六年级奥数-第十一讲.数论综合(二).教师版

合集下载

六年级的的奥数.数论综合.教师版.docx

六年级的的奥数.数论综合.教师版.docx

数论综合(二)教学目标:1、掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一质数合数【例 1 】有三张卡片,它们上面各写着数字1, 2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】抽一张卡片,可写出一位数1, 2,3;抽两张卡片,可写出两位数12, 13,21, 23, 31, 32;抽三张卡片,可写出三位数123, 132, 213, 231, 312, 321,其中三位数的数字和均为6,都能被 3 整除,所以都是合数.这些数中,是质数的有:2,3, 13,23, 31.【例 2 】三个质数的乘积恰好等于它们和的11 倍,求这三个质数.【解析】设这三个质数分别是 a 、b、 c ,满足 abc11( a b c) ,则可知 a 、b、 c 中必有一个为11,不妨记为 a ,那么bc11b c ,整理得( b 1)( c1)12,又 12 112 2 6 3 4 ,对应的 b 2 、c 13或 b 3 、 c7 或 b 4 、 c 5 (舍去),所以这三个质数可能是2, 11,13或 3,7, 11.【例 3 】用 1,2, 3, 4,5,6,7,8,9 这 9 个数字组成质数,如果每个数字都要用到并且只能用一次,那么这 9 个数字最多能组成多少个质数【解析】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7 均为一位质数,这样还剩下1、4、6、8、 9 这 5 个不是质数的数字未用.有1、4、 8、 9 可以组成质数 41、 89,而 6 可以与 7 组合成质数67.所以这 9 个数字最多可以组成 6 个质数.【例 4 】有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少【解析】两位数中,数字相同的两位数有11、22、 33、 44、 55、 66、77、88、99 共九个,它们中的每个数都可以表示成两个整数相加的形式,例如33 1 32 2 31330 L L16 17 ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、 222、 333、 444、555、 666、 777、 888、999,每个数都是 111 的倍数,而11137 3 ,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37 或 37的倍数,但只能是37 的 2 倍 ( 想想为什么 )3 倍就不是两位数了.把九个三位数分解: 111373、22237674 3、333379 、 444371274 6 、555 37 15 、 6663718749、 7773721、 88837247412、 9993727.把两个因数相加,只有( 74 3 )77 和( 3718)55 的两位数字相同.所以满足题意的答案是74和3, 37 和 18.板块二余数问题【例 5 】 (年全国小学数学奥林匹克试题) 有两个自然数相除,商是17,余数是13,已知被除数、除数、2003商与余数之和为 2113,则被除数是多少【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的17 倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115 ,所以被除数 =2083-115=1968 .【例 6 】已知 2008 被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个【解析】本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10 即 1998的约数,同时还要满足大于10 这个条件.这样题目就转化为1998 有多少个大于 10的约数,1998 2 33 37 ,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2, 3, 6,9 是比 10小的约数,所以符合题目条件的自然数共有11 个.【例 7 】有一个整数,除39, 51, 147 所得的余数都是3,求这个数.【解析】 ( 法 1) 39 3 36 ,147 3 144, (36,144)12,12 的约数是 1,2,3,4,6,12 ,因为余数为 3 要小于除数,这个数是 4,6,12;( 法 2) 由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任 意两数差的公约数. 51 39 12 , 147 39 108 , (12,108) 12 ,所以这个数是 4,6,12 .【例 8 】 ( 2005 年全国小学数学奥林匹克试题) 有一个整数,用它去除 70,110,160 所得到的 3 个余数之和是 50,那么这个整数是 ______.【解析】 (70110 160)50 290 , 503 16...... 2,除数应当是 290 的大于 17 小于 70 的约数,只可能是29 和 58, 110 58 1...... 52 , 52 50 ,所以除数不是58.70 29 2, 110 29 3...... , 160 29 5...... ,12 23 15 50,所以除数是29 (12)2315 【巩固】 ( 2002 年全国小学数学奥林匹克试题) 用自然数 n 去除 63, 91, 129 得到的三个余数之和为 25,那么 n=________ .【解析】n 能整除 63 91 129 25 258.因为 25 3 8...1,所以 n 是 258 大于 8 的约数.显然, n 不能大于 63.符合条件的只有 43.【例 9 】 一个大于 10 的自然数去除 90、164 后所得的两个余数的和等于这个自然数去除220 后所得的余数,则这个自然数是多少【解析】 这个自然数去除 90、164 后所得的两个余数的和等于这个自然数去除 90 164 254 后所得的余数,所以 254 和 220 除以这个自然数后所得的余数相同,因此这个自然数是 254 220 34 的约数,又大 于 10,这个自然数只能是 17 或者是 34.如果这个数是 34,那么它去除 90、 164、 220 后所得的余数分别是 22、 28、16,不符合题目条件;如果这个数是 17,那么他去除 90、 164、220 后所得的余数分别是 5、11、 16,符合题目条件,所以 这个自然数是 17. 【例 10 】甲、乙、丙三数分别为 603,939,393.某数 A 除甲数所得余数是 A 除乙数所得余数的 2 倍, A 除乙数所得余数是 A 除丙数所得余数的 2 倍.求 A 等于多少【解析】 根据题意,这三个数除以 A 都有余数,则可以用带余除法的形式将它们表示出来:603 A K 1 L L r 1 939 A K 2 L L r 2 393 A K 3 L L r 3由于 r 12r 2 , r 22r 3 ,要消去余数 r 1 , r 2 , r 3 ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以 2,使得被除数和余数都扩大2 倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:603 AK 1 L L r 1 939 2A 2 K 2 L L 2r 2 393 4A 2K 3 L L 4r 3这样余数就处理成相同的.最后两两相减消去余数,意味着能被 A 整除.939 2 603 1275 , 393 4 603 969, 1275,969513 17 .51 的约数有 1、 3、 17、 51,其中 1、3 显然不满足,检验 17 和 51 可知 17 满足,所以 A 等于 17.【例 11 】 ( 2003 年南京市少年数学智力冬令营试题)22003 与 20032 的和除以 7 的余数是 ________.【解析】 找规律.用 7 除 23, 456,⋯的余数分别是 2,4, 1, 2,4, 1, 2, 4, 1,⋯, 2 2, 2 , 2 2 , 2 , 2的个数是 3 的倍数时,用 7 除的余数为 1; 2 的个数是 3 的倍数多 1 时,用 7 除的余数为 2; 2 的个 数是 3 的倍数多 2 时,用 7 除的余数为4.因为 22003 23 6672,所以 22003 除以 7 余 4.又两个数的积除以 7 的余数,与两个数分别除以 7 所得余数的积相同. 而 2003 除以 7 余 1,所以 2003 2除以 7 余 1.故22003与 20032的和除以 7 的余数是 4 15.【巩固】 22008 20082 除以 7 的余数是多少【解析】 238除以 7的余数为 1, 2008 3 669 1 ,所以 2200823 669+1(23 )6692 ,其除以 7 的余数为:6692 2 ; 2008 除以 7 的余数为227 的余数,为 1;所以16,则 2008 除以 7 的余数等于 6 除以2200820082 除以 7 的余数为: 2 1 3 .【例 12 】 ( 2009 年走美初赛六年级) 有一串数: 1, 1, 2, 3, 5, 8,⋯⋯,从第三个数起,每个数都是前两个数之和,在这串数的前 2009 个数中,有几个是 5 的倍数【解析】 由于两个数的和除以 5 的余数等于这两个数除以 5 的余数之和再除以 5 的余数.所以这串数除以 5 的余数分别为: 1, 1,2, 3, 0, 3, 3,1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4,1, 0, 1, 1, 2, 3, 0,⋯⋯ 可以发现这串余数中,每 20 个数为一个循环,且一个循环中,每 5 个数中第五个数是由于 2009 5 401L 4 ,所以前 2009 个数中,有 401 个是 5 的倍数.5 的倍数.【巩固】著名的裴波那契数列是这样的:1、 1、2、3、 5、 8、 13、 21⋯⋯这串数列当中第 2008 个数除以 3所得的余数为多少【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被 3 除所得余数的数列: 1、 1、 2、 0、 2、 2、 1、 0、 1、1、 2、 0⋯⋯第九项和第十项连续两个是 1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被 3 除的余数每 8 个一个周期循环出现,由于 2008 除以 8 的余数为 0,所以第 2008 项被 3 除所得的余数为第 8 项被 3 除所得的余数,为 0.【例 13 】 ( 1997 年全国小学数学奥林匹克试题 ) 将 12345678910111213......依次写到第 1997 个数字,组成一个1997 位数,那么此数除以 9 的余数是 ________ .【解析】 本题第一步是要求出第 1997 个数字是什么,再对数字求和.1~9 共有 9 个数字, 10~99 共有 90 个两位数,共有数字: 90 2 180 ( 个 ) , 100~999共 900 个三位数,共有数字: 900 3 2700 ( 个) ,所以数连续写,不会写到 999,从 100 开始是 3 位数,每三个数字表示一个数, (1997 9 180) 3 602......2 ,即有 602 个三位数,第 603 个三位数只写了它的百位和十位.从100 开始的第 602 个三位数是 701,第 603 个三位数是 9,其中 2 未写出来.因为连续 9 个自然数之和能被 9 整除,所以排列起来的 9 个自然数也能被 9 整除, 702 个数能分成的组 数是:702 9 78 ( 组 ) ,依次排列后,它仍然能被 9 整除,但 702 中 2 未写出来,所以余数为 9-2 7 .【例 14 】有 2 个三位数相乘的积是一个五位数,积的后四位是 1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是 8,求两个三位数的和 .【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以 9 的余数分别为 1 和 8,所以等式一边除以 9 的余数为 8,那么□ 1031 除以 9 的余数也必须为 8,□只能是 3.将 31031 分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即 31031 31 1001 143 217所以两个三位数是 143 和 217,那么两个三位数的和是360【例 15 】设 20092009 的各位数字之和为A , A 的各位数字之和为B , B 的各位数字之和为C , C 的各位数字之和为 D ,那么 D9 的余数相同, 所以 20092009 与 A 、B 、C 、D【解析】 由于一个数除以9 的余数与它的各位数字之和除以除以 9 都同余,而 2009 除以 9 的余数为 2,则 2009 2009除以 9 的余数与 2 2009 除以 9 的余数相同,而 2664除以 9 的余数为200926 334 5633459 的余数为 51,所以 222 除以 2 除以 9 的余数,即为 5.另一方面,由于 20092009 100002009 108036 ,所以 20092009 的位数不超过 8036 位,那么它的各位数字之和不超过 9 8036 72324 ,即 A ;那么 A 的各位数字之和 B9 5 45 , B 的各位数字之72324和 C 9 2 18 , 小于 18 且除以 9 的余数为 5,那么 C 为 5 或 14, 的各位数字之和为 5,即 D 5 .CC板块三 完全平方数【例 16 】从 1 到 2008 的所有自然数中,乘以 72 后是完全平方数的数共有多少个 【解析】 完全平方数,其所有质因数必定成对出现.而 72 23322 6 6 ,所以满足条件的数必为某个完全平方数的2 倍,由于 2 31 31 19222008 2 322 2、⋯⋯、 22都满足题意,即32 2048,所以 2 1 、 2 2 31 所求的满足条件的数共有31 个.【例 17 】一个数减去100 是一个平方数,减去63 也是一个平方数,问这个数是多少【解析】设这个数减去2,减去 100为B2,则 A2B2A B A B100633737 1,63 为A可知 A B 37 ,且 A B 1 ,所以 A19 , B18,这样这个数为 182100424 .【巩固】能否找到这么一个数,它加上24,和减去30 所得的两个数都是完全平方数【解析】假设能找到,设这两个完全平方数分别为A2、 B 2 ,那么这两个完全平方数的差为54A B A B ,由于 A B 和 A B的奇偶性质相同,所以A B A B不是 4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以 54 不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18 】有 5 个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为.【解析】考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是 x,则它们的和为5x,中间三数的和为3x . 5x 是平方数,设 5 x2225 a ,则 x 5a,3x15a23 5 a 2是立方数,所以 a2至少含有3 和 5 的质因数各 2 个,即 a2至少是 225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四位值原理【例19 】 ( 美国小学数学奥林匹克) 把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少如【解析】设原来的两位数为ab ,交换后的新的两位数为ba,根据题意,ab ba(10a b) (10b a )9(a b)45 ,a b 5 ,原两位数最大时,十位数字至多为9,即a9 ,b 4 ,原来的两位数中最大的是94.【巩固】将一个四位数的数字顺序颠倒过来,得到一个新的四位数( 这个数也叫原数的反序数) ,新数比原数大8802.求原来的四位数.【解析】设原数为 abcd ,则新数为dcba,dcba abcd (1000d100c 10b a)(1000a 100b10c d)999( d a)90(c b) .根据题意,有 999( d a)90(c b)8802 , 111(d a)10 (c b)97888890 .推知 d a8 , c b9 ,得到 d9 , a 1, c9 , b0 ,原数为1099.【例 20 】 ( 第五届希望杯培训试题) 有 3 个不同的数字,用它们组成 6 个不同的三位数,如果这 6 个三位数的和是 1554,那么这 3 个数字分别是多少【解析】设这六个不同的三位数为abc,acb, bac,bca, cab, cba ,因为 abc100a10b c , acb100a10c b ,⋯⋯,它们的和是:222(a b c)1554 ,所以a b c15542227 ,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为 1, 2,而 7 (1 2) 4 ,所以最大的数最大为4;又1 2 367 ,所以最大的数大于 3,所以最大的数为4,其他两数分别是1, 2.【巩固】 ( 迎春杯决赛 ) 有三个数字能组成 6 个不同的三位数,这 6 个三位数的和是2886,求所有这样的 6 个三位数中最小的三位数.【解析】设三个数字分别为a、 b、 c,那么6 个不同的三位数的和为:abc acb bac bca cab cba2(a b c) 1002( a b c)102(a b c)222( a b c)所以 a b c 288622213,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13 19 3,所以所有这样的 6 个三位数中最小的三位数为139.【巩固】 a, b, c 分别是0 : 9 中不同的数码,用a, b,c 共可组成六个三位数,如果其中五个三位数之和是2234 ,那么另一个三位数是几【解析】由 a ,b, c 组成的六个数的和是222(a b c) .因为223422210 ,所以 a b c 10 .若 a b c11,则所求数为222112234208,但 2081011,不合题意.若 a b c12,则所求数为222122234430 ,但 430712,不合题意.若 a b c13,则所求数为222132234652, 6 5213,符合题意.若 a b c14,则所求数为222142234874,但 8741914 ,不合题意.若 a b c15,则所求数2221522341096,但所求数为三位数,不合题意.所以,只有 a b c 13时符合题意,所求的三位数为652.板块五进制问题【例 21 】在几进制中有 4 13 100【解析】利用尾数分析来解决这个问题:由于 (4)10(3)10(12)10,由于式中为100,尾数为 0,也就是说已经将12 全部进到上一位.所以说进位制n 为12的约数,也就是12,6, 4, 3,2 中的一个.但是式子中出现了4,所以 n 要比 4 大,不可能是4, 3,2 进制.另外,由于(4)10(13)10(52)10,因为52100,也就是说不到10 就已经进位,才能是100,于是知道n 10 ,那么n不能是12.所以, n 只能是 6.【巩固】算式 1534 25 43214是几进制数的乘法【解析】注意到尾数,在足够大的进位制中有乘积的个位数字为45 20 ,但是现在为 4 ,说明进走20 4 16 ,所以进位制为16 的约数,可能为16、 8、 4 或 2.因为原式中有数字5,所以不可能为4、 2 进位,而在十进制中有1534 25 38350 43214,所以在原式中不到10 就有进位,即进位制小于10,于是原式为8 进制.【例 22】在 6 进制中有三位数abc ,化为9 进制为 cba ,求这个三位数在十进制中为多少【解析】(abc)6 =a× 62+ b× 6+c=36a+6b+c ;(cba)9=c× 92+b×9+a=81c+9b+a;所以 36a+6b+c=81c+9b+a ;于是 35a=3b+80c ;因为 35a 是 5 的倍数,80c 也是 5 的倍数.所以 3b 也必须是 5 的倍数,又(3 ,5)=1 .所以, b=0 或 5.①当 b=0,则 35a=80c;则 7a=16c;(7 ,16)=1 ,并且 a、c≠ 0,所以 a=16,c=7.但是在6, 9 进制,不可以有一个数字为16.②当 b=5,则 35a=3× 5+80c ;则 7a=3+16c; mod7 后, 3+2c≡ 0.所以 c=2 或者 2+7k(k为整数 ) .因为有 6 进制,所以不可能有9 或者 9 以上的数,于是 c=2;35a=15+80× 2,a=5.所以 (abc)6 =(552)6=5× 62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1 .三个质数的乘积恰好等于它们的和的7 倍,求这三个质数.【解析】设这三个质数分别是 a 、b、 c ,满足 abc7( a b c) ,则可知 a 、b、 c 中必有一个为7,不妨记为 a ,那么bc7 b c,整理得(b1)(c1)8 ,又8 1 82 4 ,对应的 b 2、c9( 舍去 ) 或b 3、c5,所以这三个质数可能是3, 5,7练习 2 .有一个大于 1 的整数,除45,59,101 所得的余数相同,求这个数.【解析】这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556,4514,14,的约数有1,2,7,14,所以这个数可能为2,7,14.59(56,14)14练习 3 .将 1 至 2008 这 2008 个自然数,按从小到大的次序依次写出,得一个多位数:L ,试求这个多位数除以 9 的余数.【解析】以这个八位数为例,它被9 除的余数等于19 99 2 00 0 被 9 除的余数,但是由于1999与 1 9 9 9 被 9 除的余数相同, 2000 与 2 0 0 0 被 9 除的余数相同, 所以就与 1999 2000被 9 除的余数相同.由此可得,从 1 开始的自然数L被 9 除的余数与前 2008 个自然数之和除以 9 的余数相同.根据等差数列求和公式,这个和为: 1 2008 20082017036 ,它被 9 除的余数为 1. 2另外还可以利用连续 9 个自然数之和必能被 9 整除这个性质,将原多位数分成 9,61718,⋯⋯, 0062007 , 2008 等数,可见它被 9 除的余数与 2008 被 9 除的余数相同.因此,此数被 9 除的余数为 1.练习 4 . 在 7 进制中有三位数abc ,化为 9 进制为 cba ,求这个三位数在十进制中为多少【解析】 首先还原为十进制: (abc )7 a 72b 7c 49a 7b c ; (cba)9 c 92b 9 a 81c 9b a .于是 49a 7b c 81c 9b a ;得到 48a 80c 2b ,即 24a 40c b .因为 24a 是 8 的倍数, 40c 也是 8 的倍数,所以 b 也应该是 8 的倍数,于是 b 0 或 8.但是在 7 进制下,不可能有 8 这个数字.于是 b 0 , 24a 40c ,则 3a 5c . 所以 a 为 5 的倍数, c 为 3 的倍数. 所以, a 0 或 5,但是,首位不可以是 0,于是 a 5 , c3 ;所以 (abc)7 (503)7 549 3 248 .于是,这个三位数在十进制中为248.月测备选:【备选 1】某质数加 6 或减 6 得到的数仍是质数,在 50 以内你能找出几个这样的质数把它们写出来 .【解析】 有六个这样的数,分别是 11, 13, 17, 23, 37, 47.【备选 2】 ( 2002 年全国小学数学奥林匹克试题) 两数相除,商 4 余 8,被除数、除数、商数、余数四数之和等于 415,则被除数是 _______.(415 4 88)(4 1) 79【解析】 因为被除数减去8 后是除数的,4 倍,所以根据和倍问题可知, 除数为所以,被除数为79 4 8 324.【备选 3】 1016 与正整数 a 的乘积是一个完全平方数,则 a 的最小值是 ________.【解析】 先将 1016 分解质因数: 10163a 是一个完全平方数,所以至少为42,故2 127 ,由于 1016 2127 a 最小为 2 127 254.【 备选 4】在几进制中有 125 125 16324【解析】 注 意 (125)10 (125)10 (15625)10 ,因为 15625 16324,所以一定是不到10 就已经进位,才能得到16324,所以 n 10 .再注意尾数分析,(5)10 (5)10 (25)10 ,而 16324 的末位为 4,于是 25 4 21 进到上一位.所以说进位制 n为21 的约数,又小于 10,也就是可能为7 或 3.因为出现了 6,所以 n只能是 7.。

