青岛版九年级解直角三角形测试题

合集下载

青岛版九年级上册数学第二章《解直角三角形》测试题

青岛版九年级上册数学第二章《解直角三角形》测试题

青岛版九年级上册数学第二章《解直角三角形》测试题一、单选题(共12题;共24分)1. 如图,在坡度为1:2的山坡上种树,要求相邻两棵树的水平距离是6m,则斜坡上相邻两棵树的坡面距离是()A.3mB.3√5mC.12mD.6m2. 如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30∘和60∘.若A,B两个目标点之间的距离是100米,则此时无人机与目标点A之间的距离(即AC的长)为()A.100米B.100√3米C.50米D.50√3米3. 如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68∘方向上,航行2小时后到达N处,观测灯塔P在西偏南46∘方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68∘≈0.9272,sin46∘≈0.7193,sin22∘≈0.3746,sin44∘≈0.6947)()A.22.48海里B.41.68海里C.43.16海里D.55.63海里4. 如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A.a+b tanαB.a+b sinαC.a+btanαD.a+bsinα5. 如图,一棵珍贵的树倾斜程度越来越厉害了.出于对它的保护,需要测量它的高度,现采取以下措施:在地面上选取一点C,测得∠BCA=37∘,AC=28米,∠BAC=45∘,则这棵树的高AB约为()(参考数据:sin37∘≈,tan37∘≈,≈1.4)A.14米B.15米C.17米D.18米6. 如图,轮船在A处观测灯塔C位于北偏西70∘方向上,轮船从A处以每小时20海里的速度沿南偏西50∘方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25∘方向上,则灯塔C与码头B的距离是()A.10√2海里B.10√3海里C.10√6海里D.20√6海里7. 如图,A,B两景点相距20km,C景点位于A景点北偏东60∘方向上,位于B景点北偏西30∘方向上,则A,C两景点相距()A.10kmB.10√3kmC.10√2kmD.203√3km8. 如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28∘,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为( )(参考数据:sin28∘≈0.47,cos28∘≈0.88,tan28∘≈0.53)A.76.9mB.82.1mC.94.8mD.112.6m9. 如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45∘,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60∘和30∘,则该电线杆PQ的高度()A.6+2√3B.6+√3C.10−√3D.8+√310. 某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36∘,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36∘≈0.73,cos36∘≈0.81,sin36∘≈0.59)A.5.6B.6.9C.11.4D.13.911. 某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角45∘的传送带AB,调整为坡度i=1:√3的新传送带AC(如图所示).已知原传送带AB的长是4√2米,那么新传送带AC的长是()A.8米B.4米C.6米D.3米12. 如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为10m,DE的长为5m,则树AB的高度是()m.A.10B.15C.15√3D.15√3−5二、填空题(共8题;共9分)如图,航模小组用无人机来测量建筑物BC的高度,无人机从A处测得建筑物顶部B的仰角为45∘,测得底部C的俯角为60∘,若此时无人机与该建筑物的水平距离AD为30m,则该建筑物的高度BC为________m.(结果保留根号)如图,点C在线段AB上,且AC=2BC,分别以AC,BC为边在线段AB的同侧作正方形ACDE,BCFG,连接EC,EG,则tan∠CEG=________.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是________.如图,小明在距离地面30米的P处测得A处的俯角为15∘,B处的俯角为60∘.若斜面坡度为1:√3,则斜坡AB的长是________米.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为________.计算sin60∘tan60∘−√2cos45∘cos60∘的结果为________ 。

青岛版九年级上册数学第2章 解直角三角形含答案(必刷题)

青岛版九年级上册数学第2章 解直角三角形含答案(必刷题)

