医学统计学6卡方检验资料讲解

合集下载

医学统计学卡方检验讲课稿

医学统计学卡方检验讲课稿

第一页PPT:同学们好,我们今天来一起学习卡方检验的基本思想。

第二页PPT:我们看一个研究案例,某神经内科医师欲比较A、B两种药物治疗脑血栓病人的疗效,将病情轻重、病程相近且满足实验人选标准的200例脑血管栓塞患者随机分为两组,结果见表1。

问两药治疗近期有效率是否有差别?请同学们思考一个问题,结合已学的知识关于两个率的比较我们会使用什么方法呢,那我们继续带着这个问题进入到我们今天的课程学习。

第三页PPT:这节课需要掌握的理论知识有:1.X2检验的定义、主要用途2.X2分布、X2检验的基本思想(这是重点内容)以及应用完全随机设计的四格表X2检验方法是我们这节课的难点内容。

第四页PPT:离散型概率分布有二项分布和泊松分布基于二项分布的假设检验方法可以做两样本率比较的检验问题,条件是np、n(1-p)均大于5,可以做Z检验进行,也是解决我们的案例问题。

第五页PPT:在医学研究中,进行两组或多组样本的总体率(或构成比)之间的差别是否具有统计学意义,X2检验(chi-square test)是解决此类问题较为常用的统计方法,。

X2检验是英国统计学家K.Pearson提出的一种具有广泛用途的假设检验方法,常用于分类变量资料的统计推断。

第六页PPT:X2检验主要用于:1.推断两个及多个总体率或总体构成比之间有无差别2.两种属性或两个变量之间有无关联性3.频数分布的拟合优度检验4.百分率线性趋势检验第七页PPT:我们来继续看我们的案例,两药有效率的比较问题。

表中我们A 药、B药的有效和无效分别为99、5、75、21,我们可以用a.b.c.d 来表示,表中其余的数据是由abcd这4个数据推算出来,我们习惯将这种资料形式称为四格表。

为什么叫四个表因为它有效的就是四个格子。

a.b.c.d是我们实际观察所得到的频数,我们叫实际频数(actual frequency),用A表示。

根据我们的研究目的,我们要比较两个率是否有差别的问题。

卡方检验医学统计学

卡方检验医学统计学

卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。

在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。

卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。

期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。

而实际频数则是实验中观察到的实际结果。

卡方检验的步骤如下:1.建立零假设和备择假设。

零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。

2.确定显著性水平 alpha,通常取值为0.05。

3.构建卡方检验统计量。

计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。

4.根据自由度和显著性水平,查卡方分布表得到 P 值。

5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。

卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。

卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。

举个例子,某药厂要研发一种新的药物来治疗心脏病。

为了验证该药的疗效,实验组和对照组各50 人。

在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。

卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。

除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。

卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。

其中比较明显的一点就是对样本量有一定的要求。

当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。

此外,在面对非常态分布数据时,卡方检验也会出现问题。

当数据呈现正态分布时,卡方检验的准确性最高。

然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。

卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。

医学统计学6卡方检验

医学统计学6卡方检验

卡方检验的卡方值
卡方值是卡方检验的统计量,用于衡量实际观测值和期望值之间的差异。 卡方值越大,就表示观测值与期望值之间的差异越大,这意味着结论更可信。
如何进行卡方检验
第一步
确定研究的问题和相关变量, 并给出所需的假设。
第二步
收集数据并整理成交叉列联 表。
第三步
计算卡方值和自由度。
第四步
查阅卡方分布表,确定相应置信度水准下的临 界值。
2
应用
概率常用于医学研究中,以测量一种治疗对患者的疗效。
3
公式
概率=事件发生的次数/总次数。
统计学中的假设
在统计学中,我们需要制定一个或多个假设进而做出相应的决策。常见的假设有零假设和备择假设。
零假设
零假设是指不存在两个群体之间的差异。
备择假设
备择假设是指存在两个群体之间的差异。
什么是卡方检验
卡方检验是一种用于比较两个或多个群体在某些因素上的分布情况的方法。
卡方检验与其他假设检验的区 别
卡方检验主要用于回答多个分类变量间是否有关联的问题,而 T 检验和 Z 检 验主要用于回答单变量的问题。
卡方检验对于数据的类型并无太多的要求,而 T 检验和 Z 检验只适用于概率 分布为正态分布的数据。
卡方检验的计算公式
卡方检验的计算公式如下: χ² = ∑(O-E)²/E
为什么需要统计学
准确
统计学可以让我们从收集到的数据中得出真正 准确可靠的结论。
决策
统计学有助于做出决策并帮助我们更好地理解 数据背后的信息。
推断
统计学允许我们通过对大量数据的推断得到新 的信息。
掌握
掌握医学统计学对于实现优质医保研究至关重 要。
概率

