圆柱螺旋压缩(拉伸)弹簧的设计计算
圆柱螺旋压缩(拉伸)弹簧的设计计算
![圆柱螺旋压缩(拉伸)弹簧的设计计算](https://img.taocdn.com/s3/m/88eb15d7846a561252d380eb6294dd88d1d23d5a.png)
圆柱螺旋压缩(拉伸)弹簧的设计计算
一、圆柱螺旋压缩(拉伸)弹簧的设计原理
1、圆柱螺旋压缩(拉伸)弹簧原理
圆柱螺旋压缩(拉伸)弹簧是一种特殊的弹簧,其结构设计使用了螺
旋结构,螺旋结构的形状是一个圆柱形的圆柱螺纹。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行压缩(拉伸)力作用时,弹簧
的整个螺旋节在不同的力矩作用下会产生相应的弹性变形,从而使得弹簧
的中心轴变长,以缩短弹簧的长度。
2、圆柱螺旋压缩(拉伸)弹簧特性
圆柱螺旋压缩(拉伸)弹簧具有对同直径和外径的小变化具有很强的
适应性的特性,同时,压缩(拉伸)力也有必要时可以根据弹性变形率来
改变。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行
压缩(拉伸)力作用时,弹簧的整个螺旋节在不同的力矩作用下会产生相
应的弹性变形,从而使得弹簧的中心轴变长,从而缩短弹簧的长度。
此外,这种弹簧具有紧凑结构,能够有效地减少设备装置内的多余空间,重量轻,由于采用细小的钢、不锈钢、铜或其它有良好装配性的金属等材料,具有
良好的耐磨性、耐腐蚀性和耐臭氧性等性能。
圆柱螺旋压缩弹簧计算
![圆柱螺旋压缩弹簧计算](https://img.taocdn.com/s3/m/d6170b64482fb4daa58d4b91.png)
展开长度L
mm
最小载荷时高度H1
mm
最大载荷时高度Hn
mm
极限载荷时高度Hj
mm
实际工作行程h
mm
h=H1-Hn=143.48-111.45=32.03≈32±1
技术要求:
1.工作圈数=10.5
2.总圈数n1=12.5
3.旋向为右旋
4.展开长度L=1735.67mm
5.硬度HRC45~50
弹簧刚度P/
N/mm
工作极限载荷下的变形量Fj
mm
Fj=nfj=10.5×6.16=64.68
节距t
mm
自由高度H0
mm
H0=nt+1.5d=10.5×14.16+1.5×8=160.68
取标准值H0=160
弹簧外径D2
mm
D2=D+d=44+8=52
弹簧内经D1
mm
D1=D-d=44-8=36
螺旋角a
圆柱螺旋压缩弹簧计算
项目
单位
公式及数据
原
始
条
件
最小工作载荷P1
N
P1=750
最大工作载荷Pn
N
Pn=2200
工作行程h
mm
h=32
端部结构
端部并紧、磨平,支承圈数为1圈
弹簧中径D
mm
44
弹簧直径d
mm
8
弹簧材料
60Si2Mn
旋绕比C
曲度系数K
mpa
材料极限切应力、材料切变模量
Тi= 471
G=78500
参
数
计
算
初算弹簧刚度P/
N/mm
压簧设计计算
![压簧设计计算](https://img.taocdn.com/s3/m/8159e4a169dc5022aaea00b1.png)
实测P-13安全阀打开数据: 0.73 0.74 0.86 0.78 0.8 0.76 0.8 0.72 0.7 0.82 0.8 0.78 0.78 0.78 0.8 0.75 0.77 0.8 0.8 0.8 0.78 0.84 0.8 0.8 0.8 0.8 0.8
0.74 0.82
计
最小力与最大力。
圆柱螺旋压缩弹簧设计
一、工作参数: 最大工作负荷Pn= 4N 最小工作负荷P1= 3.8 N 弹簧在阀腔内安装高度h= 8.6 mm 由最小工作负荷P1到最大工作负荷Pn时,可调的工作行程h= 0.3 mm 说明:工作行程h即是安全阀打开区间F1--Fn之间的行程。F1--Fn为安全阀打开的最小力与最大力。 二、选材: 不锈钢: Ni42CrTi 计算时按Ⅱ类弹簧考虑。 查表11-1-2,得: [τ p]= 412 Mpa= 412 N/mm2 G= 61 Gpa= 61000 N/mm2 *通过P-13安全阀弹簧实际测量计算,G调整取:61,理论值为:65.6 三、查表6-1,初选旋绕比C= 6 曲度系数K=(4*C-1)/(4*C-4)+(0.615/C)= 1.25 四、计算簧丝直径: d≥1.6*(((Pn*K*C)/[τ p])^(1/2))= 0.432 mm 调整取d= 0.4 mm 五、中径: 内径= 2.6 mm 外径= D2=C*d= 2.4 mm 调整取D2= 3 mm 六、工作圈数: 初算最大工作负荷下的变形Fn'=Pn/P''= 6 mm 初算n'=(G*d^4*Fn')/(8*Pn*D2^3)= 10.8 圈 七、有关几何参数: 初算节距t=d+(Fn/n)= 1 mm,一般取t=(D/3~D/2) 端部并紧不磨平,取支承圈n2= 1圈 调整取n= 调整取t= 10.5 mm 1.23 mm
