环境工程原理课程设计列管式换热器的设计
环境工程原理课程设计任务书
环境工程原理课程设计任务书一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。
设计一列管式换热器满足上述生产需要。
三、具体要求本设计要求完成以下设计及计算:1、换热器工艺设计及计算:包括物料衡算、能量衡算、工艺参数选定及其计算;2、换热器结构设计:包括换热设备的主要结构设计及其尺寸的确定等;3、绘制换热器装配图:包括设备的各类尺寸、技术特性表等,用1号图纸绘制;4、编写设计说明书:作为整个设计工作的书面总结,说明书应简练、整洁、文字准确。
内容应包括:封面、目录、设计任务书、概述或引言、设计方案的说明和论证、设计计算与说明、对设计中有关问题的分析讨论、设计结果汇总(主要设备尺寸、各物料量和状态、能耗、主要操作参数以及附属设备的规格、型号等)、参考文献目录、总结及感想等。
四、主要技术路线提示1、查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2、根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3、根据换热器工艺设计及计算的结果,进行换热器结构设计;4、以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5、编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
五、进度安排1、搜集资料、阅读教材,拟定设计方案0.3周2、换热器工艺设计及计算0.5周3、换热器结构设计0.4周4、绘制换热器装配图0.4周5、编写设计说明书0.4周六、完成后应上交的材料1、设计说明书1份2、换热器装配图1张七、推荐参考资料1、《化工原理》上册天津大学出版社2、《化工原理》化学工业出版社3、《化工设备机械基础》高等教育出版社4、《换热器设计》上海科技出版社5、《压力容器手册》劳动人事出版社6、《钢制石油化工压力容器手册》化学工业出版社7、《化工管路手册》化学工业出版社环境工程原理课程设计任务书二一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。
列管式换热器课程设计报告书
一、设计题目:列管式换热器设计二、设计任务及操作条件1、设计任务处理能力:3000吨/日设备型式:固定管板式换热器2、操作条件(1)苯:入口温度80.1℃出口温度40℃(2)冷却介质:循环水入口温度25℃出口温度35℃(3)允许压降:管程不大于30kPa壳程不大于30kPa三、设计内容(一)、概述目前板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。
板式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。
设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。
完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。
(2) 占地面积小重量轻除设备本身体积外, 不需要预留额外的检修和安装空间。
换热所用板片的厚度仅为0. 6~0. 8mm。
同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。
(3) 污垢系数低流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。
(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。
(5) 产品适用面广设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。
各类材料的换热板片也可适应工况对腐蚀性的要求。
当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。
同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。
环境工程原理课程设计列管式换热器在牛奶冷却过程中的设计
书列管式换热器在牛奶冷却过程中的设计目录一、绪论1、换热器的设计意义与重要性2、灭菌牛奶冷却换热器计算过程中的主要参数说明二、换热器的原理1、列管式换热器的设计原理2、列管式换热器的设计任务三、设计计算1、确定设计方案2、确定物性数据3、计算总传热系数4、计算传热面积5、工艺结构尺寸6、换热器核算(1)热量核算(2)换热器内流体的流动阻力(3)换热器主要结构尺寸和计算结果总表四、参考文献一、绪论1、换热器的设计意义及其重要性。
换热器是各种工业部门最常见的通用热工设备,广泛应用于化工,能源,机械,交通,制冷,空调及航空航天等各个领域。
换热器不仅是保证某些工艺流程和条件而广泛使用的设备,也是开发利用工业二次能源,实现余热回收和节能的主要设备。
在食品工业中的加热,冷却,蒸发和干燥等的单元操作中,经常见到食品物料与加热或冷却介质间的热交换。
各种换热器的作用,工作原理,结构以及其中工作的流体类型,数量等差别很大,而换热器的工作性能的优劣直接影响着整个装置或系统综合性能的好坏,因此换热器的合理设计极其重要。
目前国内外在过程工业生产中所用的换热器设备中,列管式换热器仍占主导地位,虽然它在换热效率,结构紧凑性和金属材料消耗等方面,不如其他新型换热设备,但她具有结构坚固,操作弹性大,适应性强,可靠性高,选用范围广,处理能力大,能承受高温和高压等特点,所以在工程中仍得到广泛应用。