医学统计学课件-卡方检验

医学统计学课件-卡方检验

联合治疗 39 34.44 8 12.56 47 73.3 单纯治疗 57 61.56 27 22.44 84 73.3
合计
96
35
131 73.3
Trc
nr nc n
理论频数= 84 73.3%
χ2检验的基本思想(1)
通过构造A与T吻合程度的统计量来反 映两样本率的差别!
实际数A
39
8
57
27
污染率 (%)

6
23
29
79.3

30
14
44
31.8

8
3
11
27.3
合计
44
40
84
47.6
理论数的计算
实际数A
6
23
29
30
14
44
8
3
11
44
40
84
(52.4%) (47.6%)
理论数T
15.2 13.8
23.0 21.0
5.8
5.2
T
nR
nC N
nR nC N
2值的计算
实际数A
χ2检验相关问题-应用条件
某矿石粉厂当生产一种矿石粉石时,在数天内即有 部分工人患职业性皮肤炎,在生产季节开始,随机 抽取15名车间工人穿上新防护服,其余仍穿原用的 防护服,生产进行一个月后,检查两组工人的皮肤 炎患病率,结果如表 ,问两组工人的皮肤炎患病 率有无差别?
χ2检验相关问题-应用条件
Total
When the variables are independent, the proportion in
both groups is close to the same size as the proportion

卫生统计学卡方检验

卫生统计学卡方检验

卫生统计学卡方检验
26/94
(一) 多个样本率比较
例3 某研究者欲比较A、B、C 三种方案治疗轻、中度 高血压疗效,将年纪在50~70岁240例轻、中度高血压患 者随机等分为3组,分别采取三种方案治疗。一个疗程 后观察疗效,结果见表11.4。问三种方案治疗轻、中度 高血压有效率有没有差异?
卫生统计学卡方检验
卫生统计学卡方检验
29/94
④ 确定P值
υ=(3-1)(2-1)=2,查 2 界值表得P<0.01。
⑤ 下结论
因为P<0.01,按α=0.05水准,拒绝H0,接收 H1,差异有统计学意义。即可认为三种方案治疗轻 、
中度高血压有效率不等或不全等
卫生统计学卡方检验
30/94
例 某市重污染区、普通污染区和农村出生婴儿致畸情 况以下表,问三个地域出生婴儿致畸率有没有差异?
① 建立假设 H0:π1=π2 H1:π1≠π2
② 确定检验水准
α=0.05
③ 计算统计量 2 值
2(2 62-73 6-7 1/2 )27 12 .7 5 3 33 86 29
④ 确定P值
υ=(2-1) (2-1)=1,查 2界值表得P>0.05。
卫生统计学卡方检验
24/94
⑤ 下结论 因为P>0.05,按α=0.05水准,不拒绝H0,差 异无统计学意义。尚不能认为甲、乙两疗法对小 儿单纯性消化不良治愈率不等。
9/94
TRC
nR nC n
n R 为对应行累计
n C 为对应列累计
n 为总例数。
卫生统计学卡方检验
10/94
表1 两药治疗消化道溃疡4周后疗效
卫生统计学卡方检验
11/94

医学统计学:卡方检验

医学统计学:卡方检验

CM C N M P( x ) n CN
式中X的取值是从0与(n-N+M)之较大者开始直到n与M之较小者为止。
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 超几何分布
x n x CM CN M P( x ) n CN
C
卡方检验
■ χ2检验的基本思想
卡方检验
■ χ2检验的基本思想
卡方检验
■ χ2检验的基本思想
卡方检验
■ χ2检验的基本思想
卡方检验
■ 四格表资料的χ2检验
1.当n≥40且所有的T≥5时,用χ2检验的基本公式;当P≈α时,改用四格 表资料的Fisher确切概率法。 例 某院欲比较异梨醇口服液(试验组)和氢氯噻嗪+地塞米松(对照组) 降低颅内压的疗效。将200例颅内压增高症患者随机分为两组,结果见表1 。问两组降低颅内压的总体有效率有无差别?
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 Fisher确切概率法的基本思想
在四格表周边合计数不变的条件下, 利用超几何分布直接计算样本事件及 比样本事件更极端情形发生的概率。
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 Fisher确切概率法的基本思想
卡方检验
■ 四格表资料的χ2检验
1.当n≥40且所有的T≥5时,用χ2检验的基本公式;当P≈α时,改用四格 表资料的Fisher确切概率法。
卡方检验
■ 四格表资料的χ2检验
1.当n≥40且所有的T≥5时,用χ2检验的基本公式;当P≈α时,改用四格 表资料的Fisher确切概率法。

