例谈二次函数综合题的解题策略
二次函数知识点总结和题型总结(1)
二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 . 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小.2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4。
()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a )1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限 D 。
第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。
考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略
考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。
2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。
3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。
二次函数的竞赛题型及其解题策略
二次函数的竞赛题型及其解题策略二次函数是初中数学的重要内容,由于它题材丰富,又易成为多种数学思想方法的载体,因此,深受各级各类竞赛命题者的亲睐,成为近几年各地竞赛的热点问题之一.本文拟对二次函数的竞赛题型及其解题策略作粗略概括,仅供大家参考.一、二次函数的系数a 、b 、c 及相关代数式的取值问题抛物线y =ax2+b x+c 中二次项系数a 描述抛物线的开口,a >0向上,a <0向下;常数项c描述抛物线与y 轴的交点(0,c),c >0时交点处x 轴上方,c <0时交点处x 轴的下方,c =0时时处原点;由对称轴公式x =-ab2知b 与a 一起来描述抛物线的对称轴;b 2-4a c大于0,等于0或小于0,决定抛物线和x轴交点的个数,等等.上面性质反之亦成立.我们还可以通过考察如x =±1时y的值的情况,来确定a ±b +c 等的符号问题.例1 抛物线y=ax 2+bx+c 的顶点为(4,-11),且与x 轴的两个交点的横坐标为一正一负.则a 、b 、c 中为正数的( )A 、只有a ﻩﻩB 、只有bC 、只有c ﻩD、有a和b解:由顶点为(4,-11),抛物线交x轴于两点,知a>0.设抛物线与x轴的两个交点的横坐标分别为x1,x 2,即x 1、x 2为方程ax 2+b x+c =0的两个根,由题设x1x 2<0知a c <0,所以c <0,又对称轴为x=4知-ab2>0,故b<0.故选(A). 二、二次函数与整数问题二次函数与整数问题的联姻主要表现在系数a、b 、c 为整数、整点以及某范围内的参数的整数值等.解题时往往要用到一些整数的分析方法.例2 已知二次函数f (x )=a x2+b x+c的系数a 、b 、c 都是整数,并且f (19)=f(99)=1999,|c |<1000,则c = .解:由已知f (x)=ax 2+bx+c ,且f(19)=f (99)=1999,因此可设f(x)=a (x -19)(x-99)+1999,所以a x2+bx+c =a (x -19)(x -99)+1999=ax 2-(19+99)x +19×99a +1999,故c =1999+1881a.因为|c|<1000,a 是整数,a ≠0,经检验,只有a =-1满足,此时c =1999-1881=118.例3 已知a,b,c 是正整数,且抛物线y =ax 2+bx+c 与x 轴有两个不同的交点A,B,若A 、B 到原点的距离都小于1,求a+b+c 的最小值.解:设A 、B 的坐标分别为A(x 1,0),B(x 2,0),且x1<x 2,则x 1,x 2是方程ax 2+bx+c=0的两个根.∴⎪⎪⎩⎪⎪⎨⎧>=<-=+,0,02121a c x x a b x x ∴x 1<0,x 2<0 又由题设可知△=b 2-4ac >0,∴b >2ac ① ∵|OA|=|x 1|<1,|OB|=|x 2|<1,即-1<x 1,x 2<0, ∴ac=x 1x 2<1,∴c <a ② ∵抛物线y =ax 2+bx+c 开口向上,且当x=-1时y >0, ∴a (-1)2+b (-1)+c >0,即a +c>b. ∵b ,a +c都是整数,∴a+c ≥b +1 ③ 由①,③得a+c>2ac +1,∴(c a -)2>1,又由②知,c a ->1,c a >+1,即a>(c +1)2≥(1+1)2=4∴a≥5,又b >2ac ≥215⨯>4,∴b≥5 取a =5,b =5,c =1时,抛物线y =5x 2+5x +1满足题意. 故a+b +c 的最小值为5+5+1=11. 三、二次函数的图象与面积问题求抛物线的顶点、两坐标轴的交点以及抛物线与其它图象的交点等点所构成的面积,关键是用含系数a 、b 、c 的代数式表示出点的坐标或线段长,使面积问题与系数a 、b 、c 建立联系.例4 如果y =x2-(k-1)x -k -1与x轴的交点为A,B,顶点为C ,那么△AB C的面积的最小值是( )A、1 B 、2 C 、3 D 、4解:由于△=(k -1)2+4(k +1)=(k +1)2+4>0,所以对于任意实数k ,抛物线与x 轴总有两个交点,设两交点的横坐标分别为x 1,x 2,则:|AB|=524)()(221221221++=-+=-k k x x x x x x又抛物线的顶点c 坐标是(452,212++--k k k ), 因此S△AB C=52212++k k ·322)52(81452++=++-k k k k 因为k 2+2k+5=(k +1)2+4≥4,当k =-1时等于成立, 所以,S △ABC ≥14813=,故选A. 四、二次函数的最值问题定义域是闭区间时,二次函数存在两个最值(最大值和最小值).如果顶点横坐标在区间内,则在顶点处与距顶点较远的端点处各取一个最值;如果顶点横坐标不在区间内,则在区间两端点处各取一个最值.定义域是开区间时,二次函数只有其顶点横坐标在区间内的才在顶点处取得一个最值,否则不存在最值.例5 已知二次函数y=x 2-x -2及实数a>-2.(1)函数在-2<x ≤a 的最小值; (2)函数在a ≤x ≤a +2的最小值. 解:函数y =x 2-x -2的图象如图1所示.(1)若-2<a <21,当x =a 时,y最小值=a 2-a -2若a ≥21,当x =21时,y 最小值=-49.(2)若-2<a且a+2<21,即-2<a <-23,当x =a +2时,y最小值=(a +2)2-(a +2)-2=a 2+3a ,若a <21≤a +2,即-23≤a<21,当x=21时,y 最小值=-49.若a ≥21,当x =a 时,y最小值=a 2-a -2.例6 当|x+1|≤6时,函数y =x |x |-2x +1的最大值是 . 解:由|x +1|≤6,得-7≤x ≤5,当0≤x ≤5时,y =x 2-2x +1=(x -1)2,此时y 最大值=(5-1)2=16.当-7≤x <0,y =-x 2-2x +1=2-(x +1)2,此时y 最大值=2. 因此,当-7≤x≤5时,y 的最大值是-16.说明:对于含有绝对值的二次函数,通常是先分区间讨论,去掉绝对值符号,求出各区间的最值,然后通过比较得出整个区间函数的最值.五、二次函数及其图像的应用.有些方程及不等式等有关问题,直接求解十分困难,若能构造二次函数关系,借助函数图像使之形象化,直观化,以形助数,会简化求解过程.例7 当a 取遍0到5的所有实数时,满足3b=a (3a-8)的整数b 有几个?解:由3b =a (3a-8)有b =a 2-38a ,即b =(a -916)342-,因为,当a=0时,b =0时;当a=5时,b =1132利用二次函数图象可知-916≤b ≤1132所以b可取到的整数值为-1,0,1,…,11,共有13个. 例8 已知a <0,b ≤0,c >0,且ac b 42-=b -2a c,求b 2-4a c的最小值. 解:令y =ax 2+bx+c,由于a<0,b≤0,c >0,则△=b 2-4ac >0,所以,此二次函数的图像是如图2所示的一条开口向下的抛物线,且与x 轴有两个不同的交点A(x 1,0),B(x 2,0).