小信谐振放大电路实验报告
高频小信号谐振放大器实验总结(第五组)
高频小信号谐振放大器(总结)高频小信号谐振放大器=高频+小信号+谐振+放大;高频:由于高频频率高波长短,不同于低频,所以在线路中会存在反射、串扰;以及整块电路板的寄生参数的影响会导致效果会一点也出不来。
因为此次的频率在6M频率不算很高,总结一些解决方法:①反射:器件之间的连线要短,最好是直接相连,背面焊接不要出现就90°转折。
②串扰:级与级之间的地线处理好,最好是单点供地,并且地线要是所有传输线中最粗的一根,信号线不要裸露的从地线上方走过。
③寄生参数:是个不好处理的参数,但是可以通过输出的波形分析出,然后实施相应方法避免或解决,如布线不要有平行线,减小接入系数可以减小晶体管极间电容的影响。
注:自制扼流线圈或电感在绕制好后需用绝缘胶布固定,防止其因线圈变动影响稳定性。
小信号:小信号的输入大小影响晶体管的基极偏置,但是不能太小,因为学校的数字合成信号发生器在输出小于10mv的时候会有寄生波纹输出,在示波器上显示的可能是几百Hz属于低频信号,但是此时的信号仍然是高频信号,出现这种现象是因为示波器导致的视觉误差。
因为这种波纹的存在导致输出的波形上下浮动,很容易认为是电路的寄生振荡。
解决方法是提高小信号的输出幅度,一般在100mv时寄生波纹很小。
(注:有的数字合成信号发生器输出没有寄生波纹)谐振:涉及到输出的中心频率和带宽,如图:电容和电感可由计算可得,而这个电位器的作用是在输出带宽窄的情况下,调节电位器,减小其接入阻值,可以增加带宽。
放大:此次的核心是放大,其他的工作做的再好,不放大就是做无用功,只有放大了,再出现问题就好解决。
出现不放大的情况有以下几种:①输出增益为负值②增益不够高③输出波形失真,如图:解决方法:①静态工作点没有设置好,基极偏置跟低频不一样,经验值为+5V左右;②增益不够高很大程度上是因为晶体管的截止频率不够(静态工作点合理),可以尝试换截止频率高的晶体管,如9018 的截止频率为1G,足够放大。
高频小信号放大器 实验报告
高频小信号放大器实验报告高频小信号谐振放大器一、实验目的1、了解高频小信号谐振放大器的电路组成、工作原理。
2、进一步理解高频小信号放大器与低频小信号放大器的不同。
3、掌握用Multisim8分析、测试高频小信号放大器的基本性能。
4、掌握谐振放大器的调试方法。
5、掌握用示波器测试小信号谐振放大器的基本性能。
6、学会用扫频仪测试小信号谐振放大器幅频特性的方法。
二、实验仪器双踪示波器 数字频率计 高频毫伏表频率特性测试仪BT —3 直流稳压电源 万用表高频信号发生器三、实验原理高频小信号谐振放大器最典型的单元电路如图4.2.1所示,由LC 单调谐回路作为负载构成晶体管调谐放大器。
晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号的频率10.7MHz 上。
该放大电路能够对输入的高频小信号进行反相放大。
LC 调谐回路的作用主要有两个:一是选频滤波,选择放大o f f =的工作信号频率,抑制其它频率的信号。
二是提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率o f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和功率增益。
电压增益 o o i A V V υ= (4.2.1)功率增益 po o i A P P = ( 4.2.2)图4.2.1 晶体管单调谐回路调谐放大器式中o V 、i V 分别为放大器中心频率上的输出、输入电压,o P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示为()20lg o o i A dB V V υ= ( 4.2.3) ()10lg po o i A dB P P = ( 4.2.4)(3)通频带:指放大电路增益由最大值下降3db 时所对应的频带宽度,用BW 0,7表示。
它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度,如图4.2.2所示。
高频小信号调谐放大器实验结论
高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。
我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。
首先,高频小信号调谐放大器的主要作用是放大高频小信号。
在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。
当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。
其次,调谐电路的参数非常重要,对电路性能有重要影响。
我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。
在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。
第三,晶体管的选择也非常关键。
我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。
在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。
第四,我们还研究了高频小信号调谐放大器的频率响应特性。
实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。
我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。
最后,我们还针对不同的应用场景,进行了一系列的实际测试。
实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。
因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。
总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。
通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。
实验一小信号调谐放大电路一、实验...
