乘法公式的拓展及常见题型整理
(完整word版)完全平方公式变形的应用练习题2
乘法公式的拓展及常见题型整理一.公式拓展:拓展一:a 2 b 2 =(a b)2_2aba 2 1 = (a —)2- 2a a拓展二:(a b)2一(a _b)2=4ab(a b)2 = (a -b)24ab2 2 2a b =(a -b) 2ab a 2 4 = (a _丄)2 2 a a2 2 2 2 a b ]亠[a 「b 2a2b(a -b)2 = (a b)2 -4ab拓展三:a 2• b 2c 2=(a b c)2_2ab _2ac _2bc 拓展四:杨辉三角形(a b)‘ 二 a 3 3a 2b 3ab 2 b 3 (a b)4 二 a 4 4a 3b 6a 2b 2 4ab 3 b 4拓展五: 立方和与立方差(一) 公式倍比(1) ________________________________________________________ 如果 a - b=3, a - c = 1,那么 a - b i 亠 lb - c i 亠 i.c - a 的值是 __________________ — 1⑵ x y =1,则一 x 2 xy y 2=2 22 + 2⑶已知口 X(X_1) _(x 2_y) = -2,贝y -L _xy= __________2(二) 公式组合例题:已知(a+b) 2=7,(a-b) 2=3, 求值:(1)a 2+b 2(2)ab例题:已知a b =4,求ab 。
a 3b 3 = (a b)(a 2 _ab b 2) a 3 _b 3 二(a _b)(a 2 ab b 2).常见题型:⑴若(a —b)2=7, (a+b)2 =13,则a 2+b 2= ___________________ , ab = ________⑵设(5a + 3b ) 2= (5a — 3b ) 2+ A ,贝U A= __________ ⑶若(x _ y)2= (x • y)2a ,贝H a 为 __________⑷如果(x-y)2• M ^(x y)2,那么M 等于 ________________⑸已知(a+b) 2=m (a — b) 2=n ,贝U ab 等于 ________2 2⑹若(2a-3b) =(2a3b) N,则N 的代数式是 _________________⑺已知(a ,b)2=7,(a-b)2 =3,求 a 2 b 2 ab 的值为 _______________ 。
乘法公式综合-拓展篇
【答案】a = 2, b = -1 【解析】由已知可得 : a + b - 1 2 + 2a - 2 2 < 1, ∵ a、b 为整数,∴ 0 ≤ a + b - 1 2 + 2a - 2 2 < 1, ∴ a + b - 1 2+ 2a - 2 2= 0, ∴ a = 2,b = -1. 例 2 - 2.已知 a2 + b2 + c2 - ab - bc - ca = 8,b - c = 3,求 (b - a) (c - a) 的值.
乘法公式综合拓展
【必记公式】
1.平方差公式:(a + b) (a - b) = a2 - b2;
2.完全平方公式:(a + b)2 = a2 + 2ab + b2,(a - b)2 = a2 - 2ab + b2;
公式推广:(x1 + x2 +⋯ +xn)2 = x12 + x22 +⋯ +xn2 + 2x1x2 + x1x3 +⋯ +x1xn + x2x3 +⋯ +xn-1xn ; 3.完全立方:(a + b)3 = a3 + 3a2b + 3ab2 + b3,(a - b)3 = a3 - 3a2b + 3ab2 - b3;
4.立方和公式:a + b a2 - ab + b2 = a3 + b3;
5.立方差公式:a - b a2 + ab + b2 = a3 - b3;
6.大立方公式:a3 + b3 + c3 - 3abc = a + b + c a2 + b2 + c2 - ab - bc - + c = 0 时,a3 + b3 + c3 = 3abc;
小学数学乘法口诀系列扩展练习
小学数学乘法口诀系列扩展练习乘法口诀是小学数学中非常基础和重要的一部分。
掌握好乘法口诀,可以帮助学生进行快速计算,提高计算能力和数学思维能力。
为了进一步巩固学生对乘法口诀的掌握,下面为大家介绍一些乘法口诀的扩展练习。
一、口诀扩展之数字加减变换1.加法变换当两个乘数中有一个为10的倍数时,我们可以利用加法变换来简化计算。
例如,计算9×5时,我们可以将9转换为10-1,即(10-1)×5=10×5-1×5=50-5=45。
2.减法变换如果乘数差异较大,可以通过减法进行变换。
例如,计算8×23时,我们可以将23拆成20+3,即8×20+8×3。
这样,我们可以先计算8×20=160,再计算8×3=24,最后将两个结果相加:160+24=184。
二、口诀扩展之小数的乘法1.整数与小数的乘法当整数与小数相乘时,我们可以通过移动小数的小数点来进行计算。
例如,计算4.5×6时,我们可以将4.5移动一位,得到45,然后再将结果除以10,即45÷10=4.5。
2.小数与小数的乘法当两个小数相乘时,我们可以按照正常的乘法步骤进行计算,然后根据原始小数位数的和来确定小数点的位置。
例如,计算2.3×1.6时,我们得到结果3.68。
