立体几何部分模型大全
立体几何专题:外接球问题中常见的8种模型(学生版)
![立体几何专题:外接球问题中常见的8种模型(学生版)](https://img.taocdn.com/s3/m/bcf8c6bd9a89680203d8ce2f0066f5335a8167ea.png)
立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。
推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。
推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。
立体几何平行证明题常见模型及方法
![立体几何平行证明题常见模型及方法](https://img.taocdn.com/s3/m/8e694169657d27284b73f242336c1eb91b373372.png)
立体几何平行证明题常见模型及方法立体几何中的平行证明题常见的模型和方法有很多。
下面我将介绍一些常见的模型和方法,以帮助你更好地理解和应用立体几何的平行证明。
一、常见模型1.平面与平面的平行证明:常见的模型有两条平行线或两个平行四边形,通过证明平面与平面内对应的直线或四边形是平行的,即可得证。
2.直线与直线的平行证明:常见的模型有平行四边形和交叉角等,通过证明两直线间的对应角相等或同位角互补,即可得证。
3.平面与直线的平行证明:常见的模型有平行四边形的一对对角线、三角形的高、垂足、垂线等,通过证明直线与平面内的直线或线段互相垂直,即可得证。
4.空间中的平面与平面的平行证明:常见的模型有两个平行四边形的高度等、点到平面的垂直距离等,通过证明两个平面内的垂直线的相互平行性,即可得证。
二、常见方法1.剪影法:利用平行关系特殊的剪影形状进行证明。
例如,通过剪影的形状可以直观地判断两根线段平行。
2.联立法:通过建立适当的方程组,将待证的平行条件与已知条件进行联立,最终得到结论。
常见的方法有正投影、平行投影等。
3.直角法:利用直角关系进行证明。
通过找到合适的垂线、垂足等直角线段,可以推导出平行关系。
4.反证法:假设不平行,然后找到与之矛盾的证据,从而推出平行的结论。
5.三角形法:构造适当的三角形,通过三角形的性质和形状关系进行证明。
6.同增减法:通过分析多个角度相应的同增减性质,推导出平行的结论。
7.通道法:利用另一个已经知道的已知命题,构造合适的通道来推导出平行的结论。
以上仅是常见的模型和方法,实际的平行证明题在解题过程中可能会遇到各种不同的情况和策略。
解决此类问题的关键是要有良好的几何直观和分析能力,熟练掌握几何定理和性质,并能够合理运用不同的方法解决问题。
立体几何四个重要模型
![立体几何四个重要模型](https://img.taocdn.com/s3/m/58dce64e2a160b4e767f5acfa1c7aa00b52a9dd6.png)
立体几何四个重要模型广州市第六十五中学朱星如模型1:在棱长为a 的正面体ABCD 中:1.求证它是一个正三棱锥。
证明:即证顶点A 在底面BCD 的中心H 的连线与底面垂直。
取BC 的中点E,BD 的中点F,连CF,DE 相交于点H,则H 是三角形BCD 的中心,且H 是CF,DE 的一个三等分点,连AH,由BC ⊥DE,BC ⊥AE,AE 交DE=E,AE,DE 的平面AED 内,得BC ⊥平面AED,由此得BC ⊥AH,即AH ⊥BC。
(1)同理:AH ⊥BD。
(2)由BC 交BD=B,BC,BD 在平面BCD 内及(1)(2)得:AH ⊥平面BCD。
所以四面体ABCD 是正三棱锥。
2.设E、F、S、T 分别是BC、BD、AD、AC 的中点,求证:四边形EFST 是正方形。
证明:由于E、F、S、T 分别是BC、BD、AD、AC 的中点,故有ST 12DC EF,ST EF,所四边形EFST 是平行四边形。
同理:SF 12AB TE ,DC=AB ,所以四边形EFST 是菱形。
仿题1可证DC ⊥平面ABH,故DC ⊥AB,故有四边形EFST 是正方形。
注;由此可得到相对的两棱所成角为90o 。
3.设E、S 分别是BC、AD 的中点,求证:ES ⊥BC,ES ⊥AD,并求ES 的长。
证明:可证BC ⊥平面AED,从而BC ⊥ES;可得AD ⊥平面BCS,从而AD ⊥ES。
在直角三角形SBE 中,SB=32a,BE=12a,从而,2222ES SB BE =-=4.求任何一条棱与它相交的面所成角的正弦值。
解:只要求AB 与平面BCD 所成的角。
AH ⊥平面BCD,∴AB 与平面BCD 所成的角是ABH ∠。
22333323BH DE ==⨯=,在直角三角形ABH 中,2263AH AB BH =-=,故6sin 3AH ABH AB ∠==。
5.求相邻两个面的夹角的余弦值。
解:只要求二面角A-BD-C 的平面的余弦值。
九年级数学初中常见几何模型汇总(图片版)
![九年级数学初中常见几何模型汇总(图片版)](https://img.taocdn.com/s3/m/82f2fb1a9e31433238689375.png)
九年级数学初中常见几何模型汇总(图片版)初中常见几何模型汇总全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最终模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
旋转最值(共线有最值)说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
剪拼模型三角形→四边形四边形→四边形说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。
矩形→正方形说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变正方形+等腰直角三角形→正方形面积等分旋转相似模型说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。
立体几何篇(球、三视图)
![立体几何篇(球、三视图)](https://img.taocdn.com/s3/m/3a669568866fb84ae45c8d97.png)
