的弹力逐渐减小,故选D.3.(2023·湖南郴州市质检)如图所示,斜面体置于粗糙水平面上,光滑小球被轻质细线系住放在斜面上,细线另一端跨过光滑定滑轮,用力拉细线使小球沿斜面缓慢向上移动一小段距离,斜面体始终静止.则在小球移动过程中()A.细线对小球的拉力变大B.斜面体对小球的支持力变大C.斜面体对地面的压力变大D.地面对斜面体的摩擦力变大答案A解析对小球受力分析并合成矢量三角形.如图所示,重力大小、方向不变,支持力方向不变,细线拉力方向由图甲中实线变为虚线,细线对小球的拉力增大,斜面体对小球的支持力减小,A正确,B错误;甲乙对斜面体受力分析,正交分解:F N′sinα=F f,F N地=F N′cosα+Mg,根据牛顿第三定律,小球对斜面体的压力F N′减小,所以地面对斜面体的摩擦力减小,地面对斜面体的支持力减小,根据牛顿第三定律,斜面体对地面的压力减小,C、D错误.4.(多选)(2023·安徽蚌埠市高三月考)如图,轻杆一端连在光滑的铰链上,另一端固定着质量为m的小球,初始时,在球上施加作用力F使杆处于水平静止,力F和杆的夹角α=120°.现保持α角不变,改变力F的大小缓慢向上旋转轻杆,直至杆与水平方向成60°角,在这个过程中()A.力F逐渐增大B.力F逐渐减小C.杆对小球的弹力先增大后减小D.杆对小球的弹力先减小后增大答案BD解析由于轻杆一端连在光滑的铰链上,故杆对小球的作用力始终沿着杆的方向,设转动过程中杆与竖直方向夹角为θ,由平衡条件可得,垂直杆方向满足F sin60°=mg sinθ,杆转过60°过程,θ从90°减小到30°,可知力F逐渐减小,A错误,B正确;沿杆方向满足F杆=F cosmg·sin(θ-60°),可知当θ=60°时,F杆=0,故θ60°-mg cosθ,联立上述两式可得F杆=233从90°减小到30°的过程,杆对小球的弹力先减小为零后反向增大,C错误,D正确.5.在一些地表矿的开采点,有一些简易的举升机械,利用图示装置,通过轻绳和滑轮提升重物.轻绳a端固定在井壁的M点,另一端系在光滑的轻质滑环N上,滑环N套在光滑竖直杆上.轻绳b的下端系在滑环N上并绕过定滑轮.滑轮和绳的摩擦不计.在右侧地面上拉动轻绳b使重物缓慢上升过程中,下列说法正确的是()A.绳a的拉力变大B.绳b的拉力变大C.杆对滑环的弹力变大D.绳b的拉力始终比绳a的小答案D解析设a绳子总长为L,左端井壁与竖直杆之间的距离为d,动滑轮左侧绳长为L1,右侧绳长为L2.由于绳子a上的拉力处处相等,所以两绳与竖直方向夹角相等,设为θ则由几何知识,得d =L 1sin θ+L 2sin θ=(L 1+L 2)sin θ,L 1+L 2=L 得到sin θ=d L,当滑环N 缓慢向上移动时,d 、L 没有变化,则θ不变.绳子a 的拉力大小为F T1,重物的重力为G .以动滑轮为研究对象,根据平衡条件得2F T1cos θ=G ,解得F T1=G 2cos θ,故当θ不变时,绳子a 拉力F T1不变,A 错误;以滑环N 为研究对象,绳b 的拉力为F T2,则F T2=F T1cos θ保持不变;杆对滑环的弹力F N =F T1sin θ保持不变,B 、C 错误;绳b 的拉力F T2=F T1cos θ,所以绳b 的拉力F T2始终比绳a 的拉力F T1小,D 正确.6.某小区晾晒区的并排等高门形晾衣架A ′ABB ′-C ′CDD ′如图所示,AB 、CD 杆均水平,不可伸长的轻绳的一端M 固定在AB 中点上,另一端N 系在C 点,一衣架(含所挂衣物)的挂钩可在轻绳上无摩擦滑动.将轻绳N 端从C 点沿CD 方向缓慢移动至D 点,整个过程中衣物始终没有着地.则此过程中轻绳上张力大小的变化情况是()A .一直减小B .先减小后增大C .一直增大D .先增大后减小答案B 解析轻绳N 端由C 点沿CD 方向缓慢移动至D 点的过程中,衣架两侧轻绳与水平方向的夹角先增大后减小,设该夹角为θ,轻绳上的张力为F ,由平衡条件有2F sin θ=mg ,故F =mg 2sin θ,可见张力大小先减小后增大,B 项正确.7.如图所示,半径为R 的圆环竖直放置,长度为R 的不可伸长的轻细绳OA 、OB ,一端固定在圆环上,另一端在圆心O 处连接并悬挂一质量为m 的重物,初始时OA 绳处于水平状态,把圆环沿地面向右缓慢转动,直到OA 绳处于竖直状态,在这个过程中()A .OA 绳的拉力逐渐增大B .OA 绳的拉力先增大后减小C .OB 绳的拉力先增大后减小D .OB 绳的拉力先减小后增大答案B 解析以重物为研究对象,重物受到重力mg 、OA 绳的拉力F 1、OB 绳的拉力F 2三个力而平衡,构成矢量三角形,置于几何圆中如图所示.在转动的过程中,OA 绳的拉力F 1先增大,转过直径后开始减小,OB 绳的拉力F 2开始处于直径上,转动后一直减小,B 正确,A 、C 、D 错误.8.(2023·山东青岛市模拟)我国的新疆棉以绒长、品质好、产量高著称于世,目前新疆地区的棉田大部分是通过如图甲所示的自动采棉机采收.自动采棉机在采摘棉花的同时将棉花打包成圆柱形棉包,通过采棉机后侧可以旋转的支架平稳将其放下,这个过程可以简化为如图乙所示模型:质量为m 的棉包放在“V ”型挡板上,两板间夹角为120°固定不变,“V ”型挡板可绕O 轴在竖直面内转动.在使OB 板由水平位置顺时针缓慢转动到竖直位置过程中,忽略“V ”型挡板对棉包的摩擦力,已知重力加速度为g ,下列说法正确的是()A .棉包对OA 板的压力逐渐增大B .棉包对OB 板的压力先增大后减小C .当OB 板转过30°时,棉包对OB 板的作用力大小为mgD .