由于2.3有1位小数,1.6有1位小数,所以最终结果应该有2位小数,即3.68。
三、口诀扩展之特殊乘法公式1.平方公式平方公式可以用来计算一个数的平方。
例如,计算7的平方,我们可以利用平方公式:7²=49。
2.立方公式立方公式可以用来计算一个数的立方。
例如,计算5的立方,我们可以利用立方公式:5³=125。
四、口诀扩展之乘数特征1.乘数为奇偶数当一个乘数为奇数时,我们可以将其拆分为一个偶数与1的和。
例如,计算6×7时,我们可以将7拆成6+1,即6×6+6×1=36+6=42。
小学生乘法题型的拓展与应用
小学生乘法题型的拓展与应用乘法是数学中基础且重要的运算之一,对于小学生来说,掌握乘法的题型拓展和应用能够提高他们的数学能力,在解决实际问题时也能更加灵活运用。
本文将探讨小学生乘法题型的拓展与应用。
一、乘法的基本概念乘法是一种将两个数相乘得到积的运算。
在小学阶段,乘法的学习主要集中在乘法口诀表的记忆和基本的乘法计算上,例如:2 × 3 = 6。
二、乘法题型的拓展1. 乘法分配律:对于小学生来说,理解乘法分配律是很重要的。
乘法分配律规定了连加和连乘运算的相互关系。
例如:3 × (2 + 4) = (3 × 2) + (3 × 4)。
2. 多位数的乘法运算:在小学阶段,乘法的运算一般限定在两位数以内的数相乘。
但是对于掌握了乘法基本概念的小学生来说,可以逐步引导他们进行多位数的乘法运算。
例如:34 × 12 = 408。
3. 乘法的交换律:乘法的交换律是指两个数相乘的结果不受数的位置顺序的影响。
例如:2 × 3 = 3 × 2。
4. 乘法的逆运算——除法:除法是乘法的逆运算,通过除法可以反推出乘法的运算结果。
例如:12 ÷ 4 = 3,可以得出 3 × 4 = 12。
三、乘法题型的应用1. 数组和矩阵:乘法在数组和矩阵中有重要的应用。
例如,可以通过矩阵相乘来表示线性变换、图像处理等问题。
2. 小学奥数题:小学生参加数学竞赛时,乘法题型的拓展和运用非常常见。
例如,有关面积、长度、容积等方面的问题,可以用乘法进行求解。
3. 实际生活中的应用:乘法在日常生活中的应用也十分广泛。
例如,购物时计算商品的总价、计算时间和速度等,都需要用到乘法。
结语:通过对小学生乘法题型的拓展与应用的探讨,可以看出乘法是一个重要的数学概念,对于小学生的数学学习和日常生活都有着重要的影响。
因此,在教学过程中应该注意培养小学生解决问题的能力和运用数学知识的能力,使他们能够灵活运用乘法进行计算和解决实际问题。
乘法公式知识点及复习题
蒙迪尔国际教育咨询电话:83737513乘法公式一、知识梳理1.平方差公式:a-b a b二a2-b22 2 22.完全平方公式:a_b a b _2ab23.x a x b]=x a b x ab2 23 34.立方和(差)公式:a b a b - ab = a ba「b ii a2b2ab 二a3_b32 2 2 25.三数和平方公式:(a+b+c)=a +b +c +2ab+2ac + 2bc2 2 2 3336.欧拉公式: a b c a b c- ab - ac - be = a b c - 3abc二、例题讲解2 2例1、要使等式(P *q )+ M =(p -q )成立,代数式M应为__________________ 。
2 2例2、(1)如果x+6xy+ky是一个完全平方公式的展开式,那么常数k= ________ 2 2(2)如果x +kx r^9y是一个完全平方式的展开式,那么常数k= ________ 。
2 2例3、已知a,b 满足a F=3,ab=2,则a b二-------------------“22 2芦a—b=3,ab=2,贝V a +b = _______ ,(a+b)= ________ .右m 丄=3,求m2 2禾廿! m _ 1例4、已知mm * m 的值。
蒙迪尔国际教育咨询电话:83737513例5、试说明不论a,b取任何有理数,代数式a2• b2-2a -4b 5的值总是非负数。
4 , 4 2 ,2 , ,a b a b b-aab“例6、计算'人八 A 丿的结果是________________ 例7、用乘法公式计算:(1)20142-2013 2015(2)2 3 1 32 1 33 1 川332 1 1例&如果(2a+2b+1 )(2a+2b-1 )=63,那么a+b的值为多少?例9、已知a =2013x 2012,b =2013x 2013,c =2013x 2014,则a2 b2 c2 -ab -be-ac =例10、若一个正整数能表示为两个连续偶数的平方差,那么这个正整数为“神秘数”4 =22 - 02,12 =42 -22,20 £-42,因此4,12,20这三个数都是神秘数。
乘法公式拓展与常见题型整理
乘法公式的拓展及常见题型整理2 >2例题:已知 a + b=4,求"一;二+ “。