圆柱螺旋压缩弹簧计算公式
![圆柱螺旋压缩弹簧计算公式](https://img.taocdn.com/s3/m/c112ffefa5e9856a561260f3.png)
圆柱螺旋压缩弹簧计算
公式
-CAL-FENGHAI.-(YICAI)-Company One1
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式
参数名称及代号计算公式备注
压缩弹簧拉伸弹簧
中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内径D1 D1=D2-d
外径D D=D2+d
旋绕比C C=D2/d压缩弹簧长细比b b=H0/D2 b在1~的范围内选取自由高度或长度H0 H0≈pn+~2)d(两端并紧,磨平)H0≈pn+(3~d(两端并紧,不磨平) H0=nd+钩环轴向长度工作高度或长度H1,H2,…,Hn Hn=H0-λn Hn= H0+λn λn--工作变形量有效圈数n 根据要求变形量按式(16-11)计算n≥2总圈数n1 n1=n+(2~(冷卷)n1=n+~2) (YII型热卷) n1=n 拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐用1/2圈节距p p=~D2 p=d 轴向间距δ δ=p
-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展开长度螺旋角α α=arctg(p/πD 2) 对压缩螺旋弹簧,推荐α=5°~9°质量ms ms= γ为材料的密度,对各种钢,γ=7700kg/ ;对铍青铜,γ=8100kg/。
圆柱螺旋弹簧设计计算
![圆柱螺旋弹簧设计计算](https://img.taocdn.com/s3/m/86f990257dd184254b35eefdc8d376eeafaa174b.png)
圆柱螺旋弹簧设计计算
圆柱螺旋弹簧设计计算:
1. 理论背景:
a) 圆柱螺旋弹簧的原理:圆柱螺旋弹簧,也叫圆柱形螺旋弹簧,是由一组相互
交错的螺旋体和螺母组成的。
当加载时,弹簧体得到延伸,而螺母围绕弹簧体旋转,除把压缩和拉伸联结在一起发挥缓冲作用外,还具有润滑作用。
b) 圆柱螺旋弹簧设计原则:圆柱螺旋弹簧的设计应遵循计算公式、材料要求、
可行性等原则。
计算公式需要仔细考虑,其结果取决于弹簧的存在位置,构造形状和材料等因素,都受常规制造工艺条件的制约。
2. 设计流程:
a) 需求确定:确定所使用的圆柱螺旋弹簧的类型、材料、构造形状、尺寸和其
他设计要求。
b) 计算设计:根据设计要求和原则,运用有关计算公式,计算出所需弹簧的中
心周长和绕线转折处周长等参数。
c) 设计校核:根据实际使用情况及要求,综合分析由计算设计结果确定的弹簧
尺寸,进行结构安全性分析和性能验证,设计完善。
3. 成品检测:
a) 符合要求:圆柱螺旋弹簧成品检查,校验其各尺寸参数是否符合要求,确保
图纸尺寸的准确性。
b) 功能测试:检查弹簧的功能是否正常,测试弹簧的位移、压缩、伸出和伸长
量是否符合要求。
c) 耐久性测试:测试圆柱螺旋弹簧的耐久性,检测其在一定环境条件下的使用
寿命和安全性。
4. 总结:
圆柱螺旋弹簧的设计计算是一个复杂的过程,在设计计算前要确定需求,根据
设计原则完成计算设计流程,确保设计质量,对成品进行检测,及时发现存在的质量问题,提高质量水平。
圆柱螺旋弹簧一般计算公式
![圆柱螺旋弹簧一般计算公式](https://img.taocdn.com/s3/m/119dbbf7b8f67c1cfad6b893.png)
1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量(拉压行程)。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4. 下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程(角度);
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
圆柱螺旋压缩弹簧计算