数论综合二

数论综合二

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

学科培优数学“数论综合二”学生姓名授课日期教师姓名授课时长知识定位在整个数学领域,数论被当之无愧的誉为“数学皇后”。

翻开任何一本数学辅导书,数论的题型都占据了显著的位置。

在小学各类数学竞赛和小升初考试中,我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。

知识梳理涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.例题精讲【试题来源】【题目】一台计算器大部分按键失灵,只有数字“7”和“0”以及加法键“+”尚能使用,因此可以输入77,707这样只含数字7和0的数,并且进行加法运算.为了显示出222222,最少要按“7”键多少次?【答案】21【解析】222222÷7=31746,即222222=70000×3+7000×1+700×7+70×4+7×6,而70000,7000,700,70,7均只用按一次7,所以222222最少只用按3+1+7+4+6=21次“7”键即可显示.【知识点】数论综合二【适用场合】当堂例题【难度系数】3【试题来源】【题目】有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本.那么这批图书共有本.【答案】670【解析】经分析发现,原书的本书如果多2本,那么原来书的数目就会同时是24,28,32的倍数,而,[24,28,32]=672,且原书的本书不超过1000本,所以原来的书有672-2=670(本)【知识点】数论综合二【适用场合】当堂例题【难度系数】2【试题来源】【题目】一个五位数恰好等于它各位数字和的2007倍,则这个五位数是 .【答案】2007×18和2007×27【解析】这个五位数等于各位数字之和乘以2007,2007是3,3,223,三个数字之积,所以这个五位数是9的倍数,各位数字之和也是9的倍数(一个数是9的倍数,那么它的各位数字之和也是9的倍数,)所以这个五位数可能是2007×9,2007×18,2007×27,2007×36……容易得出:2007×18和2007×27符合题目.【知识点】数论综合二【适用场合】当堂例题【难度系数】3【试题来源】【题目】在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如一次操作后得到4,5,…,98,99,6;而两次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【答案】4950【解析】观察规律发现,最后一个数字即为1到99的和,为4950.【知识点】数论综合二【适用场合】当堂例题【难度系数】3【试题来源】【题目】有两种规格的9箱钢珠,每箱300个,甲种钢珠每个10克,乙种钢珠每个11克,将这9箱钢珠编为1~9号,然后依次从1~9号箱中取出20,21,22,23,24,25,26,27,28,个钢珠,这些钢珠共重5555克。