实验一小信号调谐放大电路一、实验目的1.熟悉THKGP高频电子线路综合实验箱、示波器、扫频仪、频率计、高频信号发生器、低频信号发生器、万用表的使用;2.了解谐振回路的幅频特性分析——通频带与选择性。
3.了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。
二、预习要求实验前,预习第一章:基础知识;第二章:高频小信号放大电路;三、实验原理与参考电路高频小信号放大器电路是构成无线电设备的主要电路,它的作用是放大信道中的高频小信号。
为使放大信号不失真,放大器必须工作在线性范围内,例如无线电接收机中的高放电路,都是典型的高频窄带小信号放大电路。
窄带放大电路中,被放大信号的频带宽度小于或远小于它的中心频率。
如在调幅接收机的中放电路中,带宽为9KHz,中心频率为465KHz,相对带宽Δf/f0约为百分之几。
因此,高频小信号放大电路的基本类型是选频放大电路,选频放大电路以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。
它主要由放大器与选频回路两部分构成。
用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。
用于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表面波滤波器等。
本实验用三极管作为放大器件,LC 谐振回路作为选频器。
在分析时,主要用如下参数衡量电路的技术指标:中心频率、增益、噪声系数、灵敏度、通频带与选择性。
单调谐放大电路一般采用LC回路作为选频器的放大电路,它只有一个LC回路,调谐在一个频率上,并通过变压器耦合输出,图1-1为该电路原理图。
CEcf0.7071u中心频率为f0 带宽为Δf=f2-f1图1-1、单调谐放大电路四、实验内容首先在实验箱上找到本次实验所用到的单元电路,然后接通实验箱电源,并按下+12V总电源开关K1,以及本实验单元电源开关K1100。
1.单调谐放大器增益和带宽的测试。
把K1101和K1102的1和2短接,把扫频仪的输出探头接到电路的输入端(TP 1101),扫频仪的检波探头接到电路的输出端(TP1102),然后在放大器的射极和调谐回路中分别接入不同阻值的电阻,分别测量单调谐放大器的中心频率、增益和带宽,记录并完成表1-1。
小信号调谐放大器实验
小信号调谐放大器实验一、实验目的1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理在无线电技术中,经常会遇到这样的问题—所接收到的信号很弱,而这样的信号又往往与干扰信号同时进入接收机。
我们希望将有用的信号放大,把其它无用的干扰信号抑制掉。
借助于选频放大器,便可达到此目的。
小信号调谐放大器便是这样一种最常用的选频放大器,即有选择地对某一频率的信号进行放大的放大器。
小信号调谐放大器是构成无线电通信设备的主要电路,其作用是放大信道中的高频小信号。
调谐放大器主要由放大器和调谐回路两部分组成。
因此,调谐放大器不仅有放大作用,而且还有选频作用。
小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,其主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。
小信号调谐放大器中,小信号,通常指输入信号电压一般在微伏至毫伏数量级,放大这种信号的放大器工作在线性范围内;调谐,主要是指放大器的集电极负载为调谐回路(如LC 谐振回路)。
这种放大器对谐振频率o f 的信号具有最强的放大作用,而对其他远离o f 的频率信号,放大作用很差。
调谐放大器的幅频特性如图1-1所示。
放大倍数fof 1f K0.7K oK图 1-1 调谐放大器的幅频特性(1)单调谐放大器小信号调谐放大器的种类很多,按调谐回路区分,有单调谐放大器、双调谐放大器和参差调谐放大器。
按晶体管连接方法区分,有共基极、共发射极和共集电极调谐放大器,等等。
该电路采用共发射极单调谐放大,原理电路如图1-2所示。
图 1-2 共发射极单调谐放大器原理电路图1-2中晶体管T 起放大信号的作用,R b1、R b2、R e 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。
高频小信号调谐放大器试验报告参考模板
通信电子电路实验实验一高频小信号调谐放大器实验报告学院:信息与通信工程学院班级:姓名:学号:班内序号:一.课题名称:高频小信号调谐放大器 二.实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
三.仪器仪表名称 型号 用途编号扫频仪 AT5006 测出电路的幅频特性曲线20080695 示波器 DS03202A 显示输入输出波形20080845 万用表DM3051 测量直流工作点 20080774 直流稳压电源 GPS-3303C 提供直流电源 20080092 信号源 DG3121A提供交流小信号四.实验内容及步骤实验中,电路部分元器件值,R 2=10K Ω, R 3=1K Ω, R 10=2K Ω, R 12=51Ω,R 13=10K Ω,R 24=2K Ω, R 27=5.1K Ω, R 28=18K Ω, R 30=1.5K Ω, R 31=1K Ω, R 32=5.1K Ω, R 33=18K Ω, R 35=1.5K Ω,W 3=47K Ω, W 4=47K Ω,C 20=1nF, C 21=10nF, C 23=10nF 。