![圆柱螺旋压缩弹簧计算](https://img.taocdn.com/s3/m/a0593dac846a561252d380eb6294dd88d0d23d95.png)
圆柱螺旋压缩弹簧计算1.圆柱螺旋压缩弹簧的计算原理:圆柱螺旋压缩弹簧的计算原理基于胡克定律和弹性力学理论。
胡克定律指出,在弹性范围内,弹簧的变形量与外力之间存在线性关系。
根据弹性力学理论,圆柱螺旋压缩弹簧的变形量与载荷、弹簧材料的物理性质以及弹簧的几何尺寸相关。
2.弹性系数的计算:弹簧的弹性系数是指单位变形量产生的弹力大小,通常用牛顿/米(N/m)表示。
对于圆柱螺旋压缩弹簧,其弹性系数的计算公式为:K=(Gd^4)/(8D^3n)其中,K为弹性系数,G为剪切模量,d为线径,D为弹簧直径,n为弹簧的有效圈数。
3.刚度系数的计算:弹簧的刚度系数是指单位载荷产生的变形量大小,通常用米/牛顿(m/N)表示。
对于圆柱螺旋压缩弹簧,其刚度系数的计算公式为:C=1/K其中,C为刚度系数,K为弹性系数。
4.变形量的计算:ΔL=(F*L)/(n*Gd^4/8D^3)其中,ΔL为变形量,F为外力大小,L为弹簧的自由长度,n为弹簧的有效圈数,G为剪切模量,d为线径,D为弹簧直径。
5.实例分析:假设有一个圆柱螺旋压缩弹簧,其线径为10mm,弹簧直径为50mm,有效圈数为10,剪切模量为80GPa,弹簧的自由长度为100mm。
现在对该弹簧进行计算。
首先计算弹性系数K:K=(80*10^9Pa*(10/1000)^4)/(8*(50/1000)^3*10)≈8.025N/m然后计算刚度系数C:C=1/K≈0.1249m/N最后计算变形量ΔL:假设外力F为100NΔL = (100N * 100mm) / (10 * (80 * 10^9 Pa * (10 / 1000)^4) / (8 * (50 / 1000)^3))综上所述,圆柱螺旋压缩弹簧的计算涉及弹性系数、刚度系数和变形量的计算。
根据弹簧的几何尺寸、材料性质和外力大小,可以通过相应的计算公式得到这些参数,从而进行弹簧的设计和选择。
圆柱螺旋拉伸弹簧的设计计算
![圆柱螺旋拉伸弹簧的设计计算](https://img.taocdn.com/s3/m/10c48359fd4ffe4733687e21af45b307e871f9a4.png)
圆柱螺旋拉伸弹簧的设计计算
首先,弹簧材料的选择是设计弹簧的第一步。
弹簧一般由钢材制成,
常用的有普通碳素钢、合金钢等。
材料的选择主要考虑弹性模量、屈服强
度和抗疲劳性能等指标。
一般情况下,选择具有较高屈服强度和良好抗疲
劳性能的钢材作为弹簧材料。
接下来,需要确定弹簧的几何参数,包括弹簧线圈数、线径、外径和
自由长度等。
这些参数的确定需要根据弹簧设计的工作条件和性能要求进
行计算。
其中,弹簧线圈数的确定是根据弹簧的刚度要求和可用的安装空
间来确定的。
线径和外径的选择需要考虑到弹簧的受力情况,一般来说,
线径越大,弹簧的刚度越大,外径越大,弹簧的承载能力越大。
自由长度
是指弹簧在没有受力时的长度,它的选择需要考虑到装配和安装上的要求。
最后,弹簧的刚度需要根据设计要求来确定。
弹簧的刚度表示了弹簧
在受力时的变形程度,刚度越大,变形越小。
弹簧的刚度可以通过加载和
测量弹簧受力变形来确定,也可以通过计算公式进行估算。
常用的计算公
式有虎克公式、彼得逊公式和牛顿公式等。
根据这些公式,可以根据弹簧
的几何参数和受力情况来计算弹簧的刚度。
总结起来,圆柱螺旋拉伸弹簧的设计计算包括弹簧材料的选择、弹簧
的几何参数计算以及刚度的确定等。
在进行计算时,需要考虑到弹簧设计
的工作条件和性能要求,并通过加载和测量弹簧受力变形或计算公式来确
定弹簧的各项参数。
这样设计出的弹簧可以满足工程应用的需求,保证安
全可靠地工作。
圆柱螺旋压缩(拉伸)弹簧的设计计算
![圆柱螺旋压缩(拉伸)弹簧的设计计算](https://img.taocdn.com/s3/m/35bf14c251e79b8969022621.png)
圆柱螺旋压缩(拉伸)弹簧的设计计算(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。
由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式质量m sm s=γ为材料的密度,对各种钢,γ=7700kg/;对铍青•(二)特性曲线弹簧应具有经久不变的弹性,且不允许产生永久变形。
因此在设计弹簧时,务必使其工作应力在弹性极限范围内。