六年级奥数数论综合讲座

六年级奥数数论综合讲座

六年级奥数数论综合讲座数论综合(一)涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题..如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.:当n为4时,如果其内含有5的倍数(个位数字为O 或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,67,71,73,79,83,89,97.可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.所以满足条件的a+b最小可能值为30,最大可能值为168..如果某整数同时具备如下3条性质:①这个数与1的差是质数;②这个数除以2所得的商也是质数;③这个数除以9所得的余数是5.那么我们称这个整数为幸运数.求出所有的两位幸运数.【分析与解】条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.所以两位幸运数只有14.4.在555555的约数中,最大的三位数是多少? 【分析与解】×111×100×5×7×11×13×37显然其最大的三位数约数为777.5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?【分析与解】从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.不难得知,最后剪去的正方形边长为77毫米..已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案.【分析与解】设这三个数为a、b、c,且a<b<c,因为两两不互质,所以它们均是合数.小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中质因数7只有14含有,无法找到两个不与14互质的数.所以只剩下6,10,12,15,18这5个数存在可能的排列.所以,所有可能的答案为(6,10,15);(10,12,15);(10,15,18)..把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?【分析与解】26=2×13,33=3×11,34=2×17,35=5×7,63= ×7,85=5×17,91=7×13,143=11×13.由于质因数13出现在26、91、143三个数中,故至少要分成三组,可以分成如下3组:将26、33、35分为一组,91、34、33分为一组,而143、63、85分为一组.所以,至少要分成3组..图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?【分析与解】圆内的任意两点,以直径两端点得距离最远.如果沿小圆爬行的甲虫爬到A点,沿大圆爬行的甲虫恰好爬到B点,两甲虫的距离便最远.小圆周长为×30=307r,大圆周长为48 ,一半便是24 ,30与24的最小公倍数时120.120÷30=4.120÷24=5.所以小圆上甲虫爬了4圈时,大圆上甲虫爬了5个圆周长,即爬到了过A的直径另一点B.这时两只甲虫相距最远..设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?【分析与解】 (1)a与b的最小公倍数72=2×2×2×3×3,有12个约数:1,2,3,4,6,8,9,12,18,24,36,72.不妨设a>b.:当a=72时,b可取小于72的11种约数,a+b≥72+1=73;:当a=36时,b必须取8或24,a+b的值为44或60,均不同第一种情况中的值;:当a=24时,b必须取9或18,a+b的值为33或42,均不同第一、二种情况中的值;当a=18时,b必须取8,a+b=26,不同于第一、二、三种情况的值;:当a=12时,b无解;:当a=9时,b必须取8,a+b=17,不同于第一、二、三、四情况中的值.总之,a+b可以有ll+2+2+1+1=17种不同的值.(2)60=2×2×3×5,有12个约数:1,2,3,4,5,6,10,12,15,20,30,60.a、b为60的约数,不妨设a>b.:当a=60时,b可取60外的任何一个数,即可取11个值,于是a-b可取11种不同的值:59,58,57,56,55,54,50,48,45,40,30;.当a=30时,b可取4,12,20,于是a-b可取26,18,10;:当a=20时,b可取3,6,12,15,所以a-b可取17,14,8,5;当a=15时,b可取4,12,所以a-b可取11,3; : 当a=12时,b可取5,10,所以a-b可取7,2.总之,a-b可以有11+3+4+2+2=22种不同的值.0.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳米,黄鼠狼每次跳米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?【分析与解】由于÷ = ,÷ = .所以狐狸跳4个米的距离时将掉进陷阱,黄鼠狼跳2个米的距离时,将掉进陷阱.又由于它们都是一秒钟跳一次,因此当狐狸掉进陷阱时跳了11秒,黄鼠狼掉进陷阱时跳了9秒,因此黄鼠狼先掉进陷阱,此时狐狸跳了9秒.距离为9× =40.5(米).11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【分析与解】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.2.甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【分析与解】由题意知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.即603÷A=a……k;(2×939)÷A=b……k;(4×393)÷A=c……k.于是有(1878-603)÷A=b-a;(1878-1572)÷A=b-c;(1572-603)÷A=c-a.所以A为1275,306,969的约数,(1275,306,969)=17×3=51.于是,A可能是51,17(不可能是3,因为不满足余数是另一余数的4倍).当A为51时,有603÷51=11……42;939÷51=18……21;393÷51=7……36.不满足;当A为17时,有603÷17=35……8;939÷17=55……4;393÷17=23……2;满足.所以,除数4为17..证明:形如11,111,1111,11111,…的数中没有完全平方数.【分析与解】我们知道奇数的完全平方数是奇数,偶数的完全平方数为偶数,而奇数的完全平方数除以4余1,偶数的完全平方数能被4整除.现在这些数都是奇数,它们除以4的余数都是3,所以不可能为完全平方数.评注:设奇数为2n+1,则它的平方为 +4n+1,显然除以4余1..有8个盒子,各盒内分别装有奶糖9,17,24,28,30,31,33,44块.甲先取走一盒,其余各盒被乙、丙、丁3人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?【分析与解】我们知道乙、丙、丁三人取走的七盒中,糖的块数是丁所取糖块数的5倍.八盒糖总块数为9+17+24+28+30+31+33+44=216.从216减去5的倍数,所得差的个位数字只能是1或6.观察各盒糖的块数发现,没有个位数字是6的,只有一个个位数字是1的数31.因此甲取走的一盒中有3l块奶糖.15.在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?【分析与解】 10,12,15的最小公倍数[10,12,15]=60,把这根木棍的作为一个长度单位,这样,木棍10等份的每一等份长6个单位;12等份的每等份长5个单位;15等份的每等份长4单位.不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等份),共计34个.由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1.又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2.同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4.由于这些相重点各不相同,所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段.数论综合(二)进位制的概念、四则运算法则及整数在不同进位制之间的转化,利用恰当的进位制解数论问题.取整符号[]与取小数部分符号{}的定义与基本性质,包含这两种符号的算式与方程的求解.两次与分式不定方程,不便直接转化为不定方程的数论问题.各种数论证明题.典型问题1.算式1534×25=43214是几进位制数的乘法? 【分析与解】注意到尾数,在足够大的进位制中有乘积的个位数字为4×5=20,但是现在为4,说明进走20-4=16,所以进位制为16的约数:16、8、4、2.因为原式中有数字5,所以不可能为4,2进位,而在十进制中有1534×25=38350<43214,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.2.求方程19[x]-96{x}=0的解的个数.【分析与解】有{x}为一个数的小数部分,显然小于1,则96{x}小于96,而19[x]=96{x},所以19[x]小于96,即[x]小于,又[x]为整数,所以[x]可以取0,1,2,3,4,5,对应有6组解.进一步计算有0,1 ,为原方程的解.3.一个自然数与自身相乘的结果称为完全平方数.已知一个完全平方数是四位数,且各位数字均小于7.如果把组成它的数字都加上3,便得到另外一个完全平方数.求原来的四位数.【分析与解】设这个四位数为…………………………………①每位数字均加3,并且没有进位,为…………………………………………………②有②-①得:3333= =(n-m)(n+m) ………………………………③将3333分解质因数,有3333=3×11×101,其有(1+1)(1+1)(1+1)=8个约数,但是有n+m>n-m,所以只有4种可能满足题意,一一考察,如下表:如上表,只有1156,4489满足,即原来这个四位数为1156.4.将表示成两个自然数的倒数之和,请给出所有的答案.【分析与解】设有,化简有(a-6)(b-6)=6=2×2×3×3,评注:形如 (t为己知常数)的解法及解的个数.(t为已知常数)类问题,可以通过计算,转化为(A-t)×(B-t)= ;我们将分解质因数后,再令(A-t)其中一个为的一个约数(A-t)=a,那么A=a+t,则 (t为已知常数),所以,一般公式为 (a为t的一个约数);设的约数有x个,则A、B有组(调换顺序算一种).注意有一组解A、B相等,就是5.在给定的圆周上有2000个点.任取一点标上数1;按顺时针方向从标有1的点往后数2个点,在第2个点上标上数2;从标有2的点再往后数3个点,在第3个点上标上数3;……;依此类推,直至在圆周上标出1993.对于圆周上的这些点,有的点可能标上多个数,有的点可能没有被标数.问标有数1993的那个点上标的最小数是多少?【分析与解】记标有1为第1号,序号顺时针的依次增大.当超过一圈时,编号仍然依次增加,如1号也是2001号,4001号,……则标有2的是1+2号,标有3的是1+2+3号,标有4的是1+2+3+4,…,标有1993的是1+2+3+…+021号.021除以2000的余数为1021,即圆周上的第1021个点标为1993.那么1021+2000n=1+2+3+…+k= ,即2042+4000n=k(k+1).当n=0时,k(k+1)=2042,无整数解;当n=1时,k(k+1)=6042,无整数解;当n=2时,k(k+1)=10042,无整数解;当n=3时,k(k+1)=14042,有118×119=14042,此时标有118;随着n的增大,k也增大.