⑴如果a-b = 3,(t-c = l.那么("一b)2+(b-c)2+(c-a)2的值是__________________________⑵x + y = 1,则一x2 +xy + -y2 = _________________________ (3)已知x(x-l)-(x2-y) = 一2,则"• 一xy = __________________________2 2 2⑴若则cr -+^r = __________ , cb= ___________⑵设(5a+3b) 2= (5a-3b) 2+A,则A= __________________ ⑶若则a 为 __________⑷如果(X-y)2 +M =(x + y)\那么M等于___________________ ⑸已知(a+b)'m・ (a-b)2=n>则ab等于________________⑹若G 一3疔=(2a + 3b)2 + N ,则N的代数式是__________________ ⑺已知(a + b)2 = 7,(a-b)2 = 3,求a2+b2 + ab的值为_。
⑻已知实数a,b,c,d满足ac+bd = 3, ad —be = 5.求(a2 +b2)(c2 + J2)例题:已知(a+b)—7, 求值:⑴齐F (2)ab例2:已叫-x+20. b—x+.9,计+21,求屮—ac的值⑴若x-3y = 7,x2 -9y2 =49 ,则x + 3y = ______________________(2)_____________________________________ 若a+b = 2,则a2-Z?2+4Z?= _______________________ 若a + 5b = 6・则+5oZ? + 30Z?= ______________________________________⑶已知a'+bJGab且a>b>0・求匕二2的值为________________a -b⑷已知a = 2005x + 2004, b = 2005x4-2006 , c = 2OO5x + 200& 则代数式/ +b2 +c2 -ab-be-ca的值是.(四)步步为营例题:3X (22 +1) x (24 +1) x (2”和)x ( 2,6+1)6X (7 + 1) X(7 2 +1) X (74+1)X (78+1)+1 (a-/?)(a + Z?)(a,+b‘)(十+//)(“' + b")(2 +1) x (22 +1)X(24+1)X(28+1)X (216 +l)x (232 +1) + 12012? JOllSOlO 2-2009?+……+22-!2 (冷加扛冷)…卜縞(五)分类配方例题:已知一6〃? + 10〃 + 34 = 0,求〃7 +n 的值。
乘法公式的拓展及常见题型整理教学文稿
乘法公式的拓展及常见题型整理乘法公式的拓展及常见题型整理例题:已知b a +=4,求ab b a ++222。
⑴如果1,3=-=-c a b a ,那么()()()222a c c b b a -+-+-的值是 ⑵1=+y x ,则222121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则= ⑴若()()a b a b -=+=22713,,则a b 22+=____________,a b =_________⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果22)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。
⑻已知实数a,b,c,d 满足53=-=+bc ,ad bdac ,求))((2222d c b a ++ 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab例2:已知a=201x +20,b=201x +19,c=201x +21,求a 2+b 2+c 2-ab -bc -ac 的值⑴若499,7322=-=-y x y x ,则y x 3+=⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=⑶已知a 2+b 2=6ab 且a >b >0,求b a b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=xc ,则代数式ca bc ab c b a ---++222的值是 .(四)步步为营例题:3⨯(22+1)⨯(24+1)⨯(28+1)⨯(162+1)6⨯)17(+⨯(72+1)⨯(74+1)⨯(78+1)+1 ()()()()()224488a b a b a b a b a b -++++1)12()12()12()12()12()12(3216842++⨯+⨯+⨯+⨯+⨯+222222122009201020112012-++-+-ΛΛ ⎪⎭⎫ ⎝⎛-2211⎪⎭⎫ ⎝⎛-2311⎪⎭⎫ ⎝⎛-2411…⎪⎭⎫ ⎝⎛-2201011(五)分类配方例题:已知03410622=++-+n m n m,求n m +的值。
乘法公式经典题型及拓展
乘法公式一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )]=2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
(完整word版)浙教版七年级下数学辅导六乘法公式的拓展及常见题型整理