立体几何篇(空间球专题)空间球:三个重要的模型三个重要的技巧三个重要的模型1、正方体模型2、正四面体模型3、长方体模型1、正方体模型正方体的常用结论(假设边长为a )(1)外接球a r 231=,棱切球a r 222=,内切球a r 213= (2)最大投影面积为23a ,最小投影面积为2a2、正四面体正四面体的常用结论(假设边长为b )(1)任何一个正四面体都对应一个正方体且a b 2=(2)外接球即为正方体的外接球b a r 46231==;棱切球即为正方体的内切球b a r 42222==; 内切球半径为外接球半径的31,b r r 1263113== 等体积331431r S h S V ••=•= h r h r 434113=•= 3113=r r b h 36= (3)正四面体的高等于b 36,且正四面体内任意一点到四个面的距离之和为定值(正四面体的高) (4)正四面体对棱互相垂直,对棱之间的距离为b 22; (5)最大投影面积为221b ,最小投影面积为242b例1、正三棱锥ABC S -的侧棱与底面边长相等,如果F E ,分别为AB SC ,的中点,那么异面直线EF 与SA 所成的角等于_______________________例2、已知ABC S -是一体积为72的正四面体,连接两个面的垂心F E ,,则线段EF 的长是_______________________3、长方体模型长方体的常用结论(c b a ,,为长方体的长、宽、高)(1)三边两两垂直或三面两两垂直,即称“墙角”可补成对应长方体,体对角线即为直径,即有22224R c b a =++;(2)具有公共斜边的直角三角形,斜边即为球的直径。
例3、(辽宁高考)已知点D C B A P ,,,,是球O 表面上的点,⊥PA 平面ABCD ,四边形ABCD 的边长为32正方形,若62=PA ,则OAB ∆的面积为___________例4、(浙江高考)如图,已知球O 点面上四点D C B A ,,,,⊥DA 平面ABC ,BC AB ⊥,3===BC AB DA ,则球O 的体积等于_______________4、空间球的三个重要的准则1、外接球的球心在底面三角形的外心向上作的垂线;2、常用垂径勾股定理;3、内切球常用等体积;4、复杂的可以建系求解。
初中几何46种模型大全
![初中几何46种模型大全](https://img.taocdn.com/s3/m/6667bdefcf2f0066f5335a8102d276a2002960cd.png)
初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。
在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。
本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。
正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。
正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。
2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。
长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。
长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。
3. 平行线模型平行线模型是相互平行的直线。
平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。
平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。
4. 菱形模型菱形模型是具有四个相等的直角边的矩形。
菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。
菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。
5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。
等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。
6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。
18个经典几何模型(word400多页)
![18个经典几何模型(word400多页)](https://img.taocdn.com/s3/m/4fe5da002bf90242a8956bec0975f46526d3a748.png)
18个经典几何模型(word400多页)1.分享:200个精美几何画板文件2.再分享:149个精美几何画板文件3.二次函数压轴题精选40道(word含答案)4.最全的“一线三等角”模型解析5.重磅:2G多初中数学赛课好资料(打包分享)6.中考满分之路—必刷的30个专题7.史上最全:初高中数学衔接教材(word分享)8.重磅分享:中考数学压轴题十大题型(word含详细答案)9.初中数学满分讲义重磅分享10.重磅分享:最新旋转中考题精粹11.精品分享:将军饮马六大模型12.破解中考数学压轴题12讲(上)13.破解中考数学压轴题12讲(下)14.中考必备的15个word好专题(上)15.中考必备的15个word好专题(下)16.重磅分享:1991-2018年初中数学联赛试题及答案17.重磅分享:各类型全等三角形专题78页125题18.燃炸分享:初中数学选择通关题19.重磅:中考数学压轴题12讲(word分享)20.初中数学选择题精选400题(含答案)21.九年级数学暑假专用资料22.八年级最实用讲义23.勾股定理及逆定理专题(电子版分享)24.必看:中考数学考前指导!25.初高中数学衔接——超好教材26.燃爆分享:初中数学综合复习资料27.相似三角形模型(word分享)28.旋转型相似三角形(word分享)29.收藏:一文搞定二次函数30.史上最全:初高中数学衔接教材(word分享)31.初中数学选择题精选400题(含答案)32.初中数学选择题精选300题(含答案)33.一张图读懂“代数几何”模型34.刚刚,第11届全国赛课一等奖获奖资料打包分享35.四边形通关题(word分享)36.将军饮马的六种常见模型37.重磅分享:初中数学几何模型38.初中数学解题技巧大全39.