所以,标有1993的那个点上标出的最小数为118.6.有些三位数,如果它本身增加3,那么新的三位数的各位数字的和就减少到原来三位数的.求所有这样的三位数.【分析与解】设这个三位数为,数字和为a+b+c,如果没有进位,那么,显然数字和增加了3,不满足,所以一定有进位,则 +3= ,数字和为0+(b+1)+(c+3-10)= ,则a+b+c=9,而c+3必须有进位,所以c只能为7,8,9.一一验,如下表:验证当十位进位及十位、个位均进位时不满足.所以,原来的三位数为207,117或108.7.将某个17位数各位数字的排列顺序颠倒,再将得到的新数与原来的数相加.试说明,所得的和中至少有一个数字是偶数.【分析与解】先假设和的各位数字全是奇数,设这个17位数为,则a+d为奇数,b+c的和小于10,于是十位不向前进位,从而去掉前后各两个两位数字所得的13位数仍具有题述性质.依次类推6次后,得到一位数,它与自身相加的和的个位数字必是偶数,矛盾.即开始的假设不正确,所以和中至少有一个数字是偶数.数论综合(三)内容概述具有相当难度,需要灵活运用各种整数知识,或与其他方面内容相综合的数论同题.典型问题2.有3个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除.那么这样的3个自然数的和的最小值是多少?【分析与解】设这三个自然数为A,B,C,且A= × ,B= × ,C= × ,当、、c均是质数时显然满足题意,为了使A,B,C的和最小,则质数、、应尽可能的取较小值,显然当、、为2、3、5时最小,有A=2×3=6, B=3×5=15,C=5×2=10.于是,满足这样的3个自然数的和的最小值是6+15+10=31.4.对于两个不同的整数,如果它们的积能被和整除,就称为一对“好数”,例如70与30.那么在1,2,…,16这16个整数中,有“好数”多少对?【分析与解】设这两个数为、,且,有 =×( + ),即当 =2时,有,即( -2)×( -2)=22=4,有,但是要求≠ .所以只有满足;当 =3时,有,即( -3)×( -3)=32=9,有,但是要求≠ .所以只有满足;……逐个验证的值,“好数”对有3与6,4与12,6与12,10与15.所以“好数”对有4个.6.甲、乙两人进行下面的游戏:两人先约定一个自然数N,然后由甲开始,轮流把0,1,2,3,4,5,6,7,8,9这10个数字中的一个填入图28-1的某个方格中,每一方格只能填一个数字,但各方格所填的数字可以重复.当6个方格都填有数字后,就形成一个六位数.如果这个六位数能被N整除,那么乙获胜;如果这个六位数不能被N整除,那么甲获胜.设N小于15,问当N取哪几个数时.乙能取胜?【分析与解】当N取2,4,6,8,10,12,14这7个偶数时,当甲将某个奇数放到最右边的方格中,则这个六位数一定是奇数,奇数显然不能被偶数整除,所以此时乙无法取胜;而当N取5时,当甲在最右边的方格内填人一个非0非5的数字时,则这个六位数一定不能被5整除,所以此时乙无法获胜:此时还剩下1,3,7,9,11,13这6个数,显然当N取l时,乙一定获胜;当N取3或9时,只要数字对应是3或9的倍数时,这个六位数就能被对应的3或9整除,显然乙可以做到;当N取7,1l或13时,只要前三位数字和与后三位数字和的差对应是7,11,13的倍数时,这个六位数就对应是7,11,13的倍数,乙可以做到.于是,当N取1,3,7,9,11,13时,乙适当的操作能保证自己一定获胜.8.已知与的最大公约数是12,与的最小公倍数是300,与的最小公倍数也是300.那么满足上述条件的自然数,,共有多少组?【分析与解】300=12× ,是、的倍数,而12是、的最大公约数,所以、有5种可能,即12 12×5 12× 12 1212 12 12 12×5 12×由于、中总有一个为12,则= × × ,其中x可以取0、1、2中的任意一个,y可以取0、1中的任意一个,这样满足条件的自然数、、共有5×3×2=30组.10.圆周上放有N枚棋子,如图28-2所示,B点的那枚棋子紧邻A点的棋子.小洪首先拿走B点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A.当将要第10次越过A处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N是14的倍数,请精确算出圆周上现在还有多少枚棋子?【分析与解】设圆周上余枚棋子,从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时,小洪拿了2 枚棋子,所以在第9次将要越过A处棋子时,圆周上有3 枚棋子..依次类推,在第8次将要越过A处棋子时,圆周上有32 枚棋子,…,在第1次将要越过A处棋子时,圆周上有3 枚棋子,在第1次将要越过A处棋子之间,小洪拿走了2(3 -1)+枚棋子,所以N=2(3 -1)+1+3 =310 -1. N=310 -1=59049 -l是14的倍数,N是2和7的公倍数,所以必须是奇数;又N=(7×8435+4) -1=7×8435 +4 -1,所以4 -1必须是7的倍数.当 =21,25,27,29时,4 -1不是7的倍数,当=23时,4 -1=91=7×13,是7的倍数.所以.圆周上还有23枚棋子.12.是否存在一个六位数A,使得A,2A,3A,…,500000A中任意一个数的末尾6个数码不全相同?【分析与解】显然A的个位数字不能为偶数,不然500,000A的后6位为000,000;而A的个位数字也不能为5,不然200,000A的后6位为000,000.于是A的个位数字只能为1,3,7,9.对于任何一个六位数A(个位数字为1,3,7,9),均存在六位数,使得×A≡111,111(mod 1,000,000).如果存在 500,000,使得×A≡(mod 1,000,000),那么那个A即为题中所求的值.(说明见评注)当有A时, A显然满足上面的条件.所以888,889即为所求的A.评注:如果存在 500,000,使得×A≡111,111(mod 1,000,000),那么那个A即为题中所求的值.这是因为如果对于上面的A,还存在一个六位数B,使得B×A=111,111(mod 1,000,000),那么有( ×A-B ×A)=0(mod 1,000,000),即( -B)×A≡0(mod 1,000,000).因为A不含有质因数2、5,所以( -B)为1,000,000的倍数, -B≥1,000,000,那么 1,000,000,与为六位数矛盾.也就是说不存在小于等于500,000的t,使得 A的后六位为111,111,那么也不可能使得 A的后6位相同.已知m,n,k为自然数,m≥n≥k, 2 +2 -2 是100的倍数,求m+n - k后的最小值.【分析与解】方法一:首先注意到100=22×52.如果n=k,那么2m是100的倍数,因而是5的倍数,这是不可能的.所以n-k≥1.被22整除,所以k≥2.设 =m-k, =n-k,则≥ ,且都是整数.2a+2b-1被52整除,要求 + +k=m+n-k的最小值.不难看出210+21-1=1025,能被25整除,所以 ++k的最小值小于10+l+2=13.而且在 =10, =1,k=2时,上式等号成立.还需证明在+ ≤10时,2a+2b-l不可能被25整除.有下表a21,2,31,2,3,41,22≤3时,2a+2b-18+8=16不能被52整除.其他表中情况,不难逐一检验,均不满足被25整除的要求.因此 + -k即m+n-k的最小值是13.方法二:注意到有100=2×2×5×5,4∣ .所以k最小为2.还有25∣ ,令m-k=x, n-则有≡l(mod 25)因为5去除2,22,23,24,25余数分别为2,4,3,1,2;余数是4个一周期.于是,x=4p+2,y=4q+1;或者是x=4P+3,y=4Q+3.(1)x=4p+2,y=4q+1时当x=2,y=1,于是不是100的倍数;当x=6,y=l,于是不是100的倍数;当x=10,y=l,于是是 l00的倍数;(2)x=4P+3,y=4Q+3当x=3,y=3,于是不是l00的倍数;当x=7,y=3,于是不是l00的倍数:其余的将超过(1)种情况,所以,最小为m+n-k=12+3-2=13.数论综合(四)内容概述主要是“小升初”综合素质测试中较难的数论问题. 1.任意选取9个连续的正整数,即它们的乘积为P,最小公倍数为Q.我们知道,P除以Q所得到的商必定是自然数,那么这个商的最大可能值是多少?【分析与解】将9个连续的正整数作因式分解,如果某个质数是其中至少两个分解式的因子,那么次数最高的那个方幂会包含在最小公倍数Q中,而其他方幂的乘积则出现在P除以Q的商中.显然这样的质数必定小于9,只可能是2,3,5或7.记P÷Q=R,则R的质因数必定取自2,3,5,7.两个不同的7的倍数至少相差7,因此在9个连续正整数中,最多有两个数含有质因数7.当有两个数是7的倍数是,可能它们都不能被7×7整除,也可能其中一个数是7×7的倍数,而另一个不是.于是R的质因数分解式中7的幂次最高是1.类似的分析,R中最多包含一个质因数5.在9个连续的正整数中,恰有3个数是3的倍数,其中一个数能被9整除,而另一两个数仅能被3整除,因此R中所包含的质因数3的幂次必定为2.在9个连续的正整数中,最多有5个数是偶数.此时,除去含有2的幂次最高的数外,其余的4的数含有质因数2最多的情形是:其中有2个仅为2的倍数,有1个是4的倍数,另一个是8的倍数.即R的质因数分解式中2的幂次最多是1+1+2+3=7.综上所述,R的最大值是27×32×5×7=40320.事实上,对于9个连续正整数560,561,…,568,P除以Q所得到的商恰是40320.2.老师在黑板上依次写了三个数21、7、8,现在进行如下的操作,每次将这三个数中的某些数加上2,其他数减去1,试问能否经过若干次这样的操作后,使得:(1)三个数都变成12? (2)三个数变成23、15、19?【分析与解】如果两个数都加上2,那么它们的差不变;如果两个数都减去1,那么它们的差也不变;如果一个数加上2,一个数减去1,那么它们的差增大或减小3.所以,不管怎样,它们的差增大或减小3的倍数.也就是说,不管怎么操作,这两个数的差除以3的余数是不变的.21与7的差除以3的余数为2;21与8的差除以3的余数为1;7与8的差除以3的余数为1.(1)三个数都变成12,那么它们的差除以3的余数都是0,显然与开始给出的三个数之间差的余数有变化,所以不满足;(2)三个数变成23、15、19,它们之间差除以3的余数依次为:23与15的差除以3的余数为2;23与19的差除以3的余数为1;15与19的差除以3的余数为1.也就是说与开始给出的三个数之间差的余数没变化,所以满足.3.对于n个奇质数,如果其中任意奇数个数的和仍是质数,那么称这些数构成“奇妙数组”,而n就是这个数组的“阶数”.例如11,13,17就是“奇妙数组”,因为11,13,17和11+13+17=41都是质数.(1)证明:“奇妙数组”的“阶数”最大值为4;(2)对于“阶数”为4的“奇妙数组”,求这4个质数的乘积的最小值.【分析与解】 (1)假设a、b、c、d、e能组成一个5阶“奇妙数组”,那么a、b、c、d一定可以组成一个四阶“奇妙数组”,考虑除以3的余数情况,不能存在3的数它们除以3的余数相同,并且验证只能是1,1,2,2.则e除以3不管是余0,1,2都能在这五个数中找到三个数,它们的和是3的倍数,且大于3,所以无法组成5阶“奇妙数组”.但是如97,73,4l,53满足(它们的三个数和依次为167,191,223,2ll均是质数).所以存在最大的4阶“奇妙数组”.(2)写出所有除以3余1的质数:7,13,19,31,37,43,61,67,73,79,97;写出所有除以3余2的质数:(2,5),11,17,23,29,41,47,53,59,71,83,89.很容易知道2是不能含有,不然其他两个奇质数与2的和为大于2的偶数,显然不是质数,5也很容易验证不满足;有7,13,11,23满足(和依次为47,4l,43,31).它们的乘积为7×13×11×23=23023.所以4阶“奇妙数组”的4个数最小乘积为23023.评注:四阶的“奇妙数组”还有很多,如97,13,41,53.它们的三个数和依次为107,191,163,均是质数.。