七年级下数学辅导六 乘法公式的拓展及常见题型整理.公式拓展:拓展一:a 2b 2 (a b)2 2ab 2a b 2(a b)2 2ab21(a I)2221(a丄)22aa2aaaa拓展二:(a b)2(a b)24ab a 2b a 2b2a 2 2b 2(a b)2(a b)24ab(a b)2(a b)24ab拓展三: a2b 2c 2 (a bc)2 2ab 2ac 2bc拓展四:杨辉三角形(a b)33a 3a 2b 2 ‘ 33ab b拓展五:(a b)44a 4a 3b6a b 4ab b立方和与立方差3ab 3 (a b)(a 2ab b 2)3ab3(a b )(2 2a ab b )二.常见题型:(一)公式倍比2人?例题:已知a b =4,求-一—ab 。
2(1)如果a b3, a c 1, 2 2 2那么a b b c c a 的值是⑵x y1,则^x 2 xy1 2 y = 222 2⑶已知(x x 2y)n mr[ xyxy⑶_知1) (x2,贝U 一xy _(二)公式组合_ 2 2例题:已知(a+b) =7,(a-b) =3,⑴若(a b)2 7, (a b)2 13,则 a 2 b 2 _____________ , ab _________⑵设(5a + 3b ) 2= (5a — 3b ) 2+ A ,贝U A= _______________求值:(1)a +b (2)ab⑶若(x y)2(x y)2a,贝U a 为_______________________⑷如果(x y)2M (x y)2,那么M 等于 _____________________2 2⑸已知(a+b) =m (a — b) =n ,贝U ab 等于 ______________⑹若2a 3b 2 2a 3b 2 N ,则N 的代数式是 ___________________⑺已知(a b)27, (a b)2 3,求 a 2 b 2 ab 的值为 _______________ 。
乘法公式的基础与拓展应用
乘法公式的基础与拓展应用乘法公式是数学中常用的计算工具,它包含了一系列基础与拓展应用。
基础乘法公式常用于计算两个数之间的乘积。
它们包括:1.乘法交换律:a×b=b×a。
这意味着两个数的乘积与它们的顺序无关。
2.乘法结合律:(a×b)×c=a×(b×c)。
这意味着无论是先将前两个数相乘然后与第三个数再相乘,还是先将后两个数相乘然后与第一个数再相乘,得到的结果都是相同的。
3.分配律:a×(b+c)=(a×b)+(a×c)。
这意味着将一个数与两个数的和相乘,等于将这个数分别与两个数相乘得到的结果再相加。
基础乘法公式还可以进行简化,例如:1. 平方公式:(a + b)² = a² + 2ab + b²。
这意味着一个数的平方可以通过将该数与自身相乘得到。
2. 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³。
这意味着一个数的立方可以通过将该数与自身的平方相乘得到。
乘法公式还可以应用于解决实际问题,例如:1.面积计算:通过乘法公式可以计算出各种形状的面积。
例如,长方形的面积可以通过将长与宽相乘得到;圆的面积可以通过将π与半径的平方相乘得到。
2.体积计算:通过乘法公式可以计算出各种形状的体积。
例如,长方体的体积可以通过将长、宽和高相乘得到;圆柱体的体积可以通过将π、半径的平方和高相乘得到。
拓展应用方面,乘法公式也可以用于解决一些更复杂的问题。
例如:1.组合问题:组合问题是指从一个集合中选取若干个元素组成一个子集的问题。
乘法公式可以应用于计算组合问题的总数。
如果一些集合有n个元素,需要选取r个元素组成子集,那么组合问题的总数可以通过计算n!/(r!(n-r)!)得到,其中"!"表示阶乘。
2.概率问题:概率问题是指计算一些事件发生的可能性的问题。
乘法公式(题型拓展)
A. 4x 2x2 3x 1 8x3 12x2 4x
C. 4a 14a 1 1 16a 2
B. x y x 2 y 2 x3 y3
D. x 2 y2 x 2 2xy 4 y 2
例 2:多项式 4x 2 1 加上一个单项式后,使它能成为一个整式的完全平方,则加上的多项式可以是
(A)a4-1 (B)a4+1 (C)a4+2a2+1 (D)1-a4
2、若(x+m)(x-8)中不含 x 的一次项,则 m 的值为………………………( )
(A)8
(B)-8
(C)0
(D)8 或-8
3、下列计算正确的是( )
A、 3 2 3 3 2 3 9
B、 a b2 a 2 b2
例 6:已知 a b 3 , ab 1 ,求: 2
(1)a2+b2
(2)a2+ab+b2
(3)a4+b4
(二)思维重点突破
例 7 观察下列各式(x-1)(x+1)=x2-1,(x-1)(x2+x+l)=x3-l.(x-l)(x3+x2+x+l)=x4-1,
根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=
4、已知
x+
1 x
=2,求
x2+
1 x2
的值.
5、已知 a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab 的值.
AB=4a,MP=b,正方形 APCD 与正方形 PBEF 的面积之差为 S。 (1)用 a,b 的代数表示 S。 (2)当 a=4、b=1/2 时,S 的值是多少?当 a=S,b=1/4 时呢?