医学统计学6卡方检验资料讲解

医学统计学6卡方检验资料讲解

【例5】某中医师将某病患者随机分为三组,分别用新 药、传统药物和安慰剂治疗,结果见表。问三种方法治 疗该病的有效率是否有差别?
A
nR
nC
SPSS软件操作
• 第1步:定义变量
• 第2步:输 入原始数据
• 第3步:定义频数
• 选择数据→加权个案 • 频数→加权个案(频
数变量)
• 第4步:x2检验(1)
• 第4步:x2检验(3)
• 选择单元 格按钮
• 在交叉表: 单元显示 对话框: 勾上观察 值、百分 比:行、 列
• 第5步:结果解读(1)
• 结果解读:行与列均为无序变量,行、列百 分比均有各自专业意义。
• 第5步:结果解读(2) • 结果解读:x2=64.059,p=0.000
• 第5步:结果解读(3)
行×列表卡方检验注意事项
• 当多个样本率(或构成比)作卡方检验, 结论为拒绝零假设时,只能认为各总体率 (或总体构成比)之间总的有差别,不能 说明两两之间有差别;两组间的比较需进 一步做多个样本率或构成比的两两比较, 即多重比较。
行×列表卡方检验注意事项
• R×C表可以分为双向无序 、单向有序、双向有序属 性相同和双向有序属性不 同等4类。
卡方值的计算
➢卡方值的影响因素: • 1、格子数 • 2、实测值与理论值的差距
专用公式的推导
T11=(a+c)/(a+b+c+d)*(a+b) T12=(b+d)/(a+b+c+d)*(a+b) T21=(a+c)/(a+b+c+d)*(c+d) T22=(b+d)/(a+b+c+d)*(c+d)

医学统计学——卡方检验

医学统计学——卡方检验
趋近于正态分布。
• ⑵χ2分布具有可加性:如果两个独立的 随机变量X1和X2分别服从ν1和ν2的χ2分 布,那么它们的和(X1+X2)也服从(ν1+ ν2)的χ2分布。
χ2 界值
• ν确定后,如果分布曲线下右侧尾部的 面积为α时,则横轴上相应的χ2值就记 作χ2 α,ν ,即χ2界值。其右侧部分的 面积α表示:自由度为ν时, χ2值大 于界值的概率大小。χ2值与P值的对应 关系见χ2界值表(附表6)。χ2值愈大,P 值愈小;反之,χ2值愈小,P值愈大。
• T22=(c+d)×(1- PC)=(c+d)×(b+d)/n = 56×17/112=8.5
χ2检验的基本思想
• χ2检验实质上是检验A的分布与T的分 布是否吻合及吻合的程度,χ2越小,表
明实际观察次数与理论次数越接近。
• 若检验假设成立,则A与T之差不会很 大,出现大的χ2值的概率P是很小的, 若P≤α,就怀疑假设成立,因而拒绝 它;若P>α,则没有理由拒绝它。
不同自由度的χ2分布曲线图
图 8-1 不同自由度的χ2 分布曲线图
二、χ2检验的基本思想
• 例8-1 某中医院将112例急性肾炎 病人随机分为两组,分别用西药和 中西药结合方法治疗,结果见表8-1, 问两种方法的疗效有无差别?
表8-1 两种方法治疗急性肾炎的结果
组 别 治愈例数 未愈例数 合计 治愈率(%)
例8-2
• 某医师将门诊的偏头痛病人随机 分为两组,分别采用针灸和药物 两种方法治疗,结果见表8-3 , 问两种疗法的有效率有无差别?
两种疗法对偏头痛的治疗结果
疗 法 有效例数 无效例数 合计 有效率(%)
针 灸 33(30.15) 2(4.85) 35 94.29