当OB 板转过60°时,棉包对OA 板的作用力大小为mg答案D 解析对棉包受力分析如图,(a)由正弦定理可得mg sin 120°=F OB sin β=F OA sin α,棉包在旋转过程中α从0逐渐变大,β从60°逐渐减小,因此OB 板由水平位置缓慢转动60°过程中,棉包对OA 板压力逐渐增大,对OB 板压力逐渐减小;OB 板继续转动直至竖直的过程中,棉包脱离OB 板并沿OA 板滑下,棉包对OA 板压(b)力随板转动逐渐减小,故A 、B 错误;当OB 板转过30°时,两板与水平方向夹角均为30°,两板支持力大小相等,与竖直方向夹角为30°,如图(b),可得F OA ′=F OB ′=33mg ,故C 错误;当OB 板转过60°时,OA 板处于水平位置,棉包只受到受力和OA 板的支持力,由二力平衡得F OA ″=mg ,故D 正确.9.(2023·上海市模拟)如图所示,细绳一端固定在A 点,另一端跨过与A 等高的光滑定滑轮B 后悬挂一个砂桶Q (含砂子).现有另一个砂桶P (含砂子)通过光滑挂钩挂在A 、B 之间的细绳上,稳定后挂钩下降至C 点,∠ACB =120°,下列说法正确的是()A .若只增加Q 桶中的砂子,再次平衡后P 桶位置不变B .若只增加P 桶中的砂子,再次平衡后P 桶位置不变C .若在两桶内增加相同质量的砂子,再次平衡后P 桶位置不变D .若在两桶内增加相同质量的砂子,再次平衡后Q 桶位置上升答案C 解析对砂桶Q 分析有,Q 受到细绳的拉力大小F T =G Q ,设AC 、BC 之间的夹角为θ,对C点分析可知C 点受三个力而平衡,由题意知,C 点两侧的绳张力相等,故有2F T cosθ2=G P ,联立可得2G Q cos θ2=G P ,故只增加Q 桶中的砂子,即只增加G Q ,夹角θ变大,P 桶上升,只增加P 桶中的砂子,即只增加G P ,夹角θ变小,P 桶下降,故A 、B 错误;由2G Q cosθ2=G P ,可知,当θ=120°时有G Q =G P ,此时若在两砂桶内增加相同质量的砂子,上式依然成立,则P 桶的位置不变,故C 正确,D 错误.10.如图所示,一光滑的轻滑轮用细绳OO ′悬挂于O 点.另一细绳跨过滑轮,左端悬挂物块a ,右端系一位于水平粗糙桌面上的物块b .外力F 向右上方拉b ,整个系统处于静止状态.若保持F 的方向不变,逐渐增大F 的大小,物块b 仍保持静止状态,则下列说法中正确的是()A .桌面受到的压力逐渐增大B.连接物块a、b的绳子张力逐渐减小C.物块b与桌面间的摩擦力一定逐渐增大D.悬挂于O点的细绳OO′中的张力保持不变答案D解析由于整个系统处于静止状态,所以滑轮两侧连接a和b的绳子的夹角不变;物块a只受重力以及绳子的拉力,由于物块a平衡,则连接a和b的绳子张力F T保持不变;由于绳子的张力及夹角均不变,所以OO′中的张力保持不变,B错误,D正确;对b分析可知,b处于静止即平衡状态,设绳子和水平方向的夹角为θ,力F和水平方向的夹角为α,对b受力分析,由平衡条件可得F N+F sinα+F T sinθ=mg,可得F N=mg-F sinα-F T sinθ,θ与α均保持不变,绳子拉力不变,力F增大,则桌面给物块b的支持力减小,根据牛顿第三定律,桌面受到的压力逐渐减小;在水平方向上,当力F的水平分力大于和绳子拉力F T的水平分力时,则有F cosα=F f+F T cosθ,此时摩擦力随着F增大而增大,当力F的水平分力小于和绳子拉力的水平分力时,则有F cosα+F f=F T cosθ,此时摩擦力随着F的增大而减小,A、C错误.11.(多选)(2023·陕西渭南市模拟)质量为m的物体,放在质量为M的斜面(倾角为α)体上,斜面体放在水平粗糙的地面上,物体和斜面体均处于静止状态,如图所示.当在物体上施加一个水平力F,且F由零逐渐加大到F m的过程中,物体和斜面体仍保持静止状态.在此过程中,下列判断正确的是()A.斜面体对物体的支持力逐渐增大B.斜面体对物体的摩擦力逐渐增大C.地面受到的压力逐渐增大D.地面对斜面体的摩擦力由零逐渐增大到F m答案AD解析对物体进行研究,物体受到重力mg、水平推力F、斜面的支持力F N1(如图甲,摩擦力F f1不确定)当F=0时,物体受到的静摩擦力大小为F f1=mg sinα,方向沿斜面向上,支持力F N1=mg cos α.在F不为零时,斜面体对物体的支持力F N1=mg cosα+F sinα,所以支持力逐渐增大;对于静摩擦力,当F cosα≤mg sinα时,静摩擦力大小F f1=mg sinα-F cosα,可见随F的增大而减小,当F cos α>mg sin α时,静摩擦力F f1=F cos α-mg sin α,随F 的增大而增大,故A 正确,B 错误;对于整体,受到总重力(M +m )g 、地面的支持力F N2、静摩擦力F f2和水平推力F ,如图乙,由平衡条件得F N2=(m +M )g ,地面的摩擦力F f2=F ,可见,当F 增大时,F f2逐渐增大.由牛顿第三定律得知,地面受到的压力保持不变,地面对斜面体的摩擦力由零逐渐增大到F m ,故C 错误,D 正确.12.(2023·河南洛阳市模拟)《大国工匠》节目中讲述了王进利用“秋千法”在1000kV 的高压线上带电作业的过程.如图所示,绝缘轻绳OD 一端固定在高压线杆塔上的O 点,另一端固定在兜篮D 上.另一绝缘轻绳跨过固定在杆塔上C 点的定滑轮,一端连接兜篮,另一端由工人控制.身穿屏蔽服的王进坐在兜篮里,缓慢地从C 点运动到处于O 点正下方E 点的电缆处.绳OD 一直处于伸直状态,兜篮、王进及携带的设备总质量为m ,可看作质点,不计一切阻力,重力加速度大小为g .关于王进从C 点缓慢运动到E 点的过程中,下列说法正确的是()A .绳OD 的拉力一直变小B .工人对绳的拉力一直变大C .OD 、CD 两绳拉力的合力小于mgD .当绳CD 与竖直方向的夹角为30°时,工人对绳的拉力为33mg 答案D 解析对兜篮、王进及携带的设备整体受力分析,绳OD 的拉力为F 1,与竖直方向的夹角为θ;绳CD 的拉力为F 2,与竖直方向的夹角为α,则由几何关系得α=45°-θ2.由正弦定理可得F 1sin α=F 2sin θ=mg sin π2+α ,解得F 1=mg tan α,F 2=mg sin θcos α=mg cos 2αcos α=mg (2cos α-1cos α),α增大,θ减小,则F 1增大,F 2减小,A 、B 错误;两绳拉力的合力大小等于mg ,C 错误;当α=30°时,则θ=30°,根据平衡条件有2F 2cos 30°=mg ,可得F 2=33mg ,D 正确.。