D
C
F
E
A
MP B
A 类作业:
乘法分配律拓展公式
乘法分配律拓展公式一、乘法分配律基本公式。
对于两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,得数不变。
即(a + b)×c=a×c + b×c。
1. 两个数的差与一个数相乘。
- 公式:(a - b)×c=a×c - b×c- 推导:假设a比b大,我们可以把(a - b)看作一个整体。
例如(5-3)×4,按照基本运算顺序先算括号里得2×4 = 8;如果用拓展公式,5×4-3×4 = 20 - 12 = 8,结果相同。
2. 多个数的和与一个数相乘。
- 公式:(a + b + c)×d=a×d + b×d + c×d- 推导:例如(2 + 3+5)×4,先算括号里2 + 3+5 = 10,10×4 = 40;用拓展公式2×4+3×4 + 5×4=8 + 12+20 = 40。
3. 多个数的差与一个数相乘。
- 公式:(a - b - c)×d=a×d - b×d - c×d- 推导:比如(10 - 3 - 2)×5,先算括号里10 - 3 - 2 = 5,5×5 = 25;用拓展公式10×5-3×5 - 2×5 = 50 - 15 - 10 = 25。
4. 一个数乘两个数的和(差)再乘一个数。
- 公式:d×(a + b)×e=(d×a + d×b)×e=d×a×e + d×b×e(对于差同理d×(a -b)×e=(d×a - d×b)×e=d×a×e - d×b×e)- 推导:例如2×(3 + 4)×5,先算括号里3 + 4 = 7,2×7×5 = 70;用拓展公式(2×3+2×4)×5=(6 + 8)×5 = 14×5 = 70。
最经典的乘法公式综合应用与拓展(学生、教师两用版)
八年级数学上册乘法公式的综合应用与拓展 (学生版)•、基本公式1. 平方差公式:(a+b)(a-b)=a 2-b 22例:计算 1999 -2000 X 199822 22. 完全平方公式(a+b) =a +2ab+b (a-b)例:运用公式简便计算3. 完全平方公式a+b(或a-b)、ab 、a 2+b 2这三者任意知道两项就可以求出第三项(a+b)2、(a-b) 2、ab 这三者任意知道两项就可以求出第三项① a 2 b 2 = (a b)2 - 2aba 2b 2 = (a-b) 2+2ab2 2 2 2② (a-b) =(a+b) -4ab(a+b) =(a-b) +4ab(2)完全平方公式变用 2:两个完全平方公式之和的整合2 2 2 2(a+b) + (a-b) =2 (a+b)例1 •已知a b 2 , ab =1,求a 2 b 2的值。
2例 2.已知 a • b = 8 , ab = 2,求(a - b)的值。
例3.已知a - b = 4, ab = 5,求a 2 b 2的值。
2 2例 4 .已知 m +n =7, mn= —18,求 m — mr+ n 的值.例 5 (3)已知:x+2y=7 , xy=6,求(x-2y)2 的值.例6.已知a +丄=5,求(1) a 2+W , (2) (a —丄)2的值.a a a(1)完全平方公式变用 1:利用已知的两项求第三项2 2 2=a -2ab+b (1) 1032(2) 19821 1例7.已知x -― =3,求x4■ ~4的值。
x x3=a -b二、公式的灵活运用1. 对公式的基本变用 _ 2 2(1)位置变化,x y -y x =x_y(2 )符号变化,(彳勺片—x j_y 2= x 2-y 22. 整体思想的应用(1 )应用整体思想,首先要能识别公式中的“两数”2 2例1计算(-a +4b )分析:运用公式(a +b )2=a 2+2ab +b 2时, ______ 就是公式中的a, _____ 就是公式中的b ;若将题目变形为(4b -a 2)2时,则 ________ 是公式中的a ,而 _______ 就是公式中的b .(解略)练习 1•计算:5x 23y 25x 2-3y 2练习2•计算: x -y z x -y —z 练习 3.计算:Ixy z m Jlxy- z m 1练习 4.计算:x ■ y -2z x y 6z(2 )应用应用整体思想,其次能正确选取负号和减号 例计算:(-2 x 2-5)(2 x 2-5)分析:本题两个因式中“-5 ”相同,“2x 2”符号相反,因而 ______ 是公式(a +b )( a -b )= a 2-b 2中的a,而 _____ 则是公式中的b .解:原式=(3 )应用整体思想,要善于分组加括号例&解下列各式(1) (2) (3) 已知 a 24b 2=i3, ab=6,求(a^bj ,(a_b j 的值。
乘法公式的拓展及常见题型
乘法公式的拓展及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+拓展二:ab b a b a 4)()(22=--+()()222222a b a b a b ++-=+拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:辉三角形拓展五: 立方和与立方差 二.根本考点例1::32a b +=,1ab =,化简(2)(2)a b --的结果是. 例2:化简与计算练习:1、〔a+b -1〕〔a -b+1〕=。
2.假设*2-y 2=30,且*-y=-5,则*+y 的值是〔 〕A .5B .6C .-6D .-53、 2()16,4,a b ab +==求223a b +与2()a b -的值.4、试说明不管*,y 取何值,代数式226415x y x y ++-+的值总是正数。
5、(a -2b +3c )2-(a +2b -3c )2=。
6、0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
7、2200720092008⨯-〔运用乘法公式〕题型一:乘法公式在解方程和不等式组中的应用解方程:()()()()()()2x 12x 13x 2x 27x 1x 1+-+-+=+-题型二:应用完全平方公式求值设m+n=10,mn=24,求()222m n m n +-和的值。
题型三:巧用乘法公式简算计算:〔1〕()()()24832121211++++; 〔2〕9910110001⨯⨯题型四:利用乘法公式证明对任意整数n ,整式()()()()3n 13n 13n 3n +---+是不是10的倍数?为什么? 题型五:乘法公式在几何中的应用△ABC 的三边长a ,b ,c 满足222a b c ab bc ac 0++---=,试判断△ABC 的形状。