第六讲卡方检验

第六讲卡方检验

+
(15- 22. 2) 2 22. 2
ς2=
(
b 2c b+
21) c
2
公式
(
8)
+
(22- 14. 14. 8
8)
2
=
13.
55
(3) 确定 P 值: 据 Μ= 1, 查 ς 2 界值表[4] (见
附表)
,
ς2 0.
05 (1)
=
3.
84, ς2>
3.
84, 得 P <
0.
05。
例 2: 用A (沙保罗氏) 和 B (沙保罗氏+ 放 线菌酮+ 庆大霉素) 两种培养基分别对 88 只豚 鼠皮肤真菌的生长情况进行观察, 比较两种培 养基对真菌的检出效果, 资料如表 5 所示。
四格表资料的 ς2 检验与 t 检验一样, 按照 设计方案的不同分为成组资料和配对资料的四 格表。 成组资料的四格表是将收集到的资料据 某种特征 (如吸烟与不吸烟) 而划分的两个组内 某现象 (如发病与不发病) 的频率分布归纳整理 成的表格 (表 1)。
表 1 成组设计资料的四格表
吸烟组 不吸烟组 合计
据公式 (2) 首先计算各个格子中的理论数
T RC, 本例
T 11=
28×39 65
=
16.
8
余类推, 得到 T 12, T 21, T 22, 见表 4 中 ( ) 内
数字, 然后, 利用公式 (1) 计算 ς2 值:
ς2=
(a+
b)
(ad2bc) 2n (c+ d) (a+ c)
(b+
d) 公式 (4)

医学统计学-卡方检验

医学统计学-卡方检验
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义

《卡方检验》课件

《卡方检验》课件

制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。

卡方检验专题知识讲座

卡方检验专题知识讲座

这阐明aabb不符合理论百分比
p 0.05
2 检验中旳适合性检验一般要求样本量应大某些, 样本较小会影响到检验旳正确性,尤其是当理论 百分比中有较小值时(上一例中旳aabb),更应 该注意样本容量,这一例即有样本偏小旳倾向
第二节 独立性检验
独立性检验是检验两个变量、两个事件是否 相互独立旳这么一种检验
不消毒 580(438.19) 630(771.81) 1210
合计 880
1550
2430
表中,括弧内旳就是理论值
需要注意旳是,这种构造旳 2检验其自由度是横行
数减1乘以纵列数减1:2 12 1 1
所以这里应该使用校正公式 计算 c2 值
2 c
| O E | 0.52
E
同学们先自行计算
设置无效假设
现需验证这次试验旳成果是否符合这一分离百分比
1477+493+446+143=2559
2559
9 16
1439.44
2559
3 16
479.81
2559
1 16
159.94
2
1477 1439.44 2
143 159.942
...
5.519
1439.44
159.94
以上三个例子都要求我们判断观察值与理论值之间 是否相符,而我们都能够得到一种 2值
438.19
771.81
142.30
2 0.01,1
6.635
p 0.01
否定无效假设,即鱼池消毒是否极明显地影响着鱼
苗旳发病(或鱼苗旳发病情况直接受鱼池消毒是
否旳影响)
二、R×C表(R:行 C:列) R×C表是2×2表旳扩展,反之, 2×2表也能够看

医学统计学6-4 卡方检验

医学统计学6-4 卡方检验

.
2
四格表资料的χ2 检验
1 ?
未知总体
2 ?
未知总体
抽样误差所致
or
p1 30.8%
p2 54.5%
治疗方法的影响
.
➢ 3.实际频数(actual frequency, A):
实际资料中的数据。
➢ 4.无效假设下频数的重新分配——
--理论频数(Theoretical frequency, T)
形式,当行和(或)列大于 2 时,就叫行×列
表,又称为 R×C 表。 R×C 表的 2 检验用于多个率或构成比的
比较,其基本思想与四格表 2 检验的思想一 致。
.
4 行列表的χ2 检验
2 n( A2 1)
nR nC
2 (AT)2 T
式中 n 是总例数,A 是每个格子的
实际频数,nR 、nC 分别为某格子对应
如表6-23。试分析两种方法的诊断阳性率有无差异,
两种方法的诊断结果有无联系。
表 6-23 两种方法诊断结果
间接免疫抗体试验
显微镜凝集试验


合计

40
14
54

7
19
26
合计
47
33
80
.
3
配对四格表的χ2 检验
1. 建立检验假设,确定检验水准
H0 :1 2(或写为 B = C )
比较两种方法检测结 果有无差别
.
3
配对四格表的χ2 检验
▪ 练习题
用两种方法检查已确诊的乳腺癌患者120 名。甲法的检出率为60%,乙法的检出率 为50%,甲、乙两法一致的检出率为35% 。试将上述资料整理成四格表,并比较两 种方法何者为优?