因为x1x 2=a c <0,不妨设x 1<x 2,则x1<0<x 2,对称轴x =-ab 2≤0,于是|x 1|=c a acb b a ac b b =--=-+-242422, 故ab ac 442-≥c =a ac b b 242--≥-a ac b 242-∴b 2-4ac ≥4,当a =-1,b =0,c =1时,等号成立. 因此,b 2-4ac的最小值为4. 练习题:1、已知二次函数y=a x2+bx+c 图像如图3所示,并设M=|a+b+c |-|a -b +c|+|2a+b |-|2a -b |,则( ) A、M >0 B 、M =0C 、M <0D 、不能确定M 为正、为负或为0 (答案:C)2、已知二次函数y=ax2+bx+c (其中a是正整数)的图象经过点A(-1,4)与点B(2,1),且与x 轴有两个不同的示点,则b+c 的最大值为 .(答案:-4)3、如图4,已知直线y =-2x+3与抛物线y=x 2相交于A、B两点,O 为坐标原点,那么△OAB的面积等于 .(答案:6)4、设m为整数,且方程3x 2+mx -2=0的两根都大于-59而小于73,则m= .图3 图4(提示:设y =3x2+m x-2,由题设可知x =-59时y>0,且x =73时y >0.答案:4)5、已知函数y =(a +2)x2-2(a 2-1)x+1,其中自变量x 为正整数,a 也是正整数,求x 为何值时,函数值最小.(答案:x =⎪⎪⎩⎪⎪⎨⎧>-=<<-=,4,1,4,32,41,1,1,1时当时当或时当时当a a a a a a (其中a 为正整数),函数值最小.6、已知关于x 的方程x 2-(2m -3)x +m -4=0的二根为α1,α2,且满足-3<α1<-2,α2>0,求m 的取值范围.(答案:5674<<m ) 7、已知关于正整数n的二次式y =n 2+an (a为实数),若当且仅当n =5时,y 有最小值,则实数a 的取值范围是 .(答案:-11<a<-9)。
二次函数中“含参恒成立”问题求解策略
二次函数中“含参恒成立”问题求解策略二次函数是一个具有形式为$f(x) = ax^2 + bx + c$的函数,其中$a$、$b$、$c$是常数,且$a\neq 0$。
在解题过程中,当给定一定的条件,要求找到使得二次函数“含参恒成立”的参数值,需要采取以下步骤。
第一步:理解含参恒成立的概念含参恒成立是指对于二次函数中的参数值,存在一个或一组满足特定条件的解使得方程恒成立。
通常来说,这些参数值可以是实数、整数或者满足特定要求的整数。
第二步:分析题目条件仔细阅读题目,分析所给条件以及问题的要求。
通常来说,问题中会涉及到函数图像的性质、方程的解的个数、方程的根的取值范围等。
第三步:确定参数的取值范围根据题目中给出的条件,确定参数的取值范围。
这方面通常包括参数的正负性质以及其他限制条件。
第四步:构建二次方程根据题目要求以及参数的取值范围,构建二次方程。
一般来说,可以通过给定条件构建出包含参数的二次方程。
第五步:解二次方程解二次方程的方法有多种,可以通过求根公式或者配方法解方程。
第六步:验证解的合法性将求得的解代入构建的二次方程中,验证是否满足题目给定的条件。
如果满足条件,则该参数取值使得二次函数“含参恒成立”。
第七步:总结答案将满足条件的参数值以及求得的二次方程的解进行总结,得出最终答案。
如果存在多个满足条件的参数值,需要将所有解都列出。
在实际解题过程中,每一步都要仔细思考、分析,并得出合理的解答。
需要注意的是,由于题目条件的不同,求解的策略也会有所差异。
因此,根据具体情况灵活运用解题策略是非常重要的。
二次函数背景下存在性问题题型分析与解题策略(专题研究)
二次函数背景下存在性问题题型分析与解题策略初2019级数学组 苏 琴一.背景分析二次函数是初中阶段学习的重要函数模型,同时也是高中阶段学习的基础。
2015-2018年重庆中考试题中存在性问题均作为压轴题的第(3)问出现,突出考察了二次函数的综合应用,对学生的数学素养要求很高。
二.题型结构重庆中考试题在2015-2018的解答题中,均考察二次函数的综合应用,在26题第(3)问中,常常以平移、旋转、翻折等全等变换为背景,探究由动点与某些定点构成特殊三角形或特殊四边形的存在性问题。
三. 基本模型及解题策略1. 三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、等腰三角形、全等三角形及相似三角形的存在性.常结合动点、函数与几何,分类讨论、画分类简图及建等式计算. 重点研究动点构成特殊(等腰、直角)三角形:(1)代数解法:找出动点所在函数表达式;设出动点坐标,用一个未知数表示;用所设参数表示出相关线段(利用两点间的距离公式);分3种情况得出方程求解;(等腰:线段相等;直角:勾股定理或两直线垂直121k k =- )。
注意检验所求结果是否符合题意!!附:两点间的距离公式:AB 2121y y k x x -=-直线斜率公式:(2)几何解法:直角三角形:构造相似三角形得出等式; 等腰三角形:画圆的方法找出所有点;难点拆解:①直角三角形关键是用好直角,可考虑:勾股定理逆定理、弦图模型、直线k 值乘积为-1;②等腰三角形可考虑直接表达线段长,利用两腰相等建等式,或借助三线合一找相似建等式;③全等三角形或相似三角形关键是研究目标三角形的边角关系,进而表达线段长,借助函数或几何特征建等式.④分类不仅要考虑图形存在性的分类,也要考虑点运动的分类.2.动点构成特殊四边形:一般情况下是三个定点与另一个在函数图像上或者坐标平面内的动点;复杂一些的是两定点两动点,然后求动点坐标。
一般解决方法:数形结合!将对应的集合图形的性质,转化成数量(点或线段)上的关系根据题目写出定点坐标;找到动点所在直线或者曲线;用一个参数表示动点坐标;结合特殊四边形的性质,得出四点坐标的等量关系并求出参数;检验。
浅谈二次函数的教学中如何突破重难点
浅谈二次函数的教学二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
二次函数和一次函数、反比例函数一样,都是高中阶段要学习的一般函数和非代数函数的基础。
二次函数的图像因为是曲线,关系式变化形式多,应用比较复杂。
我在二次函数的教学中,整体把握,重点突破,收到了较好的教学效果。
一、抓住重点组织教学(一) 通过对实际问题情境的分析确定二次函数的关系式,并体会二次函数的意义这里体现了数学与生活的关系。
教学中,应从教材中的“水滴激起波纹”、“圈养小兔”等实际问题入手,引导学生列出函数关系式。
然后,让学生观察、思考:所列的函数关系式有什么共同点?它们与一次函数、反比例函数有什么不同?从而引导出二次函数的概念,让学生认识二次函数的各部分名称。
如此,学生能够体会到二次函数来自生活,感受到二次函数也是描述一类现实问题中变量关系的数学模型,激发学习的积极性。
(二) 采用“描点法”画出二次函数的图像,从图像上认识二次函数的性质这是二次函数的教学重点。
一方面,学生要学会画出二次函数的图像;另一方面,要能从图像上认识二次函数的性质。
教学中,教师要扎实地让学生画出二次函数的图像(不能一带而过,就让学生去解决与图像有关的复杂题),即运用探索函数图像的方法——“描点法”,一步一步地列表、描点、连线,加深对二次函数图像形状的认识。
然后,引导学生从二次函数图像的形状、开口方向、对称性、顶点坐标、增减性等方面去理解二次函数的性质(学生一边看图像,一边说性质,很直观)。
要提醒的是,不仅要让学生画出二次函数的准确图像,还要会画二次函数的示意图像。
(三) 利用公式确定二次函数的顶点、开口方向和对称轴,解决简单的实际问题这里包括两点:一是从二次函数关系式上认识二次函数的性质,这是学生对二次函数性质的进一步认识;二是列二次函数的关系式解决问题,这是学生学习二次函数的落脚点所在。
二次函数综合题之解题策略