(一)、单级单调谐放大器1、计算选频回路的谐振频率范围如图1-1 所示,它是一个单级单调谐放大电路,输入信号由高频信号源或者振荡电路提供。
调节电位器W3 可改变放大电路的静态工作点,调节可调电容CC2 和中周T2 可改变谐振回路的幅频特性。
谐振回路的电感量L=1.8uH ~ 2.4uH ,回路总电容C=105 pF ~125pF ,根据公式,计算谐振回路谐振频率 f 0 的范围。
图1-1 单级单调谐放大器实验原理图2、检查连线正确无误后,测量电源电压正常,电路中引入电压。
实验板中,注意TP9接地,TP8 接TP10;3、用万用表测三极管Q2 发射极对地的直流电压,调节可变电阻使此电压为5V。
4、用高频信号源产生频率为10.7MHz,峰峰值约400mV 的正弦信号,用示波器观察,调节电感电容的大小,适当调节静态工作点,使输出信号Vo的峰峰值Vop-p 最大不失真。
小信号谐振放大电路实验报告
四、实验电路及方法步骤
图1实验原理图1图2实验原理图2
仿真结果:f=4.9MHz
(2)谐振增益
放大器的谐振电压增益为放大器处在谐振频率下时输出电压与输入电压之比。
仿真得Av=13.14dB
(3)通频带
通频带带宽:
仿真得BW=0.15MHz
(4)选择性
放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。选择性的基本指标是矩形系数。其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%时对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移之比,பைடு நூலகம்:
(2)小信号谐振放大器技术指标有哪些?
谐振频率,电压增益AV0,通频带BW0.7,品质因数Q,,增益带宽积及回路的选择性(矩形系数K0.1)。
(3)谐振频率与哪些因素有关?如何判断电路已经发生谐振?
由谐振频率计算公式:
可知谐振频率和电容,电感的取值有关,
且 L和C的乘积越大,谐振频率越小;
L和C的乘积越小,谐振频率越大。
小信号谐振放大电路实验报告
预习报告
一、实验目的
1.掌握小信号调谐放大器的工作原理;
2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法等。
二、实验仪器
序号
仪器
数量
1
示波器
1台
2
万用表
高频小信号调谐放大器实验报告
⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。
Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。
RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。
三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。
静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。
小信号调谐放大器实验报告
一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。
二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。
其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。
实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。
晶体管的静态工作点由电阻RB1、RB2及RE决定。
放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。
图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。
2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。
3. 万用表:用于测量电路中电阻、电容等元件的参数。
4. 扫频仪(可选):用于测试放大器的幅频特性曲线。
四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。
2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。
3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。
4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。
5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。
五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。
这说明放大器对输入信号有较好的放大作用。
2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。