医学统计方法之卡方检验

医学统计方法之卡方检验

医学统计方法之卡方检验卡方检验,又称卡方分布检验(Chi-Square Test),是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在显著差异。

本文将详细介绍卡方检验的原理、应用范围以及具体的步骤。

一、原理:卡方检验的原理是基于卡方分布的性质。

卡方分布是指具有自由度的正态分布的平方和,记为χ^2(k),其中k为自由度。

在卡方检验中,我们将观察到的频数与理论预期频数进行比较,从而判断两个或多个分类变量之间的差异是否显著。

二、应用范围:卡方检验广泛应用于医学研究中的数据分析,尤其是在对两个或多个分类变量之间的关联进行检验时。

常见的应用场景包括但不限于以下几种:1.检验观察频数与理论预期频数之间的差异,以判断观察结果是否与理论预期相符。

2.检验两个或多个分类变量之间的关联性,以确定它们之间是否存在显著的相关性。

3.比较两个或多个群体在一个或多个分类变量上的分布差异,从而判断它们之间是否存在显著差异。

三、步骤:卡方检验的主要步骤包括以下几个:1. 建立假设:首先需要明确检验的假设。

在卡方检验中,通常有两种假设:“原假设”(null hypothesis,H0)和“备择假设”(alternative hypothesis,H1)。

原假设通常表示没有差异或关联,备择假设则表示存在差异或关联。

2.计算期望频数:根据原假设,计算出理论预期频数。

理论预期频数是基于既定的分布假设和样本总体的参数计算得出的。

3.计算卡方值:将观察频数与理论预期频数进行比较,计算出卡方值。

卡方值是观察频数与理论预期频数之间的差异的平方和。

4.确定自由度:根据检验问题的具体情况确定自由度。

在卡方检验中,自由度通常由分类变量的水平数目决定。

5.查表找出p值:根据卡方分布表,找出相应自由度下的临界值。

将计算得到的卡方值与临界值进行比较,确定其显著性水平。

p值是指在原假设成立的前提下,观察到的差异大于或等于当前差异的概率。

6.做出判断:根据p值与显著性水平的比较,做出判断是否拒绝原假设。

医学统计学课件卡方检验

医学统计学课件卡方检验

队列研究中的卡方检验
总结词
在队列研究中,卡方检验用于比较不同暴露 水平或不同分组在某个分类变量上的分布差 异,以评估暴露因素与疾病发生之间的关系 。
详细描述
队列研究是一种前瞻性研究方法,按照暴露 因素的不同将参与者分为不同的组,追踪各 组的疾病发生情况。通过卡方检验,可以比 较不同暴露水平或不同分组在分类变量上的 分布差异,如分析不同饮食习惯的人群中患
卡方检验与相关性分析的区别
卡方检验主要用于比较实际观测频数与期望频数之间的差异,而相关性分析则用于研究 两个或多个变量之间的关联程度。
卡方检验与相关性分析的联系
在某些情况下,卡方检验的结果可以为相关性分析提供参考,帮助了解变量之间的关联 程度。
05
卡方检验的应用实例
病例对照研究中的卡方检验
总结词
02
公式
卡方检验的公式为 $chi^{2} = sum frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$,
其中 $O_{ij}$ 表示实际观测频数,$E_{ij}$ 表示期望频数。
03
适用范围
卡方检验适用于两个分类变量的比较,可以用于分析病例对照研究、队
列研究等类型的研究。
卡方检验的用途
如比较不同年龄组、性别组等人群中某种疾病的患病率。
卡方检验的基本假设
每个单元格中的期望 频数应该大于5。
卡方检验对于样本量 较小的情况可能不适 用。
观察频数与期望频数 应该服从相同的概率 分布。
02
卡方检验的步骤
收集数据
01
02
03
确定研究目的
在开始卡方检验之前,需 要明确研究的目的和假设 ,以便有针对性地收集数 据。