青岛版九年级上册数学第2章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足为D,若AC=,BC=2.则sin∠ACD的值为()A. B. C. D.2、2sin60°的值等于()A.1B.C.D.3、在中,,,若,则的长为().A. B. C. D.4、如图,在的网格图中,经过格点A、B、D,点C在格点上,连接交于点E,连接、,则值为().A. B. C. D.25、如图某公园入口有三级台阶,每级台阶高18cm,深30cm,拟将台阶改为斜坡设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC 的长度是()A.270cmB.210cmC.180cmD.96cm6、已知在△ABC中,AB=14,BC=13,tanB= ,则sinA的值为()A. B. C. D.7、已知在中,,,那么下列说法中正确的是()A. B. C. D.8、小明沿着坡度为1:2的山坡向上走了1000m,则他升高了( )A.200 mB.500mC.500 mD.1000m9、如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是()A. B.5 C. D.310、在直角△ABC中,∠C=90°,sinA= ,那么tanB=()A. B. C. D.11、如图,正方形的边长是3,,连接交于点,并分别与边交于点,连接.下列结论:①;②;③;④当时,.其中正确结论的个数是()A.1B.2C.3D.412、如图,一把梯子靠在垂直水平地面的墙上,梯子的长是3米.若梯子与地面的夹角为,则梯子顶端到地面的距离BC为()A. 米B. 米C. 米D. 米13、如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=14、如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°,则图中阴影部分的面积是()A.18πB.12πC.18π﹣2D.12π﹣915、如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cosB= =()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ACB=120°,AC=4,BC=6,过点A作BC的垂线,交BC的延长线于点D,则tanB的值为________.17、如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE.如(2),小杰身高为1.6米,小杰在A处测得博物馆楼顶G点的仰角为27°,前进12米到达B处测得博物馆楼顶G点的仰角为39°,斜坡BD的坡i =1:2.4,BD长度是13米,GE⊥DE,A、B、D、E、G在同一平面内,则博物馆高度GE约为________米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)18、如图,在▱ABCD中,∠DAB=45°,AB=17,BC=7 ,对角线AC、BD相交于点O,点E、F分别是边BC、DC上的点,连结OE、OF、EF.则△OEF周长的最小值是________.19、如果一个斜坡的坡度i=1:,那么该斜坡的坡角为________度.20、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.21、在Rt△ABC中,∠C=90°,∠B=α,AB=m,那么边AC的长为________.22、已知弦长为,半径为1,则该弦所对弧长是________23、下列计算中正确的序号是________ .①2﹣=2;②sin30°=;③|﹣2|=2.24、已知△ABC中,AB=10,AC=2 ,∠B=30°,则△ABC的面积等于________.25、如图是一种雪球夹的简化结构图,其通过一个固定夹体和一个活动夹体的配合巧妙地完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.当雪球夹闭合时,测得∠AOB=30°,OA=OB=14 cm,则此款雪球夹制作的雪球的直径AB的长度为________ cm.(结果保留一位小数.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)三、解答题(共5题,共计25分)26、在Rt△ABC中,∠C=90°,若,求cosA,sinB,cosB.27、如图,是垂直于水平面的一座大楼,离大楼30米(米)远的地方有一段斜坡(坡度为),且坡长米.某时刻,在太阳光的照射下,大楼的影子落在了水平面、斜坡、以及坡顶上的水平面处(均在同一个平面内).若米,且此时太阳光与水平面所夹锐角为(),试求出大楼的高.(参考数据:)28、如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)29、“科学”号是我国目前最先进的海洋科学综合考察船,它在南海利用探测仪在海面下方探测到点C处有古代沉船.如图,海面上两探测点A,B相距1400米,探测线与海面的夹角分别是30°和60°.试确定古代沉船所在点C 的深度.(结果精确到1米,参考数据:≈1.414,≈1.732)30、襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC 的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41).参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、B5、B6、B7、A8、A9、A10、A11、C12、A13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。