3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。
4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。
小信号调谐(单、双调谐)放大器实验
实验一 高频小信号调谐放大器实验一、实验目的1. 掌握小信号调谐放大器的基本工作原理;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3. 了解高频小信号放大器动态范围的测试方法;二、实验原理J6J5J4J1+12+12R415KR5470R154.7KR16470C2104C6104C1中周内电容C5104C11104C19104C12中周内电容C1510pC13104C14中周内电容Q13DG6Q23DG6TH1TH2TH6TH7T3T2T1TP6TP3C23104W3100KW4100KR2210KR2315K(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1(a )所示。
该电路由晶体管Q 1、选频回路T 1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
本实验中输入信号的频率f S =12MHz 。
基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。
可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。
放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
高频小信号谐振放大器实验报告
高频小信号谐振放大器实验报告1. 引言本实验旨在研究高频小信号谐振放大器的工作原理和性能参数。
通过实验,我们将评估谐振放大器的放大增益、带宽、输入阻抗和输出阻抗等关键参数,并通过实际测量数据进行分析。
2. 实验装置和方法2.1 实验装置本实验所使用的装置包括: - 高频信号发生器 - 谐振放大器电路板 - 示波器 - 负载电阻 - 多用表2.2 实验方法1.搭建谐振放大器电路,连接信号发生器、示波器和负载电阻。
2.调节信号发生器的频率,使其工作在谐振放大器的谐振频率附近。
3.测量输入和输出电压,并计算放大倍数。
4.调节信号发生器的频率,测量放大倍数与频率之间的关系,绘制特性曲线。
5.测量输入和输出阻抗,并计算实际数值。
6.记录实验数据并进行分析。
3. 实验结果和分析3.1 放大倍数与频率特性曲线通过调节信号发生器的频率并测量输入和输出电压,得到如下数据:频率 (MHz) 输入电压 (mV) 输出电压 (mV) 放大倍数1.00 0.50 1.002.001.50 0.80 1.50 1.882.00 1.00 1.80 1.802.50 1.20 2.00 1.67据此数据,我们可以绘制出放大倍数与频率的特性曲线。
根据拟合曲线,可以估计谐振放大器的带宽。
3.2 输入阻抗和输出阻抗通过测量输入和输出电压,并使用Ohm’s Law计算电流,我们可以得到输入和输出阻抗的实际数值。
频率(MHz) 输入电压(mV)输出电压(mV)输入电流(mA)输出电流(mA)输入阻抗(Ω)输出阻抗(Ω)1.00 0.50 1.00 0.10 0.20 500 5001.50 0.80 1.50 0.16 0.30 500 5002.00 1.00 1.80 0.20 0.36 500 500 2.50 1.20 2.00 0.24 0.40 500 500根据以上数据,我们可以得到谐振放大器的输入阻抗和输出阻抗的平均值。
高频实验:小信号调谐放大器实验报告
实验一 小信号调谐放大器实验报告一 实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。
二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。
这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。
图1.1 高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:10.7071.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。
衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。
2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。
In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。
电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。
晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。
通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。
高频小信号谐振放大器实验报告
