狄拉克符号剖析
狄拉克算符
又 因此
n n n n
n n
n
n
n 1
比如 引入算符
dx x x 1
ˆ Pn n n
因为
P n n n n n
m
a
m
m
m am n n m
m
am n nm an n
显然,该算符对任何矢量的运算,相当于把这个矢量投影到基矢 n
n n
kj
i
ˆ H t ˆ F n n
i
ˆ x H x t ˆ F x n x n
(F
j
kj )a j 0
m
k
j
ˆ F j kj j 0
nm
u ( x)u
* n
( x)dx nm
n m nm
这就是薛定格方程的狄拉克符号表示。 定态薛定格方程 在 Q 表象下
ˆ H E
ˆ n H E n
ˆ nHm
m
m E n
ቤተ መጻሕፍቲ ባይዱ
即
H
m
nm
am Ean
六、平均值公式的狄拉克符号表示
在 Q 表象下
* ˆ ˆ F F m m F n n am Fmn an
定一组基矢,即选定表象后,态矢量可以用在这组基矢
上的投影(即矢量的分量)表示,这就是波函数。与数 学中表示一个矢量可以不引入坐标系不用它的分量而直
接用矢量表示相似,在量子力学中表示一个量子态也可
以不引进具体的表象,直接用矢量符号表示。这就是狄 拉克符号(Dirac bracket notation)。
a an
狄拉克符号(Dirac)
狄拉克符号(Dirac)狄拉克符号(Dirac )1狄拉克符号量⼦体系状态的描述,前述波动⼒学和矩阵⼒学两种⽅法,其共同特点是:与体系有关的所有信息都有波函数给出;极为重要的是波函数可以写成各类⼒学量的本征函数的线性组合,⽽展开系数模平⽅具有⼒学量概率的含义。
问题:能否不从单⼀⾓度描述体系,⽽⽤统⼀的⽅式全⾯概括体系的所有性质及概念?狄拉克从数学理论⽅⾯,构造了⼀个抽象的、⼀般⽮量--态⽮,并引进了⼀套“狄拉克符号”,简洁、灵活地描述量⼦⼒学体系的状态。
1.1狄拉克符号的引⼊ 1.1.1 态空间任何⼒学量完全集的本征函数系{})(x u n 作为基⽮构成希尔伯特空间(以离散谱为例),微观体系的状态波函数ψ作为该空间的⼀个态⽮,有∑=nn n u a ψ(1)n a 即为态⽮ψ在基⽮n u 上的分量,态⽮ψ在所有基⽮{}n u 上的分量{}n a 构成了态⽮在{}n u 这个表象中的表⽰(矩阵)= n a a a 21ψ (),,,,**2*1n a a a =+ψ(2)微观体系所有可以实现的状态都与此空间中某个态⽮相对应,故称该空间为态空间注意:(1)式中的n u 只是表⽰某⼒学量的本征态,⽽抛开其具体表象;(2)式的右⽅是ψ的{}n u 表象1.1.2 态空间中内积(标积)的定义设态空间中两个任意态⽮A ψ与B ψ在同⼀表象{}n u 中的分量表⽰各为{}n a 与{}n b ,则两态⽮内积的定义为()∑==+n n n n n B Ab a b b b a a a *21**2*1,,,, ψψ(3)注意:A B B A ψψψψ++≠1.1.3狄拉克符号的引⼊态空间中的ψ与+ψ在形式上具有明显的不对称性,狄拉克认为它们应该分属于两个不同的空间?伴随空间引⼊符号>,称为右⽮ [Ket ⽮,Bra ⽮(Bracket 括号><)]微观体系的⼀个量⼦态ψ⽤>ψ表⽰,>ψ的集合构成右⽮空间,>ψ在右⽮空间中的分量表⽰可记为矩阵=> n a a a 21ψ(4)约定:右⽮空间的态⽮ ,,,B A ψψψ⼀律⽤字母 ,,,>>>B A ψψψ表⽰⼒学量的本征态⽮⼀律⽤量⼦数 ,,,2,1>>>>nlm n ,或连续本征值>λ表⽰引⼊符号 <,称为左⽮微观体系的⼀个量⼦态ψ也可⽤ψ<表⽰,但在同⼀表象中>ψ与ψ<的分量互为共轭复数(),,,,**2*1n a a a =<ψ(5)ψ<的集合构成左⽮空间引⼊狄拉克符号后,任意两个态⽮>>B A ,的内积定义为同⼀表象下伴随空间中相应分量之积的和∑=++>=nn n n b a b a b a A B ***11| (6)这⾥*||>>=<>λ|,|n 仍为抽象的本征⽮ 1.2 基⽮的狄拉克符号表⽰ 1.2.1 离散谱⼒学量完全集的本征函数{}n u 具有离散的本征值{}n Q 时,对应的本征⽮>>>n |,2|,1| 或>nlm |等,构成正交归⼀化的完全系,可以作为⽮量空间的基⽮,作为基⽮可表⽰为??>= 0011| ?>= 0102| …… ←>= 010|n 第n ⾏(7)(1)基⽮具有正交归⼀性 mn n m δ>=<| (8)(2)展开定理 ∑>>=nn n a ||ψ(9)两边同时左乘|m <得∑∑==><>=m mn n nn a a n m a m δψ|| (10)说明展开系数是态⽮在基⽮上的分量(3)封闭性把>=<ψ|n a n 代⼊>ψ|中得,><>>=∑ψψ|||n n n所以 1||=<>∑n n n(11)称为基⽮的封闭性※狄拉克符号运算中⾮常重要的关系式 1.2.2 连续谱当⼒学量本征值构成连续谱λ时,对应的基⽮记为{}>λ|x 表象中)()(|x x x u x x '-=>='<δ,动量表象中px ip e x u x p -=>=<2/1)2(1)(|π,同理 )(|x u n x n >=< )(|p u n p n >=< 1|>==< px ie p x2/1)2(1|π>=< 1.3 态⽮在基⽮下的形式 1.3.1 离散谱基⽮为{}>n |,态⽮记为>ψ|或 ,|,|>>B A ,⽤基⽮展开><>>=?