二次函数综合题之解题策略摘要:二次函数综合题难度大、综合性强、内涵丰富、涉及的知识面广,是初中数学中最重要、最核心、纵向和横向联系规模最大的内容之一.要解决好此类题目需要有扎实的基础知识,较强的分析、演算、理解能力,因此是近年来各地中考命题的重点和热点,引起人们的广泛关注.它主要以压轴题的形式出现,本文列举几例,探究二次函数综合题的解题策略.关键词:二次函数综合题解题策略二次函数综合题难度大、综合性强、内涵丰富、涉及的知识面广,是初中数学中最重要、最核心、纵向和横向联系规模最大的内容之一.要解决好此类题目需要有扎实的基础知识,较强的分析、演算、理解能力,因此是近年来各地中考命题的重点和热点,引起人们的关注.它主要以压轴题的形式出现.那么如何正确求解呢?下面从三个方面阐述其解题策略.一、利用数形结合思想求解策略利用二次函数图像求极值问题,是近几年各地数学中考试卷中很常见的题型,此类题综合性比较强,涉及的知识较广,可以结合几何图形来解题,实际上二次函数图像本身就是一个图形即抛物线,图像上点的坐标就表示相关线段的长度,点点相连成了几何图形,实现从“数或式”到“形”的转化,这一转化为解题创造了有利条件,而能否熟练地解答,则取决于是否把二者有机结合起来,在解题中充分运用函数与方程、数形结合、分类讨论等思想方法.教师要适当引导学生,使他们消除学习定势对解题思路的阻碍,培养他们利用数形结合解题的技巧和能力.例1:已知函数y=x+bx+2的图像经过点(3,2).(l)求这个函数的关系式;(2)画出它的图像;(3)根据图像指出:当x取何值时,y≥2?分析:(1)利用待定系数法,可以求出b的值,从而获得函数表达式;(2)根据函数关系式画出函数图像;(3)借助函数图像,由“形”想“数”,要“确定y=2时,x的取值范围“就是要求位于“直线y=2上方”图像的自变量取值范围.解:(1)根据题意,得2=9+3b+2,解得b=-3.所以函数关系式为y=x-3x+2.(2)易求该抛物线与x轴的两个交点坐标为(1,0),(2,0),与y轴的交点坐标为(0,2),对称轴为x=.函数y=x-3x+2的图像如图1所示.图1(3)根据图像可得,当y=2时,对应的x值为0和3.因此,当x≤0或x≥3时,y≥2.二、利用方程思想求解策略二次函数图像与x轴分别有两个交点、一个交点和无交点时,该函数所对应的一元二次方程根的判别式分别是:△>0,△=0和△例3:某商店经销甲、乙两种商品.甲、乙两种商品的进货单价之和是5元,甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.按零售单价购买甲商品3件和乙商品2件,共付了19元.问:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?分析:(l)据题意设出未知数,列方程组求解;(2)根据利润=甲、乙两种商品每件的利润×销售数量,转化为二次函数并配方,根据图像性质求得最大利润.解:(1)设甲商品的进货单价是x元,乙商品的进货单价是y 元.根据题意知x+y=5和3(x+1)+2(2y-1)=19x,两方程组成方程组求得x=2,y=3.答:甲商品的进货单价是2元,乙商品的进货单价是3元.(2)设商店每天销售甲、乙两种商品获取的利润为w元,则w=(1-m)(500+100×)+(5-3-m)(300+100×),即w=-2000m +2200m+1100=-2000(m-0.55)+1705.当m=0.55时,w有最大值,最大值为1705.答:当m值为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元.综上所述,解答二次函数综合题,总的来讲要冷静分析,缜密思考,耐心梳理,吃透题意,运用二次函数有关性质,同时要善于据题意采取有关数学思想:如方程的思想、数形结合思想、建模思想等,确定解题策略,并正确求解.参考文献:[1]王赛英.新课程理念下中考“压轴题”的解题思路「j].数学通报,2005(02).[2]董玉成.我国当代中学函数教育特征研究[d].华东师范大学,2007.[3]李如锦.中考数学压轴题解法指导(一)[j].中学生理科月刊,2000(z1).。
策略与技巧初中数学解题技巧解析二次函数与一次函数题
策略与技巧初中数学解题技巧解析二次函数与一次函数题策略与技巧:初中数学解题技巧解析解析二次函数与一次函数题初中数学对于很多学生来说是一个具有挑战性的科目。
尤其是在解决涉及二次函数和一次函数的问题时,很多学生常常感到困惑。
然而,只要我们掌握了一些解题的策略与技巧,就能更加轻松地应对这些题目。
在本文中,我们将探讨解析二次函数和一次函数题的一些实用技巧,帮助我们更好地理解和解决这类数学问题。
一、二次函数问题解析1. 确定函数的类型:先观察题目中给出的函数形式,判断是否为二次函数。
例如,当函数形式为y=ax^2+bx+c时,就可以判断为二次函数。
2. 求函数的导数:为了研究二次函数的凹凸性和最值等性质,我们需要求出函数的导数。
由于二次函数的导数仍然是一个一次函数,因此其求导的过程相对简单。
3. 找到顶点和对称轴:一般情况下,二次函数的顶点坐标对应着函数的最值。
通过求导可得到二次函数的对称轴,从而快速找到顶点的横坐标。
4. 求解方程:当涉及到求二次函数的零点时,我们可以使用因式分解、配方法或求根公式等方式。
这些方法皆可根据具体情况选择使用,以达到最简解。
二、一次函数问题解析1. 确定函数的类型:先观察题目中给出的函数形式,判断是否为一次函数。
例如,当函数形式为y=kx+b时,就可以判断为一次函数。
2. 画出函数图像:通过给定的斜率k和截距b,我们可以确定一次函数的直线方向和位置。
将该直线绘制在坐标系上可以帮助我们更好地理解问题并得出解答。
3. 运用函数性质:一次函数在凸性、最值等方面没有二次函数那么复杂,因此可以直接考虑函数性质。
例如,当x的系数为正数时,函数图像将上升;当x的系数为负数时,函数图像将下降。
4. 运用直线性质:根据直线性质,我们可以利用两点的坐标或一点的坐标与直线的斜率来解题。
通过求解方程组或利用一元一次方程可以计算出未知数的值。
综上所述,解析二次函数和一次函数题需要掌握一些基本的策略与技巧。
二次函数新定义型综合问题 中考数学
抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数新定义型综合问题是数学的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 新定义型二次函数之共生或伴随抛物线【例1】(新考法,拓视野)(2024·江西九江·一模)定义:若两条抛物线的顶点关于原点对称,二次函数的二次项系数互为负倒数,这样的两条抛物线称之为“共生抛物线”,如抛物线20.5y x =与22y x =-是共生抛物线,已知抛物线()212:213C y x =-++的顶点是点P ,它的共生抛物线2C 的顶点是Q ;(1)点P 的坐标是 ,点Q 的坐标是_________,抛物线2C 的函数关系式是 .(2)直线y m =与抛物线1C 、2C 均有两个交点,这些交点从左到右分别是A 、B 、C 、D .①求m 的取值范围 ;②若AB CD =,求m 的值;【例2】(2023·江苏泰州·二模)在平面直角坐标系中,对于函数21y ax bx c =++,其中a 、b 、c 为常数,a c ≠,定义:函数22y cx bx a =++是21y ax bx c =++的衍生函数,点(),M a c 是函数21y ax bx c =++的衍生点,设函数21y ax bx c =++与其衍生函数的图象交于A 、B 两点(点A 在点B 的左侧).(1)若函数21y ax bx c =++的图象过点()13C -,、 ()15D -,,其衍生点()1M c ,,求函数21y ax bx c =++的解析式;(2)①若函数21y ax bx c =++的衍生函数为221y x =-,求A 、B 两点的坐标;②函数21y ax bx c =++的图象如图所示,请在图中标出点A 、B 两点的位置;(3)是否存在常数b ,使得无论a 为何值,函数21y ax bx c =++的衍生点M 始终在直线AB 上,若存在,请求出b 的值;若不存在,请说明理由.1.新定义:我们把抛物线2y ax bx c =++(其中0ab ≠与抛物线2y bx ax c =++称为“关联抛物线”,例如,抛物线2231y x x =++的“关联抛物线”为2321y x x =++已知抛物线1C :2443(0)y ax ax a a =++->的“关联抛物线”为2C ,1C 与y 轴交于点E.本题考查了二次函数的新定义,正确利用二次函数的图像与性质是解决问题的关键.