三力平衡的概念
![三力平衡的概念](https://img.taocdn.com/s3/m/84fa7305dcccda38376baf1ffc4ffe473268fd6e.png)
三力平衡的概念咱们今儿个来唠唠三力平衡这档子事儿。
你看啊,这世界上很多东西啊,就像被几只手拉扯着,还能稳稳当当的,这就是三力平衡。
啥叫三力平衡呢?就好比你和两个小伙伴一起拔河,三个人都使着劲儿,绳子却一动不动,这就是一种平衡状态。
这三股力量相互制约,谁也不能把谁给拉跑喽。
咱先从生活里找个例子。
就说那晾衣架吧,挂在一根绳子上。
这晾衣架的重力就像是一个往下拽的力量,绳子两边的拉力就像是两个往两边拉的力量。
这三个力就达到了一种平衡,晾衣架就稳稳地挂在那儿,也不掉下来。
你要是把其中一个力给变了,比如说绳子一边突然松了,那这平衡就没了,晾衣架就该晃悠或者掉下来了。
这就像咱们过日子,有时候工作的压力、家庭的压力还有自己内心追求梦想的压力,这三股力量要是能平衡好了,咱这日子过得就顺风顺水。
要是有一个力突然变得特别大,那咱这生活可能就像那失去平衡的晾衣架一样,乱了套。
再说说那公园里的跷跷板。
要是两边的重量正好合适,跷跷板就平平稳稳的,这就是一种简单的三力平衡。
这里面有两边人的重力,还有中间那个支点给的支撑力。
要是一边来个大胖子,另一边是个小瘦子,这平衡就没了。
这和咱们交朋友有点像。
你和两个朋友之间的关系就像这三力平衡。
如果对一个朋友太好,对另一个朋友太冷淡,这关系可能就不平衡了,最后可能就出问题了。
所以啊,咱们得像对待跷跷板一样,尽量让这三股力量达到一种和谐的状态。
从物理学的角度看呢,三力平衡是有它的规则的。
这三个力啊,可以构成一个封闭的三角形。
你可以把力想象成箭头,三个箭头连起来,正好能围成一个圈儿。
这就好像是三个人手拉手,谁也跑不了,紧紧地形成一个稳定的小团体。
这又让我想到团队合作。
在一个团队里,有负责领导指挥的,有负责具体干活的,还有负责协调沟通的。
这三股力量要是配合得好,这个团队就像三力平衡的物体一样,稳稳当当,能够高效地运转。
要是其中一个环节出了问题,比如说负责协调的人不干事儿了,那就像三角形缺了一条边,整个团队可能就乱了。
三力平衡动态分析
![三力平衡动态分析](https://img.taocdn.com/s3/m/afae145cfd4ffe4733687e21af45b307e971f958.png)
三力平衡动态分析三力平衡动态分析是通过对物体在运动过程中三个力的平衡关系进行综合分析,推导物体的运动状态和性质。
三力平衡动态分析是力学中的基础内容,广泛应用于物体的运动、物体的加速度、绳索和滑轮等力学问题的解决和分析。
在三力平衡动态分析中,我们需要考虑三个力的平衡关系,即合力、重力和惯性力之间的关系。
合力是作用在物体上的所有力的矢量和,重力是物体受到地球引力的作用产生的力,惯性力是物体自身受到加速度作用产生的力。
首先,我们来看一下三力平衡动态分析的条件。
当物体处于平衡状态时,合力为零,即F=0这意味着物体处于静止状态或匀速直线运动状态。
其次,我们来介绍一下三力平衡动态分析的步骤。
首先,我们需要确定物体所受的所有力,包括重力、合力和惯性力。
其次,我们需要建立力的平衡方程,即将所有力的矢量和置为零,得到F=0通过解这个方程,我们可以求解出物体的加速度。
最后,我们需要根据加速度的大小和方向,判断物体的运动状态和性质。
三力平衡动态分析可以应用于各种物理问题。
例如,我们可以用它来分析物体在斜坡上滑动的情况。
在这种情况下,物体受到重力和斜坡提供的力的作用,我们可以根据物体在斜坡上的运动状态,确定它的加速度和滑动的速度。
再例如,我们可以用三力平衡动态分析来分析电梯的运动情况。
在电梯上,乘客受到地球引力、电梯提供的力和惯性力的作用。
通过对这些力进行平衡分析,我们可以判断电梯的加速度和乘客在电梯中的体验。
总之,三力平衡动态分析是力学中重要的一部分,它通过对物体受力平衡关系的综合分析,推导出物体的运动状态和性质。
它广泛应用于物体的运动、物体的加速度、绳索和滑轮等力学问题的解决和分析。
在实际应用中,我们需要根据具体情况,确定所受的力和力的平衡方程,进而求解物体的加速度和运动状态。
巧解变动中的三力平衡问题范文
![巧解变动中的三力平衡问题范文](https://img.taocdn.com/s3/m/75beb6cd19e8b8f67c1cb95b.png)
巧解变动中的三力平衡问题在中学阶段,力的平衡问题,多为三力平衡,按平衡条件,合力必为零,将三力首尾相联即围成一封闭三角形。
一般来说,只要所给条件能满足解这个三角形的条件(如已知两边夹一角或两角夹一边)就能按解三角形的方法解出这力三角形中要求的物理量。
常遇到一类变动中的三力平衡问题。
一般是其中一个力大小和方向确定;另一个力的方向确定,大小可变;第三个力大小和方向均变化。
要依据所给条件,确定后两力的变化规律。
为了帮助学生们很好地理解,采用力三角形来解答,现举几例如下:[例题1]一个光滑的圆球搁在光滑的斜面和竖直的档板之间(图1),斜面和档板对圆球的弹力随斜面倾角α变化而变化的范围是:A.斜面弹力N1变化范围是(mg,+∞)B.斜面弹力N1变化范围是(0,+∞)C.档板的弹力N2变化范围是(0, +∞)D.档板的弹力N2变化范围是(mg,+∞)答:[A、C]解:圆球受三个力,其中重力的大小和方向均为确定的,档板对圆球的弹力N2的方向始终是水平的,亦为确定的。