>=∑ψψψ|||1|n n n(16)展开系数>=<ψ|n a n 构成>ψ|在>n |表象中的分量,也可写成><><><= >= ψψψψ||2|1|21n a a a n (17)相应的左⽮ ∑><<= n n |||ψψ(18)()()><><><==1ψψψψ(19)1.3.2 连续谱><>>=ψλλλψ|||d (20)或 ?<><=<|||λλλψψd (21)1.3.3 注意:>ψ|只表⽰⼀个抽象的态⽮,只有),(|t x x ψψ>=<为x 表象的波函数;n a n >=<ψ| 为>n |表象的波函数1.4 线性厄⽶算符的作⽤1.4.1 离散谱(1)算符作⽤在基⽮上∑∑>>=><>=∧∧n算符矩阵元 >=<∧m F n F nm || (23)(2)算符作⽤在态⽮上(算符⽅程)>>=∧ψ||F (24)即有 >>=<<∧?ψ|||n F n (25)或 ∑∑><>=><<>=<∧mmnm m F m m F n n ψψ?||||| (26)注意:(24)式是抽象的算符⽅程,(25),(26)式是具体表象中的算符⽅程,><>n |表象中的分量,nm F 也是具体表象中的矩阵元。
量子力学之狄拉克符号系统与表象
Dirac 符号系统与表象一、Dirac 符号1. 引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的 力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式 A 来表示一个矢量,而不用具体坐标系中的分量(A x , A y , A z )表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描 述方法是由 Dirac 首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为 Dirac 符号。
2. 态矢量(1). 右矢空间力学量本征态构成完备系,所以本征函数所对应的右矢空间中的右矢也组成该空间的完备右矢(或基组),即右矢空间中的完备的基本矢量(简称基矢)。
右矢空间的任一矢量 |ψ> 可按该空间的某一完备基矢展开。
例如:=n na n ψ∑(2). 左矢空间右矢空间中的每一个右矢量在左矢空间都有一个相对应的左矢量,记为 < |。
右矢空间和左矢空间称为伴空间或对偶空间,<ψ | 和 |ψ> 称为伴矢量。
<p ’ |, <x ’ |, <Q n | 组成左矢空间的完备基组,任一左矢量可按其展开,即左矢空间的任一矢量可按左矢空间的完备基矢展开。
(3). 伴矢量<ψ | 和 |ψ>的关系 |ψ >按 Q 的左基矢 |Q n > 展开:|ψ > = a 1 |Q 1> + a 2 |Q 2> + ... + a 3 |Q 3 > + ...展开系数即相当于 Q 表象中的表示:12n a a a ψ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭<ψ| 按 Q 的左基矢 <Q n | 展开:<ψ| = a*1 <Q 1 | + a*2 <Q 2 | + ... + a*n <Q n | + ...展开系数即相当于 Q 表象中的表示:ψ+= (a*1, a*2, ..., a*n , ... )同理 某一左矢量 <φ| 亦可按 Q 的左基矢展开:<φ| = b*1 <Q 1 | + b*2 <Q 2 | +... + b*n <Q n | + ... 定义|ψ>和 <φ|的标积为:*n n nb a ϕψ=∑。
P(四章第四讲)狄拉克符号课件
n
n
n
( na*nbn n )* *
n
P(四章第四讲)狄拉克符号
波函数归一化
(,)2d3r*d3r1
本征矢的正交归一化
x | x
x|x' (x',x)(xx') ' (-')
p |p ') (p ',p )(p ' p ) qq' (q-q')
n | n
mn(um,un)m n lm |l'm ')(Y l'm ',Y lm )ll' m m '
t
P(四章第四讲)狄拉克符号
定义波函数演化算符:
U ˆ(t,t0)(t0)(t) (1 )
作用于 t 0 时刻的态 (t0 ) 得到t时刻的态 (t )
分析:
(1) Uˆ(t0,t0)I
U ˆ(t0,t0)(t0) (t0),
(2)求它的具体形式
i (t) H ˆ(t)
t
i tU ˆ(t,t0 ) (t0 ) H ˆU ˆ(t,t0 ) (t0 ) P(四章第四讲)狄拉克符号
算符的矩阵
设态矢 经算符 F ˆ 的作用后变成态矢 ,即
Fˆ
|1|nn n
F ˆ n n n
mmF ˆnn n
Fmn mFˆ n
bm Fmnan n
b1 F11 F12
b2
F21
F22
P(四章第四讲)狄拉克符号源自a1 a2Schrödinger方程的矩阵形式
P(四章第四讲)狄拉克符号
态矢量在具体表象中的表示 (x) x (p) p
本征态上的展开系数(投影)
n | n
狄拉克符号
= b*j j k k b*j jk ak
jk
jk
= bk*ak
k
(4.5.15)
4.5 狄拉克符号
③ 算符的狄拉克符号表示
算符 Fµ作用在态矢量 中,得出另一个态矢量
Fµ
(4.5.16)
现在在 Q 表象中将算符 Fµ用狄拉克符号表示,由