(1)若点E 的坐标为()0,1-,求1C 的解析式;(2)设2C 的顶点为F ,若△OEF 是以OF 为底的等腰三角形,求点E 的坐标;(3)过x 轴上一点P ,作x 轴的垂线分别交抛物线1C ,2C ,于点M ,N .①当MN =6时,求点P 的坐标;②当42a x a -≤≤-时,2C 的最大值与最小值的差为2a ,求a 的值.2.(2023·广东广州·一模)定义:在平面直角坐标系中,直线()y a x h k =-+称为抛物线()2y a x h k =-+的伴随直线,如直线()12y x =-+-为抛物线()212y x =-+-的伴随直线.(1)求抛物线2245y x x =-+的伴随直线;(2)无论a 取何值,抛物线1G :()2212y ax a x a =--+-总会经过某定点,抛物线2G :()()13y m x x m =---的伴随直线经过该定点,求m 的值;(3)顶点在第一象限的抛物线()214y a x a =--+与它的伴随直线交于点A ,B (点A 在点B 的左侧),与x 轴负半轴交于点C ,当90BAC ∠=︒时,y 轴上存在点P ,使得APB ∠取得最大值,求此时点P 的坐标.题型二 新定义型二次函数之特殊形状问题【例1】(新考法,拓视野)(23-24九年级上·浙江杭州·期末)定义:由两条与x 轴有相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.【概念理解】(1)抛物线()()1212y x x =--与抛物线2232y x x =-+是否围成“月牙线”?说明理由.【尝试应用】(2)抛物线211(1)22y x =--与抛物线2212y ax bx c a ⎛⎫=++> ⎪⎝⎭组成一个如图所示的“月牙线”,与x 轴有相同的交点M ,N (点M 在点N 的左侧),与y 轴的交点分别为,A B .①求::a b c 的值.②已知点()0,P x m 和点()0,Q x n 在“月牙线”上,m n >,且m n -的值始终不大于2,求线段AB 长的取值范围.【例2】二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ¢,如下表:…()1,3B -()0,0O ()1,1C -A (___,___)()3,3D ……()5,3B '-()4,0O '()3,1C '()2,0A '()1,3D '-…①补全表格;本题考查二次函数综合应用,涉及新定义,二次函数的性质等知识,解题的关键是读懂题意,理解“月牙线”的概念.②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为_______;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L ',都有唯一交点,这条抛物线的解析式可能是______.(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0abc ≠);③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.1.(2023·江西赣州·一模)定义:若直线1y =-与开口向下的抛物线有两个交点,则这两个交点之间的距离叫做这条抛物线的“反碟长”1L :2y x =-与直线1y =-相交于P ,Q .(1)抛物线1L 的“反碟长”PQ =________.(2)抛物线随其顶点沿直线12y x =向上平移,得到抛物线2L .①当抛物线1L 的顶点平移到点()6,3,抛物线2L 的解析式是________.抛物线2L 的“反碟长”是________.②若抛物线2L 的“反碟长”是一个偶数,则其顶点的纵坐标可能是________.(填写所有正确的选项)A .15B .16C .24D .25③当抛物线2L 的顶点A 和抛物线2L 与直线1y =-的两个交点B ,C 构成一个等边三角形时(点B 在点C 左右),求点A 的坐标.题型三 新定义型二次函数与其他函数的综合问题【例1】(新考法,拓视野)(2024·湖南长沙·三模)对某一个函数给出如下定义:如果函数的自变量x 与函数值y 满足:当()()0x m x n --≤时,()()0y m y n --≤(,m n 为实数,且)m n <,我们称这个函数在m n →上是“民主函数”.比如:函数1y x =-+在12-→上是“民主函数”.理由: 由[(1)](2)0x x ---≤,得12x -≤≤. 1x y =-,112y ∴-≤-≤,解得12y -≤≤,[(1)](2)0y y ∴---≤,∴是“民主函数”.(1)反比例函数6y x=是23→上的“民主函数”吗?请判断并说明理由:(2)若一次函数y kx b =+在m n →上是“民主函数”,求此函数的解析式(可用含,m n 的代数式表示);(3)若抛物线2(0,0)y ax bx c a a b =++>+>在13→上是“民主函数”,且在13x ≤≤上的最小值为4a ,设抛物线与直线3y =交于,A B 点,与y 轴相交于C 点.若ABC 的内心为G ,外心为M ,试求MG 的长.【例2】(2023·江苏南通·一模)定义:若函数图象上存在点()1M m n ,,()21M m n '+,,且满足21n n t -=,则称t 为该函数的“域差值”.例如:函数23y x =+,当x m =时,123n m =+;当1x m =+时,221252n m n n =+-=,则函数23y x =+的“域差值”为2(1)点12'1M m n M m n +(,),(,)在4y x =的图象上,“域差值”4t =-,求m的值;本题是二次函数综合题,主要考查了一次函数、反比例函数、二次函数的性质,三角形外心和内心的性质等知识,理解新定义,得出抛物线的解析式从而得出的顶点坐标是解题的关键.ABC(2)已知函数220y x x =-(>),求证该函数的“域差值”2t <-;(3)点A a b (,)为函数22y x =-图象上的一点,将函数22y x x a =-≥()的图象记为W 1,将函数22y x x a =-≤()的图象沿直线y b =翻折后的图象记为2W 当12W W ,两部分组成的图象上所有的点都满足“域差值”1t ≤时,求a 的取值范围.1.(2023·江苏南通·一模)定义:若函数1G 的图象上至少存在一个点,该点关于x 轴的对称点落在函数2G 的图象上,则称函数1G ,2G 为关联函数,这两个点称为函数1G ,2G 的一对关联点.例如,函数2y x =与函数3y x =-为关联函数,点()1,2和点()1,2-是这两个函数的一对关联点.(1)判断函数2y x =+与函数y =-3x是否为关联函数?若是,请直接写出一对关联点;若不是,请简要说明理由;(2)若对于任意实数k ,函数2y x b =+与5y kx k =++始终为关联函数,求b 的值;(3)若函数21y x mx =-+与函数224n y x =-(m ,n 为常数)为关联函数,且只存在一对关联点,求2226m n m -+的取值范围.2.(2024·浙江湖州·一模)定义:对于y 关于x 的函数,函数在 ()1212x x x x x ≤≤<范围内的最大值,记作 []12,M x x 如函数2y x =,在13x -≤≤范围内,该函数的最大值是6, 即,[]1,36M -=.请根据以上信息,完成以下问题:已知函数 ()22141y a x x a =--+-(a 为常数)(1)若2a =.①直接写出该函数的表达式,并求 []1,4M 的值;②已知 5,32M p ⎡⎤=⎢⎥⎣⎦,求p 的值.(2)若该函数的图象经过点()0,0, 且[]3,M k k -=, 求k 的值.题型四 新定义型二次函数与几何图形的综合问题【例1】(新考法,拓视野)(2023·江苏南通·二模)定义:在平面直角坐标系中,点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线:(0)l y kx b k =+≠满足11y kx b ≤+且22y kx b ≥+(或满足11y kx b ≥+且22y kx b ≤+),则称直线:(0)l y kx b k =+≠是图形1G 与2G 的“界线”.例如:直线4y x =-+是函数4(0)y x x=>的图象与抛物线2y x =-的一条“界线”.