而斜面对圆球的作用力的大小和方向均在变化中,但不论α如何变动,只要α取一个确定的值,圆球就在三力作用下处于平衡状态,则此三力就组成一个封闭的三角形,如图2所示:由于0<α<90°,所以mg<N1<+∞,0<N2<+∞解出。
[例题2]如图3所示,用两根绳子系住一重物,绳OA与天花板夹角θ不变,且θ>45°,当用手拉住绳OB,使绳OB由水平慢慢转向OB′过程中,OB绳所受拉力将A.始终减少 B.始终增大C.先增大后减少 D.先减少后增大答:[D]解:重物受三个力,其中重力大小方向确定,OA方向不变,OB绳受力的大小方向变化。
在变化过程中,重物所受三力平衡,可组成一个封闭三角形,现图示如下:从图中可很直观地得出结论。
由于θ>45°,θ+α=90°所以α<45°,此时T OB取得最小值。
[例题3]如图4所示,一重球用细线悬于O点,一光滑斜面将重球支持于A点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力T 及斜面对重球的支持力N的变化情况是:A.T逐渐增大,N逐渐减小;B.T逐渐减小,N逐渐增大;C.T先变小后变大,N逐渐减小;D.T逐渐增大,N先变大后变小。
专题12三力平衡中的动态平衡问题及最小值问题(解析版)—2023届高三物理一轮复习重难点突破
![专题12三力平衡中的动态平衡问题及最小值问题(解析版)—2023届高三物理一轮复习重难点突破](https://img.taocdn.com/s3/m/317fd7c780c758f5f61fb7360b4c2e3f57272589.png)
专题12三力平衡中的动态平衡问题及最小值问题1、三个力的动态平衡问题:一个力恒定,另外两个力的大小或(和)方向不断变化,但物体仍然平衡,关键词——缓慢转动、缓慢移动……2、三个力的动态平衡问题的解法1)解析法——画好受力分析后,对力进行分解列平衡方程,然后由角度变化分析力的变化规律.2)图解法——画好受力分析图后,将三个力按顺序首尾相接构成力的封闭三角形,由于三角形的边的长短反映力的大小,从动态三角形边的长度变化规律看出力的变化规律.3、图解法分析的一般顺序:封闭的矢量三角形→等腰三角形→相似三角形→圆与矢量三角形相结合或正弦定理→圆与矢量三角形相结合考点一解析法分析三个力的动态平衡问题解析法:对研究对象进行受力分析,列平衡方程,根据角度变化分析力的变化规律.1.(2022·江苏南通·高二期末)如图所示,半球形碗静止于水平地面上,一只可视为质点的蚂蚁在碗内缓慢从b点爬到a点的过程中()A.蚂蚁受到的弹力逐渐变大B.蚂蚁受到的摩擦力逐渐变大C.蚂蚁受到的合力逐渐变大D.地面对碗的摩擦力逐渐变大【答案】B【详解】AB.设蚂蚁所在位置的切线与水平方向夹角为,对蚂蚁分析得支持力和静摩擦力分别为N=mcos,=msin故A错误,B正确;C.蚂蚁缓慢上爬的过程中变大,可知蚂蚁受到的支持力减小,静摩擦力增大。
又因为蚂蚁缓慢移动,视为平衡状态,故所受合力为零保持不变,故C错误;D.系统保持平衡状态,则地面对碗的摩擦力为零保持不变,故D错误。
2.(多选)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小【答案】AD【详解】解析以球B为研究对象,受力分析如图所示,可得出F1=G tanθ,F2=Gcosθ,当A向右移动少许后,θ减小,则F1减小,F2减小,故A、D正确.考点二矢量三角形法分析三个力的动态平衡问题矢量三角形法常用于三个力中只有一个力的方向发生变化的情况.3.质量为m的物体用轻绳AB悬挂于天花板上。
动态平衡中的三力问题宁波市鄞州中学
![动态平衡中的三力问题宁波市鄞州中学](https://img.taocdn.com/s3/m/e7fa6e6b777f5acfa1c7aa00b52acfc788eb9f43.png)
动态平衡中的三力问题物理组 王高波在有关物体平衡的问题中,有一类涉及动态平衡;这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题;解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”;根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下; 方法一:三角形图解法;特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变通常为重力,也可能是其它力,另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题;方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形;然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了;例 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态;今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2;因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形;F 1的方向不变,但方向不变,始终与斜面垂直;F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2;由此可知,F 2先减小后增大,F 