重磅分享:学霸必备的23讲word40.1991-2018年初中数学联赛试题及答案(打包分享)41.81套2019年全国各地中考真题(word含答案)42.分享:初中几何辅助线大全43.学霸拥有满分无忧44.收藏:常见的线段最值问题45.最新:二次函数压轴题及答案(word分享)46.最全初中数学几何动点问题专题分类归纳汇总47.word分享:12个专题模型(word分享)48.特殊平行四边形专题(word含详细答案)49.最值问题和路径问题精选(word分享)50.初中好题难题总动员(word分享)51.最全:2018年全国中考数学真题汇编(word含答案)52.助力中考:旋转专题53.最短路径12个基本问题(PPT分享)54.平移和旋转专题含答案(word分享)55.助力中考:相似三角形56.助力中考:半角模型(word分享)57.助力中考:手拉手模型(word分享)58.初中数学模型解题策略59.截长补短模型(word分享)60.共顶点模型(word分享)61.费马点最值模型(word分享)62.胡不归最值模型(word分享)63.隐圆模型(word分享)64.收藏:初中经典几何模型大全65.阿氏圆最值模型(word分享)66.角含半角模型(word分享)67.轴对称最值模型(word分享)68.弦图模型(word分享)69.对角互补模型(word分享)70.中考数学考前指导!最后一课!(ppt分享)71.2019年全国各市中考真题111套(word含解析)72.中点模型(word分享)73.构造平行四边形解题(word分享)74.中考押题:等边三角形(word分享)75.主从联动模型(word分享)76.二次函数与几何综合(word分享)77.一题30问及解答78.中考二次函数压轴题汇总(163页word含详细解析)79.最全:2020年中考总复习知识点总结(word分享)80.函数“存在性”问题(word分享)81.初中数学培优资料1-10讲(word分享)82.探索性问题(74页word分享)83.折叠问题(word分享)84.初中数学培优资料11-20讲(word分享)85.初中数学培优资料21-26(word分享)86.初中数学常用几何模型及构造方法大全87.重磅:几何应用题(word分享)88.100多套2020年中考真题(word分享)89.章建跃教授:我们应该如何教几何(PPT分享)90.2020年中考数学试题分类汇编(word分享)91.一文搞定初中数学几何模型92.初中数学第一课:迷人的数学(PPT分享)93.对初中数学复习教学的思考(PPT分享)94.常见几何基本图形及结论95.三角形的中位线(ppt分享)96.大树理论和工匠精神(PPT分享)97.初三复习建议(PPT分享)98.初中第一课:走进数学世界(PPT分享)99.动找规律,静下结论(PPT分享)100.一文搞定瓜豆原理101.最全的将军饮马模型(word分享)102.图形变换背景下的轨迹思想的研究(ppt分享)103.相似三角形六大证明技巧(word分享)104.最全的辅助圆模型(word分享)。
八年级下册数学几何模型大全
![八年级下册数学几何模型大全](https://img.taocdn.com/s3/m/633d8ddd9a89680203d8ce2f0066f5335a81678e.png)
八年级下册数学几何模型大全数学几何模型是指通过数学方法和几何原理,将现实世界的物体、图形、结构等抽象为数学模型进行研究和分析。
数学几何模型的建立和研究,在实际应用和理论研究中起着重要的作用。
下面将从平面几何模型、立体几何模型以及几何变换模型等方面,介绍数学几何模型的相关内容。
一、平面几何模型1.点、线、面的模型平面几何模型的最基本元素是点、线、面。
点可以用坐标表示,线可以用两点或斜率截距等式表示,平面可以用点和法向量、点法式方程等表示。
2.三角形的模型三角形是平面几何中最基本也是最重要的图形,它可以通过三个顶点的坐标或边长、角度等参数进行描述。
三角形的性质和关系是平面几何模型中的重要内容。
3.圆的模型圆的模型是由圆心和半径来描述的,圆心可以用坐标表示,圆的方程可以用一元二次方程表示。
圆与直线、圆与圆之间的关系以及圆的切线、法线等性质也是数学几何模型的重要内容。
4.多边形的模型多边形是由多条线段构成的封闭图形,可以通过顶点坐标或各边长、角度等参数来描述。
多边形的性质包括内角和、边长和、面积、重心、外心等。
二、立体几何模型1.长方体、正方体的模型长方体和正方体是最基本的立体几何模型,可以通过边长、面积、体积等参数来描述。
它们在实际应用中广泛存在,如建筑、容器、器具等。
2.圆柱、圆锥、球体的模型圆柱、圆锥和球体是常见的曲面立体几何模型。
圆柱可以由轴线和底面圆描述,圆锥可以由轴线和底面描述,球体可以由球心和半径描述。
它们的体积、表面积以及与其他几何体的关系是数学几何模型的重要内容。
3.棱柱、棱锥的模型棱柱和棱锥是由棱和面构成的多面体。
棱柱可以通过底面形状和高度来描述,棱锥可以通过底面形状、高度和斜高来描述。
它们的体积、表面积以及与其他几何体的关系也是数学几何模型的重要内容。
4.多面体的模型多面体包括正多面体和一般多面体。
正多面体是指所有面都是相等正多边形的多面体,如四面体、六面体、八面体等。
一般多面体则是指不是正多边形的多面体,如五面体、十字切半正十二面体等。
(完整版)全等立方体常见的几何模型
![(完整版)全等立方体常见的几何模型](https://img.taocdn.com/s3/m/243f9efb2dc58bd63186bceb19e8b8f67c1cefc4.png)
(完整版)全等立方体常见的几何模型全等立方体常见的几何模型
简介
全等立方体是一种非常常见的几何模型,具有六个平面面以及
八条边的特点。
它所具备的对称性和均匀性使其在各个领域中得到
广泛应用。
本文将介绍全等立方体的定义、性质和一些常见的应用
场景。
定义
全等立方体是指具有相等边长的立方体。
立方体是一种多面体,每个面都是正方形。
性质
全等立方体具有以下性质:
- 具有六个相等的平面面,每个面都是正方形。
- 具有八条相等的边,每条边的长度都相等。
- 每个顶点都是四个边的交点,每个顶点所连接的三条边围成
的平面角度均为90度。
- 具有对称性,绕任意一条对角线翻转180度仍然保持原样。
应用场景
全等立方体在各个领域中都有广泛的应用,以下是一些常见的
应用场景:
- 数学:全等立方体是立体几何的一个重要概念,它在数学中
被广泛研究和应用。
- 建筑:全等立方体的对称性和稳定性使其成为建筑领域中常