已知点(,2),(,2),(4,2),(4,2)A m B m C m D m -+-+.(1)若2m =-,在直线①3y x =+,②4y x =-+,③27y x =-+中,是函数6(0)y x x=>的图象与正方形ABCD 的“界线”的有______(填序号);(2)若点E 的坐标是(0,4),E的半径为E 与正方形ABCD 的“界线”有且只有一条,求“界线”l 的函数关系式;(3)若存在直线2y x b =+是函数223(22)y x x x =++-≤≤的图象与正方形ABCD 的“界线”,求m 的取值范围.【例2】(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q为平面内不重合的两个点,其本题考查二次函数的图象及性质,反比例函数的性质,一次函数的性质,熟练掌握二次函数的图象及性质,弄清“界线”的定义与图形之间的关系,数形结合、分类讨论是解题的关键.中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.1.(2023·江苏扬州·一模)对于二次函数给出如下定义:在平面直角坐标系xOy 中,二次函数2(y ax bx c a =++,b ,c 为常数,且0)a ≠的图象顶点为P (不与坐标原点重合),以OP 为边构造正方形OPMN ,则称正方形OPMN 为二次函数2y ax bx c =++的关联正方形,称二次函数2y ax bx c =++为正方形OPMN 的关联二次函数.若关联正方形的顶点落在二次函数图象上,则称此点为伴随点.(1)如图,直接写出二次函数2(1)2y x =+-的关联正方形OPMN 顶点N 的坐标___,并验证点N 是否为伴随点___(填“是”或“否”):(2)当二次函数24y x x c =-++的关联正方形OPMN 的顶点P 与N 位于x 轴的两侧时,请解答下列问题:①若关联正方形OPMN 的顶点M 、N 在x 轴的异侧时,求c 的取值范围:②当关联正方形OPMN 的顶点M 是伴随点时,求关联函数24y x x c =-++的解析式;③关联正方形OPMN 被二次函数24y x x c =-++图象的对称轴分成的两部分的面积分别为1S 与2S ,若1213S S ≤,请直接写出c 的取值范围.2.(2024·江西九江·一模)定义概念:在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++的“衍生直线”.如图1,抛物线2y x bx c =-++与其“衍生直线”交于A ,B 两点(点B 在x 轴上,点A 在点B 的左侧),与x 轴负半轴交于点()3,0C -.(1)求抛物线和“衍生直线”的表达式及点A 的坐标;(2)如图2,抛物线2y x bx c =-++的“衍生直线”与y 轴交于点1D ,依次作正方形111DEFO ,正方形2221D E F F ,…,正方形1n n n n D E F F -(为正整数),使得点1D ,2D ,3D ,…,n D 在“衍生直线”上,点1F ,2F ,3F ,…,n F 在x 轴负半轴上.①直接写出下列点的坐标:1E ______,2E ______,3E ______,n E ______;②试判断点1E ,2E ,…,n E 是否在同一条直线上?若是,请求出这条直线的解析式;若不是,请说明理由.3.(2023·江西新余·一模)定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______ .【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.抢分秘籍15 二次函数新定义型综合问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数新定义型综合问题是全国中考的热点内容,更是全国中考的必考内容。
刍议二次函数存在性问题解题策略
刍议二次函数存在性问题解题策略【摘 要】二次函数一直是中考的热点问题,2013年以二次函数为背景而编拟的存在性中考题,大量地出现在各地的压轴题中.此类题目与动点问题相结合,技巧性和综合性较强,涉及的知识面广,有较强的区分度.解答此类题目对学生综合分析问题和解决问题的能力要求比较高,有利于对优秀人才的选拔,因此受到中考命题者的青睐.【关键词】二次函数、存在性问题、中考、解题策略【正 文】解答二次函数存在性问题的基本思路是先假设结论存在,然后由假设出发,结合已知条件,利用方程、转化、数形结合、分类讨论等思想进行正确的计算、推理,再对得出的结果综合分析、验证,判断是否与题设、公理、定理等有矛盾,若无矛盾,说明结论正确,由此得出符合条件的对象存在;否则,说明不存在。
纵观2013年各地中考题,主要有以下几种形式:是否存在等腰三角形、是否存在直角三角形、是否存在三角形相似,是否存在平行四边形等。
有些题在分类讨论列方程求解后,还要检验,排除干扰。
笔者对我省数学中考试卷二次函数存在性题型的解题策略进行了一些分类探索,谈得不当之处希望各位专家批评指正。
一、存在距离之和最小此类问题主要考查考生通过轴对称,将动点所在直线同侧的两个定点中的其中一个,映射到直线的另一侧,当动点在这个定点的对称点及另一定点的线段上时,由“两点之间线段最短”可知线段和的最小值,最小值为定点线段的长。
【案例】2013年遵义市中考题第27题如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎭⎫ ⎝⎛-32,4,且与y 轴交于点)2,0(C ,于x 轴于A 、B 两点(点A 在点B 的左边).(1)求抛物线的解析式及A 、B 两点的坐标;(2)在(1)中抛物线的对称轴l 上是否存在一点P ,使CP AP +的值最小?若存在,求CP AP +的最小值;若不存在,请说明理由;【解析】(1)234612+-=x x y ,)0,2(A ,)0,6(B (2)(2)存在,由(1)知,抛物线的对称轴l 为4=x ,因为A 、B 两点关于l 对称,连接CB 交l 于点P ,则BP AP =,所以,BC CP AP =+的值最小.∵)0,6(B ,)2,0(C ,∴6=OB ,2=OC ∴1022622=+=OB ,∴102==+BC CP AP ,∴CP AP +的最小值为102.二、存在三角形(直角三角形、等腰三角形或相似三角形)1、存在直角三角形此类问题往往涉及到需要将三点(一动点)所连线段的长表示出来,假设存在,运用勾股定理建立方程求出满足条件的动点坐标。
二次函数常见题型及解题策略探究
为 22 500 元。
本题为利润型问题,在解答这类问题时要重点
关注最终的利润,而计算最大利润则需要准确表达
出 单 件 商 品 的 利 润 ,进 而 与 销 售 量 构 建 函 数 表
达式。
四、二次函数参数的取值问题
二次函数参数的取值问题,一般出现在选择题
中,常见的题型有求参数的取值范围、求相关的代
二、考查二次函数的图象及性质的问题
二次函数的图象及其性质是考查的重点问题,
中。同时,二次函数也是学习的难点,学生掌握起
常见的问题有二次函数的开口方向、对称性、增减
来并不轻松。本文对二次函数的常见题型及解题
性、顶点坐标等,而解答这些问题,则需要学生对二
策略进行梳理,以供同行参考。
次函数的性质进行全面把握。
2023
·12
数学·解题研究
当 x = 0 时,y = -2,所以 C (0,-2) 。
(1)当 a + 2 ≤ 1 时,此时 y 随 x 的增大而减小,
所以,x = a + 2 时 y 值最小为 -2,则 -2 = ( a + 2) 2 -
2 ( a + 2) - 3,
解得 a =
2 - 1 或 a = - 2 - 1,
D
象与 y 轴的交点在 (0,1) 与 (0,2)
又因为过点 C (0,6) ,所以 6 = a (0 - 3) (0 + 1) ,
可得 a = -2,
2023··12
2023
[例 2]如图 1 所示,二次函
因为与 y 轴的交点在 (0,1) 与 (0,2) 之间,所以
所以 -3 < a < -2,②正确;
二次函数线段和差最值的存在性问题解题策略