六年级奥数讲义-数论综合(含答案)

六年级奥数讲义-数论综合(含答案)

学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。

请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【题目】一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。

【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。

六年级奥数-第十一讲.数论综合(二).教师版[1]

六年级奥数-第十一讲.数论综合(二).教师版[1]

六年级奥数-第十一讲.数论综合(二).教师版[1]板块二余数问题【例1】(2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例2】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,3=⨯⨯,19982337共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例3】有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】(法1)39336-=,(36,144)12=,12的约数是1,2,3,4,6,12,-=,1473144因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 4】(2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】 (70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 5】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 6】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A Kr ⨯÷= ()33393424A K r ⨯÷= 这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 7】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】 2008222008+除以7的余数是多少?【解析】 328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 8】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数.由于200954014÷=,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例9】(1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:⨯=(个),100999~共900个三位数,共有数字:902180⨯=(个),所以数连续写,不会写到999,从100 90032700开始是3位数,每三个数字表示一个数,(19979180)3602 (2)--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:÷=(组),依次排列后,它仍然能被9整除,但702978702中2未写出来,所以余数为9-27 =.【例10】有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 11】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =. 板块三 完全平方数【例 12】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 13】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 14】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的. 设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 15】(美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+. 推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 16】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 17】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例18】在6进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?【解析】(abc)6 =a×62+b×6+c=36a+6b+c;(cba)9=c×92+b×9+a=81c+9b+a;所以36a+6b+c=81c+9b+a;于是35a=3b+80c;因为35a是5的倍数,80c也是5的倍数.所以3b也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c;则7a=16c;(7,16)=1,并且a、c≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c;则7a=3+16c;mod 7后,3+2c≡0.所以c=2或者2+7k(k为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc)6 =(552)6=5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习1.三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】设这三个质数分别是a、b、c,满足7()=++,则可abc a b c知a、b、c中必有一个为7,不妨记为a,那么7=++,bc b c整理得(1)(1)8b c--=,又81824=⨯=⨯,对应的b=2、c=9(舍去)或b=3、c=5,所以这三个质数可能是3,5,7练习 2.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同. 由此可得,从1开始的自然数1234567891011121320072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同. 因此,此数被9除的余数为1.练习 4. 在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =; 所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】 有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+⨯.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a 最小为2127254⨯=.【备选4】在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。