医学统计学卡方检验

医学统计学卡方检验

计算期望频数
2
根据独立性假设,计算预期的频数。
3
计算卡方值
根据观察频数和期望频数,计算卡方值。
判断显著性
4
根据卡方值和自由度,判断结果是否显著。
卡方检验的计算方法
卡方检验的计算方法主要包括计算卡方值、计算自由度以及查找临界值。 计算卡方值:
1. 计算每个组别的观察频数和期望频数之差的平方。 2. 将所有差的平方相加,得到卡方值。 计算自由度: • 自由度 = (行数 - 1) * (列数 - 1) 查找临界值:
卡方检验的应用范围和特点
卡方检验广泛应用于医学研究中,例如研究疾病与风险因素之间的关联性。 卡方检验的特点包括:
非参数检验
不依赖于总体的任何参数假设。
适用性广泛
可用于分析两个或释。
卡方检验的步骤
1
收集数据
收集观察到的数据,例如不同组别的频数。
根据自由度和显著性水平,在卡方分布表中查找对应的临界值。
案例分析:卡方检验在医学统计学中的应用
临床研究
通过卡方检验分析患者病情与治疗 效果之间是否存在关联性。
遗传研究
运用卡方检验检测基因型与表型之 间的关联性。
公共卫生
分析卡方检验数据以确定风险因素 与疾病之间的关联性。
结论和总结
卡方检验是一种强大的统计工具,可用于分析变量之间的关联性。 通过掌握卡方检验的原理、应用和计算方法,我们能更好地理解数据背后的 关系,并做出有针对性的决策。
医学统计学卡方检验
卡方检验是一种常用的统计方法,主要用于比较观察到的数据与期望值之间 是否存在显著差异。
卡方检验的原理和假设
卡方检验基于观察到的频数与期望频数之间的差异,用于判断变量之间是否存在关联性。 卡方检验的假设为:

医学统计方法之卡方检验

医学统计方法之卡方检验

医学统计方法之卡方检验卡方检验(Chi-square test)是一种常用的医学统计方法,用于比较观察频数与期望频数的差异,以判断两个或多个类别变量之间是否存在相关性或差异。