中考数学压轴题解题策略(8)线段和差最值的存在性问题解题策略专题攻略两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3例题解析例如图1-1,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果△PAC的周长最小,求点P的坐标.图1-1【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在△PBC中,PB+PC总是大于BC的.如图1-3,当点P落在BC上时,PB+PC最小,因此PA+PC最小,△PAC的周长也最小.由y=x2-2x-3,可知OB=OC=3,OD=1.所以DB=DP=2,因此P(1,-2).图1-2 图1-3 例如图,抛物线21442y x x =-+与y 轴交于点A ,B 是OA 的中点.一个动点G 从点B 出发,先经过x 轴上的点M ,再经过抛物线对称轴上的点N ,然后返回到点A .如果动点G 走过的路程最短,请找出点M 、N 的位置,并求最短路程.图2-1【解析】如图2-2,按照“台球两次碰壁”的模型,作点A 关于抛物线的对称轴对称的点A ′,作点B 关于x 轴对称的点B ′,连结A ′B ′与x 轴交于点M ,与抛物线的对称轴交于点N .在Rt △AA ′B ′中,AA ′=8,AB ′=6,所以A ′B ′=10,即点G 走过的最短路程为10.根据相似比可以计算得到OM =83,MH =43,NH =1.所以M (83, 0),N (4, 1).图2-2例 如图3-1,抛物线248293y x x =-++与y 轴交于点A ,顶点为B .点P 是x 轴上的一个动点,求线段PA 与PB 中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P 的坐标.图3-1【解析】题目读起来像绕口令,其实就是求|PA-PB|的最小值与最大值.由抛物线的解析式可以得到A(0, 2),B(3, 6).设P(x, 0).绝对值|PA-PB|的最小值当然是0了,此时PA=PB,点P在AB的垂直平分线上(如图3-2).解方程x2+22=(x-3)2+62,得416x=.此时P41(,0)6.在△PAB中,根据两边之差小于第三边,那么|PA-PB|总是小于AB了.如图3-3,当点P在BA的延长线上时,|PA-PB|取得最大值,最大值AB=5.此时P3(,0)2-.图3-2 图3-3例如图4-1,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD 上的任意一点,求PK+QK的最小值.图4-1【解析】如图4-2,点Q关于直线BD的对称点为Q′,在△KPQ′中,PK+QK总是大于PQ′的.如图4-3,当点K落在PQ′上时,PK+QK的最小值为PQ′.如图4-4,PQ′的最小值为Q′H,Q′H就是菱形ABCD的高,Q′H3这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图4-2 图4-3 图4-4例如图5-1,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙B和⊙A上的动点,求PE+PF的最小值.图5-1【解析】E、F、P三个点都不确定,怎么办BE=1,AF=2是确定的,那么我们可以求PB+PA-3的最小值,先求PB+PA的最小值(如图5-2).如图5-3,PB+PA的最小值为AB′,AB′=6.所以PE+PF的最小值等于3.图5-2 图5-3例如图6-1,已知A(0, 2)、B(6, 4)、E(a, 0)、F(a+1, 0),求a为何值时,四边形ABEF 周长最小请说明理由.图6-1【解析】在四边形ABEF 中,AB 、EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图6-2,将线段BF 向左平移两个单位,得到线段ME .如图6-3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.图6-2 图6-3例 如图7-1,△ABC 中,∠ACB =90°,AC =2,BC =1.点A 、C 分别在x 轴和y 轴的正半轴上,当点A 在x 轴上运动时,点C 也随之在y 轴上运动.在整个运动过程中,求点B 到原点的最大距离.图7-1【解析】如果把OB 放在某一个三角形中,这个三角形的另外两条边的大小是确定的,那么根据两边之和大于第三边,可知第三边OB 的最大值就是另两边的和.显然△OBC 是不符合条件的,因为OC 边的大小不确定.如图7-2,如果选AC 的中点D ,那么BD 、OD 都是定值,OD =1,BD 2.在△OBD 中,总是有OB <OD +BD .如图7-3,当点D 落在OB 上时,OB 21.图7-2 图7-3例如图8-1,已知A(-2,0)、B(4, 0)、(5,33)D-.设F为线段BD上一点(不含端点),连结AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD 以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少图8-1【解析】点B(4, 0)、(5,33)D-的坐标隐含了∠DBA=30°,不由得让我们联想到30°角所对的直角边等于斜边的一半.如果把动点M在两条线段上的速度统一起来,问题就转化了.如图8-2,在Rt△DEF中,FD=2FE.如果点M沿线段FD以每秒2个单位的速度运动到点D时,那么点M沿线段FE以每秒1个单位的速度正好运动到点E.因此当AF+FE最小时,点M用时最少.如图8-3,当AE⊥DE时,AF+FE最小,此时F(2,23)-.图8-2 图8-3例如图9-1,在Rt△ABC中,∠C=90°,AC=6,BC=8.点E是BC边上的点,连结AE ,过点E 作AE 的垂线交AB 边于点F ,求AF 的最小值.图9-1【解析】如图9-2,设AF 的中点为D ,那么DA =DE =DF .所以AF 的最小值取决于DE 的最小值.如图9-3,当DE ⊥BC 时,DE 最小.设DA =DE =m ,此时DB =53m . 由AB =DA +DB ,得5103m m +=.解得154m =.此时AF =1522m =.图9-2 图9-3例 如图10-1,已知点P 是抛物线214y x =上的一个点,点D 、E 的坐标分别为(0, 1)、(1, 2),连结PD 、PE ,求PD +PE 的最小值.图10-1【解析】点P 不在一条笔直的河流上,没有办法套用“牛喝水”的模型.设P 21(,)4x x ,那么PD 2=2222211(1)(1)44x x x +-=+.所以PD =2114x +. 如图10-2,2114x +的几何意义可以理解为抛物线上的动点P 到直线y =-1的距离PH .所以PD =PH .因此PD +PE 就转化为PH +PE .如图10-3,当P、E、H三点共线,即PH⊥x轴时,PH+PE的最小值为3.高中数学会学到,抛物线是到定点的距离等于到定直线的距离的点的集合,在中考数学压轴题里, 如果要用到这个性质,最好铺垫一个小题,求证PD=PH.图10-2 图10-3。
二次函数中绝对值问题的求解策略
二次函数中绝对值问题的求解策略二次函数中绝对值问题的求解策略二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。
二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。
一、适时用分类,讨论破定势分类讨论是中学数学中的重要思想。
它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。
例1 已知f(x)=x 2+bx+c (b,c ∈R),(1)当b<-2时,求证:f(x)在(-1,1)内单调递减。
(2)当b<-2时,求证:在(-1,1)内至少存在一个x0,使得|f(x0)|≥21. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)内单调递减。
(2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢?其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。
当x=0时,|f(0)|=|c|,|c|与21的大小关系如何呢?对|c|进行讨论: (i )若|c|≥21,即|f(0)|≥21,命题成立。