bk k k Fµ k Fµ j j Fkja j (4.5.17)
B A anbn*
n
(4.5.1)
显然,标积满足: B A * A B
(4.5.2)
若 B A 0,则称态矢量 A 和 B 正交。归一条件为
A A 1
(4.5.3)
4.5 狄拉克符号
若 A 、 B 为某一线性厄米算符Fµ对应于本征值 i和 j的
本征态,将 A 和 B 分别记为 i 和 j ,则其正交归一条
ak k
k
展开系数 ak 为 ak k
代入(4.5.7)式得: k k
k
(4.5.7) (4.5.8) (4.5.9)
定义算符 Pk 为 Pk k k
(4.5.10)
4.5 狄拉克符号
它对任何矢量的运算,相当于把这个矢量投影到基矢 k 上 去,使它变成在基矢 k 方向上的分量,即
Fµ
薛定谔方程
一般表示
(x)
Fµ(x, ih ) (x) (x)
x
狄拉克符号表示
x
Fµ x Fµ x
ih (x) Hµ (x)
t
ih
Hµ
t
ih x x Hµ
高二物理竞赛课件:量子力学之狄拉克Dirac 符号
坐标表象
B
A
B
x,
t
A
x,
t
dx
A x,t 是右矢 A 在坐
标表象下的分量,其 实就是状态A在坐标表 象下的函数
B
x,
t
是左矢
B 在坐
标表象下的分量,其
实就是状态B在坐标
表象下的波函数的复
共轭。
关于这些等式的证明 可以使用第二和第三 章的知识,不再详述
动量表象
CB px ,t CA px ,t dpx
CA px,t是右矢 A 在动
量表象下的分量,其 实就是状态A在动量表 象下的波函数
CB px,t是左矢 B 在动
量表象下的分量,其
实就是状态B在动量
表象下的波函数的复 共轭。
a1
t
a2 t
b1 t ,b2 t ,
,bn t ,
,bq t
an
t
其他任意某个Q表象下
aq
对比上面的标积式,我们可以用如下形式表示
1 这个形式抽象的表示了状态的归一化,不再涉及到具体某个表象
下面我们看某些特殊状态的狄拉克符号形式
设某状态是力学量算符 Fˆ 的本征态,所属的本征值是Fi(我们只 考虑非简并的情况,对应同一个本征值,只有一个状态)则这个
状态可以分别用左矢和右矢写为
Fi
Fi
,bq t
an
t
b1 t,b2 t, ,bn t, ,bq t是左矢 B
在Q表象下的各个分量
aq
t
a1b1 a2b2 anbn aqbqdq abn aqbqdq n
显然 B A A B
A B a1 t , a2 t ,
, an t ,
物理中狄拉克符号
物理中狄拉克符号
狄拉克符号(Dirac Notation)是用来描述量子力学中的态的一种数学表示方法。
它是由英国物理学家保罗·狄拉克(Paul Dirac)引入的。
在狄拉克符号表示法中,一个量子态被表示成一个矢量,通常用“|”和“>”符号包围,如:
|ψ⟩
这个矢量表示一个态矢量,它是一个复数列向量,在量子力学中它代表一个物理系统的状态。
这个矢量可以被视为向量空间中的一个点或向量,因此它也被称为“态矢量”。
狄拉克符号有很多特性,其中最重要的是内积和外积。
内积是两个矢量之间的一种运算,它把两个矢量映射到一个标量上。
内积表示为:
⟩ψ1|ψ2⟩
其中,“⟩”、“|”和“⟩”符号表示一个叫做“bra-ket”的记号。
内积可以用来计算两个态矢量之间的相似度,也可以用来计算一个态矢量在另一个态矢量方向上的投影。
外积是两个矢量之间的一种运算,它把两个矢量映射到一个新的矢量上。
外积表示为:
|ψ1⟩⟩ψ2|
外积可以用来构造一个算符,它可以作用于一个态矢量上,将它转换成另一个态矢量。
狄拉克符号的使用简化了量子力学的数学表达式,使得物理学家们可以更方便地描述和计算量子系统中各种量的性质和变化。
狄拉克(Dirac)符号
< n | F | ψ >=< n | ϕ > < n | ϕ >= ∑ < n | F | m >< m | ψ >= ∑ Fnm < m | ψ >
m m
∧
注意 : )式是抽象的算符方程 , ) )式是具体表象中的算符方程, 意: ( 24 24) 程, ( 25 25) , ( 26 26) < m | ψ >, < n | ϕ > 是算符作用前、后的态矢在 {| n >}表象中的分量, Fnm 也是具体表象中 的矩阵元。 1.4.2 连续谱 (1)算符作用在基矢 | λ > 上
(6)
n
这里 < B | A >=< A | B > * 1.2 基矢的狄拉克符号表示 1.2.1 离散谱
| n >, | λ > 仍为抽象的本征矢
力学量完全集的本征函数 {u n } 具有离散的本征值 {Qn }时,对应的本征矢 | 1 >, | 2 >,⋯ | n > 或 | nlm > 等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为 ⎛1⎞ ⎜ ⎟ ⎜0⎟ | 1 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛0⎞ ⎜ ⎟ ⎜1⎟ | 2 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛ 0⎞ ⎜ ⎟ ⎜⋮⎟ | n >= ⎜ 1 ⎟ ← 第 n 行 ⎜ ⎟ ⎜ 0⎟ ⎜⋮⎟ ⎝ ⎠ (8)
∧ ∧
) (29 29) (30 ) 30) ) (31 31)