六年级奥数-.数论综合.教师版.docx

六年级奥数-.数论综合.教师版.docx

数论综合(二)教学目标:1、掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一质数合数【例 1】有三张卡片,它们上面各写着数字1, 2, 3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】抽一张卡片,可写出一位数1, 2, 3;抽两张卡片,可写出两位数12, 13, 21, 23, 31, 32;抽三张卡片,可写出三位数123, 132,213, 231, 312,321 ,其中三位数的数字和均为6,都能被 3 整除,所以都是合数.这些数中,是质数的有:2,3, 13, 23, 31.【例 2】三个质数的乘积恰好等于它们和的11 倍,求这三个质数.【解析】设这三个质数分别是 a 、b、 c ,满足 abc11( a b c) ,则可知 a 、b、 c 中必有一个为11,不妨记为 a ,那么bc 11 b c,整理得 (b 1)(c 1)12,又12 1 12 2 6 3 4,对应的、b 2c 13或 b 3 、 c7 或 b 4 、 c 5 (舍去),所以这三个质数可能是2, 11, 13 或 3, 7, 11.【例 3】用 1, 2, 3, 4,5, 6, 7, 8, 9 这 9 个数字组成质数,如果每个数字都要用到并且只能用一次,那么这 9 个数字最多能组成多少个质数?【解析】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7 均为一位质数,这样还剩下1、4、6、8、 9 这 5 个不是质数的数字未用.有1、 4、 8、 9 可以组成质数41、 89,而 6可以与 7 组合成质数67.所以这 9 个数字最多可以组成 6 个质数.【例 4】有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99 共九个,它们中的每个数都可以表示成两个整数相加的形式,例如33132 2 31330L L16 17 ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、 222、 333、 444、555、 666、 777、 888、999,每个数都是 111 的倍数,而11137 3 ,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37 或 37的倍数,但只能是37 的 2倍 (想想为什么? )3 倍就不是两位数了.把九个三位数分解:111373、22237 674 3、333379 、 444371274 6 、555 37 15 、 666 3718749、 7773721、 88837247412、 9993727.把两个因数相加,只有 ( 74 3 )77 和( 37 18 )55的两位数字相同.所以满足题意的答案是74 和 3,37和 18.板块二余数问题【例 5】( 2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是 13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的 17 倍还多 13,则由“和倍问题” 可得:除数 =(2083-13) ÷(17+1)=115,所以被除数 =2083-115=1968 .【例 6】已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10 即 1998的约数,同时还要满足大于10 这个条件.这样题目就转化为1998 有多少个大于10 的约数,1998 2 3337 ,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3, 6, 9 是比 10 小的约数,所以符合题目条件的自然数共有11 个.【例 7】有一个整数,除39, 51, 147 所得的余数都是3,求这个数.【解析】 (法 1) 393 36, 147 3144 , (36,144) 12, 12 的 数是 1,2,3,4,6,12 ,因 余数 3要小于除数, 个数是 4,6,12;(法 2)由于所得的余数相同,得到 个数一定能整除 三个数中的任意两数的差,也就是 它是任意两数差的公 数.51 39 12, 147 39 108 , (12,108) 12 ,所以 个数是 4,6,12 .【例 8】(2005 年全国小学数学奥林匹克 )有一个整数,用它去除70, 110, 160 所得到的 3 个余数之和是 50,那么 个整数是 ______.【解析】(70 110160) 50 290 , 503 16...... 2,除数 当是 290 的大于 17 小于70 的 数,只可能是29 和 58, 11058 1...... 52, 52 50 ,所以除数不是 58.7029 2, 110 29 3...... , 160 29 5...... , 1223 15 50 ,所以除数是29......12 23 15【巩固】 (2002 年全国小学数学奥林匹克 )用自然数n 去除 63, 91, 129 得到的三个余数之和25,那么 n=________.【解析】n 能整除 63 91 129 25 258 .因 25 3 8...1,所以 n 是 258 大于 8 的 数. 然, n 不能大于 63.符合条件的只有 43.【例 9】一个大于 10 的自然数去除 90、164 后所得的两个余数的和等于 个自然数去除 220 后所得的余数,个自然数是多少?【解析】 个自然数去除90、164 后所得的两个余数的和等于 个自然数去除 90 164 254 后所得的余数, 所以 254 和 220 除以 个自然数后所得的余数相同,因此 个自然数是 254220 34 的 数,又大 于 10, 个自然数只能是 17 或者是 34.如果 个数是34 ,那么它去除 90、 164、 220 后所得的余数分 是 22、28、 16,不符合 目条件; 如果 个数是17,那么他去除 90、164、220 后所得的余数分 是 5、11、16,符合 目条件,所以 个自然数是 17.【例 10】 甲、乙、丙三数分 603,939,393.某数 A 除甲数所得余数是A 除乙数所得余数的 2 倍, A 除 乙数所得余数是 A 除丙数所得余数的 2 倍.求 A 等于多少?【解析】 根据 意, 三个数除以 A 都有余数, 可以用 余除法的形式将它 表示出来:603 A K 1 L L r 1 939 AK 2 L L r 2 393 A K 3 L L r 3由于 r 12r 2 , r 22r 3 ,要消去余数 r 1 , r 2 , r 3 ,我 只能先把余数 理成相同的,再两数相减.我 先把第二个式子乘以2,使得被除数和余数都 大2 倍,同理,第三个式子乘以4.于是我 可以得到下面的式子:603 A K 1 L L r 1 939 2A 2 K 2 L L 2r 2 393 4 A 2K 3 L L 4r 3余数就 理成相同的.最后两两相减消去余数,意味着能被A 整除.939 2 603 1275 , 393 4603 969,1275,969 51 3 17 .51 的 数有1、3、 17、 51,其中1、3 然不 足, 17 和 51 可知 17 足,所以 A 等于 17. 【例 11】 (2003 年南京市少年数学智力冬令) 22003 与 20032 的和除以 7 的余数是 ________.【解析】 找 律.用7 除 2, 2 2, 2 3 , 2 4 , 2 5 , 2 6 , ⋯的余数分 是 2,4, 1, 2, 4, 1, 2, 4, 1, ⋯, 2 的个数是 3 的倍数 ,用7 除的余数 1; 2 的个数是 3 的倍数多 1 ,用 7 除的余数 2;2 的个数是 3 的倍数多 2 ,用 7 除的余数 4.因 2 2003 23 6672,所以 2 2003 除以 7 余 4.又两个数的除以 7 的余数,与两个数分 除以 7 所得余数的 相同.而 2003 除以 7 余 1,所以 20032除以 7 余1.故 22003与 20032 的和除以 7 的余数是 4 1 5 .【巩固】 22008 20082 除以 7 的余数是多少?【解析】 238除以 7 的余数 1, 20083 669 1 ,所以 2200823669+1(23 )6692 ,其除以 7 的余数 :66922 ; 2008 除以7 的余数2的余数等于27 的余数,1;所以16, 2008 除以 7 6 除以 2200820082 除以 7 的余数 : 21 3 .【例 12】 (2009 年走美初 六年)有一串数: 1,1, 2, 3, 5, 8, ⋯⋯,从第三个数起,每个数都是前两个 数之和,在 串数的前2009 个数中,有几个是 5 的倍数?【解析】 由于两个数的和除以 5 的余数等于 两个数除以 5 的余数之和再除以 5 的余数.所以 串数除以 5 的余数分 : 1, 1, 2,3, 0, 3,3, 1, 4, 0, 4, 4, 3, 2,0, 2, 2, 4, 1,0 ,1, 1, 2, 3, 0, ⋯⋯ 可以 串余数中,每 20 个数 一个循 ,且一个循 中,每 5 个数中第五个数是由于 2009 5 401L 4 ,所以前 2009 个数中,有 401 个是 5 的倍数.5 的倍数.【巩固】着名的裴波那契数列是 的:1、 1、2、3、 5、 8、 13、 21⋯⋯ 串数列当中第2008 个数除以 3所得的余数 多少?【解析】 斐波那契数列的构成 是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列 被 3 除所得余数的数列:1 、1、 2、 0、 2、 2、 1、 0、1、 1、 2、 0⋯⋯ 第九 和第十 两个是 1,与第一 和第二 的 相同且位置 ,所以裴波那契数列被 3 除 的余数每 8 个一个周期循 出 ,由于 2008 除以 8 的余数 0,所以第 2008 被 3 除所得的余数 第 8 被 3 除所得的余数, 0.【例 13】 (1997 年全国小学数学奥林匹克)将 12345678910111213......依次写到第 1997 个数字, 成一个1997 位数,那么此数除以 9 的余数是 ________.【解析】 本 第一步是要求出第 1997 个数字是什么,再 数字求和.1~9 共有 9 个数字, 10~99 共有 90 个两位数,共有数字: 90 2 180 (个 ), 100~999共 900 个三位数,共有数字: 900 3 2700 (个 ),所以数 写,不会写到 999,从 100 开始是 3 位数,每三个数字表示一个数, (1997 9 180) 3 602......2 ,即有 602 个三位数, 第 603 个三位数只写了它的百位和十位.从100 开始的第 602 个三位数是 701,第 603 个三位数是9,其中 2 未写出来.因9 个自然数之和能被 9 整除,所以排列起来的 9 个自然数也能被 9 整除, 702 个数能分成的 数是:702 9 78 ( ),依次排列后, 它仍然能被 9 整除,但 702 中 2 未写出来,所以余数 9-2 7 .【例 14】 有 2 个三位数相乘的 是一个五位数, 的后四位是 1031,第一个数各个位的数字之和是 10,第二个数的各个位数字之和是 8,求两个三位数的和 .【解析】 本 条件 出了两个乘数的数字之和,同 乘 的一部分已 出,即乘 的一部分数字之和已 出,我 可以采用弃九法原理的倒推来构造出原三位数.因 是一个一定正确的算式, 所以一定可以 足弃九法的条件,两个三位数除以 9 的余数分 1 和 8,所以等式一 除以9 的余数 8,那么□ 1031 除以 9 的余数也必 8,□只能是 3.将 31031 分解 因数 有一种情况可以 足是两个三位数的乘 ,即 31031 31 1001 143 217所以两个三位数是 143 和 217,那么两个三位数的和是360【例 15】20092009 的各位数字之和A , A 的各位数字之和B , B 的各位数字之和C , C 的各位数字之和 D ,那么 D ?9 的余数相同, 所以 20092009 与 A 、B 、C 、D【解析】 由于一个数除以9 的余数与它的各位数字之和除以除以 9 都同余,而 2009 除以 9 的余数 2, 20092009除以 9 的余数与 2 2009 除以 9 的余数相同,而 2664除以 9 的余数1,所以200926 334 56 33459 的余数 522 2 除以 2 除以 9 的余数,即 5.