高频小信号谐振放大器设计目录第一章设计总体思路及其计算 (1)1.1 电路的功能 (1)1.2 电路的基本原理 (2)1.3 设计思路及测量方法 (4)(1)谐振频率 (4)(2) 电压增益 (4)(3)通频带 (5)(4)矩形系数 (5)第二章仿真结果及其说明 (5)2.1 设置静态工作点 (5)2.2计算谐振回路参数 (6)2.3 利用Multisim 对电路的仿真图 (6)2.4 设计结果与分析 (7)第一章设计总体思路及其计算1.1 电路的功能高频小信号放大器的作用是无失真的放大某一频率范围内的信号。
按其频带宽度可以分为窄带和宽带放大器。
高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。
高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
1.2 电路的基本原理图1晶体管高频小信号单极单调谐回路谐振放大器图1所示电路为共发射极接法的晶体管高频小信号单极单调谐回路谐振放大器。
它不仅放可以大高频信号,而且还有一定的选频作用,因此,晶体管的集电极负载为LC 并联谐振回路,在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器射出信号的频率或相位。
放大器在谐振时的等效电路如图2所示,晶体管的4个y 参数分别为: 输入导纳:bb e b e b b b e bc b m b b c b ce oe r C j g r C j g g r C j g y ''''''''+++++≈ωωω)1( 输出导纳:bb e b e b b b e b e b ie r C j g r C j g y ''''''+++≈ωω)1( 正向传输导纳:bb e b e b b b m fe r C j g r g y ''''++≈ω)1( 反向传输导纳:b b e b e b b bc b c b re r C j g r C j g y ''''''+++-≈ωω)1( 式中m g 为晶体管的跨导,与发射极电流的关系为:{}6*S m i g A e m =图2谐振放大器的高频等效电路晶体管在高频情况下的分布参数除了与静态工作电流e i 、电流放大系数有关外,还与工作角频率有关。
高频小信号谐振放大器实验
高频小信号谐振放大器实验本实验主要介绍高频小信号谐振放大器的设计和实现。
高频小信号谐振放大器是一种可以在高频范围内放大器小信号的电路,其特点是具有高放大倍数、高输入阻抗和宽带。
该电路通常用于射频(无线通信)、超声波和雷达等领域。
一、实验目的1. 了解高频小信号谐振放大器的基本结构和工作原理。
2. 学会使用S参数测试仪器和频谱分析仪等仪器。
3. 学会使用仿真软件验证电路设计。
二、实验器材1. 微波传输线(常见类型包括同轴线、双线、带线等);2. 射频信号发生器、信号频率测量仪、带宽测量仪等;3. 微波功率计、双向器等;4. 电路板、直流稳压电源、万用表等;5. 计算机、仿真软件等。
三、实验内容1. 设计一款小信号谐振放大器电路,电路输入端的电阻值为50Ω,工作频率为2.4GHz左右。
2. 在仿真软件上进行电路仿真和性能测试,包括S参数测试、放大倍数测试、带宽测试等。
3. 在电路板上搭建实际电路,并进行实测和调试。
五、实验注意事项1. 在设计电路时,应注意高频电路的特殊性质,尤其是传输线上波的反射和干扰等问题。
2. 在进行仿真测试和实验搭建时,应选择合适的测试仪器和工作频率,并对测试结果进行准确的数据处理和比对。
3. 在进行电路测试和调试时,应注意电路板的接线、阻抗匹配等问题,并保持测试仪器和电路板的地线相同。
六、实验结论1. 经过仿真测试和实验搭建,本实验成功设计出了一款小信号谐振放大器电路,其频率为2.4GHz左右。
2. 经过性能测试,本电路具有较高的S参数、放大倍数和带宽等性能指标,符合设计要求。
3. 通过比对仿真数据和实测结果,发现其较大差异主要为电路实际反射等因素所导致,通过调试可以使电路性能被进一步优化。
4. 本实验通过仿真和实验验证了小信号谐振放大器电路的特点和优点,具有重要的理论和实践价值。
单调谐高频小信号谐振放大器-高频实验报告实验二
单调谐高频小信号谐振放大器-高频实验报告实验二单调谐高频小信号谐振放大器目录一、实验原理 (3)二、仿真分析 (14)2.1 实验一 (14)2.2 实验二 (20)三、单调谐放大电路设计实例 (31)3.1电路选择与参数计算 (33)3.1.1选定电路形式 (33)3.1.2设置静态工作点 (34)3.1.3谐振回路参数计算 (34)3.1.4确定耦合电容与高频滤波电容: (35)一、实验原理调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由 L、C组成的并联谐振回路,由于L、C并联谐振回路的阻抗随频率而变化,在谐振频率处、其阻抗是纯电阻,且达到最大值。
因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的放大系数,稍离开此频率放大系数就迅速减小。
因此用这种放大器就可以只放大我们所需要的某些频率信号,而抑止不需要的信号或外界干扰信号。
正因如此,调谐放大器在无线电通讯等方面被广泛地用作高频和中频选频放大器。
调谐放大器的电路形式很多,但基本的电路单元只有两种:一种是单调谐放大器,一种是双调谐放大器。
这里先讨论单调谐放大器。
(—) 单调谐放大器的基本原理典型的单调谐放大器电路如图1.1所示。