2、灭菌牛奶冷却换热器计算过程中的主要参数说明T---牛奶的定性温度,℃t---冷盐水的定性温度,℃---牛奶的密度,kg/m3---牛奶的定压比热容,kJ/(kg·℃)---牛奶的导热系数,W/(m·℃)---牛奶的粘度,Pa·s---冷盐水的密度,kg/m3---冷盐水的定压比热容,kJ/(kg·℃)---冷盐水的导热系数,W/(m·℃)---冷盐水的粘度,Pa·sQ----热流量,kWK ----总传热系数,W/(㎡·℃)m t ∆----进行换热的两流体之间的平均温度差,℃ i W ----冷却水用量,kg/s e R ----雷诺准数 r P ---普兰特准数i α----管程传热系数,W/(㎡·℃) 0α----壳程传热系数,W/si R ----冷盐水污垢热阻,㎡·℃/W;o R s ----牛奶污垢热阻,㎡·℃/Wλ----管壁的导热系数,W/(㎡·℃) s n ---传热管数,(根) L ---传热管长度,m P N ---换热器管程数 N ---传热管总根数 ϕ---温度校正系数 c n ---横过管束中心线的管数 t ---管心距,mm D ---壳体内径,mmh ---弓形折流板圆缺高度,mm B ---折流板间距,mm B N ---折流板数 d ---接管内径,mm e d ---当量直径,m o u ---壳程流体流速,m/s i u ---管程流体流速,m/s S ---传热面积,2mp S ---换热器实际传热面积,2m H ---换热器面积裕度 ∑∆i P ---管程压降,Pa 1P ∆---管内摩擦压降,Pa 2P ∆---管程的回弯压降,Pa s N ---壳程串联数t F ---管程压降的结垢修正系数 ∑∆0P ---壳程压降,Pa '1P ∆---流体流经管束的阻力,Pa'2P ∆---流体流过折流板缺口的阻力,Pa二、换热器的设计原理1、列管式换热器的设计原理列管式换热器主要由壳体、管束、管板和封头等部分组成,壳体内部装有平行管束,管束两端固定在管板上。
列管式换热器的课程设计
使用最为广泛的列管式换热器把管子按一定方式固定在管板上, 而管板则安装在壳体内。因此,这种换热器也称为管壳式换热器。常 见的列管换热器主要有固定管板式、带膨胀节的固定管板式、浮头式 和 U 形管式等几种类型。 1.2 换热器类型
根据列管式换热器的结构特点,主要分为以下四种。以下根据本 次的设计要求,介绍几种常见的列管式换热器。
b U 型管换热器 U 型管换热器结构特点是只有一块管板,换 热管为 U 型,管子的两端固定在同一块管板上,其管程至少为两程。 管束可以自由伸缩,当壳体与 U 型环热管由温差时,不会产生温差 应力。U 型管式换热器的优点是结构简单,只有一块管板,密封面少, 运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难; 哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程 管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。 此外,其造价比管定管板式高 10%左右。
换热管管板上的排列方式有正方形直列、正方形错列、三角形直 列、三角形错列和同心圆排列。
正三角形排列结构紧凑;正方形排列便于机械清洗。对于多管程 换热器,常采用组合排列方式。每程内都采用正三角形排列,而在各 程之间为了便于安装隔板,采用正方形排列方式。
管板的作用是将受热管束连接在一起,并将管程和壳程的流体分 隔开来。管板与管子的连接可胀接或焊接。 2.6 壳程结构
在壳程管束中,一般都装有横向折流板,用以引导流体横向流过 管束,增加流体速度,以增强传热;同时起支撑管束、防止管束振动 和管子弯曲的作用。 折流板的型式有圆缺型、环盘型和孔流型等。
圆缺形折流板又称弓形折流板,是常用的折流板,有水平圆缺和 垂直圆缺两种。切缺率(切掉圆弧的高度与壳内径之比)通常为 20%~ 50%。垂直圆缺用于水平冷凝器、水平再沸器和含有悬浮固体粒子流 体用的水平热交换器等。垂直圆缺时,不凝气不能在折流板顶部积存, 而在冷凝器中,排水也不能在折流板底部积存。弓形折流板有单弓形 和双弓形,双弓形折流板多用于大直径的换热器中。
列管式换热器课程设计说明
设计题目安阳工学院课程设计说明书课程名称:化工原理课程设计设计题目:列管式换热器院系:化学与环境工程学院专业班级:高分子材料与工程10-1班2012年11月16日设计要求:(1) 处理能力:5X 105t/a热水(2)操作条件:①热水:入口温度80C ,出口温度60C.②冷却介质:循环水,入口温度30C,出口温度40C .③允许压降:不大于105Pa.④每年按300天计算,每天24小时连续运行•学生应完成的工作:(1) 根据换热任务和有关要求确认设计方案;(2) 初步确认换热器的结构和尺寸;(3) 核算换热器的传热面积和流体阻力;(4) 确认换热器的工艺结构。
参考文献阅读:《化工容器及设备》、《化工原理》、《化工容器及设备》、《化工单元过程及设备课程设计》、《热交换器设计手册》、《换热原理及计算》工作计划:本次课程设计两周时间,第一周主要对换热器全面了解后进行换热器特性参数的有关计算,第二周按照自己的计算的有关参数进行换热器结构的绘制工作。
任务下达日期:2012年11月05日任务完成日期:2012年11月16日指导老师(签名):学生(签字)列管式换热器设计[摘要]通过对列管式换热器的设计,首先要确定设计的方案,选择合.6.6 适的计算步骤。
查得计算中用到的各种数据,对该换热器的传热系数 传热面积 工艺结构尺寸等等要进行核算,与要设计的目标进行对照 是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和 参考,来完成本次课程设计。