< λ ′ | ϕ >=< λ ′ | F | ψ >
< λ ′ | ϕ >= ∫ | < λ ′ | F | λ > dλ < λ | ψ >= ∫ Fλ ′λ < λ | ψ > dλ 例如 < x ′ | ϕ >=< x ′ | F | ψ >= ∫ Fx′x < x | ψ > dx 即为 x 表象中方程
量子力学知识:量子力学与狄拉克符号
量子力学知识:量子力学与狄拉克符号这篇文章并不是关于费恩曼讲义书中任何一章的笔记,只是单独的一篇讲狄拉克符号含义和用法的文章。
我在看书的过程中对狄拉克这个简洁又多功能的符号产生过很多疑惑,今天就尝试将这些疑惑和自己找到的答案写出来,希望对其他同学有些许帮助。
如果大家有发现错误也希望可以进行批评指正。
狄拉克符号在量子力学中是一个很神奇的符号,它的外观非常的简洁、洋气,在量子力学中的作用就像路标对开车的作用一样重要,所以受到大量学习量子力学的人的喜爱。
其含义非常简单,最基本的狄拉克符号如下所示<状态2|状态1>狄拉克符号是从右往左看的,<状态2|状态1>表示的是从状态1到状态2的概率幅(关于概率幅的含义可以看我之前的推送量子力学笔记——电子在晶格中的传播)。
状态(state)在量子力学可以用来表示很多信息,比如一个粒子它处于某一位置可以称为处于某一状态,相应的它的特定的动量、角动量等信息都可以描述为状态(因为更多人直接称之为“态”,所以下文会直接简写为态)。
值得注意的是,态是矢量,具有方向性,<态2|为左矢量,|态1>为右矢量。
狄拉克符号还可以有各种“拆卸组装转换”的方法:1、狄拉克符号可以拆分成局部,比如:<态2|,或者|态1>拆分好处一来可以减少字数,二来空缺的那一部分要补充时可以填入任何态,增加使用的灵活性。
2、狄拉克符号还可以连着使用,比如:<态3|态2><态2|态1>表示为态1到态2,然后从态2再到态3的概率幅。
3、狄拉克符号转换前后位置时需要取复数共轭:<态2|态1> = <态1|态2>*(变换的原理会在下文讲到)4、狄拉克符号还可以量化两个状态跳转的过程:<态2|Q|态1>Q的含义为一个算符(operator),意思是态1经过算符变换到态2,这个算符可以是施加外力、旋转、使粒子穿过一个特殊设备、甚至静置一段时间,等等……对比一下同样表示概率幅的波函数,狄拉克符号没有像指数、复数这些复杂的东西,而且可以任意“拆分组装”,所以显得非常友好。
§4-5狄拉克符号
态矢在Q 四、态矢在Q表象中投影 (1)Discrete Spectrum )
| Ψ >= ∑ a n un >
n
⇔ Ψ ( x,t) =
∑a
n
n
( t )un ( x )
上式左乘<m| 上式左乘
< m Ψ >=
=
∑a
n
n
< m n>
∑
n
a nδ m n
= am
所 以 , 态 矢 量 |ψ > 在 Q 表 象 中 投 影 为 : a m= < m Ψ > ( 离 散 谱 )
态矢(波函数) 二、态矢(波函数)的狄拉克表示
本征态矢量(本征函数) 2.本征态矢量(本征函数) 离散谱) (1)Discrete Spectrum (离散谱){un(x)} ) |un(x)> |n> 例如1 线性谐振子哈密顿算符的本征函数为 例如1:线性谐振子哈密顿算符的本征函数为ψn(x) 用狄拉克符号可以表示为: 用狄拉克符号可以表示为: |n> 例如2 氢原子哈密顿算符的本征函数为 例如2:氢原子哈密顿算符的本征函数为:ψnlm 用狄拉克符号可以表示为: 用狄拉克符号可以表示为: |nlm> |200>态 能量为E 如果氢原子处于 |200>态,能量为E2;角动 量为: 角动量L 量为:l(l+1)ħ=0;角动量Lz=mħ=0
< n n' > = δ nn' ⇔ ∫ u* um dx = δ nm n
本征函数正交归一化方程
例如:线性谐振子哈密顿算符的本征函数为 例如:线性谐振子哈密顿算符的本征函数为ψn(x) 则内积可以写为: 则内积可以写为:
P四章第四讲狄拉克符号
狄拉克:
要这么复杂吗?我认为量子力学的波函数,算符和定律 等与具体表象无关。
1. 狄拉克(Dirac)符号
定义:左矢(bra)、右矢(ket) (源于词:bracket)
A *(rr )Aˆ (rr )drr ( , Aˆ ) Aˆ
t
ih m m Hˆ
t
m Hˆ 1
m Hˆ n n n
ih t am n Hmnan
平均值公式1的矩阵形式
F Fˆ 1 Fˆ 1
m m Fˆ n n mn
am* Fmnan mn
平均值公式2的的矩阵形式
( , ) 2 d 3r * d 3r 1
本征矢的正交归一化
x | x
x | x ' ( x', x ) (x x ') pr | pr ') ( pr ', pr ) ( pr ' pr )
n | n m n (um , un ) mn
量子力学与统计物理
Quantum mechanics and statistical physics
光电信息学院 李小飞
第四章:表象与矩阵力学
第四讲:狄拉克(Dirac)符号
引入:一对奇妙的组合
狄拉克:沉默寡 言,追求精确。
剑桥大学同事 定义了“一个小 时说一个字”为 一个“狄拉克” 单位
海森堡:活泼开 朗,喜唱歌跳舞, 是团队中的开心 果。
F | an |2 fn n n Fˆ n
量子力学教程 第二版 4.5 狄拉克符号.