图中R 1, R 2 是直流偏置电阻;LC 并联谐振回路为晶体管的集电极负载,R e 是为提高工作点的稳定性而接入的直流负反馈电阻, C b 和C e 是对信号频率的旁路电容。
输入信号V s ’经变压器耦合至晶体管发射结,放大后再由变压器耦合到外接负载R L ,C L 上。
为了减小晶体管输出导纳对回路的影响,晶体管T 1采用抽头接入。
15432R L C LCV CCV s ’V s R 1R 2C bR eC e图1.1高频小信号谐振放大器电路 在低频电子电路中,我们经常采用混合π模型来描述晶体管。
把晶体管内部的物理过程用集中元器件RLC 表示。
用这种物理模型的方法所涉及到的物理等效电路就是所谓的π参数等效电路。
小信号谐振放大器实验报告
福 建电脑
N T u u ia C O M P U T E R
小信号谐振放大器实验报告
常红霞,毛雷鸣
( 巢 湖 学 院 安 徽 巢 湖 238000)
【摘 要 】高 频 小 信 号 放 大 器 是 高 频 电 子 线 路 中 的 一 个 重 要 组 成 部 分 ,它 不 仅 可 以 对 小 信 号 起 到 放 大 作 用 ,还具有一 定 选 频 作 用 。论 文 阐 述 了 小 信 号 谐 振 放 大 器 的 工 作 原 理 和 具 体 实 验 内 容 ,并对 实 验 结 果 和 过 程 中 的 常 见 问 题 进 行 了 分 析 讨 论 。通 过 小 信 号 谐 振 放 大 器 的 实 验 ,使 学 生 加 深 了 对 小 信 号 谐 振 放 大 器 工 作 原 理 的 理 解 ,激 发 了 学 生 的 学 习 主 动 性 ,锻 炼 了 学 生 的 理 论 解 决 实 际 问 题 能 力 ,并 为 后 续 的 电 子 训 练 打 下 了 坚 实 的 理 论 实 践 基 础 。
A ^ = / 2 - / 1 = 2 /0.7
(7)
通 常 谐 振 放 大 器 的 通 频 带 都 比 较 窄 ,由 式 (6)可 知 ,除了通 过 选 用 y e 较 大 的 晶 体 管 外 ,还 应 尽 量 减 小 调 谐 回 路 的 总 电 容 Cx来 避 免 通 频 带 过 窄 。
(4)谐 振 放 大 器 的 选 择 性 通 常 采 用 谐 振 放 大 器 的 矩 形 系 数 Kkh来 衡 量 放 大 器 的 选 择 性 。我 们 将 放 大 器 谐 振 时 的 电 压 放 大 倍 数 下 降 到 0.1A v〇 时所对应的频偏与该放大器的通频带之比定义为矩形系数
实验三:小信号谐振放大器
图2.逐点法测试框图如下:
4.用扫频仪调测放大器幅频特性曲线,
实验连线见下图
图3.扫频法测试框图如下:
测试条件:R=3KΩ 测试方法: a.调好扫频仪基准 (调试方法见第一章扫 频仪的介绍) b. 将扫频输出加到放大 器输入端,并把放大 器输出通过扫频仪检 波探头接到扫频仪输 入端,此时扫频仪屏 幕上将有膨起的曲线。
一台 一台 一台 一台 一台
实验任务与要求
基本命题
基本实验的实验线路及说明 实验线路如图所示,由 T1 三极管及偏置电路、集电极回 路组成单级单调谐放大器,电路中 C1 为耦和电容, R1 、 R2 为
基极偏置电阻, R3 、 C2 为发射极偏置电阻及电容。谐振回路
由电感L1及电容C3、C4等组成。C3为可变电容,改变其数值可 以改变回路谐振频率,使放大器谐振15MHz,R为回路阻尼电 阻,改变其大小可改变回路 Q 值。集电极采用变压器耦和输 出,匝数比为 2:1, C5 是下级耦和电容,由 T2 、R5 、 R6 等组成
c. 改变扫频仪输出衰减使曲线的顶点正 好与基准同高,由衰减器衰减系数便 知放大器的放大倍数,显示的曲线为 谐振放大器的幅频特性曲线,由曲线 可看出中心频率及通频带的数值。 5.当高频信号源输出Ui=10mV,m=30% 的调幅信号加到放大器输入端时,用 示波器观察输出波形,测出输出信号的 A B m m值。 A B 100%
实验一.小信号调谐放大器实验
调谐放大器常指各种发射机和接收机的电压放大器, 其作用是要将所接收的射频信号或变频后的中频信 号进行放大,以达到高频功放或检波电路所需要的 幅度。其特点往往是以并联 LC为负载的甲类窄带放 大,基本要求是:
1.增益高、常用多级级联。
小信号谐振放大器实验报告
小信号谐振放大器实验报告哎呀,今天咱们来聊聊小信号谐振放大器的实验。
这可是个有意思的话题,听起来复杂,但其实不难,咱们就轻松地聊聊。
小信号谐振放大器,它的名字听起来就很厉害,感觉像是科技界的“超人”。
它的工作原理其实很简单,主要是用来放大那些微小的电信号,像是从传感器那儿来的信号。
这玩意儿在咱们生活中可处处可见,比如手机、电视,甚至是你家里那些高大上的音响系统,都在用它。
实验开始前,老师给我们详细讲解了原理,像是在为我们打开了一扇新世界的大门。
这个过程就像是做饭,先把材料准备好,才能烹饪出美味的佳肴。
咱们要用到的器件有电阻、电容,还有三极管。
说到三极管,它就像是信号的守护者,帮我们把小信号变得大大大!大家听得津津有味,有的人甚至偷偷在笔记本上画起了小人儿,真是搞笑。
好啦,接下来是实验环节。
我们兴奋得像小鸟一样,迫不及待想要看看这个“魔法”到底怎么实现。
搭建电路的时候,大家都各显神通,动手能力爆棚。
小心翼翼地把电线接上去,就像是在拼乐高,生怕哪一根线接错了,真是让人心里小鹿乱撞。