在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。
为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。
这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。
对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
右图a中的H0是压缩弹簧在没有承受外力时的自由长度。
弹簧在安装时,通常预加一个压力F min,使它可靠地稳定在安装位置上。
F min称为弹簧的最小载荷(安装载荷)。
在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λmin。
F max为弹簧承受的最大工作载荷。
在F max作用下,弹簧长度减到H2,其压缩变形量增到λmax。
λmax与λmin的差即为弹簧的工作行程圆柱螺旋压缩弹簧的特性曲线h,h=λmax-λmin。
F lim为弹簧的极限载荷。
在该力的作用下,弹簧丝内的应力达到了材料的弹性极限。
圆柱螺旋压缩(拉伸)弹簧的设计计算
![圆柱螺旋压缩(拉伸)弹簧的设计计算](https://img.taocdn.com/s3/m/488b66f0cc1755270622086c.png)
圆柱螺旋压缩〔拉伸〕弹簧的设计计算(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。
由以下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff普通圆柱螺旋压缩及拉伸弹簧的结构尺寸〔mm〕计算公式)。
参数名称及代号计算公式备注工作高度或长度H1,H2,…,H nH n=H0-λn H n=H0+λnλn--工作变形量有效圈数n根据要求变形量按式〔16-11〕计算n≥2总圈数n1n1=n+(2~2.5)〔冷卷〕n1=n+(1.5~2)〔YII型热卷〕n1=n拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐用1/2圈节距p p=(0.28~0.5)D2p=d轴向间距δδ=p-d展开长度L L=πD2n1/cosαL≈πD2n+钩环展开长度螺旋角αα=arct g(p/πD2) 对压缩螺旋弹簧,推荐α=5°~9°质量m sm s=γ为材料的密度,对各种钢,γ=7700kg/;对铍青•(二)特性曲线弹簧应具有经久不变的弹性,且不允许产生永久变形。
因此在设计弹簧时,务必使其工作应力在弹性极限范围内。
在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。
为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。
这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。
对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
圆柱螺旋压缩弹簧计算公式
![圆柱螺旋压缩弹簧计算公式](https://img.taocdn.com/s3/m/b79091c782d049649b6648d7c1c708a1284a0a92.png)
圆柱螺旋压缩弹簧计算公式圆柱螺旋压缩弹簧是机械中常用的一种元件,可以用于各种机械装置中,用于提供压缩力、缓冲力和储能等功能。
圆柱螺旋压缩弹簧的设计和计算公式一般包括弹簧刚度、载荷、工作长度、自由长度等参数的计算。
下面将详细介绍圆柱螺旋压缩弹簧的计算公式。
1.弹簧刚度:弹簧刚度是指弹簧在单位长度内所产生的载荷与该长度内的变形之比,用符号C表示,其单位为N/mm。
弹簧刚度可以通过几何参数和材料的弹性模量来计算。
若弹簧线直径为d,弹簧线直径外形半径为D,圈数为n,弹簧长度为L,则弹簧刚度C的计算公式为:C=(Gd^4)/(8D^3n)其中,G为弹簧材料的剪切模量,d和D的单位为mm,n为无量纲。
2.载荷:载荷是指施加在弹簧上的力或重量,用符号F表示,其单位为N。
载荷的大小会影响到弹簧的变形和工作性能。
3.工作长度:工作长度是指弹簧在工作状态下的长度,也称为工作高度,用符号H表示,其单位为mm。
工作长度的大小与弹簧的刚度和载荷有关。
4.自由长度:自由长度是指弹簧在无外力作用时的长度,用符号L0表示,其单位为mm。
自由长度的大小与弹簧线直径、圈数和线径外径有关。
根据载荷、工作长度和自由长度,可以计算出弹簧的变形量。