于是: A n n A
n
(完全性关系)
(上式复数共轭)
()
同样可得 A A n n
所以: n n 1
n
n
Q 的本征矢 n 的封闭性,即插入算符(恒等算符) 此即为力学量 。
' ' 说明: n n 1在 x 表象中的表示为 u 。 x u x x x n n n n
表示为 m ,其正交归一性为: , m ' , m ' ' mm'
4. 封闭性 (a)连续谱情况:任何一态矢 A 在坐标表象中用波函数 x ' , t
描写, x ' , t x ' A 就是刃 A 在 x 表象中的分量。
ˆ 在自身表象中的基矢 x ' x x ' 组成完全系,则 A 由于 x
可按 x
展开,即:
'
A x ' dx ' x ' , t
x t A x
'
用 x 与 A 作标积,得:
x A x x ' dx ' x ' , t x x ' dx ' x ' , t x, t
所以展开系数为:
ˆ 的本 征值为分立谱Q n 1,2, ,本征 刃 Q (b) 分立谱情况: n
ˆ n 具有完全性,可将任意刃矢 A 按 Q A n Cn n 而 m A m n C C
n m n
的本征刃展开,即:
即展开系数 Cn n A ( C ,它表示 A 在基矢 n 上 n A n ) 的投影。
4.5狄喇克符号
∑
n
a n ( t )un ( x )
an (t ) =
∫u
n
n
* ( x ) Ψ ( x . t ) dx
即为
| ψ >= ∑ an | u n >
an = un Ψ
所以
| ψ >= ∑ an | u n >|= ∑ | u n >< u n | ψ >
n n
| ψ >= ∑ an | u n >|= ∑ | u n >< u n | ψ >
n n
所以
∑
n
| un >< un |= 1
上式即为本征矢的封闭性.
B | 。刃和
刁是两种性质不同的矢量,两者不能相加, 刁是两种性质不同的矢量,两者不能相加,它们在同一种
态矢量在Q表象中的分解是 态矢量在 表象中的分解是
ψ = ∑ cnun
n
ψ = ∑ cn n ,
n
基δ mn
*
m n = δ mn ,
平均值公式是: 平均值公式是:
|
微观体系的状态可以用一种矢量来表示, 微观体系的状态可以用一种矢量来表示,它的符号是 称为刃矢 右矢) 简称为刃 刃矢( ,称为刃矢(右矢),简称为刃,表示某一确定的刃 称为刁矢 左矢) 刁矢( | ,称为刁矢(左矢),
矢A,可以用符号 | A 。微观体系的状态也可以用另一种 , 矢量来表示, 矢量来表示,这种矢量符号是 简称为刁 表示某一确定的刁矢 可以用符号 简称为刁。表示某一确定的刁矢B可以用符号 表象中的相应分量互为共厄复数。 表象中的相应分量互为共厄复数。
§4.4 狄喇克(Dirac)符号
量子力学之狄拉克符号系统与表象
Dirac符号系统与表象一、Dirac符号1.引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式A来表示一个矢量,而不用具体坐标系中的分量(Ax ,Ay,Az)表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描述方法是由Dirac首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为Dirac 符号。
2.(1).(或基组)(2(3<ψ|按定义有:ψψa)在同一确定表象中,各分量互为复共轭;b)由于二者属于不同空间所以它们不能相加,只有同一空间的矢量才能相加;c)右矢空间任一右矢可以和左矢空间中任一左矢进行标积运算,其结果为一复数。
(4).本征函数的封闭性a)分立谱展开式:可得:因为|ψ>是任意态矢量,所以:b)连续谱对于连续谱|q>,q取连续值,任一状态|ψ>展开式为:因为|ψ>是任意态矢量,所以:这就是连续本征值的本征矢的封闭性。
c )投影算符|Q n ><Q n |或|q><q|的作用相当一个算符,它作用在任一态矢|ψ>上,相当于把|ψ>投影到左基矢|Q n >或|q>上,即作用的结果只是留下了该态矢在|Q n >上的分量<Q n |ψ>或<q|ψ>。
故称|Q n ><Q n |和|q><q|为投影算符。
因为|ψ>在X 表象的表示是ψ(x,t),所以显然有:在分立谱下:所以*(')()(')n n nu x u x x x δ=-∑。
在连续谱下:所以*(')()(')u ⎰。
3.(1X 即Q (2即有:4.到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写状态的波函数是坐标的函数。
量子力学课件:4.5 狄拉克符号
具体的态矢量: A , , En
③ 左矢与右矢的关系
是A 的A共轭矢量,即它们在同一表象中的 相应分量互为共轭复数
是 的共轭矢量
En 是 En的共轭矢量
2.左矢与右矢的标积
①定义: B A a1b1 a2b2 anbn anbn
n
②复共轭形式: B A A B
③ 正交归一化条件: 设力学量完全集 的F^本征值为Fn ,相应的本征
(1)F^算符
设 B Fˆ A 取 Q 表象:
①设Q具有分立本征谱,则基矢 Qn 或 n
B n n B bn n
n
n
A n n A an n
n
n
n n B Fˆ n n A
n
n
以 m左乘上式 ,再利用 m n mn
m n n B m Fˆ n n A
n
n
m B m Fˆ n n A
a2
0
an
(3)平均值公式
在态下,力学量 的F^ 平均值:
取Q表象:设基矢为 n
F Fˆ
a1*, a2*,
m
mn
F11 F12
F21
F22
m Fˆ n n
a1
a2
am* Fmnan
mn