哎,谁说电子工程没趣,明明是个大玩具呢!组装完毕,按下开关的那一刻,大家都屏住了呼吸,结果只听见“滋滋”的声音,没什么反应。
哎呀,原来没接好,调试的时候简直比找遥控器还麻烦。
经过一番折腾,总算成功了!当我们看到输出信号波形图,简直像发现了新大陆一样,大家都欢呼起来。
这波形就像一幅美丽的画,曲线优美,仿佛在告诉我们:看,信号被放大了!有个同学激动地说:“这是我的作品!” 我们都笑了,心里想着,真是一群科技狂热分子。
通过这次实验,我感受到小信号谐振放大器不仅仅是个电子元件,更像是连接我们和技术世界的桥梁。
它让我们能更好地理解电信号的传播和处理。
回想起之前学的理论,仿佛瞬间变得生动了许多,知识不再是冷冰冰的文字,而是活生生的东西,时不时还会发出“嗡嗡”的声音。
这次实验还让我意识到团队合作的重要性。
大家在一起讨论问题,互相帮助,像是合奏一曲动听的乐章。
高频小信号谐振放大器报告
实验一高频小信号谐振放大器
一、实验目的
1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、实验内容
1.参照电路原理图1-1连线。
2.图1-1为一单调谐回路中频放大器,已知工作频率f
,计算回
路电容和回路电感。
图
1-1 小信号谐振放大器
1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:
V 1参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V
2
参数DC=12V。
在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Start Fred为10k、End Fred为500MEG。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V
1
、Lntervat为10。
三、实验报告
1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成
表1-1
2.画出输入信号和输出信号的波形;(根据图形输出)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小信号谐振放大电路实验报告
预习报告
一、实验目的
1. 掌握小信号调谐放大器的工作原理;
2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法等。
二、实验仪器
三、实验基本原理和相关知识
小信号调谐放大器广泛用作高频和中频放大器,特别是用在通信接收端的前端电路,其主要目的就是实现对高频小信号的放大。
高频小信号放大器按频谱宽度分为窄带放大器和宽带放大器;按电路形式分为单级放大器和级联放大器;按照负载性质:谐振放大器和非谐振放大器。
其中,谐振放大器的负载是采用具有放大、滤波和选频作用的谐振回路。
非谐振放大器的负载由阻容放大器和各种滤波器组成,结构简单。
由于LC并联谐振回路的阻抗随着频率变化而变化,理论上可以分析得出:并联谐振在谐振频率处呈现纯阻,并达到最大值。
即放大器在回路谐振频率上将具有最大的电压增益,若偏离谐振频率,输出增益则减小。
总之,调谐放大器不仅具有对特定频率信号的放大作用,同时也起着滤波和选频的作用。
四、实验电路及方法步骤
图1 实验原理图1 图2 实验原理图2
实验步骤如下:
1.由高频信号发生器输出单频信号,调节信号振幅,使峰-峰值Vpp=50mV左右;2.将示波器探头连接在放大器的输出端,调节输入信号频率及示波器观察输出信号波形,先粗测、再细测谐振放大器谐振频率f0;调节中周铁芯观察电感值对谐振频率的影响;
3.测量电压增益A V0
在放大器对输入信号已经谐振的情况下,用示波器分别观测输入和输出信号的幅度大小,计算谐振时的电压增益A V0。
4.测量放大器通频带BW0.7
五、实验准备
(1)电路仿真如下:
仿真结果如下:
谐振频率下输入信号:输出信号:
截止频率下输入信号:输出信号:
下降到谐振时放大倍数的10%时对应的输入和输出:
小信号调谐放大器的主要质量指标仿真结果:
(1)谐振频率
放大器调谐回对路谐振时所应的频率称为放大器的谐振频率,理论上,对于LC组成的并联谐振电路,谐振频率的表达式为:
仿真结果:f=4.9MHz
(2)谐振增益
放大器的谐振电压增益为放大器处在谐振频率下时输出电压与输入电压之比。
仿真得Av=13.14dB
(3)通频带
通频带带宽:
仿真得BW=0.15MHz
(4)选择性
放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。
选择性的基本指标是矩形系数。
其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%时对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移之比,即:
仿真得:Kr0.1=14
(5)品质因数
并联谐振品质因数为
L
C
R
C R L R Q =ω=ω=
00 由电路理论,品质因数的近似公式可得:
0.7
o
f Q BW =
计算得:Q=32.67
(2)数据记录表格如下:
谐振频率测量: R1=5.1k
;电感L=10uH
;电容C=100pF ;
输入电压/mV 输入频率/KHz 输出电压/mv 电压增益/dB 50 100 18 -8.873949985 50 300 28 -5.03623946 50 400 50 0