见的立方体结构的基础。
- 工程:全等立方体在工程设计中经常被用于制作模型,用于
模拟和研究不同结构的性能。
- 游戏:全等立方体在游戏设计中经常被用作游戏场景中的基
本模块,具有易于处理和组合的特点。
总结:
全等立方体是一种常见的几何模型,具有六个平面面和八条边。
它具有对称性和均匀性,被广泛应用于数学、建筑、工程和游戏等
领域。
高考立体几何模型
![高考立体几何模型](https://img.taocdn.com/s3/m/a6be342c7e21af45b207a838.png)
高考常考立体几何模型模型一:阳马一、选择题1.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A. √6πB. 8√6π3C. 8√6πD. 24π【答案】A【解析】解:如图所示,该几何体为四棱锥P−ABCD,底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB=√1+1+4=√6.∴该阳马的外接球的体积:4π3×(√62)3=√6π.2.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为()A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.3.《九章算术》中,将底面是长方形且有一条侧棱与底面垂直的四棱锥称为阳马.在阳马P−ABCD中,PC为阳马中最长的棱,AB=1,AD=2,PC=3,若在阳马P−ABCD的外接球内部随机取一点M,则M位于阳马内的概率为()A. 127πB. 427πC. 827πD. 49π【答案】C【解析】根据题意,PC的长等于其外接球的直径,∵PC=√PA2+AB2+AD2,∴3=√PA2+1+4,∴PA=2,又PA垂直平面ABCD,∴V P−ABCD=13×1×2×2=43,,,4.刘徽《九章算术⋅商功》中将底面为长方形,两个三角面与底面垂直的四棱锥称为“阳马”,.某“阳马”的三视图如图所示,则其外接球的体积为()正视图侧视图俯视图A. √3πB. 3πC. √3π2D. 4π【答案】C【解析】解:由题意可知阳马为四棱锥,且四棱锥的底面为长方体的一个底面,四棱锥的高为长方体的一棱长,且阳马的外接球也是长方体的外接球;由三视图可知四棱锥的底面是边长为1的正方形,四棱锥的高为1,∴长方体的一个顶点处的三条棱长分别为1,1,1,∴长方体的对角线为√3,∴外接球的半径为√32,∴外接球的体积为V=4π3⋅(√32)3=√32π.5.《九章算术》中,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”.已知某“阳马”的三视图如图所示,其体积为12,则该“阳马”的侧视图中的x=()A. 1B. 2C. 3D. 4【答案】C【解析】解:根据几何体的三视图可知,该几何体是底面长为4,宽为x的矩形,高为3的四棱锥,∵几何体的体积V=13×4×3x=12,解得x=3,6.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A. √6πB. 8√6π3C. 8√6πD. 24π【答案】A【解析】解:如图所示,该几何体为四棱锥P−ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB=√1+1+4=√6.∴该阳马的外接球的体积:4π3×(√62)3=√6π.7.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖孺.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.二、填空题8.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱ABC−A1B1C1,其中AC⊥BC,若AA1=AB=2,当“阳马”即四棱锥B−A1ACC1体积最大时,“堑堵”即三棱柱ABC−A1B1C1外接球的体积为________.【答案】8√23π【解析】解:设AC=b,BC=a,则a2+b2=AB2=4,所以四棱锥B−A1ACC1=13×BC×AC×AA1=23ab≤2 3×a2+b22=43,当且仅当a=b=√2时取等,此时三棱柱ABC−A1B1C1外接球的球心为A1B的中点,所以外接球的半径R=A1B2=√AA12+AB22=√4+42=√2,所以三棱柱ABC−A1B1C1外接球的体积为43×πR3=43π×2√2=8√23π.故答案为:8√23π.9.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,PA⊥平面ABCD,PA=4,AB=√3,AD=1,则该“阳马”外接球的表面积为________.【答案】【解析】解:如图:因为平面ABCD,PA⊂平面PAD,PA⊂平面PAB,所以平面PAD⊥平面ABCD,交于AD,平面PAB⊥平面ABCD,交于AB,而ABCD是矩形,因此DC⊥平面PAD,BC⊥平面PAB.而PD⊂平面PAD,PB⊂平面PAB,因此DC⊥PD,BC⊥PB.连接AC,因为平面ABCD,AC⊂平面ABCD,所以,因此该“阳马”外接球是以PC为直径的球.又因为PA=4,AB=√3,AD=1,所以PC=√PA2+AB2+AD2=2√5,即外接球的半径为√5,因此该“阳马”外接球的表面积为.故答案为.10.《九章算术》中把底面为直角三角形,且侧棱垂直于底面的三棱柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.现有如图所示的“堑堵”ABC−A1B1C1,其中AC⊥BC,若AA1=1,“堑堵”即三棱柱ABC−A1B1C1π,则“阳马”即四棱锥B−A1ACC1体积的最大值为的外接球的体积为√23_________.【答案】16【解析】解:,设AC=x,则BC=√1−x2,时,取等号.,当且仅当x=√22故四棱锥B−A1ACC1体积的最大值为1.611.我国古代数学名著《九章算术⋅商功》中阐述:“斜解立方,得两壍堵.斜解壍堵,其为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则对该几何体描述:①四个侧面都是直角三角形;②最长的侧棱长为2√6;③四个侧面中有三个侧面是全等的直角三角形;④外接球的表面积为24π.