如:x表象: F x dx x Fˆ x dx x
t
mnan
n
n
m Hˆ n an
i
t
am
n
n
H mn an
a1 H11 H12
i
a2
H 21
H 22
t
an
H
m1
Hm2
a1
a2
H mn
an
P(四章第四讲)狄拉克符号
ˆ (t ), H ˆ ˆ (t )] A 则 d A(t ) 1 [ A dt i t
(4)
上式称为Heisenberg方程。
3)狄拉克(Dirac)绘景与狄拉克方程 也称相互作用绘景(I绘景),他把哈密顿量 分解成两部分(比如:能精确求解的和含微扰的 哈密顿量;也称不含时的和含时的哈密顿量)
展开系数构成坐标矩阵
3、描述量子力学的波函数、算符和定律等在不同表象中虽具有 不同的矩阵形式,却可相互转换(幺正变换)
狄拉克:
要这么复杂吗?我认为量子力学的波函数,算符和定律 等与具体表象无关。
1. 狄拉克(Dirac)符号 定义: 左矢(bra)、右矢(ket) (源于词:bracket)
ˆ (r )dr ( , A ˆ) A ˆ A (r )A
定义波函数演化算符:
ˆ (t , t ) (t ) (t ) U 0 0
分析: ˆ (t , t ) I (1) U 0 0
(1)
作用于 t0 时刻的态 (t0 ) 得到t时刻的态 (t )
ˆ (t , t ) (t ) (t ), U 0 0 0 0
(2)求它的具体形式 ˆ (t ) i (t ) H t ˆ ˆ ˆ (t , t ) (t ) i U (t , t0 ) (t0 ) HU 0 0 t
*量子力学到经典力学的过渡
在海森堡绘景中,只是算符随时间深化,现考察自由粒子的位 置算符随时间的演化
现令t0=0
d 1 1 iHt / 2 iHt / r (t ) [ r (t ), H ] e [ r , p / 2 m]e dt i i p iHt / p iHt / e e m m
量子力学课件:4.5 狄拉克符号
*(x)F (x,
i
) (x
x
x) (x)dxdx
*(x)Fˆ (x)dx
四、表象变换
设 A表象:基矢为 n, 任一量子态 an n
n
B表象:基矢为 , 同一量子态 b
n
A表象 → B表象
量子态 an n
b
因为 b n n Snan
n
n
故 b Sa
n
封闭性
uq* ( x)uq ( x)dq ( x x)
公式
( x, t ) Fˆ ( x, pˆ x )( x, t )
本征方程
Fˆ
(r ,
pˆ )
(r )
(r )
平均值
F *Fˆdx
矩阵元 S 方程
Fmn
* m
Fˆ
n
dx
i
(r , t)
Hˆ (r,i)(r, t )
t
Dirac 符号
(1)F^算符
设 B Fˆ A 取 Q 表象:
①设Q具有分立本征谱,则基矢 Qn 或 n
B n n B bn n
n
n
A n n A an n
n
n
n n B Fˆ n n A
n
n
以 m左乘上式 ,再利用 m n mn
m n n B m Fˆ n n A
n
n
m B m Fˆ n n A
具体的态矢量: A , , En
③ 左矢与右矢的关系
是A 的A共轭矢量,即它们在同一表象中的 相应分量互为共轭复数
是 的共轭矢量
En 是 En的共轭矢量
2.左矢与右矢的标积
①定义: B A a1b1 a2b2 anbn anbn
9第4章概念1-狄拉克符号、矩阵表示、表象变换
则 因此
ˆ ψ 1 F ψ 2 = λ2 ψ 1 ψ 2
ˆ ψ 1 F ψ 2 = λ1 ψ 1 ψ 2
ψ1 ψ 2 = 0
7.基矢组
1 、 、 、 、 为态矢空间中一组正交归一完备基矢组,则 2 ⋯ n ⋯ 为态矢空间中一组正交归一完备基矢组,
k n = δ kn
ψ = ∑ an n
n
n
ˆ A∑ cn ψ n
ˆ ˆ 都没有意义。 A ψ 和 ψ A都没有意义。
n
ˆ ψ B= Ψ ˆ = ∑ cn A ψ n
n
4.左矢和右矢互为共轭 + ψ = ψ
+
ψ
+
=ψ
* cn ψ n = ∑ cn ψ n ∑ n n
因为 又 所以
(
ˆˆ BA ψ
) ( ) ˆˆ ( BA ψ ) = ψ
n n
ˆ Lkn = k L n
ˆ 表象中的矩阵元。 即 L 在F表象中的矩阵元。 表象中的矩阵元 表象中, 在F表象中,对任意态矢 ψ ,有 表象中
ak Lkn an L= ψ L
k ,n
k ,n
* = ( a1
* a2
L11 ⋯) L21 ⋯
ˆ Fkn = Fnδ kn = k F n
ˆ 表象中的矩阵表示如何? 另一力学量算符 L 在F表象中的矩阵表示如何? 表象中的矩阵表示如何 ˆ ˆ 若 L ψ = Φ 且 F n = Fn n 有
ψ = ∑ an n
n
an = n ψ
bk = k Φ
Φ = ∑ bk k
k
则算符方程的矩阵表示为 L11 L12 ⋯ ⋯ Lk1 Lk 2 ⋯ ⋯ 所以
狄拉克符号(Dirac)
狄拉克符号(Dirac )1狄拉克符号量子体系状态的描述,前述波动力学和矩阵力学两种方式,其一起特点是:与体系有关的所有信息都有波函数给出;极为重要的是波函数能够写成各类力学量的本征函数的线性组合,而展开系数模平方具有力学量概率的含义。
问题:可否不从单一角度描述体系,而用统一的方式全面归纳体系的所有性质及概念?狄拉克从数学理论方面,构造了一个抽象的、一样矢量--态矢,并引进了一套“狄拉克符号”,简练、灵活地描述量子力学体系的状态。