变形量是指弹簧在工作状态下相对于自由状态下的变化长度,用符号δ表示,其单位为mm。
5.弹簧力:弹簧力是指弹簧在工作状态下所产生的力,用符号Fspring表示,其单位为N。
弹簧力可以通过弹簧刚度和变形量的乘积来计算。
Fspring = C * δ其中C为弹簧刚度,δ为变形量。
综上所述,圆柱螺旋压缩弹簧的计算公式包括弹簧刚度、载荷、工作长度、自由长度和弹簧力等参数的计算公式。
这些参数的计算可以帮助工程师根据具体的需求来选择和设计合适的圆柱螺旋压缩弹簧,以满足机械装置的要求。
圆柱螺旋拉伸弹簧设计
![圆柱螺旋拉伸弹簧设计](https://img.taocdn.com/s3/m/2f1cb228376baf1ffc4fade4.png)
最大拉力Pn N 120最小拉力P1N 60工作行程hmm 60弹簧外径D2mm 20载荷作用次数10^6I类:10^6以上,II类:10^3至10^6,III类:弹簧材料琴钢丝-D级端部结构圆钩环压中心初算弹簧刚度P'N/mm 1I类≥ 1.5Pn II类≥ 1.25225d D Pj fj328264.57.258有效圈数n 圈36弹簧刚度P’N/mm 1.011111111最小载荷下的变形量F1mm 35.30769231最大载荷下的变形量Fnmm 94.64835165极限载荷下的变形量Fj mm 245.6504093弹簧外径D2mm 31弹簧内径D1mm 25自由长度H0mm 167最小工作载荷下的长度H1mm 202.3076923最大工作载荷下的长度Hn mm 261.6483516极限工作载荷下的长度Hjmm 412.6504093节距t=d3展开长度Lmm 3298.672286实际极限变形量mm 178.021978最大工作载荷Pn N 120实际极限载荷PjN246.6718232180因为是拉伸弹簧,所以Pj要乘以0.8(Pn/0.8) 选择的是弹性特性验算螺旋角α°arctan0.034091417查表选取原始条件工作极限载荷Pj N 材料直径d及弹簧中径Dmm 参数计算弹簧工作时最大长度185自由长度125类:10^3至10^6,III类:10^3。
Pn III类≥1Pn 180P'dP0δb G 36.424.3211079000择的是I类载荷,取Pj=由于弹簧材料是琴钢丝D级,所以其修正arctan(t/pi*D)Pj fj308.33988.529528。
圆柱螺旋压缩弹簧设计计算
![圆柱螺旋压缩弹簧设计计算](https://img.taocdn.com/s3/m/dcf3571bf78a6529647d531d.png)
% 圆柱螺旋压缩弹簧设计计算% M文件中的表16-3和表16-5见参考文献[1]% 已知条件:最小和最大弹簧载荷、工作行程、剪切弹性模量、许用应力、最小内径F1=500;F2=1200;h=60;G=7.85e4;sigma=1420;D1_min=50;% 1-按照强度条件确定弹簧丝直径% 由于弹簧丝材料强度与它的直径相关,需要采用试算法ds=input(' 试选弹簧丝直径(mm) ds = ');sigma_b=input(' 按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = ');tau_p=0.45*sigma_b;fprintf(' 许用剪切应力tau_p = %3.4f MPa \n',tau_p);Cj=D1_min/ds+1;fprintf(' 计算弹簧指数Cj = %3.4f \n',Cj);C=input(' 按照表16-5,选择弹簧指数C = ');Kq=(4*C-1)/(4*C-4)+0.615/C;fprintf(' 计算曲度系数Kq = %3.4f \n',Kq);dj=sqrt(8*Kq*F2*C/(pi*tau_p));fprintf(' 计算簧丝直径dj = %3.4f mm \n',dj);if dj>dsdisp ' 不安全,需要重选弹簧丝直径'elsedisp ' 安全'd=ds; % 确定弹簧丝直径end第1次试算:试选弹簧丝直径(mm) ds = 6按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = 1420许用剪切应力tau_p = 639.0000 MPa计算弹簧指数Cj = 9.3333按照表16-5,选择弹簧指数C = 9计算曲度系数Kq = 1.1621计算簧丝直径dj = 7.0721 mm不安全,需要重选弹簧丝直径第2次试算:试选弹簧丝直径(mm) ds = 7按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = 1370许用剪切应力tau_p = 616.5000 MPa计算弹簧指数Cj = 8.1429按照表16-5,选择弹簧指数C = 8计算曲度系数Kq = 1.1840计算簧丝直径dx = 6.8520 mm安全% 2-按照刚度条件确定弹簧工作圈数Kj=(F2-F1)/h;fprintf(' 计算弹簧刚度Kj = %3.4f N/mm \n',Kj);nj=G*d/(8*C^3*Kj);fprintf(' 计算弹簧圈数nj = %3.4f \n',nj);n=input(' 选取弹簧工作圈数n = ');n2=input(' 选取弹簧支承圈数n2 = ');n1=n+n2;fprintf(' 弹簧总圈数n1 = %3.4f \n',n1);% 计算弹簧的刚度和变形量Kp=G*d/(8*C^3*n);f1=F1/Kp;f2=F2/Kp;fprintf(' 弹簧实际刚度Kp = %3.4f N/mm \n',Kp);fprintf(' 弹簧最小变形量f1 = %3.4f mm \n',f1);fprintf(' 弹簧最大变形量f2 = %3.4f mm \n',f2);计算结果:计算弹簧刚度Kj = 11.6667 N/mm计算弹簧圈数nj = 11.4990选取弹簧工作圈数n = 12选取弹簧支承圈数n2 = 2弹簧总圈数n1 = 14.0000弹簧实际刚度Kp = 11.1796 N/mm弹簧最小变形量f1 = 44.7243 mm弹簧最大变形量f2 = 107.3383 mm% 3-弹簧稳定性校核D2=C*d;fprintf(' 弹簧中径D2 = %3.4f mm \n',D2);delta=input(' 选取相邻两圈弹簧丝间隙系数delta = ');t=(1+delta)*d+f2/n; % 圆柱螺旋压缩弹簧fprintf(' 弹簧节距t = %3.4f mm \n',t);Y=input(' 选取弹簧端部结构类型Y = '); % 弹簧端部结构类型:1或是2if Y==1H0=n*t+(n2-0.5)*d;elseif Y==2H0=n*t+(n2+1)*d;endfprintf(' 弹簧自由高度H0 = %3.4f mm \n',H0);b=H0/D2;fprintf(' 弹簧高径比 b = %3.4f \n',b);% 采用3次样条插值确定圆柱螺旋弹簧不稳定系数CbDBZC=input(' 选取弹簧端部支承类型DBZC = '); % 弹簧端部支承类型:1、2、3 switch DBZCcase 1 % 1-弹簧两端固定支承bx=[5.3 5.4 5.5 5.75 6 6.5 7 7.5 8 8.5 9 10];Cby=[0.80 0.65 0.60 0.45 0.40 0.325 0.265 0.225 0.19 0.165 0.145 0.125];case 2 % 2-弹簧一端固定、一端自由支承bx=[3.7 3.85 4 4.5 5 5.5 6 6.5 7 8 9 10];Cby=[0.80 0.60 0.50 0.31 0.24 0.20 0.17 0.15 0.13 0.105 0.08 0.075];case 3 % 3-弹簧两端自由支承bx=[2.6 2.8 3 3.5 4 4.5 5 5.5 6 7 8 9 10];Cby=[0.8 0.5 0.4 0.27 0.21 0.15 0.12 0.09 0.075 0.05 0.04 0.03 0.025]; endCb=interp1(bx,Cby,b,'spline'); % 3次样条插值fprintf(' 弹簧不稳定系数Cb = %3.4f \n',Cb);% 绘制圆柱螺旋弹簧不稳定系数Cb线图plot(bx,Cby,'ro',bx,Cby);grid on;xlabel('\bf\it b');ylabel('\bf\it Cb');title('\bf 弹簧不稳定系数线图');switch DBZCcase 1gtext('\bf 1-弹簧两端固定支承')case 2gtext('\bf 2-弹簧一端固定、一端自由支承')case 3gtext('\bf 3-弹簧两端自由支承')endFc=Cb*Kp*H0;fprintf(' 弹簧稳定临界载荷Fc = %3.4f N \n',Fc);if Fc<F2disp ' 弹簧工作不稳定,需要改变参数或是加装导向装置'elsedisp ' 弹簧工作稳定'end计算结果:弹簧中径D2 = 56.0000 mm选取相邻两圈弹簧丝间隙系数delta = 0.15弹簧节距t = 16.9949 mm选取弹簧端部结构类型Y = 1弹簧自由高度H0 = 214.4383 mm弹簧高径比 b = 3.8293选取弹簧端部支承类型DBZC = 3弹簧不稳定系数Cb = 0.2278弹簧稳定临界载荷Fc = 546.0792 N弹簧工作不稳定,需要改变参数或是加装导向装置。