其中正确的为______________【答案】①②④【解析】解:由题目中的三视图可还原几何体如下:下底面为4宽2的矩形,ED⊥平面ABCD,ED=2,∴①四个侧面都是直角三角形,正确;②最长的侧棱长为EB=2√6,正确;③四个侧面不存在全等的直角三角形,故错误;④外接球的球心为EB中点,半径r=√6,表面积为24π,正确.故正确的描述有①②④,模型二:鳖臑一、选择题12. 在我国古代数学名著《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在鳖臑A −BCD 中,AB ⊥平面BCD ,BD ⊥CD ,且AB =BD =CD ,M 为AD 的中点,则二面角M −BC −D 的正弦值为A. √22B. √33C. √63D. 1【答案】C【解析】 解:由题意可以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BDC 的垂线为z 轴(与AB 平行),建立空间直角坐标系如图所示,设AB =BC =CD =1,则A(0,1,1),B(0,1,0),C(0,0,0),D(1,0,0),M(12,12,12), 则BM ⃗⃗⃗⃗⃗⃗ =(12,−12,12),CD ⃗⃗⃗⃗⃗ =(1,0,0), 设异面直线BM 与CD 夹角为θ,则cosθ=|BM⃗⃗⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ ||BM⃗⃗⃗⃗⃗⃗⃗ |⋅|CD ⃗⃗⃗⃗⃗ |=12√34=√33.∴二面角M −BC −D 的正弦值为√1−cos2θ=(√33)=√63.13. 在我国古代数学名著《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在鳖臑A—BCD 中,AB ⊥平面BCD ,BD ⊥CD ,且AB =BD =CD ,M 为AD 的中点,则异面直线BM 与CD 所成角的正弦值为A. 0B. √33C. √63D. 1【答案】D【解析】 解:设AB =BD =CD =1,因为BD ⊥CD ,AB ⊥平面BCD ,所以CD ⊥AB ,AB ∩BD =B ,所以CD ⊥面ABD ,CD ⊥AM ,则异面直线BM 与CD 所成角为90° 异面直线BM 与CD 所成角的正弦值为1,14.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.15.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC 与BD所成角的余弦值为().A. 12B. -12C. √32D. -√32【答案】A【解析】解:如图所示,分别取AB,AD,BC,BD的中点E,F,G,O,则EF//BD,EG//AC,FO⊥OG,∴∠FEG为异面直线AC与BD所成角.设AB=2a,则EG=EF=√2a,FG=√a2+a2=√2a,∴∠FEG=60°,∴异面直线AC与BD所成角的余弦值为12,16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,已知鳖臑P−ABC的三视图如图所示(单位:cm),则该几何体的外接球的表面积为(单位:cm2)()A. 41πB. 16πC. 25πD. 64π【答案】A【解析】解:由题意将三视图还原几何体,看作是长方体(长4,宽3,高4)截得的三棱锥, 所以球O 的直径,2R =√42+32+42=√41, ∴球O 的半径为√412,∴球O 的表面积为4π⋅(√412)2=41π.17. 刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P −ABCD 中,PA ⊥平面ABCD ,BC =2PA =4,AB =3,E 为PD 中点.则异面直线AE 与BD 所成角的余弦值为( )A. 35B. 25C. 6√525D. 8√525【答案】D【解析】 解:如图,取PB 中点为F ,连接AF ,EF ,∵E 为PD 中点,∴FE//BD ,∴∠AEF(或补角)为异面直线AE 与BD 所成的角.由已知,得AE =12PD =√5,AF =12PB =√132,EF =12BD =52,cos ∠AEF =AE 2+EF 2−AF 22AE⋅EF=8√525. 即AE 与BD 所成角的余弦值为8√525.18. 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P -ABC为鳖臑,PA ⊥平面ABC ,PA=3,AB=4,AC=5,三棱锥P -ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A. 17π B. 25π C. 34π D. 50π 【答案】C【解析】解:由题意,PC为球O的直径,∵PC=√PA2+AC2=√9+25=√34,∴球O的半径R=PC2=√342,∴球O的表面积S=4πR2=4π×(√342)2=34π.19.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵ABC−A1B1C1中,已知AB=3,BC=4,AC=5,若阳马C1−ABB1A1的外接球的表面积等于50π,则鳖臑C1−ABC的所有棱中,最长的棱的棱长为A. 5B. √41C. 5√2D. 8【答案】C【解析】解:由题意知,直三棱柱ABC−A1B1C1中,AA1=AC=5,AB=3,BC=4,四棱锥C1−ABB1A1的外接球即为直三棱柱的外接球,以AB、BC、BB1为共顶点,画出长方体,如图所示,则长方体的最长的棱的棱长为AC1,即外接球的直径,∴外接球的表面积是.∴R=5√2 2∴鳖臑C1−ABC的所有棱中,最长的棱的棱长为AC1=2R=5√2.20.中国古代第一部数学名著《九章算术》中,将一般多面体分为阳马、鳖臑、堑堵三种基本立体图形,其中将四个面都为直角三角形的三棱锥称之为鳖,若三棱锥Q−ABC为鳖臑,QA⊥平面ABC,AB⊥BC,QA=BC=3,AC=5,则三棱锥Q−ABC 外接球的表面积为()A. 16πB. 20πC. 30πD. 34π【答案】D【解析】解:如图,补全为长方体,则2R=√32+42+32=√34,∴R=√342,故外接球得表面积为4πR2=34π,由题意画出图形,补全为长方体,求出长方体的对角线长,可得三棱锥Q−ABC外接球的半径,则答案可求.本题考查多面体外接球的表面积的求法,考查数形结合的解题思想方法,是基础题.