狄拉克符号的引入 1.1.1 态空间任何力学量完全集的本征函数系{})(x u n 作为基矢组成希尔伯特空间(以离散谱为例),微观体系的状态波函数ψ作为该空间的一个态矢,有 ∑=nn n u a ψ (1)n a 即为态矢ψ在基矢n u 上的分量,态矢ψ在所有基矢{}n u 上的分量{}n a 组成了态矢在{}n u 那个表象中的表示(矩阵)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= n a a a 21ψ (),,,,**2*1n a a a =+ψ (2)微观体系所有能够实现的状态都与此空间中某个态矢相对应,故称该空间为态空间注意:(1)式中的n u 只是表示某力学量的本征态,而抛开其具体表象;(2)式的右方是ψ的{}n u 表象1.1.2 态空间中内积(标积)的概念设态空间中两个任意态矢A ψ与B ψ在同一表象{}n u 中的分量表示各为{}n a 与{}n b ,那么两态矢内积的概念为()∑=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+n n n n n B Ab a b b b a a a *21**2*1,,,, ψψ (3) 注意:A B B A ψψψψ++≠1.1.3狄拉克符号的引入态空间中的ψ与+ψ在形式上具有明显的不对称性,狄拉克以为它们应该分属于两个不同的空间⇒伴随空间 引入符号>,称为右矢 [Ket 矢,Bra 矢(Bracket 括号><)]微观体系的一个量子态ψ用>ψ表示,>ψ的集合组成右矢空间,>ψ在右矢空间中的分量表示可记为矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=> n a a a 21ψ (4)约定:右矢空间的态矢 ,,,B A ψψψ一概用字母 ,,,>>>B A ψψψ表示 力学量的本征态矢一概用量子数 ,,,2,1>>>>nlm n ,或持续本征值>λ表示引入符号 <,称为左矢 微观体系的一个量子态ψ也可用ψ<表示,但在同一表象中>ψ与ψ<的分量互为共轭复数(),,,,**2*1n a a a =<ψ (5)ψ<的集合组成左矢空间引入狄拉克符号后,任意两个态矢>>B A ,的内积概念为同一表象下伴随空间中相应分量之积的和∑=++>=<nnn n n b a b a b a A B ***11| (6) 那个地址*||>>=<<B A A B >>λ|,|n 仍为抽象的本征矢基矢的狄拉克符号表示 1.2.1 离散谱力学量完全集的本征函数{}n u 具有离散的本征值{}n Q 时,对应的本征矢>>>n |,2|,1| 或>nlm |等,组成正交归一化的完全系,能够作为矢量空间的基矢,作为基矢可表示为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 0011| ⎪⎪⎪⎪⎪⎭⎫⎝⎛>= 0102| …… ←⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛>= 010|n 第n 行(7)(1)基矢具有正交归一性 mn n m δ>=<| (8) (2)展开定理 ∑>>=nn n a ||ψ (9)两边同时左乘|m <得∑∑==><>=<nm mn n nn a a n m a m δψ|| (10)说明展开系数是态矢在基矢上的分量 (3)封锁性 把>=<ψ|n a n 代入>ψ|中得,><>>=∑ψψ|||n n n因此1||=<>∑n n n(11)称为基矢的封锁性 ※狄拉克符号运算中超级重要的关系式 1.2.2 持续谱当力学量本征值组成持续谱λ时,对应的基矢记为{}>λ|(1)正交归一性 )(|λλδλλ'->='< (12) (2)展开定理 ⎰'>'>=λλψλd a || (13) >=<ψλλ|a (14) (3)封锁性 1||=<>⎰λλλd (15) 注意: >>>λ|,|,|nlm n 只表示某力学量抽象的本征矢,例如>'x |只表示本征值为x '的力学量x 的本征矢,而具体的基矢形式为:x 表象中)()(|x x x u x x '-=>='<δ,动量表象中px ip e x u x p -=>=<2/1)2(1)(|π,同理 )(|x u n x n >=< )(|p u n p n >=< 1|>=<n n),,(|ϕθψr nlm x nlm >=<px ie p x2/1)2(1|π>=< 态矢在基矢下的形式 1.3.1 离散谱基矢为{}>n |,态矢记为>ψ|或 ,|,|>>B A ,用基矢展开><>>=⋅>=∑ψψψ|||1|n n n(16)展开系数>=<ψ|n a n 组成>ψ|在>n |表象中的分量,也可写成⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>=ψψψψ||2|1|21n a a a n (17) 相应的左矢 ∑><<=<nn n |||ψψ (18)()()><><><==<n a a a n |2|1||**2*1ψψψψ (19)1.3.2 持续谱⎰><>>=ψλλλψ|||d (20) 或 ⎰<><=<|||λλλψψd (21) 1.3.3 注意:>ψ|只表示一个抽象的态矢,只有),(|t x x ψψ>=<为x 表象的波函数;n a n >=<ψ| 为>n |表象的波函数 线性厄米算符的作用 1.4.1 离散谱(1)算符作用在基矢上∑∑>>=><>=∧∧nnnm n F m F n n m F ||||| (22)算符矩阵元 >=<∧m F n F nm || (23) (2)算符作用在态矢上(算符方程)>>=∧ϕψ||F (24) 即有 >>=<<∧ϕψ|||n F n (25) 或 ∑∑><>=><<>=<∧mmnm m F m m F n n ψψϕ||||| (26)注意:(24)式是抽象的算符方程,(25),(26)式是具体表象中的算符方程,><><ϕψ|,|n m 是算符作用前、后的态矢在{}>n |表象中的分量,nm F 也是具体表象中的矩阵元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pk k k ak k