(ii )若|c|<21,取x 0=-21,则21432145|||2141||2141||)21(|>=->--≥+-=-c b c b f .故不论|c|≥21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥21成立。
本题除了取x=-21外,x 还可取那些值呢?留给读者思考。
二、合理用公式,灵活换视角公式|a|-|b|≤|a±b|≤|a|+|b|在处理含绝对值问题时的作用有时是不可替代的,常用于不等式放缩、求最值等,思路简洁、明快,解法自然、迅捷。
二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)
二次函数中求线段,线段和,面积等最值问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数中求线段,线段和,面积等最值问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数的图象和性质是考查的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 二次函数中求线段的最值问题【例1】(2024·安徽滁州·一模)已知抛物线()22131y x n x n =−++++交x 轴于点()10A −,和点B ,交y 轴于点C .(1)求抛物线的函数解析式;(2)如图1,已知点P 是位于BC 上方的抛物线上的一点,作PM BC ⊥,垂足为M ,求线段PM 长度的最大值;(3)如图2,已知点Q 是第四象限抛物线上一点,45ACQ ∠=︒,求点Q 的坐标.【答案】(1)234y x x =−++;(2)PM 的最大值为(3)点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【分析】(1)将点()10A −,代入()22131y x n x n =−++++,求得1n =,即可得解;(2)求得点B 和C 的坐标,推出45OAB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,得到PEM △是等腰直角三角形,2PM PE =,设()234P m m m −++,,求得PM 关于m 的二次函数,利用二次函数的性质求解即可;(3)作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,求得BC =ACO GCB ∠=∠,利用正切函数的定义求得BG ,证明HBG 是等腰直角三角形,求得()31G −,,再求得直线CG 的解析式,据此求解即可.【详解】(1)解:∵抛物线()22131y x n x n =−++++交x 轴于点()10A −,, ∴()121310n n −−+++=,解得1n =,∴抛物线的函数解析式为234y x x =−++; (2)解:当0x =时,4y =;当0y =时,2340x x −++=,解得4x =或=1x −;∴()40B ,,()04C ,,∴4OA OB ==,∴45OCB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,∴9045PEM BEF OBC ∠=∠=︒−∠=︒,∴PEM △是等腰直角三角形,∴PM =,设直线BC 的解析式为4y kx =+,把()40B ,代入得044k =+,解得1k =−,∴直线BC 的解析式为4y x =−+,设()234P m m m −++,,则()4E m m −+,,∴))223442PM PE m m m m ==−+++−=−+∵0>,∴PM 有最大值,最大值为(3)解:作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,∵()10A −,,()40B ,,()04C ,,∴1OA =,4OB OC ==,BC =∵45ACQ ∠=︒,45OCB ∠=︒,∴ACO GCB ∠=∠,∴tan tan ACO GCB ∠=∠,即OA BG OC BC =,∴14=∴BG ,∵45OBC ∠=︒,∴45HBG ∠=︒,∴HBG 是等腰直角三角形,∴1BH GH ==,∴413OH =−=,∴()31G −,,同理直线CG 的解析式为543y x =−+, 联立得235434x x x =−+++−,解得0x =或143x =; 当143x =时,514344339y =−⨯+=−, ∴点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【例2】(2024·江苏淮安·二模)如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【答案】(1)()20A ,,(B ;(2)①EDA ∠的大小不变,理由见解析;②线段BF 的长度存在最大值为12【分析】(1)0y =得20+=,解方程即可求得A 的坐标,把2y =+化为顶点式即可求得点B 的坐标;(2)①在AB 上取点M ,使得BM BE =,连接EM ,证明AED △是等边三角形即可得出结论;②证BDF OAD ∽,利用相似三角形的性质得BD BF OA OD =即22x BF x −=,解得()211122BF x =−−+进而利用二次函数的性质即可得解.【详解】(1)解:∵)221y x =+=−+∴顶点为(B ,令0y =,20+=,解得0x =或2x =,∴()20A ,;(2)解:①EDA ∠的大小不变,理由如下:在AB 上取点M ,使得BM BE =,连接EM ,∵)21y x =−∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,∴60BAC ∠=︒,AB AC =,∴BAC 是等边三角形,∴AB AC BC ==,60C ∠=︒,∵()20A ,,(B ,()00O ,,1ON =,∴2OA =,OB =2,AB =2=,∴OA OB AB ==,∴OAB 是等边三角形,2OA OB AC BC ====,∴60∠=∠=∠=︒OAB OBA AOB ,∵60MBE ∠=︒,BM BE =,∴BME 是等边三角形,∴60BME ABE ∠∠=︒=,ME BE BM ==,∴180120AME BME ∠∠=︒−=︒,BD EM ∥,∵120DBE ABO ABC ∠∠∠=+=︒,∴DBE AME ∠∠=,∵BD EM ∥,∴18012060FEM BED AEF MEA FEM ∠∠∠∠∠+=︒−︒=︒==+,∴BED MEA ∠∠=,∴BED MEA ≌,∴DE EA =,又60AED ∠=︒,∴AED △是等边三角形,∴60ADE ∠=︒,即ADE ∠的大小不变;②设OD x =,则2BD x =−,∵OAB 是等边三角形,60ADE ∠=︒,∴60DOA FBD ADE ∠∠∠===︒,∵BDA BDF ADE DOA OAD ∠∠∠∠∠=+=+,∴BDF OAD ∠∠=,∴BDF OAD ∽,∴BD BF OA OD =即22x BF x −=, ∴()211122BF x =−−+,∴当1x =时,BF 有最大值为12.【点睛】本题主要考查了二次函数的图像及性质,全等三角形的判定及性质,相似三角形的判定及性质以及等边三角形的判定及性质,题目综合性较强,熟练掌握各知识点是解题的关键.1.(2024·四川南充·一模)如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)−.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使CMN 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−(2)当32m =时,PD取得最大值为.此时315,24P ⎛⎫− ⎪⎝⎭ (3)CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12【分析】(1)把点,A C 坐标代入函数的解析式,利用待定系数法求解即可;(2)先求线BC 的解析式,设点p 的横坐标为m ,再用m 的代数式表示PD 的长度建立二次函数求解即可;(3)先求直线BE 的解析式,再分三种情况,根据相似三角形的判定和性质求解即可.