二、填空题(本大题共4小题,共20.0分)21.在我国古代的数学专著《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),已知鳖臑P−ABC中,PA⊥平面ABC,AB⊥BC,若PA=AB=2√2,BC=2,E,F分别是PB,PC的中点,则三棱锥P−AEF的外接球的表面积为________.【答案】9π【解析】解:PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,又因为AB⊥BC,PA∩AB=A,PA,AB⊂面PAB,所以BC⊥面PAB,∵AE⊂面PAB,∴BC⊥AE,∵PA=AB,E为PB的中点,所以AE⊥PB,PB∩BC=B,PB,BC⊂面PBC,所以AE⊥面PBC,∵EF⊂面PBC,所以AE⊥EF,AE⊥PE,又EF//BC,所以EF⊥PE,则EF,PE,AE两两垂直,EF=12BC=1,PE=AE=2,所以三棱锥P−AEF的外接球半径为√1+4+42=32,故球的表面积为4×(94)π=9π,22.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”这里所谓的“鳖臑(biēnào)”,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥.已知三棱锥A−BCD是一个“鳖臑”,AB⊥平面BCD,AC⊥CD,且AB=BC=CD=2,则三棱锥A−BCD的外接球的表面积为________.【答案】12π【解析】解:∵三棱锥A−BCD是一个“鳖臑”,AB⊥平面BCD,AC⊥CD,且AB=BC=CD=2,∴三棱锥A−BCD的外接球的半径:R=AD2=√AB2+BC2+CD22=√4+4+42=√3∴三棱锥A−BCD的外接球的表面积为:S=4πR2=12π.故答案为12π.23.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P−ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为_______ 。
初中几何常考模型汇总(完整版)
![初中几何常考模型汇总(完整版)](https://img.taocdn.com/s3/m/0ac7a6b11ed9ad51f11df2cc.png)
第Ol讲8字模型与飞镖模型模型1角的“8”字模型如图所示,AB、CD相交于点O,连接AD、BC O 结论:ZA+ZD=ZB+ZCo模型分析8字模型往往在几何综合题目中推导角度时用到O模型实例观察下列图形,计算角度:(1)如图①,ZA+ZB+ZC+ZD+ZE= ________________ :(2)如图②,ZA+ZB+ZC+ZD+ZE+ZF= _________________热搜梢练1.(1)如图①,求ZCAD+ZB+ZC+ZD+ZE= _________________ :(2)如图②,求Z C A D+ Z B + Z AC E+ Z D+ Z E= ___2. ________________________________________________ 如图,求ZA+ZB+ZC+ZD+ZE+ZF+ZG+ZH= _______________________________图②模型2角的飞镖模型如图所示,有结论:ZD=ZA+ZB+ZCo模型分析飞镖模型往往在几何综合题目中推导角度时用到a模型实例如图,在四边形ABCD中,AM、CM分别平分ZDAB和ZDCB, AM与CM交于W 探究ZAMC与ZB、ZD间的数量关系。
热搜精练1._________________________________________如图,ΛRZA+ZB+ZC+ZD+ZE+ZF=2.__________________________________ 如图,求ZA+ZB+ZC+ZD=C F模型3边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC O 结论:AC+BD>AD+BCoD模型实例如图,四边形ABCD的对角线AC、BD相交于点0。
求证:(1) AB+BC+CD+AD>AC+BD:(2) AB+BC+CD+AD<2AC+2BD.模型4边的飞镖模型如图所示有结论:AB+AC>BD+CD.模型实例如图,点O为三角形内部一点。
史上最全初中几何模型汇总
![史上最全初中几何模型汇总](https://img.taocdn.com/s3/m/685823f6dd36a32d727581ba.png)
史上最全初中几何模型全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型角分线模型说明:以角平分线为轴在角两边逬行截长补短或者作边的垂线■形成对称全等。
两边进行边或者角的等呈代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45= 30。
、22.5\ 15。
及有一个角是30。
直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过"8"字模型可以证明。
模型变形。
旺唳s z t如H IP当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明「两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明列外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
中点模型连中点鮭中位贱fStL血肉造中碎梅谕三歸一几何最值模型对称最值(两点间线段最短)轴对称模型对称最值(点到直线垂线段最短)说明:通过对称逬行等呈代换,转换成两点间距离及点到直线距离。
数学48个几何模型总结
![数学48个几何模型总结](https://img.taocdn.com/s3/m/55945746bfd5b9f3f90f76c66137ee06eff94e85.png)
数学48个几何模型总结摘要数学中的几何模型是研究几何形状和空间关系的工具,具有广泛的应用。
本文总结了48个常见的几何模型,包括点、线、面和立体等,介绍了它们的定义、特点、性质和应用领域等内容。
1. 点(Point)点是几何学中最基本的概念,用于表示位置,没有大小和形状。
点常用大写字母标记,如A、B、C等。
2. 线(Line)线由无限多个点构成,是一维的,没有宽度和厚度。