[关键字]换热器标准方案核算结构尺寸一 •概述•方案的设计与拟定三•设计计算 .............................................. .93.1确定设计方案 ..................................... 9.3.1.1选择换热器的类型......................... (9)3.1.2流动空间及流速的测定...................... (9)3.2确定物性数据 (9)3.3计算总传热系数 .................................. .103.3.1 热流量..................................... ..103.3.2平均传热温差.............................. ..113.3.3冷却水用量 (11)3.4计算传热面积 ................................. ..113.5工艺结构尺寸 .................................... .123.5.1管径与管内流速.............................. ..123.5.2管程数与传热管数 (12)3.5.3传热管排列和分程方法........................ ..123.5.4壳体内径 (13)3.5.5 折流板 (13)3.5.6 接管 ...................................... ..133.6换热器核算.................................... .143.6.1热量核算................................... ..143.6.1.1壳程对流传热系数..................... .143.6.1.2管程对流传热系数..................... ..15163.6.1.3 传热系数 K ..................................................... ..15361.4传热面积S 3.6.2换热器内流体的流动阻力 (16)3.6.2.1管程流动阻力 .......................... .163.6.2.2壳程阻力 ............................... .713・6・2・3换热器的主要结构尺寸和计算结果 ..... ..18四. 设计小结 ............................................ .19五. ........................................................ 心得收获 (20)六. 参考文献 ......................................... ・・21 一.概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
列管式换热器设计
列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
列管式换热器课程设计
列管式换热器课程设计第1章⼯艺流程1.1 ARGG装置ARGG装置包括反应-再⽣、分馏、吸收塔、⽓压机、能量回收及余热锅炉、产品精制⼏部分租成,ARGG⼯艺以常压渣油等重油质油为原料,采⽤重油转化和抗⾦属能⼒强,选择性好的ARG催化剂,以⽣产富含丙烯、异丁烯、异丁烷的液化⽓、并⽣产⾼⾟烷只汽油。
1.2⼯艺原理1.2.1催化裂化部分催化裂化是炼油⼯业中最重要的⼆次加⼯过程,是重油轻质化的重要⼿段。
它是使原料油在适宜的温度、压⼒和催化剂存在的条件下,进⾏分解、异构化、氢转移、芳构化、缩和等⼀系列化学反应,原料油转化为⽓体、汽油、柴油等主要产品及油浆、焦炭的⽣产过程。
催化裂化的原料油来源⼴泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。
随着⽯油资源的短缺和原油的⽇趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚⾄是全减渣。
在硫含量较⾼时,则需⽤加氢脱硫装置进⾏处理,提供催化原料。
催化裂化过程具有轻质油收率⾼、汽油⾟烷值较⾼、⽓体产品中烯烃含量⾼等特点。
催化裂化⽣产过程的主要产品是⽓体、汽油和柴油,其中⽓体产品包括⼲⽓和液化⽯油⽓,⼲⽓作为本装置燃料⽓烧掉,液化⽯油⽓是宝贵的⽯油化⼯原料和民⽤燃料。
催化裂化的⽣产过程包括以下⼏个部分:反应再⽣部分:其主要任务是完成原料油的转化。
原料油通过反应器与催化剂接粗并反应,不断输出反应物,催化剂则在反应器和再⽣器之间不断循环,在再⽣器中通⼊空⽓烧去催化剂上的积灰,恢复催化剂的活性,使催化剂能够循环使⽤。
烧焦放出的热量⼜以催化剂为载体,不断带回反应器,供给反应所需的热量,过剩的热量由专门的取热设施取出并加以利⽤。
分馏部分:主要任务根据反应油⽓中各组分沸点的不同,将他们分离成富⽓、粗油⽓、轻柴油、回炼油、油浆,并保证油⽓⼲点、轻柴油的凝固点和闪点合格。
吸收稳定部分:利⽤各组分之间在液体中溶解度的不同把富⽓和粗油⽓分离成⼲⽓、液化⽓、稳定汽油。
列管式换热器的设计
物性数据ρ2=879 kg/m3
CP2=1.813 kJ/kg·K
μ2=4.4×10-4N·S/m2
λ2= =1.384×10-4kW/m·K
2、水蒸汽(下标1表示)的物性数据
定性温度 蒸汽压力200Kpa下的沸点为Ts=119.6℃
物性数据ρ1=1.1273 kg/m3
γ1=2206.4 kJ/kg
蒸汽体积流量V=Gν=0.564×0.903=0.510 m3/s
取蒸汽流速u’=20 m/s
=0.180m=180mm
选用无缝热轧钢管(YB231-64)Φ194×6mm,长200mm。
3、冷凝水排出口
选用水煤气管 即Φ42.25×3.25mm,长100mm。
(七)、校核流体压力降
1、管程总压力降
1、列管式换热器是目前化工生产中应用最广泛的一种换热器,它的结构简单、坚固、容易制造、材料范围广泛,处理能力可以很大,适应性强。但在传热效率、设备紧凑性、单位传热面积的金属消耗量等方面还稍次于其他板式换热器。此次设计所采用的固定管板式换热器是其中最简单的一种。