1随β增大而始终减小;同种类型:例所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况方法二:相似三角形法;特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论;例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示;现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是A .F N 先减小,后增大 始终不变 C .F 先减小,后增大 始终不变图1-1图1-2F 1GF 2图1-3图2-1图2-2图1-4解析:取BO 杆的B 端为研究对象,受到绳子拉力大小为F 、BO 杆的支持力F N 和悬挂重物的绳子的拉力大小为G 的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封闭的三角形如图中画斜线部分,力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:如图2-2所示,设AO 高为H ,BO 长为L ,绳长l ,lF L F HG N ==,式中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小;正确答案为选项B 同种类型:如图2-3所示,光滑的半球形物体固定在水平地 面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是 D ;A N 变大,T 变小,B N 变小,T 变大C N 变小,T 先变小后变大D N 不变,T 变小方法三:作辅助圆法特点:作辅助圆法适用的问题类型可分为两种情况:①物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变;②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变,原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况;第二种情况以大小不变,方向变化的力为直径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的的力的矢量三角形,从而轻易判断各力的变化情况;例3、如图3-1所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)90(0>α,物体保持静止状态,在旋转过程中,设绳OA 的拉力为F 1,绳OB 的拉力为F 2,则 ;A F 1先减小后增大B F 1先增大后减小C F 2逐渐减小D F 2最终变为零解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,将三力构成矢量三角形如图3-3所示的实线三角形CDE,需满足力F 3大小、方向不变,角∠ CDE 不变因为角α不变,由于角∠DCE 为直角,则三力的几何关系可以从以DE 边为直径的圆中找,则动态矢量三角形如图3-3中一画出的一系列虚线表示的三角形;由此可知,F 1先增大后减小,F 2随始终减小,且转过90°时,当好为零; 正确答案选项为B 、C 、D另一种类型:如图3-4所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时α+β= 90°.然后保持M 的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是 A ; A 减小N 的读数同时减小β角 B 减小N 的读数同时增大β角 C 增大N 的读数同时增大β角D 增大N 的读数同时减小β角图3-1图3-2 图3-3图2-3 图3-4方法四:解析法 特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、方向不变的问题;原理:先正确分析物体的受力,画出受力分析图,设一个角度,利用三力平衡得到拉力的解析方程式,然后作辅助线延长绳子一端交于题中的界面,找到所设角度的三角函数关系;当受力动态变化是,抓住绳长不变,研究三角函数的变化,可清晰得到力的变化关系;例4.如图4-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N,绳长L =2.5m,OA =1.5m,求绳中张力的大小,并讨论: 1当B 点位置固定,A 端缓慢左移时,绳中张力如何变化2当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化解析:取绳子c 点为研究对角,受到三根绳的拉力,如图4-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD,AD 长度等于绳长;设角∠OAD 为θ;根据三个力平衡可得:θsin 21G F =;在三角形AOD 中可知,ADOD=θsin ;如果A 端左移,AD 变为如图4-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大;如果B 端下移,BC 变为如图4-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变;同种类型:如图4-5所示, 长度为5cm 的细绳的两端分 别系于竖立地面上相距为4m 的两杆的顶端A 、B ,绳子上 挂有一个光滑的轻质钩,其 下端连着一个重12N 的物体, 平衡时绳中的张力多大图4-1图4-2 图4-3′ 图4-4 图4-5。
2019-2023年高一物理力学专题提升专题06三力动态平衡问题的处理技巧