青岛版九年级上册数学第2章 解直角三角形 含答案

青岛版九年级上册数学第2章 解直角三角形 含答案

青岛版九年级上册数学第2章解直角三角形含答案一、单选题(共15题,共计45分)1、在△ABC中,∠C=90°,sinA= ,则cosB的值为( )A.1B.C.D.2、已知α是锐角,且点A(,a)、B(sin2α+cos2α,b)、C(-m+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A.a<b<cB.a<c<bC.b<c<aD.c<b<a3、在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a =4b,则cosB的值是()A. B. C. D.4、如图,▱ABCD中,AB=14,BC=17,其中一边上的高为15,∠B为锐角,则tanB等于()A. B. C.15 D. 或155、我校数学社团学生小明想测量学校对面斜坡上的信号树的高度,已知的坡度为,且的长度为65米,小明从坡底处沿直线走到学校大台阶底部处,长为20米,他沿着与水平地面成夹角的大台阶行走20米到达平台处,又向前走了13米到达平台上的旗杆处,此时他仰望信号树的顶部,测得仰角为,则信号树的高度约为()(小明的身高忽略不计)(参考数据:,,,,)A.45米B.30米C.35米D.40米6、小明在某次投篮中刚好把球打到篮板的点D处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB= 米,视线AD与水平线的夹角为∠α,已知tanα=,则点D到地面的距离CD是()A.2.7米B.3.0米C.3.2米D.3.4米7、在Rt△ABC中,∠C=90°,sinA,则cosB的值为()A. B. C. D.8、在△ABC中,AB=5,BC=6,B为锐角且sinB=,则∠C的正弦值等于()A. B. C. D.9、如图,在距离铁轨200米处的处,观察由南宁开往百色的“和谐号”动车,当动车车头在处时,恰好位于处的北偏东方向上,10秒钟后,动车车头到达处,恰好位于处西北方向上,则这时段动车的平均速度是()米/秒.A. B. C.200 D.30010、如图,AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为()A. B. C. D.111、如图,在中,是斜边上的高,,则下列比值中等于的是()A. B. C. D.12、如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止,设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.若⊙M与线段EN只有一个公共点,则t的取值范围为( )A.0<t≤或<t<6B.0<t≤或<t<8C.0<t ≤或<t<6D.0<t≤或<t<813、在Rt△ABC中,∠C=90°,BC=3,AB=5,则sin B=()A. B. C. D.14、如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cmB.5 cmC.5 cmD.6cm15、如图,已知l1∥l2∥l3∥l4,相邻两条平行直线间的距离相等.若等腰直角的三个顶点分别在三条平行直线上,则∠α的正弦值是()A. B. C. D.二、填空题(共10题,共计30分)16、在半径为2cm的⊙O中,弦AB的长为2 cm,则这条弦所对的圆周角为________.17、将矩形纸片ABCD按如图方式折叠,BE、CF为折痕,折叠后点A和点D都落在点O处,若△EOF是等边三角形,则的值为________.18、比较大小:sin44°________cos44°(填>、<或=).19、△ABC中,∠C=90°,AB=8,cosA=,则AC的长是________ 。

青岛版九年级上册数学第2章 解直角三角形 含答案

青岛版九年级上册数学第2章 解直角三角形 含答案

青岛版九年级上册数学第2章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠B=90°,AB=5,BC=12,将△ABC绕点A逆时针旋转得到△ADE,使得点D落在AC上,则tan∠ECD的值为()A. B. C. D.2、如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点,若DE平分△ABC的周长,则DE的长是()A. B. C. D.3、如图.在坡角为a的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosaB.C.5sinaD.4、如图,正方形ABCD边长为6,E是BC的中点,连接AE,以AE为边在正方形内部作∠EAF=45°,边交于点,连接,则下列说法中:①;②;③tan∠AFE=3;④正确的有( )A.①②③B.②④C.①④D.②③④5、下列计算结果不正确是()A.2 ﹣2=﹣B.|﹣1|=1C.2sin60°=D. =﹣26、如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sin∠E的值是()A. B. C. D.7、在△ABC中,∠C=90°,AB=6,cosA= ,则AC等于().A.18B.2C.D.8、如图,半径为4的与含有角的直角三角板ABC的边AC切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与相切时,该直角三角板平移的距离为A.2B.C.4D.9、河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是()米.A. B.5 C.15 D.10、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()A.3B.2C.6D.11、如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα) D.(sinα,cosα)12、如图,在△ABC中,∠ACB=90°,点D是AB边上的动点,设AD=x,CD=y,y关于x的函数关系图象如图所示,其中M为曲线部分的最低点,则BC的长为()A.10B.15C.20D.2513、在△ABC中,∠C=90°,cosA=, AC=6,则AB的长度为()A.8B.10C.12D.1414、如图,AB是⊙O的直径,点C是⊙O上的一点,过点C作CD⊥AB于点D,若4B=10,BC=6,则CD的长为( )A.1.2B.2.4C.4.8D.515、如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…,按此规律继续旋转,直到得到点P2012为止,则AP2012=( )A.2011+671B.2012+671C.2013+671D.2014+671二、填空题(共10题,共计30分)16、如图,在平行四边形ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB= ,那么=________.17、如图,在Rt△ABC中,∠B=90°,sin∠BAC= ,点D是AC上一点,且BC=BD=2,将Rt△ABC绕点C旋转到Rt△FEC的位置,并使点E在射线BD上,连接AF交射线BD于点G,则AG的长为________.18、sin45°的相反数是________.19、如图1是一溜娃推车,溜娃时该推车底部支架张开后,其框架投影图如图2所示,两支撑轮是分别以点为圆心,其支架长,竖直支撑柱分米,水平座椅分米,并与靠背成夹角,推手柄分米.当张开角时,三点共线,且则的长度为 ________分米.20、如图,在中,,,为边的中点,线段的垂直平分线分别与边,交于点,,连接,.设,.给出以下结论:①;②的面积为;③的周长为;④;⑤.其中正确结论有________(把你认为正确结论的序号都填上).21、计算:2﹣1×+2cos30°=________.22、如图,角的一边在轴上,另一边为射线.则________.23、如图,河堤横断面如图所示,迎水坡AB的坡比为1:,则坡角∠A的度数为________24、为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD= 米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE= ,则CE的长为________米.25、三角形在正方形网格纸中的位置如图所示,则sinα的值是________.三、解答题(共5题,共计25分)26、计算: .27、如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)28、如图所示,某教学活动小组选定测量山顶铁塔AE的高,他们在30m高的楼CD的底部点D测得塔顶A的仰角为,在楼顶C测得塔顶A的仰角为若小山高,楼的底部D与山脚在同一水平面上,求铁塔的高参考数据:,29、一段路基的横断面是直角梯形,如图1所示,已知原来坡面的坡角α的正弦值为0.6.(1)求DC的长.(2)现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如图2所示的技术要求,试求出改造后坡面的坡角是多少?(精确到0.1度)30、汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、A6、A7、B8、D9、A10、A11、C12、C13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。