另一方面,由于 2009 2009 100002009 108036 ,所以 20092009 的位数不超 8036 位,那么它的各位数字之和不超 9 8036 72324 ,即 A ;那么A 的各位数字之和B 9 5 45 , B 的各位数字之72324C D 5和, 小于 18 且除以 9 的余数 5,那么 5 或 14, 的各位数字之和 5,即 .C 9 2 18 CC板块三 完全平方数【例 16】 从 1 到 2008 的所有自然数中,乘以 72 后是完全平方数的数共有多少个?【解析】 完全平方数,其所有 因数必定成 出 .而 72 23322 6 6 ,所以 足条件的数必 某个完全平方数的 2 倍,由于 2 31 31 1922 2008 2 3222、⋯⋯、 22都 足 意,即32 2048,所以 2 1 、 2 2 31 所求的 足条件的数共有31 个.【例 17】一个数减去100 是一个平方数,减去63 也是一个平方数,个数是多少?【解析】个数减去22, A2B2A B A B1006337 37 1,63 A,减去 100 B可知 A B 37 ,且 A B 1 ,所以 A19,B18,个数 182100424 .【巩固】能否找到么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】假能找到,两个完全平方数分A2、 B 2 ,那么两个完全平方数的差54 A B A B ,由于 A B 和 A B的奇偶性相同,所以A B A B 不是 4的倍数,就是奇数,不可能是像54是偶数但不是 4 的倍数.所以54不可能等于两个平方数的差,那么中所的数是找不到的.【例 18】有 5 个自然数,它的和一个平方数,中三数的和立方数,五个数中最小数的最小.【解析】考平方数和立方数的知点,同涉及到数量少的自然数,未知数的候有技巧:一般是中的数,前后的数关于中的数是称的.中数是 x,它的和5x,中三数的和3x. 5x 是平方数,5x22, x2,5a5a3x 15a2 3 5 a 2是立方数,所以 a2至少含有 3和 5的因数各 2 个,即 a2至少是 225,中的数至少是1125,那么五个数中最小数的最小1123.板块四位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交,得到一个新的两位数.如果原来的两位数和交后的新的两位数的差是45,求的两位数中最大的是多少?【解析】原来的两位数ab ,交后的新的两位数ba ,根据意,ab ba (10a b)(10b a ) 9(a b) 45 ,a b 5 ,原两位数最大,十位数字至多9,即a9 ,b 4 ,原来的两位数中最大的是94.【巩固】将一个四位数的数字序倒来,得到一个新的四位数(个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】原数 abcd ,新数dcba,dcba abcd (1000d100c 10b a)(1000a 100b10c d)999( d a) 90(c b) .根据意,有 999( d a)90(c b)8802 , 111(d a)10 (c b)97888890 .推知 d a8 , c b9 ,得到 d9 , a 1, c9 , b0 ,原数1099.【例 20】 (第五届希望杯培)有 3个不同的数字,用它成 6 个不同的三位数,如果 6 个三位数的和是 1554,那么 3 个数字分是多少?【解析】六个不同的三位数abc,acb, bac,bca, cab, cba ,因 abc100a10b c , acb100a10c b ,⋯⋯,它的和是:222 (a b c)1554 ,所以a b c15542227 ,由于三个数字互不相同且均不0 ,所以三个数中小的两个数至少1, 2,而 7 (1 2) 4 ,所以最大的数最大4;又1 2 367 ,所以最大的数大于 3,所以最大的数4,其他两数分是1, 2.【巩固】 (迎春杯决 )有三个数字能成 6 个不同的三位数, 6 个三位数的和是2886,求所有的 6 个三位数中最小的三位数.【解析】三个数字分a、 b、 c,那么 6 个不同的三位数的和:abc acb bac bca cab cba2(a b c) 1002( a b c)102(a b c)222( a b c)所以 a b c 288622213,最小的三位数的百位数1,十位数尽可能地小,由于十位数与个位数之和一定,故个位数尽可能地大,最大9,此十位数13 19 3,所以所有的 6 个三位数中最小的三位数139.【巩固】 a , b , c 分别是 0 : 9 中不同的数码,用 a , b , c 共可组成六个三位数,如果其中五个三位数之和是2234 ,那么另一个三位数是几?【解析】 由 a , b , c 组成的六个数的和是 222 (a b c) .因为 2234 222 10 ,所以 a b c 10 .若 ab c 11,则所求数为 222 11 2234 208 ,但 2 0 8 10 11 ,不合题意. 若 a b c 12 ,则所求数为 222 12 2234 430 ,但 4 3 0 7 12 ,不合题意. 若 a b c 13 ,则所求数为 222 13 2234 652 , 6 5 2 13 ,符合题意.若 ab c14 ,则所求数为 222 14 2234 874 ,但 8 7 4 19 14 ,不合题意. 若 a bc 15 ,则所求数 222 15 2234 1096,但所求数为三位数,不合题意. 所以,只有 a b c 13时符合题意,所求的三位数为 652.板块五进制问题【例 21】 在几进制中有 4 13 100? 【解析】 利用尾数分析来解决这个问题:由于 (4)10(3)10 (12)10 ,由于式中为 100,尾数为 0,也就是说已经将12 全部进到上一位.所以说进位制 n 为 12 的约数,也就是 12, 6, 4,3, 2 中的一个. 但是式子中出现了 4,所以 n 要比 4 大,不可能是 4, 3, 2 进制. 另外,由于 (4)10 (13)10 (52)10 ,因为 52 100,也就是说不到 10 就已经进位,才能是 100,于是知道 n 10 ,那么 n 不能是 12.所以, n 只能是 6 .【 巩固】算式 1534 25 43214是几进制数的乘法?【解析】 注 意到尾数,在足够大的进位制中有乘积的个位数字为 4 5 20 ,但是现在为4 ,说明进走20 4 16 ,所以进位制为 16 的约数,可能为 16、 8、 4 或 2. 1534 25 38350 43214,所以在因为原式中有数字 5,所以不可能为 4、 2 进位,而在十进制中有 原式中不到 10 就有进位,即进位制小于 10,于是原式为 8 进制. 【例 22】 在 6 进制中有三位数 abc ,化为 9 进制为 cba ,求这个三位数在十进制中为多少 ?【解析】 (abc)6 =a × 62+ b × 6+c=36a+6b+c ; (cba)9=c × 92+b × 9+a=81c+9b+a ;所以 36a+6b+c=81c+9b+a ;于是 35a=3b+80c ;因为 35a 是 5 的倍数, 80c 也是 5 的倍数.所以 3b 也必须是 5 的倍数,又(3,5)=1.所 以, b=0 或 5.①当 b=0,则 35a=80c ;则 7a=16c ; (7,16)=1,并且 a 、c ≠ 0,所以 a=16, c=7.但是在 6,9 进制, 不可以有一个数字为 16.②当 b=5,则 35a=3× 5+80c ;则 7a=3+16c ;mod 7 后, 3+2c ≡ 0.所以 c=2 或者 2+7k(k 为整数 ).因为有 6 进制,所以不可能有 9 或者 9 以上的数, 于是 c=2;35a=15+80× 2,a=5.所以 (abc)6 =(552)6=5× 62+5× 6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的 7 倍,求这三个质数.【解析】设这三个质数分别是a 、b 、c ,满足 abc 7( a b c) ,则可知 a 、 b 、 c 中必有一个为 7,不妨记 为 a ,那么 bc 7 b c ,整理得 (b 1)(c 1)8 ,又 8 1 8 2 4 ,对应的 b 、c 舍去 或 b 、2 9( )3 c5,所以这三个质数可能是 3, 5,7练习 2. 有一个大于 1 的整数,除 45,59,101 所得的余数相同,求这个数 .【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差 的公约数. 101 45 56 , 45 14 , 14 , 的约数有 1,2,7,14 ,所以这个数可能为 2,7,14.59 (56,14) 14 练习 3. 将 1 至 2008这 2008 个 自 然 数 , 按 从 小 到 大 的 次 序 依 次 写 出 , 得 一 个 多 位 数 :12345678910111213 L20072008,试求这个多位数除以9 的余数.【解析】 以 19992000 这个八位数为例,它被 9 除的余数等于1 9 9 92 00 0 被 9 除的余数,但是由于 1999 与 1 9 9 9 被 9 除的余数相同, 2000 与 2 00 被 9 除的余数相同, 所以 19992000就与 19992000 被 9 除的余数相同.由此可得,从 1 开始的自然数 12345678910111213 L 20072008被 9 除的余数与前 2008 个自然数之 和除以 9 的余数相同.根据等差数列求和公式, 个和 : 1 2008 2008 9 除的余数 1.2 2017036 ,它被另外 可以利用9 个自然数之和必能被 9 整除 个性 ,将原多位数分成 123456789 , 101112131415161718 ,⋯⋯, 199920002001200220032004200520062007,2008 等数,可 它被9 除的余数与 2008 被 9 除的余数相同. 因此,此数被9 除的余数 1.4. 在 7 制中有三位数 abc ,化 9 制 cba ,求 个三位数在十 制中 多少?【解析】 首先 原 十 制:(abc )7a 72b 7c 49a 7b c ; (cba)9c92 b9 a 81c 9ba .于是 49a 7b c 81c 9b a ;得到 48a 80c 2b ,即 24a 40c b .因 24a 是 8 的倍数, 40c 也是 8 的倍数,所以 b 也 是8 的倍数,于是 b 0 或 8.但是在 7 制下,不可能有 8 个数字.于是 b 0 , 24a 40c , 3a 5c .所以 a 5 的倍数, c 3 的倍数.所以, a 0 或 5,但是,首位不可以是 0,于是 a 5 , c3 ;所以 (abc)7 (503)7 5 49 3 248 .于是, 个三位数在十 制中248.月 :【 1】某 数加6 或减 6 得到的数仍是 数,在50 以内你能找出几个 的 数?把它 写出来.【解析】 有六个 的数,分 是11,13, 17, 23,37, 47.【 2】 (2002 年全国小学数学奥林匹克)两数相除,商 4 余 8,被除数、除数、商数、余数四数之和等于 415, 被除数是 _______.(415 48 8)(4 1) 79【解析】 因 被除数减去8 后是除数的,4 倍,所以根据和倍 可知, 除数所以,被除数 79 4 8 324.【 3】 1016 与正整数 a 的乘 是一个完全平方数, a 的最小 是 ________.【解析】 先将 1016分解 因数: 1016 31016 a 是一个完全平方数,所以至少 422 127 ,由于 2 127 ,故a 最小 2127 254.【4】在几 制中有 125 125 16324?【解析】 注 意 (125)10 (125)10 (15625)10 ,因 1562516324,所以一定是不到10 就已 位,才能得到16324,所以 n 10.再注意尾数分析,(5)10(5)10 (25)10 ,而 16324 的末位4,于是 254 21 到上一位.所以 位制 n21 的 数,又小于 10,也就是可能7 或 3.因 出 了6,所以 n只能是 7.。