![2019-2023年高一物理力学专题提升专题06三力动态平衡问题的处理技巧](https://img.taocdn.com/s3/m/6efbd0bb4793daef5ef7ba0d4a7302768e996fc8.png)
2019-2023年高一物理力学专题提升专题06三力动态平衡问题的处理技巧三力动态平衡问题是高一物理力学中的一大难点。
在这个专题中,学生需要掌握处理三力动态平衡问题的相关技巧。
下面将介绍几种常见的处理技巧。
首先,我们要了解三力动态平衡问题的基本概念。
三力动态平衡是指物体在受到三个力的作用下,保持平衡并保持其速度恒定的状态。
在这种情况下,物体受到的合力为零,即三个力的矢量和为零,并且物体的合动量为零。
处理三力动态平衡问题的第一步是绘制力的示意图。
根据题目给出的条件,将物体与所受力的方向和大小用矢量表示,并在图上标注清楚。
第二步是分解力的矢量。
将图中的力矢量分解为两个垂直的分力,通常选择一个与物体运动方向一致的分力,称为平行力分量,以及一个垂直于运动方向的分力,称为垂直力分量。
这样,我们可以将三个力分解为六个分力,分别对应物体在平行和垂直方向上的受力情况。
第三步是分析力的平衡条件。
根据物体处于动态平衡状态的条件,我们可以得出以下结论:在平行方向上,物体受到的平行力分量的代数和为零;在垂直方向上,物体受到的垂直力分量的代数和为零。
换句话说,分别对平行和垂直方向上的力分别应用牛顿第二定律和牛顿第一定律,得出平行和垂直方向上的受力平衡条件。
第四步是计算未知量。
根据所给的条件和力的平衡条件,我们可以列出相关的方程。
通过求解这些方程,我们可以计算出未知量,如物体的加速度、速度、力的大小等。
最后,我们要注意解题的思路和方法。
处理三力动态平衡问题时,我们应该将问题转化为代数形式,运用力的平衡条件和运动方程进行分析和求解。
此外,我们还应该注意题目中的附加条件,并根据实际情况进行合理的假设和近似处理。
综上所述,处理三力动态平衡问题需要掌握绘制力的示意图、分解力的矢量、分析力的平衡条件和计算未知量的技巧。
通过熟练掌握这些技巧,我们可以有效地解决三力动态平衡问题,并提升自己的物理学习能力。
希望同学们能够通过不断练习和思考,掌握这些技巧,并取得良好的成绩。
9、三力动态平衡及验证力的平行四边形定则
![9、三力动态平衡及验证力的平行四边形定则](https://img.taocdn.com/s3/m/88d35edc6f1aff00bed51ecd.png)
βLLOAB九、三力动态平衡问题验证力的平行四边形定则(1)三力动态平衡题型特点:(1)物体受三个力。
(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例1.半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置缓慢移到竖直位置C的过程中(如图),分析OA绳和OB绳所受力的大小如何变化。
同步训练1.如图,一个均质球重为G,放在光滑斜面上,倾角为α,在斜面上有一光滑的不计厚度的木板挡住球。
使之处于静止状态,今使板与斜面的夹角β缓慢增大,问:此过程中,球对挡板和球对斜面的压力如何变化?例2、如图所示,固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A点,另一端绕过定滑轮,如图所示.今缓慢拉绳使小球从A点滑向半球顶点(未到顶点),则此过程中,小球对半球的压力大小N及细绳的拉力T大小的变化情况是()A.N变大,T变大B.N变小,T变大C.N不变,T变小D.N变大,T变小同步训练2、(2010年汕头二模)如图所示,两球A、B用劲度系数为k1的轻弹簧相连,球B用长为L的细绳悬于O点,球A固定在O点正下方,且点OA之间的距离恰为L,系统平衡时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为A.F1> F2 B.F1 = F2C.F1< F2 D.无法确定(2)、绳断问题例3、如图所示,OA、OB、OC三条轻绳共同连接于O点,A、B固定在天花板上,C端系一重物,绳的方向如图。
三力动态平衡
![三力动态平衡](https://img.taocdn.com/s3/m/377b902d67ec102de2bd8945.png)
张 健
受力分析
木块A在水平拉力F作用下处于静止状态,分析受力情况
受力分析
分析步骤: 1、确定研究对象 2、分析重力和已经给出的力 3、确定接触面个数,分析每个接触面的弹力N 和摩擦力f(防止少力) 4、确定每一个力的施力物体(防止多力)
受力分析
水平方向:T2-T1sinθ=0 竖直方向:T1cosθ-G=0
三力动态分析
动态平衡即通过控制某一物理量 , 使物体的状态发生 缓慢的变化 , 而在这个过程中物体又始终处于一系列 的平衡状态
三力动态分析
受力情况:重力G为恒力,另外两个弹力有一个弹力的方 向保持不变
在木板的支持下,小球在光滑的斜面上,处于静止状态,现缓慢的倾斜木板, 分析斜面对小球的支持力FN1和木板对小球的支持力FN2的变化(不计摩擦力)
三力动态分析
图解法:运用力的平移得到力的三角形,在三角形中讨论边的长 短变化,即力的大小变化
FN1变小,FN2先变小后变大
三力动态分析
在木板的支持下,小球在光滑的墙壁上处于静止状态,现缓慢 的向下调节木板,分析墙面对小球的支持力 FN1 和木板对小球 的支持力FN2的变化(不计摩擦力)
三力动态分析
受力情况:重力G为恒力,另外两个弹力的方向均发生变化
在光滑的半球面上,质量为 m 的小 球用轻绳绕过定滑轮缓慢拉动,小 球在球面上缓慢移动,分析在移动 过程中,球面对小球的支持力 FN和 绕过定滑轮轻绳的拉力T的变化
三力动态分析
相似法 : 力的三角形与另外确定的三角形相似 , 对应边成比 例来讨FN不变
谢谢!