三.常见题型:〔一〕公式倍比例题:b a +=4,求ab b a ++222。
乘法公式的拓展及常见题型 整理
乘法公式的拓展及常见题型整理例题:已知=4,求。
⑴如果,那么的值是⑵,则= ⑶已知=⑴若则____________,_________⑵设(5a+3b)2=(5a-3b)2+A,则A= ⑶若,则a为 ⑷如果,那么M等于 ⑸已知(a+b)2=m,(a—b)2=n,则ab等于⑹若,则N的代数式是⑺已知求的值为。
⑻已知实数a,b,c,d满足,求例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a2+b2 (2)ab例2:已知a= x+20,b=x+19,c=x+21,求a2+b2+c2-ab-bc-ac的值⑴若,则=⑵若,则= 若,则=⑶已知a2+b2=6ab且a>b>0,求的值为⑷已知,,,则代数式的值是.(四)步步为营例题:3(2+1)(2+1)(2+1)(+1)6(7+1)(7+1)(7+1)+1 …(五)分类配方例题:已知,求的值。
⑴已知:x²+y²+z²-2x+4y-6z+14=0,则x+y+z的值为 。
⑵已知x²+y²-6x-2y+10=0,则的值为 。
⑶已知x2+y2-2x+2y+2=0,求代数式的值为 .⑷若,x,y均为有理数,求的值为 。
⑸已知a2+b2+6a-4b+13=0,求(a+b)2的值为⑹说理:试说明不论x,y取什么有理数,多项式x2+y2-2x+2y+3的值总是正数.(六)首尾互倒例1:已知例2:已知a2-7a+1=0.求、和的值;⑴已知,求①= ②=⑵若x2- x+1=0,求的值为⑶如果,那么= 2、已知,那么=_______⑷已知,则的值是⑸若 且0<a<1,求a-的值是⑹已知a2-3a+1=0.求和a-和的值为⑺已知,求①= ②=⑻已知a2-7a+1=0.求、和的值;(七)知二求一例题:已知,求:① ② ③ ④ ⑤ ⑥⑴已知,,则_______⑵若a2+2a=1则(a+1)2=________.⑶若7,a+b=5,则ab= 若7,ab =5,则a+b=⑷若x2+y2=12,xy=4,则(x-y)2=_________.7,a-b=5,则ab=⑸若3,ab =-4,则a-b=⑹已知:a+b=7,ab=-12,求 ①a2+b2= ②a2-ab+b2= ③(a-b)2=⑺已知a+b=3,a3+b3=9,则ab= ,a2+b2= ,a-b=第五讲 乘法公式应用与拓展【基础知识概述】一、基本公式:平方差公式:(a+b)(a-b)=a—b完全平方公式:(a+b)=a+2ab+b(a-b)=a-2ab+b变形公式:(1)(2)(3)(4)二、思想方法:① a、b可以是数,可以是某个式子;② 要有整体观念,即把某一个式子看成a或b,再用公式。
乘法公式的复习(题型扩展2)
乘法公式的复习二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。
例1. 计算:解:原式(二)、连用:连续使用同一公式或连用两个以上公式解题。
例2. 计算:解:原式例3.计算:解:原式三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
例4. 计算:解:原式四、变用: 题目变形后运用公式解题。
例5. 计算:解:原式五、活用: 把公式本身适当变形后再用于解题。
这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:例6.已知,求的值。
解:例7. 计算:解:原式例8. 已知实数x、y、z满足,那么( )解:由两个完全平方公式得:从而三、学习乘法公式应注意的问题(一)注意掌握公式的特征,认清公式中的“两数”、例1、计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b。
解:原式=(-5-2x2)(-5+2x2)=(-5)2-(2x2)2=25-4x4、例2、计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b、(解略) (二)注意为使用公式创造条件例3、计算(2x+y-z+5)(2x-y+z+5)分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式、解:原式=[(2x+5)+(y-z)][(2x+5)-(y-z)]=(2x+5)2-(y-z)2=4x2+20x+25-y+2yz-z2例4、计算(a-1)2(a2+a+1)2(a6+a3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便、解:原式=[(a-1)(a2+a+1)(a6+a3+1)]2=[(a3-1)(a6+a3+1)]2=(a9-1)2=a18-2a9+1例5、计算(2+1)(22+1)(24+1)(28+1)分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简、解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1(三)注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc、可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍例6、计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)=4x2+y2+9+4xy-12x-6y、(四)注意公式的变换,灵活运用变形公式例7、(1)已知x+y=10,x3+y3=100,求x2+y2的值;(2)已知:x+2y=7,xy=6,求(x-2y)2的值。
浙教版七年级下数学辅导六---乘法公式的拓展及常见题型整理
七年级下数学辅导六乘法公式的拓展及常见题型整理.公式拓展:拓展一:a2b2= (a b)2— 2ab a2b2 = (a - b)22ab2 1 1 2 2 1 1 2a ? =(a )-2 a ^(a ) 2a a a a拓展二:2 2 2 2 2 2 (a+b) _(a_b) =4ab (a+b ) +(a _b ) = 2a2+ 2b22 2 2 2(a b) =(a-b) 4ab (a-b) = (a b) -4ab拓展三:a2 b2 c2 = (a b c)2 _ 2ab _ 2ac _ 2bc拓展四:杨辉三角形3 3 2 2 . 3(a b)二a 3a b 3ab b(a b)4二a4 4a'b 6a2b2 4ab3 b4拓展五:立方和与立方差a3■ b3=(a ■ b)(a2 _ ab b2) a3 _ b3 = (a _b)(a2ab ■ b2)二.常见题型:(一)公式倍比a2 +b2例题:已知a b=4,求ab。