2、由于水蒸汽的对流传热系数比苯侧的对流传热系数大得多,根据壁温总是趋近于对流传热系数较大的一侧流体的温度实际情况,壁温与流体温度相差无几,因此本次设计不采用热补偿装置。
实际管数n=NT-NTb-n3=169-23=146根,每程73根排列管
实际流速
m/s
与初假设苯的流速u’2=0.55m/s相近,可行。
3、换热器长径比
符合要求( )
(五)、校核计算
1、校核总传热系数K值
(1)管内对流传热系数α2
W/m2·℃
(2)管外对流传热系数α1
式中:n为水平管束垂直列上的管数,n=7;
化工原理课程设计---列管式换热器的设计
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
(完整版)列管式换热器设计
第一章列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。
列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。
目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。
例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。
1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。
为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。
(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。
这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。
其缺点为结构复杂,造价高。
(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。
但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。
列管式换热器课程设计
列管式换热器课程设计一、课程目标知识目标:1. 学生能理解并掌握列管式换热器的工作原理及其在工业中的应用。
2. 学生能够描述列管式换热器的结构特点,并解释其设计参数对换热效率的影响。
3. 学生能够运用基本的物理和数学原理分析换热器内的热量传递过程。
技能目标:1. 学生能够运用所学知识,设计简单的列管式换热器,并进行基本的性能分析。
2. 学生能够通过计算软件或手动计算,完成换热器换热面积的计算。
3. 学生能够运用图表和数据分析方法,评价不同设计参数对换热性能的影响。
情感态度价值观目标:1. 培养学生对能源转换和利用中换热技术的兴趣,激发其探索热能工程领域的热情。
2. 通过团队合作完成换热器的设计,增强学生的团队合作意识和解决问题的能力。
3. 增进学生对工业节能和环境保护意识,培养其负责任的工程伦理观。
本课程针对高年级工程技术类专业的学生,结合学科特点,课程性质偏重于应用实践。
学生应具备一定的物理、数学基础及工程制图能力。
教学要求注重理论联系实际,通过课程学习,使学生不仅掌握换热器的基础知识,还能通过实际操作提高解决实际工程问题的能力,为未来从事相关领域工作打下坚实基础。
二、教学内容1. 列管式换热器基础理论- 换热器概述:定义、分类及在工业中的应用。
- 工作原理:热量传递的基本方式,流体流动与传热的关系。
2. 列管式换热器结构及设计参数- 结构特点:管壳式换热器的构造,管程与壳程的设计。
- 设计参数:影响换热性能的主要参数,包括换热面积、流体流速、温差等。
3. 换热器内的热量传递计算- 热量传递方程:导热、对流和辐射的基本方程。
- 换热系数:不同流体和工况下的换热系数计算。
4. 列管式换热器的设计与性能分析- 设计步骤:换热器设计的基本流程,包括换热面积、管径、管长等计算。
- 性能分析:运用图表和数据分析方法,评价设计参数对换热性能的影响。
5. 案例分析与实操练习- 案例分析:实际工程中的换热器设计案例,分析其设计原理和优化方法。
课程设计,列管式换热器设计讲解学习
课程设计,列管式换热器设计设计(论文)题目:列管式换热器的设计目录1 前言 (3)2 设计任务及操作条件 (3)3 列管式换热器的工艺设计 (3)3.1换热器设计方案的确定 (3)3.2 物性数据的确定 (4)3.3 平均温差的计算 (4)3.4 传热总系数K的确定 (4)3.5 传热面积A的确定 (6)3.6 主要工艺尺寸的确定 (6)3.6.1 管子的选用 (6)3.6.2 管子总数n和管程数Np的确定 (6)及壳程数Ns (7)3.6.3 校核平均温度差 tm3.6.4 传热管排列和分程方法 (7)3.6.5 壳体内径 (7)3.6.6 折流板 (7)3.7 核算换热器传热能力及流体阻力 (7)3.7.1 热量核算 (7)3.7.2 换热器压降校核 (9)4 列管式换热器机械设计 (10)4.1 壳体壁厚的计算 (10)4.2 换热器封头选择 (10)4.3 其他部件 (11)5 课程设计评价 (11)5.1 可靠性评价 (11)5.2 个人感想 (11)6 参考文献 (11)附表换热器主要结构尺寸和计算结果 (12)1 前言换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
列管式换热器工业上使用最广泛的一种换热设备。
其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。
列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。
设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。
列管式换热器-课程设计
列管式换热器-课程设计一、概述列管式换热器是一种将多个平行管道嵌入到圆柱形壳体中、同时将流体分别流过内、外两侧实现热量传递的设备。
本次课程设计将要探讨的是该设备的设计过程。