巧解变动中的三力平衡问题
![巧解变动中的三力平衡问题](https://img.taocdn.com/s3/m/c98ee704cc17552707220877.png)
巧解变动中的三力平衡问题在中学阶段,力的平衡问题,多为三力平衡,按平衡条件,合力必为零,将三力首尾相联即围成一封闭三角形。
一般来说,只要所给条件能满足解这个三角形的条件(如已知两边夹一角或两角夹一边)就能按解三角形的方法解出这力三角形中要求的物理量。
常遇到一类变动中的三力平衡问题。
一般是其中一个力大小和方向确定;另一个力的方向确定,大小可变;第三个力大小和方向均变化。
要依据所给条件,确定后两力的变化规律。
为了帮助学生们很好地理解,采用力三角形来解答,现举几例如下:[例题1]一个光滑的圆球搁在光滑的斜面和竖直的档板之间(图1),斜面和档板对圆球的弹力随斜面倾角α变化而变化的范围是:a.斜面弹力n1变化范围是(mg,+∞)b.斜面弹力n1变化范围是(0,+∞)c.档板的弹力n2变化范围是(0,+∞)d.档板的弹力n2变化范围是(mg,+∞)答:[a、c]解:圆球受三个力,其中重力的大小和方向均为确定的,档板对圆球的弹力n2的方向始终是水平的,亦为确定的。
而斜面对圆球的作用力的大小和方向均在变化中,但不论α如何变动,只要α取一个确定的值,圆球就在三力作用下处于平衡状态,则此三力就组成一个封闭的三角形,如图2所示:由于0<α<90°,所以mg<n1<+∞,0<n2<+∞解出。
[例题2]如图3所示,用两根绳子系住一重物,绳oa与天花板夹角θ不变,且θ>45°,当用手拉住绳ob,使绳ob由水平慢慢转向ob′过程中,ob绳所受拉力将a.始终减少b.始终增大c.先增大后减少d.先减少后增大答:[d]解:重物受三个力,其中重力大小方向确定,oa方向不变,ob绳受力的大小方向变化。
在变化过程中,重物所受三力平衡,可组成一个封闭三角形,现图示如下:从图中可很直观地得出结论。
由于θ>45°,θ+α=90°所以α<45°,此时t ob取得最小值。
[例题3]如图4所示,一重球用细线悬于o点,一光滑斜面将重球支持于a点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力t及斜面对重球的支持力n的变化情况是:a.t逐渐增大,n逐渐减小;b.t逐渐减小,n逐渐增大;c.t先变小后变大,n逐渐减小;d.t逐渐增大,n先变大后变小。
力动态平衡问题的几种解法
![力动态平衡问题的几种解法](https://img.taocdn.com/s3/m/b3aed6614afe04a1b171de6a.png)
三力动态平衡问题的几种解法物体在几个力的共同作用下处于平衡状态,如果其中的某一个力或某几个力发生缓慢的变化,其他的力也随之发生相应的变化,在变化过程中物体仍处于平衡状态,我们称这种平衡为动态平衡。
因为物体受到的力都在发生变化,是动态力,所以这类问题是力学中比较难的一类问题。
因为在整个过程中物体一直处于平衡状态,所以过程中的每一瞬间物体所受到的合力都是零,这是我们解这类题的根据.下面就举例介绍几种这类题的解题方法.一,三角函数法例1.(2014年全国卷1)如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。
现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。
与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定解析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小车静止时,对小球受力分析得:F1=mg,弹簧的伸长,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图:得:,,解得:,弹簧的伸长:,则小球与悬挂点的竖直方向的距离为:,即小球在竖直方向上到悬挂点的距离减小,所以小球一定升高,故A正确,BCD错误.故选A.点评:这种方法适用于有两个力垂直的情形,这样才能构建直角三角形,从而根据直角三角形中的边角关系解题.二,图解法例2.如图所示,半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G 的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,OA绳受力大小变化情况是______,OB绳受力大小变化情况是______.解析:对O点受力分析,根据O点合力是零可知绳OA和绳OB上拉力的合力跟重力大小相等,方向相反,也就是说这个合力的大小不变方向竖直向上。
根据图像OA绳受力变小,OB绳受力先变小后变大.点评:这种方法适用于一个力大小方向都不变,另一个力方向不变,只有第三个力大小方向都变化的情况.三,相似三角形法例3.(2014年上海卷)如图,竖直绝缘墙上固定一带电小球A,将带电小球B用轻质绝缘丝线悬挂在A的正上方C处,图中AC=h。
三力动态平衡问题的几种解法
![三力动态平衡问题的几种解法](https://img.taocdn.com/s3/m/8c43f9b79ec3d5bbfd0a74b2.png)
三力动态平衡问题的几种解法物体在几个力的共同作用下处于平衡状态,如果其中的某一个力或某几个力发生缓慢的变化,其他的力也随之发生相应的变化,在变化过程中物体仍处于平衡状态,我们称这种平衡为动态平衡。
因为物体受到的力都在发生变化,是动态力,所以这类问题是力学中比较难的一类问题。
因为在整个过程中物体一直处于平衡状态,所以过程中的每一瞬间物体所受到的合力都是零,这是我们解这类题的根据.下面就举例介绍几种这类题的解题方法.一,三角函数法例1.(2014年全国卷1)如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。
现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。
与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定解析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小车静止时,对小球受力分析得:F1=mg,弹簧的伸长,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图:得:,,解得:,弹簧的伸长:,则小球与悬挂点的竖直方向的距离为:,即小球在竖直方向上到悬挂点的距离减小,所以小球一定升高,故A正确,BCD错误.故选A.点评:这种方法适用于有两个力垂直的情形,这样才能构建直角三角形,从而根据直角三角形中的边角关系解题.二,图解法例2.如图所示,半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,OA绳受力大小变化情况是______,OB绳受力大小变化情况是______.解析:对O点受力分析,根据O点合力是零可知绳OA和绳OB上拉力的合力跟重力大小相等,方向相反,也就是说这个合力的大小不变方向竖直向上。
根据图像OA绳受力变小,OB绳受力先变小后变大.点评:这种方法适用于一个力大小方向都不变,另一个力方向不变,只有第三个力大小方向都变化的情况.三,相似三角形法例3.(2014年上海卷)如图,竖直绝缘墙上固定一带电小球A,将带电小球B用轻质绝缘丝线悬挂在A的正上方C处,图中AC=h。
3.6二、三力平衡问题、动态分析
![3.6二、三力平衡问题、动态分析](https://img.taocdn.com/s3/m/15f98bbf33687e21ae45a9aa.png)
拓展:1、若上题中,OA绳与水平方向的夹角为37°,各绳所能承
受的最大拉力均为50N,为使细绳不被拉断,重物重力不能超过
多大?