六年级奥数讲义-数论综合(含答案)

六年级奥数讲义-数论综合(含答案)

学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。

请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【题目】一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。

【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。

六年级奥数-第十一讲.数论综合(二).教师版

六年级奥数-第十一讲.数论综合(二).教师版

第十一讲 数论综合(二)教学目标:1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一 质数合数【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=⨯=⨯=⨯,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+ ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=⨯,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=⨯、222376743=⨯=⨯、333379=⨯、4443712746=⨯=⨯、5553715=⨯、6663718749=⨯=⨯、7773721=⨯、88837247412=⨯=⨯、9993727=⨯.把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二 余数问题【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】(70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 9】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 11】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,...的余数分别是2,4,1,2,4,1,2,4,1, (2)个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】2008222008+除以7的余数是多少? 【解析】328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数.由于200954014÷= ,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 13】 (1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例 14】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 15】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =.板块三 完全平方数【例 16】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 17】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09 中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 21】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 (abc )6 =a ×62+b ×6+c=36a+6b+c ;(cba )9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b+c=81c+9b+a ;于是35a=3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c ;则7a=16c ;(7,16)=1,并且a 、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c ;则7a=3+16c ;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习 2. 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:12345678910111213 20072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数12345678910111213 20072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1.另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.练习 4. 在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】 有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+⨯.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a最小为2127254⨯=.【备选4】在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一讲 数论综合(二)教学目标:1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型;2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想例题精讲:板块一 质数合数【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=⨯=⨯=⨯,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=⨯,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=⨯、222376743=⨯=⨯、333379=⨯、4443712746=⨯=⨯、5553715=⨯、6663718749=⨯=⨯、7773721=⨯、88837247412=⨯=⨯、9993727=⨯.ﻫ把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二 余数问题【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】 (70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 9】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 11】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】 2008222008+除以7的余数是多少?【解析】 328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数. 由于200954014÷=,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 13】 (1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例 14】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 15】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =.板块三 完全平方数【例 16】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 17】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba ,因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位 数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09中不同的数码,用a,b,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 21】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 (abc )6 =a ×62+b ×6+c=36a+6b +c ;(cba)9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b +c=81c+9b+a;于是35a=3b+80c;因为35a 是5的倍数,80c也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c;则7a=16c;(7,16)=1,并且a、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b =5,则35a=3×5+80c ;则7a =3+16c;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c =2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bcbc =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习 2. 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数1234567891011121320072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1. 另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.练习 4. 在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】 有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+⨯.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a最小为2127254⨯=.【备选4】在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。

相关文档
最新文档