二、设计过程1. 确定设计参数设计前需要先确定所需的设计参数,如换热器的设计热负荷、流量、压力等,这些参数将决定换热器的尺寸和布局,为后续设计提供基础。
2. 换热器类型选择根据设计参数、使用场景、材料成本等因素选择适合的换热器类型,如单相流、双相流、冷凝器、蒸发器等。
3. 确定材料和尺寸选择适合的材料和尺寸以满足设计参数,同时考虑生产和运输的成本和实际情况。
4. 确定管束参数确定管束长度、管束密度、管道直径和布局等参数,保证管束的压力和流速符合设计要求,并达到最佳热传导效果。
5. 热传导计算进行热传导计算,以确定管束长度和直径,根据流动状态和温度场计算出换热系数、平均温差和热效率等参数。
6. 设计壳体结构设计壳体的结构和尺寸,确定支撑方式和绝热方式,同时考虑安全和易于维护的因素。
7. 流体力学分析进行流体力学分析,确定流体在管道中的流动状态,以保证衬里的材料和厚度设计得足够坚固,以避免漏泄和磨损。
8. 设计精度分析进行精度分析和优化,以确定设备的运行效率和稳定性,并满足设计和生产的要求。
9. 制造和安装根据设计图纸制造和安装换热器,并进行预试运行和调试,最终达到设计要求。
三、总结以上是列管式换热器的设计过程,该过程需要深入掌握流体力学、热传导学、结构力学等知识,同时也需要掌握计算机辅助设计软件的使用,以提高效率和质量。
设计合理的列管式换热器能够提高生产效率,降低能耗,并为工业生产的可持续发展提供支持。
列管式换热器课程设计
列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。
2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。
3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。
技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。
2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。
3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。
情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。
2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。
3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。
本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。
课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。
在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。
通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。
二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。
教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。
教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。
教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。
列管式换热器的设计任务书(三)
环境工程原理课程设计任务书(三)一、课程设计的题目列管式换热器的设计二、设计任务及条件某生产过程的流程如下图所示。
反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。
已知混合气体的流量为223000kg/h, 压力为6.5MPa,循环冷却水的压力为0.4 MPa,循环冷却水入口温度29℃,出口温度38℃,试设计一台列管式换热器,完成该生产任务。
混合气体在85℃下的有关物性数据如下(来自生产中的实测值):密度ρ=90kg/m3定压比热容 C p=3.297KJ/kg·℃热导率λ=0.0279W/m·℃粘度μ=1.5×10-5Pa·S三、设计内容1.根据生产任务的要求确定设计方案(1)换热器类型的选择(2)换热器内流体流入空间的选择2.化工计算(1)传热面积的计算(2)管数、管程数及管子排列,管间距的确定(3)壳体直径及壳体厚度的确定3.换热器尺寸的确定及有关构件的选择4.换热器流体阻力的计算5.绘制换热器的装配图:图纸规格均为2号图;图面布置均匀;符合制图规范要求。
6.编写设计说明书:设计说明书按设计程序编写,报告格式见附录A。
设计说明书要求文字简明、通顺、内容正确完整,书写工整、装订成册。
四、设计要求1.在确定设计方案时既要考虑到工艺,操作的要求又要兼顾经济和安全上的要求;2.在化工计算时要求掌握传热的基本理论,有关公式,要知道查哪些资料,怎样使用算图以及怎样选择经验公式,并进行优化设计;3.要求根据国家有关标准来选择换热器的构件;4.要求必须掌握固定管板式或浮头式列管换热器的设计。
五、主要参考书目1.化工原理(上、下册),夏青,陈常贵主编,天津大学出版社,2005;2.化工原理课程设计,贾绍义,柴诚敬主编,天津大学出版社,2002;3.化工原理(上、下册),谭天恩,麦本熙,丁惠华编著,化工出版社,1998;4.物性数据的计算与图表(化工原理课程设计参考资料),王莲琴编,化工出版社,1992;5.化工工艺设计手册,上、下册,国家医药管理局上海医药设计院编,化工出版社,1986;6.化工过程及设备设计,华南理工大学,化学工业出版社,1986;7.化学工程手册,化学工业出版社,1982。
环境工程原理列管式换热器课程设计.