2(⑴如果a—b=3, a—c=1,那么(a—b f + (b—c f +(c — af 的值是____________________1 1⑵ x y =1,则—x2 xy y2= ____________2 22 + 2⑶已知口x(x -1) —(x2 - y)二-2,贝V -———-xy = _________2(二)公式组合例题:已知(a+b) 2=7,(a-b) 2=3,求值:(1)a 2+b2 (2)ab⑴若(a—b)2=7, (a+b)2 =13,则a2+b2 = __________________ ,ab = ________⑵设(5a+ 3b) 2= (5a—3b) 2+ A,贝U A= __________⑶若(x —y)2=(x y)2 a,贝U a为____________________⑷如果(x _ y) M =(x y)2,那么M 等于 ______________________2 2⑸已知(a+b) =m (a — b) =n ,贝U ab 等于 ______________⑹若2a -3b 2a 3b 2 N ,则N 的代数式是 ____________________⑺已知(a • b)2 = 7,(a _b)2 =3,求 a 2 b 2ab 的值为 ___________ ⑻已知实数 a,b,c,d 满足 ac bd=3, ad-bc = 5,求(a 2 b 2)(c 2 d 2)(三) 整体代入例1:2 2x - y =24, x ,y=6,求代数式5x 3y 的值。
初中数学整式乘法详细讲解以及拓展
整式乘法1.平方差公式:_____________________________________________两个完全平方公式;______________________________________________2、乘法公式的使用技巧:①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。
例1、 运用乘法公式计算:(1)(-1+3x)(-1-3x); (2)(-2m-1)2②改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显.例2、 运用乘法公式计算:(1)(13a-14b )(-14b -a 3); (2)(x-1/2)(x 2+1/4)(x+1/2)③逆用公式将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a 2-b 2 = (a+b)(a-b),逆用积的乘方公式,得a n b n =(ab)n ,等等,在解题时常会收到事半功倍的效果。
例3、 计算:(1)(x/2+5)2-(x/2-5)2 ; (2)(a-1/2)2(a 2+1/4) 2(a+1/2)2④合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算。
计算:(1)(x+y+1)(1-x-y); (2)(2x+y-z+5)(2x-y+z+5).3.巧用公式做整式乘法一. 先分组,再用公式例1. 计算:()()a b c d a b c d -+-----二. 先提公因式,再用公式例2. 计算:8244x y x y +⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪三. 先分项,再用公式例3. 计算:()()232236x y x y ++-+四. 先整体展开,再用公式例4. 计算:()()a b a b +-+221五. 先补项,再用公式例5. 计算:331313131842+++++()()()()六. 先用公式,再展开例6. 计算:11211311411102222-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪…七. 乘法公式交替用例7. 计算:()()()()x z x xz z x z x xz z +-+-++2222224.中考与乘法公式1.(03年四川中考)多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________(填上你认为正确的一个即可,不必考虑所有的可能情况)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式的拓展及常见题型整理例题:已知b a +=4,求ab b a ++222。
⑴如果1,3=-=-c a b a ,那么()()()222a c c b b a -+-+-的值是⑵1=+y x ,则222121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则= ⑴若()()a b a b -=+=22713,,则a b22+=____________,a b =_________⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a-=++22,则a 为 ⑷如果22)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。
⑻已知实数a,b,c,d 满足53=-=+bc ,ad bdac ,求))((2222d c b a ++例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2(2)ab例2:已知a= 201x +20,b=201x +19,c=201x +21,求a 2+b 2+c 2-ab -bc -ac 的值⑴若499,7322=-=-y x yx ,则y x 3+=⑵若2=+b a ,则b b a422+-= 若65=+b a ,则b ab a 3052++=⑶已知a 2+b 2=6ab 且a >b >0,求 ba ba -+的值为 ⑷已知20042005+=x a,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .(四)步步为营例题:3⨯(22+1)⨯(24+1)⨯(28+1)⨯(162+1)6⨯)17(+⨯(72+1)⨯(74+1)⨯(78+1)+1()()()()()224488a b a b a ba bab-++++1)12()12()12()12()12()12(3216842++⨯+⨯+⨯+⨯+⨯+222222122009201020112012-++-+- ⎪⎭⎫ ⎝⎛-2211⎪⎭⎫ ⎝⎛-2311⎪⎭⎫ ⎝⎛-2411…⎪⎭⎫⎝⎛-2201011(五)分类配方 例题:已知03410622=++-+n m n m ,求n m +的值。