不能超过30N
拓展:2、若上题中,OA绳与水平方向的夹角为37°,OA绳所能 承受的最大拉力为50N,OB绳所能承受的最大拉力为30N为使细绳 不被拉断,OC绳不会被拉断,重物重力不能超过多大?
力FN和对线的拉力FT的变化是( 形分析C )
)(利用相似三角
A、FN变大, FT变大
B、FN变小, FT变大
C、FN不变, FT变小
D、FN变大, FT变小
16、如图所示,不计轻杆OP能以O为轴在竖直平面内自由转动。P端
挂一重物,另用一根轻绳通过滑轮系住P端。当OP和竖直方向的夹
角α缓慢增大时(0<α<π),OP杆所受作用力的大小( )
不能超过22.5N
第十四页,编辑于星期五:十点 三十九分。
练习:
12、(单选)国家大剧院外部呈椭球型.假设国家大剧院的屋顶为
半球形,一保洁人员为执行保洁任务,必须在半球形屋顶上向上
缓慢爬行(如图所示),他在向上爬的过程中( ) (计算D法)
A、屋顶对他的摩擦力f 不变 B、屋顶对他的摩擦力f 变大 C、屋顶对他的支持力FN不变 D、屋顶对他的支持力FN变大
平衡条件的推论:物体在多个共点力作用下处于平衡状态,
则其中的一个力与其余力的合力等大反向。
例2、3
二、共点力平衡条件的分类及解题方法
1.二力平衡: 用平衡规律解题:平衡力等大、反向、共线 例 2.三力平衡:合成法、分解法 例
三力平衡的动态分析 处理方法:计算法,作图法
第二页,编辑于星期五:十点 三十九分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态平衡中的三力问题
物理组 王高波
在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。
方法一:三角形图解法。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?
解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F 1的方向不变,但方向不变,始终与斜面垂直。
F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图
1-3中一画出的一系列虚线表示变化的F 2。
由此可知,F 2先减小后增大,F 1随β增大而始终减小。
同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢
方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三
个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题
原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。
现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )
A .F N 先减小,后增大
B .F N 始终不变
C .F 先减小,后增大 D.F 始终不变
图1-1
图1-2
F 1
G
F 2
图1-3
图2-1
图2-2
图1-4
解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力F N和悬挂重物的绳子的拉力(大小为G)的作用,将F N与G合成,其合力与F等值反向,如图2-2所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO高为H,BO 长为L,绳长l,)
l
F
L
F
H
G
N=
=,式中G、H、L均不变,l逐渐变小,所以可知F N不变,F逐渐变小。
正确答案为选项B
同种类型:如图2-3所示,光滑的半球形物体固定在水平地
面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是( D )。
(A)N变大,T变小,
(B)N变小,T变大
(C)N变小,T先变小后变大
(D)N不变,T变小
方法三:作辅助圆法
特点:作辅助圆法适用的问题类型可分为两种情况:①物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。
②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变,
原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。
第二种情况以大小不变,方向变化的力为直径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的的力的矢量三角形,从而轻易判断各力的变化情况。
例3、如图3-1所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)
90
(0
>
α,物体保持静止状态,在旋转过程中,设绳OA的拉力为F1,绳OB的拉力为F2,则()。
(A)F1先减小后增大
(B)F1先增大后减小
(C)F2逐渐减小
(D)F2最终变为零
解析:取绳子结点O为研究对角,受到三根绳的拉力,如图3-2所示分别为F1、F2、F3,将三力构成矢量三角形(如图3-3所示的实线三角形CDE),需满足力F3大小、方向不变,角∠CDE不变(因为角α不变),由于角∠DCE为直角,则三力的几何关系可以从以DE边为直径的圆中找,则动态矢量三角形如图3-3中一画出的一系列虚线表示的三角形。
由此可知,F1先增大后减小,F2随始终减小,且转过90°时,当好为零。
正确答案选项为B、C、D
另一种类型:如图3-4所示,在做“验证力的平行四边形定则”的实验时,用M、N两个测力计通过细线拉橡皮条的结点,使其到达O点,此时α+β= 90°.然后保持M的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是( A )。
(A)减小N的读数同时减小β角
(B)减小N的读数同时增大β角
图3-1 图3-2 图3-3
图2-3
图3-4
----精品----
(C)增大N 的读数同时增大β角 (D)增大N 的读数同时减小β角
方法四:解析法
特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、方向不变的问题。
原理:先正确分析物体的受力,画出受力分析图,设一个角度,利用三力平衡得到拉力的解析方程式,然后作辅助线延长绳子一端交于题中的界面,找到所设角度的三角函数关系。
当受力动态变化是,抓住绳长不变,研究三角函
数的变化,可清晰得到力的变化关系。
例4.如图4-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化?
解析:取绳子c 点为研究对角,受到三根绳的拉力,如图4-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。
设角∠OAD 为θ;根据三个力平衡可得:
θsin 21G F =
;在三角形AOD 中可知,AD
OD
=θsin 。
如果A 端左移,AD 变为如图4-3中虚线A ′D ′所示,可
知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。
如果B 端下移,BC 变为如图4
-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。
同种类型:如图4-5所示, 长度为5cm 的细绳的两端分 别系于竖立地面上相距为4m 的两杆的顶端A 、B ,绳子上 挂有一个光滑的轻质钩,其 下端连着一个重12N 的物体, 平衡时绳中的张力多大?
图4-1
图4-2
图4-3
′
图4-
4
图4-5。