卡方检验适用于分类数据的分析,常用于研究疾病与相关因素的关系、药物与不良反应的关系等。

卡方检验的基本原理是通过计算观察频数与期望频数之间的差异,并比较差异的程度来判断两个或多个分类变量之间的关联性。

卡方值越大,观察频数与期望频数之间的差异越大,相关性越显著。

卡方检验的零假设(Null hypothesis)是假设变量之间没有关联性,即观察频数与期望频数之间的差异是由随机误差引起的。

卡方检验的计算步骤如下:1.建立零假设与备择假设。

例如,我们想要研究其中一种药物与不良反应的关系,零假设可以是“该药物与不良反应之间没有关联性”,备择假设可以是“该药物与不良反应之间存在关联性”。

2.构建两个变量的列联表,计算观察频数。

列联表是将两个或多个分类变量交叉组合生成的一个二维表格。

例如,我们可以将药物使用与不良反应按行和列分别组合,得到一个2×2的列联表。

3.计算期望频数。

期望频数是在零假设成立的情况下,根据总体总数和变量之间的独立性计算的理论频数。

期望频数可以通过计算每个组合的行合计、列合计以及总体合计来得到。

4.计算卡方值。

卡方值是观察频数与期望频数之间的差异的平方和除以期望频数的总和,即卡方值=Σ((O-E)²/E),其中O为观察频数,E为期望频数。

5.比较卡方值与临界值。

通过查找卡方分布表,根据给定的显著性水平(一般为0.05或0.01),确定临界值。

如果卡方值大于临界值,则拒绝零假设,认为两个变量之间存在关联性。

如果卡方值小于等于临界值,则无法拒绝零假设,认为两个变量之间不存在关联性。

6.进行推论。

如果拒绝零假设,可以推断两个变量之间存在关联性。

反之,如果无法拒绝零假设,不能推断两个变量之间存在关联性。

需要注意的是,卡方检验对样本容量有一定要求,通常要求每个格子的期望频数不低于5、如果期望频数低于5,需要采取合适的修正方法或使用其他适用于小样本的检验方法。

医学统计学(6) 卡方检验145页PPT

医学统计学(6) 卡方检验145页PPT

37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
医学统计学(6) 卡方检验
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所自己知道紧在哪里。——西班牙
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行×列表卡方检验注意事项
• 当多个样本率(或构成比)作卡方检验, 结论为拒绝零假设时,只能认为各总体率 (或总体构成比)之间总的有差别,不能 说明两两之间有差别;两组间的比较需进 一步做多个样本率或构成比的两两比较, 即多重比较。
行×列表卡方检验注意事项
• R×C表可以分为双向无序 、单向有序、双向有序属 性相同和双向有序属性不 同等4类。
• 第5步:结果解读(1)
• 结果解读:甲药组的有效率为92.9%,乙药 组的有效率为64.3%。
• 第5步:结果解读(2)
• 结果解读:有2个格子的期望值小于5,不符 合卡方检验的条件。
• 第5步:结果解读(3)
• 结果解读:四格表中有期望值小于5,选连 续校正的卡方。x2=3.621,p=0.057?
医学统计学 (6)
《中华医学杂志》对来稿统计学处理的有关要求
卡方检验(chi-square test)
• χ2检验是现代统计学的创始人之一,英国人 Karl . Pearson于1900年提出的一种具有广 泛用途的统计方法。
• 可用于两个或多个率间的比较,计数资料 的关联度分析,拟合优度检验等等。
2、卡方值的校正值 3、似然比卡方,一 般用于对数线性模 型。 4、fisher的精确检 验 5、线性趋势检验
➢输出2种相关 系数: 1、pearson相关系
数 2、spearman相关系 数
➢列联系数:分 析行与列之间的 关联程度
➢Kappa:一 致性检验
➢风险:计算 相对危险度( RR)和比数比 (OR)。 ➢McNemar: 优势性检验。
• 第4步:x2检验(3)
• 选择单元 格按钮
• 在交叉表: 单元显示 对话框: 勾上观察 值、百分 比:行、 列
• 第5步:结果解读(1)
• 结果解读:行与列均为无序变量,行、列百 分比均有各自专业意义。
• 第5步:结果解读(2) • 结果解读:x2=64.059,p=0.000
• 第5步:结果解读(3)
SPSS软件操作
• 第1步:定义变量
• 第2步:输入 原始数据
• 第3步:定义频数
• 选择数据→加权个案 • 例数→加权个案(频
数变量)
• 第4步:x2检验
• 选择分析→非参数检验→ 卡方
• 中医证型→检验变量列表
• 第5步:结果解读
• 结果解读: x2=392.514, p=0.000,说明 原发性高血压患 者中医证型内部 构成不相同。
• 通常情况下只有双向无序 的资料(例如多个样本率 的比较、多个样本构成比 的比较)可以使用R×C列 联表卡方检验。
• 右上表格使用卡方检验分 析不同疗法间疗效是否有 别,右下表格分析不同的 血型分类结果是否有关联 (不同的血型分类是否相 互独立);它们都属于双 向无序的列联表,都可使 用卡方检验分析
卡方值的计算
➢卡方值的影响因素: • 1、格子数 • 2、实测值与理论值的差距
专用公式的推导
T11=(a+c)/(a+b+c+d)*(a+b) T12=(b+d)/(a+b+c+d)*(a+b) T21=(a+c)/(a+b+c+d)*(c+d) T22=(b+d)/(a+b+c+d)*(c+d)
• 在中医药科研中,经常遇到同一个样本中 两个或多个构成比比较的问题,在满足卡 方检验的要求条件下,可用卡方检验来分 析实际频数的比率是否符合理论比率。