⑴已知:x ²+y ²+z ²-2x+4y-6z+14=0,则x+y+z 的值为 。
⑵已知x ²+y ²-6x-2y+10=0,则11x y+的值为 。
⑶已知x 2+y 2-2x+2y+2=0,求代数式20032004xy +的值为 .⑷若x y x y 2246130++-+=,x ,y 均为有理数,求yx 的值为 。
⑸已知a 2+b 2+6a-4b+13=0,求(a+b)2的值为⑹说理:试说明不论x,y 取什么有理数,多项式x 2+y 2-2x+2y+3的值总是正数.(六)首尾互倒 例1:已知242411112,1;(2);(3)x a a a x a a a +=++-求:()例2:已知a 2-7a +1=0.求a a 1+、221aa +和21⎪⎭⎫ ⎝⎛-a a 的值;⑴已知0132=--x x,求①221x x += ②221x x-=⑵若x 2-219x +1=0,求441xx +的值为 ⑶如果12a a +=,那么221a a+= 2、已知51=+x x ,那么221x x +=_______⑷已知31=-x x ,则221x x +的值是⑸若12a a+= 且0<a<1,求a - a 1的值是⑹已知a 2-3a +1=0.求a a 1+和a - a1和221a a +的值为⑺已知31=+x x ,求①221x x += ②441xx +=⑻已知a 2-7a +1=0.求a a 1+、221aa +和21⎪⎭⎫ ⎝⎛-a a 的值;(七)知二求一例题:已知3,5==+ab b a , 求:①22b a + ②b a - ③22b a - ④abb a + ⑤22b ab a +- ⑥33b a +⑴已知2=+n m ,2-=mn,则=--)1)(1(n m _______⑵若a 2+2a=1则(a+1)2=________. ⑶若22ab +=7,a+b=5,则ab= 若22a b +=7,ab =5,则a+b=⑷若x 2+y 2=12,xy=4,则(x-y)2=_________.22ab +=7,a-b=5,则ab= ⑸若22a b +=3,ab =-4,则a-b=⑹已知:a+b=7,ab=-12,求 ①a 2+b 2= ②a 2-ab+b 2= ③(a-b)2= ⑺已知a +b=3,a 3+b 3=9,则ab= ,a 2+b 2= ,a -b=第五讲 乘法公式应用与拓展【基础知识概述】一、基本公式:平方差公式:(a+b)(a-b)=a 2—b2完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2变形公式:(1)()2222ab a b ab +=+-(2)()2222a b a b ab +=-+(3) ()()222222a b a b a b ++-=+ (4)()()224a b a b ab +--=二、思想方法:① a 、b 可以是数,可以是某个式子;② 要有整体观念,即把某一个式子看成a 或b ,再用公式。
③ 注意公式的逆用。
④ 2a ≥0。
⑤ 用公式的变形形式。
三、典型问题分析:1、顺用公式: 例1、计算下列各题:①()()()()()224488a b a b a b a b a b -++++② 3(22+1)(24+1)(28+1)(162+1)+12、逆用公式:例2. ①1949²-1950²+1951²-1952²+……+2011²-2012²②⎪⎭⎫ ⎝⎛-2211⎪⎭⎫ ⎝⎛-2311⎪⎭⎫ ⎝⎛-2411……⎪⎭⎫ ⎝⎛-2201011③ 1.2345²+0.7655²+2.469×0.7655【变式练习】填空题:①26aa ++__= 2__a ⎛⎫⎪⎝⎭+ ②241x ++__=( 2)6.x 2+ax+121是一个完全平方式,则a 为( ) A .22 B .-22 C .±22 D .03、配方法:例3.已知:x ²+y ²+4x-2y+5=0,求x+y 的值。
【变式练习】①已知x ²+y ²-6x-2y+10=0,求11x y+的值。
②已知:x ²+y ²+z ²-2x+4y-6z+14=0,求:x+y+z 的值。
③当x = 时,代数式2x 取得最小值,这个最小值是当x = 时,代数式24x +取得最小值,这个最小值是 当x = 时,代数式()234x -+取得最小值,这个最小值是 当x= 时,代数式243x x --取得最小值,这个最小值是对于2243x x ---呢?4、变形用公式: 例5. 若()()()240x z x y y z ----=,试探求x z +与y 的关系。
例6.化简:()()22a b c d a b c d +++++--例7. 如果22223()()ab c a b c ++=++,请你猜想:a 、b 、c 之间的关系,并说明你的猜想。
完全平方公式变形的应用练习题 一:1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
二:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x-=,求221x x +的值。
8、0132=++x x ,求(1)221x x +(2)441x x+9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
10、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()ab c a b c ++=++,请说明该三角形是什么三角形?B 卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.4、探究拓展与应用(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值.“整体思想”在整式运算中的运用“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考: 1、当代数式532++x x的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。