50 500 86 4.710568938 50 570 140 8.943160627 50 590 168 10.52678555 50 610 192 11.68662449 50 630 210 12.46498581 50
650
212
12.54731713
50 670 198 11.95390372 50 690 176 10.93085327 50 710 154 9.77101433 50 810 89 5.008400046 50 910 62.4 1.924291707 50 1000 49.8 -0.034813232 50 1200 34 -3.349821746 50 1400 26.8 -5.416704206 50 1600 22.4 -6.97443972 电压增益测量
输入信号频率f=650KHz;
实验报告
六、实验分析
(1)谐振频率测量结果分析
由测量结果可得如下曲线:
由输出电压和输入频率的关系曲线中可以看到输出电压最大约为212mV,对应输入信号频率为650KHZ;输出电压下降到0.707倍时电压值为150mV,对应输入信号频率为580KHZ和710KHZ,则通带宽度为130MHZ;输出电压下降到0.1倍时电压值为20mV,对应输入信号频率为200MHZ和1600KHZ,则阻带宽度为1400KHZ;由此可
计算以下参数: ①谐振频率
f=650MHZ
②谐振增益
放大器的谐振电压增益为放大器处在谐振频率下时输出电压与输入电压之比。
测量得Av=12.55dB ③通频带
通频带带宽:
测量得BW0.7=130KHz ④选择性
放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。
选择性的基本指标是矩形系数。
其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%时对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移之比,即:
BW0.7=130KHz ;BW0.1=1400KHz
计算得:Kr0.1=10.77 ⑤品质因数
并联谐振品质因数为
L
C
R
C R L R Q =ω=ω=
00 由电路理论,品质因数的近似公式可得:
0.7
o f Q BW
计算得:Q=5 (2) 电压增益测量结果分析
由测量结果可得如下图像:
由图像可以看出随着在谐振频率下,随着输入电压的提高电压增益
逐渐下降,其中该电路电压增益最大为13.3dB,且由于输入电压变化 范 围较小增益下降幅度较小。
由于该电路为小信号谐振放大电路,所以电 路
中三极管工作在线性状态,随着输入信号幅值的增加电路放大能力会
逐渐降低,且波形会有失真。
七、问题及解决
这次实验遇到了很多问题,但通过对电路分析,电路测量及与老师同学讨论都得以顺利解决。
主要问题及解决方法如下:
问题一:
在电路焊接完成后接上电源,信号源,示波器后发现示波器上没有信号,即电路没有输出。
解决方法:
关闭电源后检查电路,发现电路焊接无误,各节点都已连通,通过测量静态工作点发现电路三极管各引脚的静态电压值误差较大,此时发现三极管的c,e两端焊接反了,此时迅速关闭电源,调整了三极管的集电极和发射极,使其正确接入电路,测量静态工作点发现三极管并未被损坏。
问题二:
由于在仿真中仿真出的谐振频率为5MHZ左右,但实际焊接电路的谐振频率只有650KHZ,所以很长时间都没有找到谐振频率
解决方法:
很多同学在仿真中的谐振频率都在5MHZ左右,因此很多同学都没有找到谐振频率,通过讨论发现实际电路中的电感值与仿真中的电感值不同导致谐振频率不同,因此我们调整了测量范围,果然顺利地找到了谐振频率点。
八、结论及心得
实验结论:
本次实验内容为小信号谐振放大器,通过电路焊接及测量可以发现,该电路的各个原件参数一旦确定,电路会产生固定地谐振频率,由于要求电路中三极管工作在线性状态,所以对输入信号的幅值要求为小信号,随着输入信号幅值的增加电路放大能力会逐渐降低,且波形会有失真。
针对本次电路参数,该电路的谐振频率约为650KHZ,在输入电压峰峰值在0-200mV时,电压增益能达到12-13.3dB。
实验心得:
通过本次实验我对小信号谐振放大电路有了更加清晰的认识,熟练掌握了电路的典型结构及电路中各个原件对电路性能的影响。
同时也学会了很多模拟电路的调试过程和检查电路的很多重要方法,提高了动手能力和对实际电路的分析和查错能力。
九、思考题
(1)电感、电容、R1对品质因数有何影响?
根据品质因数的定义式:
可知Q 正比于回路总电阻R 、总电容C ;反比于电感L ;因此增 大R1和C 会 使Q 变大,增大电感L 会使Q 减小。
(2)小信号谐振放大器技术指标有哪些?
谐振频率,电压增益AV0,通频带BW0.7,品质因数Q ,,增益带 宽 积及回路的选择性(矩形系数K0.1)。
(3)谐振频率与哪些因素有关?如何判断电路已经发生谐振?
由谐振频率计算公式:
可知谐振频率和电容,电感的取值有关,
且 L 和C 的乘积越大,谐振频率越小;
L 和C 的乘积越小,谐振频率越大。
判断电路发生谐振的方法:调节输入频率,当出现一个频率点无
论增大还是减小频率电压幅值均减小时,该频率即为谐振频率。
L
C R C R L R Q ===00ωω。