Yibin University环境工程原理课程设计题目列管式换热器设计专业资源环境与城乡规划管理学生姓名年级指导教师化学与化工学院任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件原料温度石油: 入口96℃,出口34℃ 地点:兰州 石油物性数据()()33815/3.0102.2/0.128/c c o pc oc kg m Pa sc kJ kg CW m C ρμλ-==⨯⋅=⋅=⋅煤油: 入口132℃,出口47℃ 地点: 宜宾 煤油物性数据()()C m W Ckg kJ c sPa m kg o c opc c c ⋅=⋅=⋅⨯==-/14.0/22.21005.7/82543λμρ硝基苯:入口124℃,出口50℃ 地点:广州 硝基苯物性数据()()341154/9.8101.558/0.129/c c o pc ockg m Pa sc kJ kg CW m C ρμλ-==⨯⋅=⋅=⋅允许压降:不大于0.1MPa 冷却介质任选五、设计内容1、换热器概述换热器是化工、炼油工业中普遍应用的典型的工艺设备。
在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。
换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。
因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。
在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。
换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。
其中间壁式换热器应用最广泛,列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。
列管式换热器课程设计
2、教Байду номын сангаас内容
1.列管式换热器的类型及适用场合;
2.热力学第一定律和第二定律在列管式换热器中的应用;
3.列管式换热器中常见流动及换热问题的解决方法;
4.列管式换热器设计过程中需考虑的安全、经济和环保因素;
5.结合实际案例,分析列管式换热器的设计过程及注意事项。
3、教学内容
1.列管式换热器内流体流动的压降与流速的关系;
2.传热过程中的对数平均温差计算及应用;
3.列管式换热器设计中常用的换热系数关联式和选取方法;
4.列管式换热器的设计软件应用及模拟分析;
5.实验教学:列管式换热器性能测试实验,包括数据采集、处理与分析。
4、教学内容
1.列管式换热器的制造工艺及其对换热性能的影响;
2.列管式换热器的安装、维护及常见故障排除方法;
3.列管式换热器在工业应用中的节能技术与案例分析;
4.列管式换热器设计方案的评估与优化,包括成本分析、效能比较;
5.列管式换热器课程设计报告撰写要求及评价标准。
5、教学内容
1.列管式换热器在环保和可持续发展方面的考虑;
2.列管式换热器设计中的创新思维与案例分析;
列管式换热器课程设计
一、教学内容
本章节内容源自《热工学》教材第四章“换热器”,重点探讨列管式换热器的课程设计。内容包括:
1.列管式换热器的基本结构和工作原理;
2.列管式换热器的设计计算方法,包括换热面积、流体流动及传热系数的计算;
3.列管式换热器中壳程和管程的流动与换热特点;
4.列管式换热器的选材和结构设计;
3.学生分组讨论:探讨不同行业对列管式换热器性能要求及设计差异;
课程设计—列管式换热器
课程设计—列管式换热器课程设计设计题目:列管式换热器专业班级:应化1301班姓名:王伟学号: U201310289指导老师:王华军时间: 2016年8月目录1.课程设计任务书 (5)1.1 设计题目 (5)1.2 设计任务及操作条件 (5)1.3 技术参数 (5)2.设计方案简介 (5)3.课程设计说明书 (6)3.1确定设计方案 (6)3.1.1确定自来水进出口温度 (6)3.1.2确定换热器类型…………………………………63.1.3流程安排 (7)3.2确定物性数据 (7)3.3计算传热系数 (8)3.3.1热流量 (8)3.3.2 平均传热温度差 (8)3.3.3 传热面积 (8)3.3.4 冷却水用量 (8)4.工艺结构尺寸 (9)4.1 管径和管内流速 (9)4.2 管程数和传热管数 (9)4.3 传热管排列和分程方法 (9)4.4 壳体内径 (10)4.5 折流板 (10)4.6 接管 (11)4.6.1 壳程流体进出管时接管 (11)4.6.2 管程流体进出管时接管 (11)4.7 壁厚的确定和封头 (12)4.7.1 壁厚 (12)4.7.2 椭圆形封头 (12)4.8 管板 (12)4.8.1 管板的结构尺寸 (13)4.8.2 管板尺寸 (13)5.换热器核算 (13)5.1热流量衡算……………………………………………………135.1.1壳程表面传热系数………………………………………135.1.2 管程对流传热系数 (14)5.1.3 传热系数K………………………………………………155.1.4 传热面积裕度 (16)5.2 壁温衡算 (16)5.3 流动阻力衡算 (17)5.3.1 管程流动阻力衡算 (17)5.3.2 壳程流动阻力衡算 (17)6.设计结果汇总 (19)7.设计评述 (20)8.致谢 (21)9.工艺流程图 (22)10.符号说明 (22)11.参考资料 (24)§ 1.《化工原理课程设计》任务书1.1设计题目煤油冷却器设计1.2设计任务及操作条件设备型式:列管式换热器处理能力:15+0.1*1*89=23.9 万吨/年煤油操作条件:(1)煤油:入口温度140℃,出口40℃;(2)冷却介质:自来水,入口和出口温度由条件衡算;(3)允许压降:不大于105Pa(4)每年按360天算,每天运行24小时。
列管式换热器课程设计(含有CAD格式流程图和换热器图)
检查并调整图纸中的线条、颜色、字体等细节,确保图纸清晰易读, 符合规范要求。
关键节点参数设置与调整
设备参数设置
根据换热器、泵等设备的性能参 数,设置相应的CAD图纸中的属 性,如设备尺寸、处理能力、扬 程等。
管道参数调整
根据工艺流程需求和管道设计规 范,调整管道的直径、壁厚、材 质等参数,确保管道系统的安全 性和经济性。
阀门与控制点设置
在关键位置设置阀门以控制物料 流动,并根据控制需求设置相应 的控制点,如温度传感器、压力 传感器等。
流程图在课程设计中的作用
明确工艺流程
通过流程图可以清晰地展示物料在换热器中的流动过程, 帮助学生理解工艺流程和设备的相互关系。
指导设备布局与管道设计