青岛版九年级上册数学第2章 解直角三角形 含答案

青岛版九年级上册数学第2章 解直角三角形 含答案

青岛版九年级上册数学第2章解直角三角形含答案一、单选题(共15题,共计45分)1、当锐角A的cosA>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°2、已知如图,AB是半圆O的直径,弦AD、BC相交于点P,那么等于∠BPD的()A.正弦B.余弦C.正切D.以上都不对3、有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是()海里.A.10B.10 -10C.10D.10 -104、cos30°的相反数是()A. B. C. D.5、如图,一木杆在离地面 3 m 处折断,木杆顶端落在离木杆底端 4 m 处,则木杆折断之前的高度为()m.A.9B.8C.5D.46、cos45°的值等于()A. B. C. D.7、如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos∠DCA=,BC=10,则AB的值是()A.3B.6C.8D.98、如果∠a是等腰直角三角形的一个锐角,则tana的值是()A. B. C.1 D.9、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=2,BC=1,则sin∠ACD=()A. B. C. D.10、如图,A,B分别为反比例函数y=﹣(x<0),y= (x>0)图象上的点,且OA⊥OB,则sin∠ABO的值为()A. B. C. D.11、如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③12、计算2sin30°-sin245°+cot60°的结果是()A. +B. +C. +D.1- +13、将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A. B. C. D.14、如图,以学校(点C)为观测点,小明家(点B)和小丰家(点A)分别位于学校的正南方向和正西南方向,并测得AC=6 km,BC=6(1+ )km,则小丰家位于小明家的()A.南偏西30°方向B.北偏西30°方向C.北偏东45°方向D.南偏东60°方向15、如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.二、填空题(共10题,共计30分)16、为测量某物体AB的高度,在点D测得A的仰角为45°,朝物体AB方向前进40m,到达C,再次测得点A的仰角为60°,则物体AB的高度为________m.17、如图,15个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则cos∠AEC=________.18、如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x >0)与y=(x<0)的图象上,则tan∠BAO的值为 ________.19、已知在中,,则________.20、计算: cos45°=________21、如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD交AC于点B,若OB=5,则BC等于________.22、如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为________.23、在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是________.24、己知在中,,,,则________.25、如图,在等腰梯形ABCD中,AD∥BC, sin C=,AB=9,AD=6,点E、F分别在边AB、BC上,联结EF,将△BEF沿着EF所在直线翻折,使BF的对应线段B′F经过顶点A,B′F交对角线BD于点P,当B′F⊥AB时,AP的长为________.三、解答题(共5题,共计25分)26、计算:.27、如图,地面上小山的两侧有A、B两地,为了测量A、B两地的距离,让一热气球从小山两侧A地出发沿与AB成30°角的方向,以每分钟50m的速度直线飞行,8分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(取1.7,sin20°取0.3,cos20°取0.9,tan20°取0.4,sin70°取0.9,cos70°取0.3,tan70°取2.7.)28、如图,一艘海警船在A处发现北偏东30°方向相距12海里的B处有一艘可疑货船,该艘货船以每小时10海里的速度向正东航行,海警船立即以每小时14海里的速度追赶,到C处相遇,求海警船用多长时间追上了货船?29、如图,,CD为两个建筑物,两建筑物底部之间的水平地面上有一点.从建筑物的顶点测得点的俯角为45°,从建筑物的顶点测得点的俯角为75°,测得建筑物的顶点的俯角为30°.若已知建筑物的高度为20米,求两建筑物顶点、之间的距离(结果精确到,参考数据:,)30、如图所示,初三数学兴趣小组同学为了测量垂直于水平地面的一座大厦AB 的高度,一测量人员在大厦附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了60米后到达D处,在D处测得A处的仰角大小为30°,则大厦AB的高度约为多少米?(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、C5、B6、B7、B8、C9、B10、C12、B13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学解直角三角形测试题一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B. 34 C. 53 D. 35 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A.21B. 33C. 1D.3. 在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( )A.EGEF G =sin B. EF EH G =sinC. FGGH G =sin D. FG FH G =sin5. sin65°与cos26°之间的关系为( )A. sin65°<cos26°B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=1 6. 已知30°<α<60°,下列各式正确的是( ) A.B.C.D.7. 在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是( ) A. B. C. D.8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2A. 150B.C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( ) A. 7米 B. 9米 C. 12米 D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( ) A.αsin 1B.αcos 1 C.αsin D. 1二. 填空题:(每小题2分,共10分)11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,。