【例1】为探索高血压患者中医证型构成,调查原发性 高血压患者3578例,中医证型构成见表。问原发性高血 压患者中医证型内部构成是否相同?
A
T
• X2=392.514 • V=5-1=4 • P=1-CDF.CHISQ(392.514,4)=0.000
• 结果解读:新药组的有效率为88.9%,传统药物组 的有效率为86.7%,安慰剂组的有效率为70.9%。
• 第5步:结果解读(2) • 结果解读:x2=13.238,p=0.001
•进一步的两两比较
•P<0.017才有 统计学意义!!
【例6】某中医院用三种治疗方法治疗413例糖尿病患者, 资料见表。为避免中医不同证型对疗效比较的影响,分 析3种疗法治疗的病人按3种中医分型的构成比有无差别?
注意事项
➢进行拟合优度 x2 检验,一般要求有足够的 样本含量,理论频数不小于 5 。
➢理论频数小于 5 时,需要合并计算。
x2检验
• 单个样本构成比的x2检验 • 独立样本四格表的x2检验 • 行×列的x2检验 • 配对设计分类资料的x2检验 • 多维分类资料的x2检验
➢四格表的卡方检验,也是通过计算代表实 际频数A与理论频数T之间的吻合程度的卡 方值来进行检验的。
SPSS软件操作
• 第1步:定义变量
• 第2步:输入 原始数据
• 第3步:定义频数• 选择数据加权个案 • 频数→加权个案(频
数变量)
• 第4步:x2检验(1)
• 选择分析→交叉表
• 交叉表对话框:组别和感染结果分别进入行和列
• 第4步:x2检验(2)
• 选择统计 量按钮
• 在交叉表: 统计量对 话框:勾 上卡方
➢理论频数T采用两组的合并情况来计算。
【例2】某医院把慢性支气管炎患者376名,随机分为2 组,分别用中西医结合法和西医法治疗,结果见表。问 两种疗法治疗慢性支气管炎病人的治愈率是否有差别?
理论值T的计算
345/376(总的治愈率)*276=253.24 276-253.24=22.76 345/376(总的治愈率)*100=91.76 100-91.76=8.24
• 第5步:结果解读(3)
• 结果解读:选Fisher的精确检验p(exact)=0.121
x2检验
• 单个样本构成比的x2检验 • 独立样本四格表的x2检验 • 行×列的x2检验 • 配对设计分类资料的x2检验 • 多维分类资料的x2检验
行×列卡方检验计算公式
• n为总例数;R和C分别为行数和列数; A为第R行、第C列位置上的实际频数; nR为实际频数所在行的行合计;nC为 实际频数所在列的列合计。
• 结果解读:rp=0.473,p=0.000 • 两者有关联,但关联度不高。
行×列表卡方检验注意事项
• 同四格表资料一样,R×C表的卡方分布是 建立在大样本的假定上的,要求总例数不 可过少,不能有1/5以上的格子理论频数小 于5,且不能有一个格子的理论频数小于1 。
• 如果出现上述情况,可以考虑:增大样本 量;根据专业知识合理地合并相邻的组别 ;删除理论数太小的行列 ;改用其它方法 分析,例如确切概率法或似然比卡方检验 。
SPSS软件操作
• 第1步:定义变量
• 第2步:输入 原始数据
• 第3步:定义频数
• 选择数据→加权个案 • 频数→加权个案(频
数变量)
• 第4步:x2检验(1)
• 选择分析→交叉表 • 交叉表对话框:组别和中医分型分别进入行和列
• 第4步:x2检验(2)
• 选择统计 量按钮
• 在交叉表: 统计量对 话框:勾 上卡方
➢CMH多维卡 方检验
• 第4步:x2检验(2)
• 选择统计 量按钮
• 在交叉表: 统计量对 话框:勾 上卡方
• 第4步:x2检验(3)
• 选择单元 格按钮
• 在交叉表: 单元显示 对话框: 勾上观察 值、百分 比:行、 列
• 第5步:结果解读(1)
• 结果解读:中西医组的治愈率为98.2%,西 医组的治愈率为74.0%。
➢行变量和列变量均为无序分类变量。 ➢可分析行、列两变量之间有无关联,关联
的密切程度。 ➢可进行多个样本率或构成比的比较。
关联性分析
➢ 列联系数的意义
• |rp|<0.4,关联程度低 • 0.4≤|rp|<0.7,关联程度中等 • |rp|≥0.7,关联程度高
SPSS软件操作
• 第1步:定义变量
• 第4步:x2检验(3)
• 选择单元 格按钮
• 在交叉表: 单元显示 对话框: 勾上观察 值、期望 值、百分 比:行
• 第5步:结果解读(1)
• 结果解读:预防注射组的感染阳性率为4/22, 非预防组的感染阳性率为5/11。
• 第5步:结果解读(2)
• 结果解读:四格表中有期望值小于5,总例 数小于40。
疗法
物理疗法 药物治疗 外用膏药
合计
疗效
有效
无效
199
7
164
18
118
26
481
【例5】某中医师将某病患者随机分为三组,分别用新 药、传统药物和安慰剂治疗,结果见表。问三种方法治 疗该病的有效率是否有差别?
A
nR
nC
SPSS软件操作
• 第1步:定义变量
• 第2步:输 入原始数据
• 第3步:定义频数
• 选择数据→加权个案 • 频数→加权个案(频
数变量)
• 第4步:x2检验(1)
x2检验
• 单个样本构成比的x2检验——拟合优度检验 • 独立样本四格表的x2检验
• 行×列的x2检验
• 配对设计分类资料的x2检验 • 多维分类资料的x2检验
x2检验
• 单个样本构成比的x2检验——拟合优度检验 • 独立样本四格表的x2检验
• 行×列的x2检验
• 配对设计分类资料的x2检验 • 多维分类资料的x2检验
• 第4步:x2检验(3)
• 选择单元 格按钮
• 在交叉表: 单元显示 对话框: 勾上观察 值、期望 值、百分 比:行
• 第5步:结果解读(1) • 结果解读:各组的中医分型构成比。
相关文档
最新文档