流程图可以作为设备布局和管道设计的依据,有助于优化 设备布局和减少管道长度,提高系统的效率。
方式和换热器图纸中的局部结构。
建议措施
03
加强CAD制图技能的训练,提高图纸的准确性和规范
性。
经验教训分享与未来展望
经验教训
在课程设计过程中,应注重团队协作,合理分配任务,及时沟通交流,确保设计进度和 质量。
未来展望
随着CAD技术的不断发展,应积极探索新的设计理念和方法,提高课程设计的创新性 和实用性。同时,鼓励学生参与实际工程项目,将理论知识与实践相结合,提升综合素
流程图绘制步骤及规范
确定流程图的类型和范围
根据课程设计需求,明确要绘制的流程图类型(如工艺流程图、控制 流程图等)和所涵盖的范围。
绘制主要设备和管道
使用CAD软件中的绘图工具,按照比例和规范要求,绘制出换热器、 泵、阀门等主要设备以及连接它们的管道。
添加流向箭头和标注
化工原理课程设计列管式换热器设计
化工原理课程设计列管式换热器设计化工原理课程设计:列管式换热器设计换热器设计是化工工程中重要的一部分,其中列管式换热器是应用最为广泛且效果最好的一种换热器。
本文将介绍列管式换热器的基本原理和设计方法。
一、列管式换热器的基本原理列管式换热器是利用管内流体与管外流体之间的换热来完成加热或冷却的过程。
它由分别流动在管内和管外的两种不同的流体所组成,通过管壁进行热交换的装置。
列管式换热器可以分为三种形式:固定管板式、浮动管板式和无管板式。
固定管板式在热交换管束的入口和出口处,设有固定管板将管束分成两个区域,流体在这两个区域之间来回流动。
浮动管板式的管板装置可以向前、后或上、下运动,它可以不受流体压力之影响而可自行调节进、出口流通面积,并自动进行清洗。
无管板式换热器的壳内装有多层盘管结构,流体在壳内和盘管内循环流动。
二、列管式换热器的设计方法列管式换热器的设计方法主要包括壳体布置图的绘制、管程计算、管子长度和管板设计等。
1、壳体布置图的绘制壳体布置图是指将列管式换热器的单元示意图或设计结构图用图纸或软件绘制出来,是计算和设计的基础。
壳体布置图绘制需要考虑以下因素:(1)流体流向的选择(2)流体进出口的位置和数量(3)设备的布置和占地面积(4)流体阻力和压降的计算2、管程计算管程计算是指计算流体在管内的速度和所需管子直径的大小。
在进行管程计算时,需要考虑以下因素:(1)流体的流量和温度(2)管子的材质和直径(3)管子的长度和数量(4)流体的比热和密度(5)壳体内的换热面积3、管子长度的确定管子长度的确定需要考虑以下因素:(1)对流和传热的影响(2)流体的温度和流速(3)管子的外径和厚度(4)管子的材质和强度4、管板设计管板的设计需要考虑以下因素:(1)管板的开孔位置和大小(2)管板的强度和材质(3)管线和管板间的距离(4)管板的投影面积(5)管板的流阻系数三、总结列管式换热器是一种应用广泛的换热器,通过管内流体与管外流体之间的热交换来完成加热或冷却的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yibin University环境工程原理课程设计题目列管式换热器的设计专业资环学生姓名陈皓年级化工12级4班指导教师徐慎颖化学与化工学院2014.12任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件煤油 16万吨/年 4*4万吨/年 121.2吨/天原料温度煤油:入口132℃,出口47℃地点:宜宾煤油物性数据允许压降:不大于0.1MPa冷却介质任选五、设计内容1、概述2、设计方案的选择3、确定物理性质数据4、设计计算计算总传热系数计算传热面积需考虑设备与环境之间热交换,保温等条件5、主要设备工艺尺寸设计管径尺寸和管内流速的确定传热面积、管程数、管数和壳程数的确定接管尺寸的确定6、设计结果汇总7、设计心得目录任务书 ........................................................................................................ 错误!未定义书签。
概述与设计方案简介................................................................................ 错误!未定义书签。
一、换热器的类型 ................................................................................ 错误!未定义书签。
二、换热器 ............................................................................................ 错误!未定义书签。
三、换热器类型 .................................................................................... 错误!未定义书签。
1.固定管板式换热器......................................................................... 错误!未定义书签。
2.U型管换热器 ................................................................................. 错误!未定义书签。
3.浮头式换热器................................................................................. 错误!未定义书签。
4.填料函式换热器............................................................................. 错误!未定义书签。
四、换热器类型的选择 ........................................................................ 错误!未定义书签。
五、流径的选择 .................................................................................... 错误!未定义书签。
六、材质的选择 .................................................................................... 错误!未定义书签。