12. 若,则锐角α=__________。

13. 在Rt △ABC 中,∠C=90°,53sin=A ,36=++c b a ,则a=__________,b=__________,c=__________,cotA=__________。

14. 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为__________。

15. 酒店在装修时,在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图21所示,则购买地毯至少需要__________元。

三. 解答题:(16、17每小题5分,其余每小题6分共70分) 16. 计算)30cos 30cot 1)(60sin 60tan 1( +--+17. 如图22,在△ABC 中,∠C=90°,∠BAC=30°,AD=AB ,求tanD 。

18. 已知直角三角形中两条直角边的差是7cm ,斜边的长是13cm ,求较小锐角α的各三角函数值。

19. 如图23,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN 。

(1)求△ANE 的面积;(2)求sin ∠ENB 的值。

20. 已知在△ABC 中,32=AB ,AC=2,BC 边上的高3=AD 。

(1)求BC 的长;(2)若有一个正方形的一边在AB 上,另外两个顶点分别在AC 和BC 上,求正方形的面积。

21. 已知,△ABC 中,∠BAC=120°,AD 平分∠BAC ,AB=5,AC=3,求AD 的长。

22. 如图,在△ABC 中,∠C=90°,D 是BC 边上一点,DE ⊥AB 于E ,∠ADC=45°,若DE ∶AE=1∶5,BE=3,求△ABD 的面积。

23.已知ABC ∆中,AD 为中线,34,10,60===∠BC AB BAD,求AC 的长。

24.在△ABC 中,∠A =1200,AB =12,AC =6。

求sinB +sinC 的值。

25.四边形ABCD 中,BC ⊥CD ,∠BCA =600,∠CDA =1350,340,10==∆ABC S BC 。

求AD 边的长。

26.湖面上有一塔高15米,在塔顶A 测得一气球的仰角为40,又测得气球在水中像的俯角为60,求气球高出水面的高度(精确到0.1米)。

27、由于过度采伐森林和破坏植被,使我国许多地区遭受沙尖暴侵袭。

近日A市气象局测得沙尘暴中心在A市正西300公里的B处以107海里/时的速度向南偏东60 的BF方向移动,距沙尘暴中心200公里的范围是受沙尘暴影响的区域。

(1)通过计算说明A市是否受到本次沙尘暴的影响?(2)若A市受沙尘暴影响,求A市受沙尘暴影响的时间有多长?试题答案一. 选择题:1. A2. B3. A4. C5. B6. C7. D8. B9. D 10. A提示:10. 如图24所示,作AE⊥BC,AF⊥CD,垂足分别为E、F,依题意,有AE=AF=1,可证得∠ABE=∠ADF=α。