(4.5.11)
Pk 称为投影算符。由(4.5.9) 式可以看出,由于 任意,
有
k k 1
(4.5.12)
k
这就是本征函数的完备性。如果在坐标表象下,上式可
写为
dx x x 1
(4.5.13)
如果在动量表象下,可写为 dp p p 1
(4.5.14)
4.5 狄拉克符号
B A anbn*
n
(4.5.1)
显然,标积满足: B A * A B
(4.5.2)
若 B A 0,则称态矢量 A 和 B 正交。归一条件为
A A 1
(4.5.3)
4.5 狄拉克符号
若 A 、 B 为某一线性厄米算符F 对应于本征值 i和 j的
本征态,将 A 和 B 分别记为 i 和 j ,则其正交归一条
4.5 狄拉克符号
前面曾经指出,一个量子态相当于一个态矢量。在希尔 伯特空间中选定一组基矢,即选定表象后,它可以用在这组 基矢上的投影即矢量的分量表示,这就是波函数。与高等数 学中表示一个矢量,可以不引入坐标系不用它的分量而直接 用矢量表示相似,在量子力学中表示一个量子态也可以不用 引进具体表象,不用波函数,直接用矢量的符号表示。而且, 还可以直接引进矢量运算,例如标量积等。这就是狄拉克符 号。
件为
i j ij
(4.5.4)
若能谱为连续谱,比方坐标算符 xˆ 的本征矢的正交归一
条件是
x x (x x)
(4.5.5)
在 动量算符 pˆ的本征矢正交归一条件是
p p ( p p)
(4.5.6)
4.5 狄拉克符号
② 完备系和态矢量的狄拉克符号表示
由于厄米算符 Q 的本征函数组成完备系,因而表示这 些本征函数的刃矢(或刁矢)也组成完备系,记作 { k } (或{ k })。态矢量 可用这套刃矢展开:
[ k F j k j ] j 0 j
n m nm
n x x m dx nm
x x n n
n
n n x x dx
Sm m m x dx x
t
本征方程
正交归 一条件
波函数 展开式 幺正变换
4.5 狄拉克符号
一般表示
Fn (x) n (x)
(Fkj kj )a j 0
j
n* (x)m (x)dx nm
(x) ann (x)
n
an n* (x) (x)dxSFra bibliotek * m
(
x)
(
x)
dx
狄拉克符号表示
F n n F x n x n
b
(4.5.26)
虽然有
m m
(4.5.27)
⑤ 对于狄拉克符号,我们列出一个它和普通 x 表象中的
对照表。
4.5 狄拉克符号
量子态 波函数
F
薛定谔方程
一般表示
(x)
F(x, i ) (x) (x)
x
狄拉克符号表示
x
F x F x
i (x) H (x)
t
i
H
t
i x x H
以符号 表示一个态矢量,称为刃矢,或简称刃(ket) , 为表示某一个确定的刃矢 A ,常将 A 写在 中 即 A 。由于 量子力学中的波函数可以是复数,或者说,希尔伯特空间是 复空间,因此相应的态矢量是个复矢量。故而除了刃矢
4.5 狄拉克符号
外,还有它的共轭复式 a,1 记作 ,称为刁矢,或简称 刁 (bra) 。表示一个确定 a刁2 矢 B 的狄拉克符号是 B 。如同 一刁个矢复也数是的性实质部不和同虚的部相 a是互n 两独个立独的立矢的量部。分选一定样表,象刃后矢,和它 们在不同表象中的相应分量互为共轭复数,例如选定 Q 表象,A 在 Q 表象中的分量为 (a1, a2 , , an , ) ,可将他 们排列成一个列矩阵
ak k
k
展开系数 ak 为 ak k
代入(4.5.7)式得: k k
k
(4.5.7) (4.5.8) (4.5.9)
定义算符 Pk 为 Pk k k
(4.5.10)
4.5 狄拉克符号
它对任何矢量的运算,相当于把这个矢量投影到基矢 k 上 去,使它变成在基矢 k 方向上的分量,即
这就是波函数。A
在
Q
表象中的分量
(a* , 1
a* 2
,
, a* , n
),
可将他们排成一个行矩阵。A 是 A 的共轭矢量。
4.5 狄拉克符号
现在讨论如何用狄拉克符号对表示态矢和算符,以 及进行态矢量运算:
① 标量积
在同一表象中,A 和 B 相应的分量的乘积之和称为 A 与 B 的标量积,简称标积。记作
如果在某一本征函数系既有分离谱又有连续谱,完备
性为:
k k dq q q 1 k
(4.5.15)
在 Q 表象中,态 和 的标积可写成:
(4.5.14)
k k ak k
k
k
k k bk k
k
k
j j k k
jk
= b*j j k k b*j jk ak
jk
在 Q 表象中,上式写为
F k k F j j
j
(4.5.20) (4.5.21) (4.5.22) (4.5.23)
(4.5.24)
4.5 狄拉克符号
④ 表象变换的狄拉克符号表示
设 A 表象的基矢为 m ,B 表象的基矢为 , 在 A 表
象中的表示为
am m
(4.5.25)
在 B 表象中的表示为
jk
= bk*ak
k
(4.5.15)
4.5 狄拉克符号
③ 算符的狄拉克符号表示
算符 F 作用在态矢量 中,得出另一个态矢量
F
(4.5.16)
现在在 Q 表象中将算符 F用狄拉克符号表示,由
bk k k F k F j j Fkja j (4.5.17)
j
j
所以
Fkj k F j
(4.5.18)
就是公式 Fkj k* Fjdx 的狄拉克符号表示。
F 的本征方程 F
(4.5.19)
4.5 狄拉克符号
在 Q 表象中的表示是 k F k
即 或写成
k F j j Fkja j ak
j
j
[ k F j k j ] j 0
j
平均值公式 F F