线可用一条直线符号表示,如AB。
3. 线段(Segment)线段是由两个点确定的线段部分,有起点和终点。
线段通常用两个点的大写字母标记,如AB。
4. 射线(Ray)射线由一个起点和一个方向确定,可以无限延伸。
射线通常用一个点和一个方向符号表示,如AB→。
5. 直线(Angle)角是由两条相交的线段组成,分为内角和外角。
角常用顶点的大写字母来标记,如∠ABC。
6. 三角形(Triangle)三角形是由三条线段组成的图形,有三个顶点和三条边。
三角形根据边长和角度可以分为等边三角形、等腰三角形、直角三角形等不同类型。
7. 直角三角形(Right Triangle)直角三角形是其中一个角为直角的三角形。
直角三角形的斜边和直角边之间存在特殊的关系,如勾股定理。
8. 矩形(Rectangle)矩形是由四条边组成的四边形,有四个顶点和四个直角。
矩形的对角线相等且垂直,可以用长和宽来定义。
9. 正方形(Square)正方形是一种特殊的矩形,具有四个相等的边和四个直角。
10. 平行四边形(Parallelogram)平行四边形是一个有两对平行边的四边形,对角线不相交,相邻两边相等。
11. 梯形(Trapezoid)梯形是一个有一对平行边的四边形。
梯形的两条非平行边叫做腰,两个腰之间的距离叫做高。
12. 菱形(Rhombus)菱形是具有四条相等边的四边形,对角线相交于垂直的角。
13. 正多边形(Regular Polygon)正多边形是指边长和内角都相等的多边形,如正三角形、正四边形等。
立体几何解题模型
![立体几何解题模型](https://img.taocdn.com/s3/m/1a7a4f380912a21614792921.png)
增强模型意识,口算解题不再是梦想新课标教材对高中立体几何的教学分成了两套思路。
一套是传统思路,以欧式几何中的公理、定理及推论作为一条主线,灵活添加辅助线,数形结合求得题解;另一套则是借助空间直角坐标系,将立体图形坐标化,从而将几何问题完全转化成代数问题,再通过方程来解决问题。
在此,我愿意另辟蹊径,用模型的意识来看待立体几何问题,利用补形法,力争将高考立体几何大题变为口算题!为了实现这一目标,我们先来熟悉一下几个模型:1、 长方体的“一角”模型在三棱锥P A B C -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===.①三棱锥P A B C-的高h =证明:设直线AH 交BC 于D 点,由于H 点一定在△ABC 内部,所以D 点一定在BC 上,连结PD. 在△PAD 中:PH ==②,,P BC A P CA B P AB C ------二面角的平面角分别是:arctanarctanarctanbcacab.例1、四棱锥P A B C D -中,底面A B C D 是边长为的正方形,,1PA ABCD PA ⊥=面,求A D P B --的大小.分析:考虑三棱锥A PD B -,它就是模型1-长方体的“一个角”.本来我们可以利用结论②解:设二面角A D P B --的大小为α.CAADCB则:tan2ABPA ADα⋅===⋅,故arctan2α=我们看到象例1这样本来是高考中大题目,可是抓到了长方体“一角”,做起来就变得很轻松了.例2、直二面角D AB E--中,ABCD是边长为2的正方形(见图)AE=BE,求B点到面ACE的距离.分析:这是一道高考中的大题.因为D-AB-E是直二面角,BC⊥面ABE,当然面ABCD⊥面ABE,又因为ABCD是正方形,BC要垂直于面ABE.在ABE中,AE就是面内的一条线,而BE就是BF在该面内的射影,而AE是垂直于BF,这是因为BF垂直面ACE的,所以AE是垂直于面ACE的.所以AE垂直于BF,又有AE=BE,所以△ABE是等腰直角三角形.这一小段是熟悉几何环境的过程.图形中特殊的位置关系约束△ABE的形状.补充图形,在正方体1111ABC D A B C D-看问题.在这里看直二面角的局部图形.问题就转化为:求D到面ACE的距离,就是求O点到面AB1C的距离.因为O,B到面ACB1的距离相等,所以只须求B到面ACB1的距离即可,考虑三棱锥B-ACB1,它是模型2.312,3BC BA BB BF===∴==所以,D到面ACE的距离为3.点评:比起高考评分标准给的答案那要简单得多了.这儿要注意:一个是把局部的直二面角根据它的AEB是以E为直角的等腰直角三角形和ABCD是正方形的图形特征,补足正方体,这就是一种扩大的几何环境,而正方体也就是长方体模型,另一方面又抓到这正方体的一个角B-ACB1,那么这个角的模型更高,DB1A1CBED CBA这就使我们在运算过程中得以简化.所以说一道看起来很复杂的几何题,用典型几何模型做就显得轻松. 例3 底面为ABCD 的长方体被截面AEC 1F 所截,AB =4,BC =2,CC 1=3,BE =1(见图),求C 点到面AEC 1F 的距离.分析:这也是一道高考题,在评分标准中给出了很多的辅助线.现在我们用典型的空间模型,再对这道题解解看.解:延长C 1E 交CB 延长线于M ,延长CD ,交C 1F 延长线于N ,C -C 1NM 是模型2.因为13,,321C C C M C M C M C N B C B E C M ===-- 同理13,,1242C C C N C N C N C N C DD FC N ===--.所以,C 到面C 1MN331211⨯⨯=.2、公式12cos cos cos θθθ=⋅的几何模型PB PA ααα⊥∈平面,是的斜线,B ,AB 是PB 在α内的射影,BC 是α内一条直线12,,,PBC PBA ABC θθθ∠=∠=∠=则有12cos cos cos θθθ=⋅.大家要注意搞清楚那个是θ,那个是1θ,那个是2θ,实际上只要搞清那个是θ,另外两个就是12,θθ.特别的,α内的直线不一定过B ,如上面的右图所示:C CDθ2θ1θαPCBAθ2θ1θαPCBA在直线AB 上有一点D ,过D 在α画一直线DC ,则θ是直线PB 与DC 所成的角,12,.PBA ADC θθ∠=∠=则12cos cos cos θθθ=⋅那么这样的有可能利用这样的模型计算出异面直线成角.PB 和DC 的成角. 例4 EA ⊥面ABCD ,ABCD是边长为的正方形,EA =1,在AC 上是否存在P 点,使PE 、BC 成60 角.分析:12EPA APM EPM θθθ∠=∠=∠=cos cos cos EPA APM EPM∠⋅∠=∠即1,22=所以112A P A C==.