所以可证得△ABE≌△ADF,得AB=AD,则四边形ABCD是菱形。

在Rt△ADF中,。

所以二. 填空题:11. 30°,30°;12. 60°;13. a=9,b=12,c=15,;14. 15. 504。

提示:13. 设a=3t,c=5t,则b=4t,由a+b+c=36,得t=3。

所以a=9,b=12,c=15。

14. 等腰三角形的腰只能是6,底边为2,腰不能为2,否则不满足三角形两边之和大于第三边,作底边上的高,利用勾股定理求高。

15. 利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.8米,2.6米,则地毯的长度为2.6+5.8=8.4米,地毯的面积为8.4×2=16.8平方米,则买地毯至少需要16.8×30=504元。

三. 解答题:16. ;17. ;18.19. 分析:根据条件可知MN是AE的垂直平分线,则AN=NE。

所以∠AEN可以是Rt△EGN的一个锐角,或是Rt△GAN的一个锐角,或是Rt△EBA的一个锐角。

解:∵∵DC+CE=10,∴3a+2a=10,∴a=2。

∴BE=2,AB=6,CE=4。

又。

20. 根据条件显然有两种情况,如图25。

(1)在图25(1)中,可求CD=1,∠CAD=30°,∠B=30°,∠C=60°,BC=4,所以△ABC 是直角三角形。

在图25(2)中,可求CD=1,∠CAD=30°,∠B=30°,∠BAD=60°,BC=AC=2,△ABC 是等腰三角形,AC平分∠BAD。

(2)在图26(1)中,设正方形边长为x,∵,解得。

在图26(2)中,设正方形边长为x。

解得21. 解法一:过B作CA延长线的垂线,交于E点,过D作DF⊥AC于F。

∴DF∥BE∴△FDC∽△EBC∵AD平分∠BAC∵∠BAC=120°∴∠EAB=180°-∠BAC=60°在Rt△ABE中,在Rt△ADF中,∵∠DAC=60°解法二:如图11,过C作CE⊥AD于D,过B作BF⊥AD交AD的延长线于F。

∵AD平分∠BAC,∠BAC=120°∴∠BAD=∠CAD=60°。

在Rt△AEC中,在Rt△ABF中,∵CE∥BF∴△BDF∽△CDE。

∵EF=1分析:题目中有120°角及它的角平分线,所以有两个60°这个特殊角,要求60°角的一条夹边AD的长,可以构造等边三角形,得到与AD相等的线段。

解法三:如图12,过点D作DE∥AB交AC于E。

则∠ADE=∠BAD=∠DAC=60°∴△ADE是等边三角形。

∴AD=DE=AE设AD=x∵△ABC∽△EDC解法四:如图13,过B作AC的平行线交AD的延长线于E。

∵AD平分∠BAC,∠BAC=120°∴∠BAD=∠DAC=∠E=60°。

∴△ADE是等边三角形∴AE=AB=BE=5∵AC∥BE∴△CAD∽△BED小结:解三角形时,有些图形虽然不是直角三角形,但可以添加适当的辅助线把它们分割成一些直角三角形和矩形,从而可以运用解直角三角形的有关知识去解决这些图形中求边角的问题。

另外,在考虑这些组合图形时,要根据题目中的条件和要求来确定边与边,角与角是相加还是相减。

22.解:在△AED中,∵DE⊥AB于E,又∵DE∶AE=1∶5,∴设DE=x,则AE=5x。

在△ADC中,∵∠C=90°,∠ADC=45°,∴∠DAC=45°,在Rt△BED和Rt△BCA中,∵∠B是公共角,∠BED=∠BCA=90°,∴△BED∽△BCA。

∴AB=AE+BE=10+3=13。

23.解:v.. . ... . . 资 料. .24提示:过C 点作CE ⊥BA 交BA 的延长线于E ,过点B 作BD ⊥CA 交 CA 的延长线于D 。

SinB +sinC =142137211421=+25. 提示:作AF ⊥AC 于F ,作AE ⊥CD 交CD 的延长线于E 。

可求AC =16,AD =82。

相关文档
最新文档