弹簧参数、尺寸及计算公式
![弹簧参数、尺寸及计算公式](https://img.taocdn.com/s3/m/d034a136561252d381eb6e3c.png)
弹簧参数、尺寸及计算公式弹簧参数及尺寸一、小型圆柱螺旋拉伸弹簧尺寸及参数1、弹簧的工作图及形式1.1 工作图样的绘制按GB4459、4规定。
1.2 弹簧的形式分为A型和B型两种。
2、材料弹簧材料直径为0.16~0.45mm,并规定使用GB4357中B组钢丝或YB(T)11中B组钢丝。
采用YB(T)11中B组钢丝时,需在标记中注明代号“S”。
3、制造精度弹簧的刚度、外径、自由长度按GB1973规定的3级精度制造。
如需按2级精度制造时,加注符号“2”,但钩环开口尺寸均按3级精度制造。
4、旋向弹簧的旋向规定为右旋。
如需左旋应在标记中注明“左”。
5、钩环开口弹簧钩环开口宽度a为0.25D~0.35D。
注:D为弹簧中径。
6、表面处理6.1采用碳素弹簧钢丝制造的弹簧,表面一般进行氧化处理,但也可进行镀锌、镀镉、磷化等金属镀层及化学处理。
其标记方法应按GB1238的规定。
6.2采用弹簧用不锈钢丝制造的弹簧,必要时可对表面进行清洗处理,不加任何标记。
7、标记7.1标记的组成弹簧的标记由名称、型式、尺寸、标准编号、材料代号(材料为弹簧用不锈钢丝时)以及表面处理组成。
规定如下:7.2标记示例例1:A型弹簧,材料直径0.20mm,弹簧中径3.20mm,自由长度8.80mm,左旋,刚度、外径和自由长度的精度为2级,材料为碳素弹簧钢丝B组,表面镀锌处理。
标记:拉簧A0.20*3.20*8.80-2左GB1973.2——89-D-Zn例2:B型弹簧,材料直径0.40mm,弹簧中径5.00mm,自由长度17.50mm,右旋,刚度、外径和自由长度的精度为3级,材料为弹簧用不锈钢丝B组。
标记:拉簧B0.40*5.00*17.50 GB1973.2--89-S8、计算依据标准中的计算采用如下基本公式:切应力(N/mm²):τ=(8PDK)/(πd³)变形量(mm):F=(8PD³n)/ Gd4弹簧钢度(N/mm):P′=P/ F=(Gd4)/(8D³n)曲度系数:K =(4C-1)/(4C-4)+ (0.615)/C旋转比:C =D/d 自由长度(mm):H。
圆柱螺旋压缩(拉伸)弹簧的设计计算
![圆柱螺旋压缩(拉伸)弹簧的设计计算](https://img.taocdn.com/s3/m/f2e2172358eef8c75fbfc77da26925c52cc59191.png)
圆柱螺旋压缩(拉伸)弹簧的设计计算首先,我们需要确定圆柱螺旋压缩弹簧的几何参数,包括弹簧线径d、弹簧直径D、弹簧长度L以及螺旋数n等。
这些参数决定了弹簧的刚度和
载荷能力。
接下来,我们需要确定弹簧的材料,并获取弹簧材料的力学性
能参数,如弹性模量E、屈服强度σy以及拉伸强度σt等。
在设计计算中,我们首先需要根据工作要求来确定所需的刚度系数k,即弹簧在受到单位长度变形时的力。
刚度系数k可以通过以下公式得到:k=(Gd^4)/(8nD^3)
其中,G为材料的剪切模量。
接下来,我们需要根据弹簧的刚度系数k和工作要求来确定所需的弹
簧力F。
弹簧力F可以通过以下公式计算得到:
F=kL
然后,我们可以根据所需的弹簧力F和弹簧材料的屈服强度σy来确
定所需的弹簧线径d。
弹簧线径d可以通过以下公式计算得到:d=((4F)/(πσy))^(1/2)
接下来,我们需要根据弹簧线径d和螺旋数n来确定所需的弹簧直径D。
弹簧直径D可以通过以下公式计算得到:
最后,我们可以根据所需的弹簧长度L和螺旋数n来确定弹簧的有效
圈数N。
弹簧的有效圈数N可以通过以下公式计算得到:
N=L/(πD)
以上是一种常见的圆柱螺旋压缩弹簧的设计计算方法。
不同的工作要求和应用场景可能需要考虑更多的因素,如弹簧的材料疲劳寿命、弹簧的自振频率等。
因此,在实际设计中,需要根据具体情况进行进一步的计算和分析。
弹簧力度计算公式
![弹簧力度计算公式](https://img.taocdn.com/s3/m/05d6cefb4693daef5ef73d81.png)
ቤተ መጻሕፍቲ ባይዱ