可见AC 中点即是要找的点P例5 长方体1111ABC D A B C D -中,AB =2,AA 1=1,BD 与面AA 1B 1B 成30°角.AE ⊥BD 于E ,F 为A 1B 1的中点,求AE ,BF 成角.解:12cos cos cos cos 45cos(9030)θθθ=⋅=-=1224⨯=所以AE ,BF成角为arccos4.这样的一个题目,最重要的是位.在高考评分标准中,都要有很长的解题过程中.这些结论在高考中,教材中有的可以直接用,有的可以先用,然后把结论来源说明.这样可以减少思考的时间与计算量.这就相当于电脑中的集成块一样,减少空间.3、双垂四面体模型如图3,四面体A -BCD ,AB ⊥面BCD ,CD ⊥面BCA ,这种四面体构成许多简单多面体的基本图形,不妨称为双垂四面体,主要性质:DCBB 1CB①cos cos cos A D C A D B B D C ∠=∠⋅∠;②以BD 、BC 和AC 为棱的二面角都是直二面角,以AB 、BC 为棱的二面角的平面角,分别是D B C ∠与A C B ∠③以AD 为棱的二面角为θ,则cos A B C D A C B Dθ⋅=⋅;④对棱AB 与CD 垂直,且BC 是它们的公垂线; ⑤对棱AD 与BC 为异面直线,它们夹角为α,则cos B C A Dα=例3 如图4,ABCD 是上下底长分别为2和6,高为的等腰梯形,将它沿对称轴OO 1拆成直二面角,如图5.(1)证明:AC ⊥BO 1;(2)求二面角O -AC -O 1的大小. 解:(1)略(2)∵平面AOO 1⊥平面OO 1C ,又∵AO ⊥O 1C ,∴AO 平面OO 1C ,同理CO 1⊥平面AOO 1,四面体AOO 1C 是一个双垂四面体,若二面角O -AC -O 1的平面角为θ,则11c o s A O C O O C A O θ⋅=⋅,根据条件,从图5中可知AO =3,OC =2,1AO =CO 1=1,即可自得cos 4θ=.例4 如图6,直二面角D -AB -E 中,四边形ABCD 是边长为2的正方形,AE =EB ,F 为CE 上的点,且BF ⊥平面ACE.(1)求证:AE ⊥平面BCE ; (2)求二面角B -AC -E 的大小; (3)求点D 到平面ACE 的距离.分析:当(1)证明后,我们很容易识别四面体A -EBC 是一个双垂四面体,若二面角B -AC -E 的平面角为θ,则cos C B A E A B C Eθ⋅=⋅,由条件可以计算出AB =CB=2,AE=,C E =,图3DBAO图4DCBAC图6DCBA∴arccos3θ=.值得注意的是此题的(3)并不需要用等积变换,根据平面斜线上两点到平面的距离等于它们的斜线长的比,∴点D到平面ACE的距离等于B点到平面ACE的距离,也就是线段BF的长为33E B BE C⋅==利用典型立体几何模型解高考题1.(本小题满分13分)如图,已知三棱锥O A B C-的侧棱OA OB OC,,两两垂直,且1O A=,2O B O C==,E是O C的中点.(1)求O点到面ABC的距离;(2)求异面直线B E与A C所成的角;(3)求二面角E A B C--的大小.解:显然三棱锥O A B E-和O A B C-都是长方体一脚模型,(1)设O点到面ABC的距离为h,则由结论1—①,3h==(2)设B E与A C所成的角为α,则由模型二cos cos cosO E B A C Oα=∠⋅∠,由勾股定理AB AC BE===2cos AC O∠=,1cos O EB∠=故2cos5α=,2arccos5α=(3)设二面角E A B O--、C A B O--、E A B C--的大小分别为,,θβγ,则θβγ=-,由结论1—②,tanO CO A O Bβ⋅==⋅,tan2O EO A O Bγ==⋅所以tan tantan1tan tan7βγθβγ-==+⋅2、(本小题满分13分)AOECB如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC. 已知,21,2,2===AE CD PD 求二面角E —PC —D 的大小.解:过E 点作EG CD G ⊥于,G 过点作FG CD G EF ⊥于,连结,则显然三棱锥 G C E F-是长方体一角模型,设二面角E —PC —D 的大小为α,则由结论1—②可知:tan C G FGα=⋅,下面就只剩下计算问题了因为PD ⊥底面,故PD ⊥DE ,又因EC ⊥PE ,且DE 是PE 在面ABCD 内的射影,故由三垂直线定理的逆定理知:EC ⊥DE ,设DE=x ,因为△DAE ∽△CED ,故1,1,2±===x xx CD AEx 即(负根舍去).从而DE=1,故有勾股定理2AD EG ==32C G CD D G =-=,又因为C G F G C DD P=,所以4C GD P FG C D⋅==,故tan 1EG C G FGα⋅==⋅,二面角E —PC —D 的大小为.4π3、(本小题满分13分)如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB=2,BB 1=2,BC=1,∠BCC 1=3π,求:(Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值. 解(Ⅰ)显然四面体1A BEB -是双垂四面体模型 由结论3—④,BE 是异面直线AB 与EB 1的公垂线在平行四边形BCC 1B 1中,设EB=x ,则EB 1=24x -,PCBEA!B !A !E作BD ⊥CC 1,交CC 1于D ,则BD=BC·.233sin=π在△BEB 1中,由面积关系得0)3)(1(,23221421222=--⋅⋅=-x x x x 即.3,1±=±=x x 解之得(负根舍去),33cos21,,322=⋅-+∆=πCE CE BCE x 中在时当解之得CE=2,故此时E 与C 1重合,由题意舍去3=x . 因此x =1,即异面直线AB 与EB 1的距离为1. (Ⅱ)先求二面角1A EB B --由结论3—②,二面角1A EB B --的大小为AEB ∠,由于AB=2,1BE =故tan AEB ∠=11A B EB -是直二面角,故二面角A —EB 1—A 1的平面角的正切值为2.巧妙利用典型的立体几何模型可以很轻松地解决一些复杂的高考题,在平时复习是我们应该不断总结,总结有哪些典型的立体几何模型可以用于解题,这样才能提高解题能力。