七、管程结构 ........................................................................................ 错误!未定义书签。
设计计算.................................................................................................... 错误!未定义书签。
一、确定设计方案 ................................................................................ 错误!未定义书签。
1.选择换热器的类型......................................................................... 错误!未定义书签。
2.流动空间及流速的确定................................................................. 错误!未定义书签。
二、确定物性数据 ................................................................................ 错误!未定义书签。
三、计算总传热系数 ............................................................................ 错误!未定义书签。
1.热流量............................................................................................. 错误!未定义书签。
2.平均传热温差:............................................................................. 错误!未定义书签。
3.冷却水用量..................................................................................... 错误!未定义书签。
4.总传热系数K.................................................................................. 错误!未定义书签。
四、计算换热面积 ................................................................................ 错误!未定义书签。
五.工艺结构尺寸 .................................................................................. 错误!未定义书签。
1.管径和管内流速............................................................................. 错误!未定义书签。
2.管程和传热管数............................................................................. 错误!未定义书签。
3.平均传热温差校正及壳程数......................................................... 错误!未定义书签。
4.传热管的排列和分程方法............................................................. 错误!未定义书签。
5.壳体内径......................................................................................... 错误!未定义书签。
6.折流板............................................................................................. 错误!未定义书签。
7.接管................................................................................................. 错误!未定义书签。
六、换热器核算 .................................................................................... 错误!未定义书签。
1.热量核算......................................................................................... 错误!未定义书签。
1.1壳程对流传热系数...................................................................... 错误!未定义书签。
1.3总传热系数K。
........................................................................... 错误!未定义书签。
1.4传热面积校核.............................................................................. 错误!未定义书签。
2.换热器内流体的流动阻力 ................................................................ 错误!未定义书签。
2.1管程阻力...................................................................................... 错误!未定义书签。
2.2壳程阻力...................................................................................... 错误!未定义书签。
七、换热器的主要结构尺寸和计算结果表 ........................................ 错误!未定义书签。