圆柱螺旋扭转弹簧扭力计算公式: 扭簧旋转后扭矩为(n*mm) T'=扭转力度(n*mm/°) E=弹性模量(MPa) D=中径(mm) d=线径(mm) n=有效圈数 旋转角度(°) 力臂长度(mm) 0.1510 0.0674 193000 3.6 0.35 3.25 30.0° 13.4
圆柱螺旋拉伸弹簧拉力计算公式 拉力F (N) 切变模量G (MPa) 弹簧中径D (mm) 弹簧线径d (mm) 变形量f (mm) 工作圈数n 初应力τ o (MPa) 旋绕比 2.85 78800 1.25 0.25 2.18 17 95 5
拉力f扭簧旋转后扭矩为nmm拉力f切变模量gmpat?扭转力度nmm切变模量gmpa弹簧中径dmme弹性模量mpa弹簧中径dmm弹簧线径dmmd中径mm弹簧线径dmm变形量fmmd线径mm变形量fmm工作圈数nn有效圈数工作圈数n旋转角度初应力ompa力臂长度mm
圆柱螺旋压缩弹簧压力计算公式 拉力F (N) 切变模量G (MPa) 弹簧中径D (mm) 弹簧线径d (mm) 变形量f (mm) 工作圈数n 4.02 71500 4.058 0.45 11 15
弹簧的计算公式
![弹簧的计算公式](https://img.taocdn.com/s3/m/322c9da5bcd126fff6050b2f.png)
線徑d(mm)中徑D(mm)有效圈數n 材质G/(Kg/mm )许用剪切应力[τ](Mpa)最大许用压力Ps(Kg.f)20110560Si2Mn 80007402154.368弹簧丝直径d (mm )0.2~0.40.5~1 1.1~2.2 2.5~67~1618~40C 7~145~125~104~104~84~6,通常α取5~90 。
弹簧丝材料的长度:(对压缩弹簧); δ=t-d ;弹簧的自由长度: H=n·δ+(n0-0.5)d (两端并紧磨平); H=n·δ+(n0+1)d (两端并紧,但不磨平)。
弹簧螺旋升角:t=d (对拉伸弹簧);式中:λmax --- 弹簧的最大变形量;Δ --- 最大变形时相邻两弹簧丝间的最小距离,一般不小于0.1d 。
弹簧钢丝间距:弹簧节距t 一般按下式取:(对压缩弹簧);弹簧设计中,旋绕比(或称弹簧指数)C 是最重要的参数之一。
C=D2/d ,弹簧指数愈小,其刚度愈大,弹簧愈硬,弹簧内外侧的应力相差愈大,材料利用率低;反之弹簧愈软。
常用弹簧指数的选取参见表。
弹簧总圈数与其工作圈数间的关系为:如图所示,圆柱弹簧的主要尺寸有:弹簧丝直径d 、弹簧圈外径D 、弹簧圈内径D1,弹簧圈中径D2,节距t 、螺旋升角a 、自由长度H0等。
2、弹簧参数的计算压缩弹簧参数计算圆柱螺旋压缩与拉伸弹簧的设计1 圆柱弹簧的参数及几何尺寸1、弹簧的主要尺寸(见右图)式中n 为弹簧的有效圈数;G 为弹簧的切变模量。
这样弹簧的圈数及刚度分别为3、弹簧的刚度圆柱弹簧受载后的轴向变形量式中K 为曲度系数。
它考虑了弹簧丝曲率和切向力对扭应力的影响。
一定条件下钢丝直径系数Ks 可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝当拉伸弹簧受轴向拉力F 时,弹簧丝槽剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q 均为相反的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱螺旋压缩(拉伸)弹簧的设计计算
(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节。
由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:
距p、螺旋升角α及弹簧丝直径d
圆柱螺旋弹簧的几何尺寸参数
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式
参数名称及代号计算公式备注
压缩弹簧拉伸弹簧
中径D2D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内径D1D1=D2-d
外径D D=D2+d
旋绕比C C=D2/d
压缩弹簧长细比b b=H0/D2
b在1~5.3的范
围内选取
自由高度或长度H0H0≈pn+(1.5~2)d
(两端并紧,磨平)
H0≈pn+(3~3.5)d
(两端并紧,不磨
平)
H0=nd+钩环轴向长
度
工作高度或长度
H1,H2,…,H n
H n=H0-λn H n=H0+λnλn--工作变形量。