【详解】(1)由题意得103b c c −+=⎧⎨=−⎩,解得:23b c =−⎧⎨=−⎩.则抛物线的解析式为:223y x x =−−;(2)过点P 作PH x ⊥轴于点H ,交BC 于点G当0y =时,2230x x −−=,解得=1x −或3,∴(3,0)B设直线BC 的解析式为:1y kx b =+,则11303k b b +=⎧⎨=−⎩,解得:113k b =⎧⎨=−⎩∴3y x =−设点()2,23P m m m −−(03m <<),则3G m m −(,), ∴()()223233PG m m m m m =−−−−=−, ∵OB OC =,∴45OBC OCB ∠=∠=︒,∴45BGH ∠=︒∴45PGD BGH ∠=∠=︒,∴PD =.)22332228PD m m m ⎫=−+=−−+⎪⎝⎭ ∴当32m =时,PD取得最大值为8.此时315,24P ⎛⎫− ⎪⎝⎭. (3)在EB 上存在点M ,使CMN 为直角三角形.抛物线顶点(1,4)E −,设直线BE 的解析式为:22y k x b =+,则2222430k b k b +=−⎧⎨+=⎩,解得:2226k b =⎧⎨=−⎩,∴26y x =−.设26M n n −(,)13n ≤<(),①∵90CNM ONC ∠=︒−∠,∴90CNM ∠<︒,不可能为直角;②当90CMN ∠=︒时,则90CMN MNB ∠=∠=︒ ∴//MC x 轴,则263n −=−,∴32n =,∴3,32M ⎛⎫− ⎪⎝⎭. ③当90MCN ∠=︒时,过点M 作MF y ⊥轴于点F .∵90MCF NCO ∠+∠=︒,90CNO NCO ∠+∠=︒,∴MCF CNO ∠=∠,又90MFC CON ∠=∠=︒,∴MFC CON ∽, ∴CF MF NO CO =, ∴()3263n nn −−−=,∴2690n n +−=,解得:123,3n n ==−.∵13n ≤<,∴23n =−不合题意,应舍去,∴3n =∴()12M综上所述,CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12.【点睛】本题考查用待定系数法求二次函数的解析式,构造二次函数求线段的最值,二次函数与直角三角形的存在性问题,相似三角形的判定和性质,难度较大,是中考的压轴题,解题的关键是数形结合,提高综合运用的能力.2.(23-24九年级下·江苏宿迁·阶段练习)如图,在平面直角坐标系中抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.求出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标.【答案】(1)211344y x x =+−;(2)PD 的最大值为45,此时点52,2P ⎛⎫−− ⎪⎝⎭; (3)Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭,()0,2F ,勾股定理分别表示出2EF ,2QE ,2QF 进而分类讨论即可求解. 【详解】(1)解:将点()3,0B ,()0,3C −,代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=−⎩,解得:143b c ⎧=⎪⎨⎪=−⎩,∴抛物线解析式为:211344y x x =+−; (2)∵211344y x x =+−与x 轴交于点A ,B ,当0y =时,2113044x x +−=,解得:124,3x x =−=, ∴()4,0A −, ∵()0,3C −, 设直线AC 的解析式为3y kx =−,∴430k −−=, 解得:34k =−,∴直线AC 的解析式为334y x =−−,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭, ∴223111334444PQ t t t t t ⎛⎫=−−−+−=−− ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ⎛⎫==−−=−−=−++ ⎪⎝⎭, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=⨯−+⨯−−=−, ∴52,2P ⎛⎫−− ⎪⎝⎭; (3)∵抛物线211344y x x =+−211494216x ⎛⎫=+− ⎪⎝⎭, 将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =, 点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭, ∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯−= ⎪⎝⎭, ∴()0,2F , ∴22251173224EF ⎛⎫=++= ⎪⎝⎭, ∵Q 为平移后的抛物线的对称轴上任意一点,则Q 点的横坐标为92, 设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+− ⎪⎝⎭, 当QF EF =时,()229117224m ⎛⎫+−= ⎪⎝⎭, 解得:1m =−或5m =,当QE QF =时,()222295932222m m ⎛⎫⎛⎫⎛⎫−++=+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得:74m =, 综上所述,Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.3.(2024·山西阳泉·一模)综合与探究 如图,二次函数213442y x x =−−的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,连接AC ,作直线BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的表达式;(2)如图1,若点P 是第四象限内二次函数图象上的一个动点,其横坐标为m ,过点P 分别作x 轴、y 轴的垂线,交直线BC 于点M ,N ,试探究线段MN 长的最大值;(3)如图2,若点Q 是二次函数图象上的一个动点,直线BQ 与y 轴交于点H ,连接CD ,在点Q 运动的过程中,是否存在点H ,使以H ,C ,B 为顶点的三角形与ACD 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()20A −,,()80B ,,()04C −,,直线BC 的表达式为1y x 42=−;(2)线段MN长的最大值为(3)点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【分析】(1)令0y =,求得x 的值,令0x =,求得y 的值,可求得A ,B ,C 三点的坐标,利用待定系数法即可求得直线BC 的表达式;(2)设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,证明PNM OBC ∠=∠,利用正切函数的定义推出2PN PM =,求得MN ,得到MN 关于m 的二次函数,利用二次函数的性质求解即可;(3)利用勾股定理求得AC =,5AD OC ==,作DG AC ⊥于点G ,用正切函数的定义推出OCA BCH ∠=∠,分BC BH =和BH CH =两种情况讨论,分别求得点H 的坐标,求得直线BH 的表达式,与二次函数的表达式联立求解即可.【详解】(1)解:令0y =,则2134042x x −−=,解得12x =−,28x =,令0x =,则4y =−,∴()20A −,,()80B ,,()04C −,,设直线BC 的表达式为4y kx =−,代入()80B ,得084k =−,解得12k =, ∴直线BC 的表达式为1y x 42=−; (2)解:∵()20A −,,()80B ,,()04C −,,∴2OA =,8OB =,4OC =, 设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,2211314422424PM m m m m m ⎛⎫=−−−−=−+ ⎪⎝⎭,∵PN OB ∥,PM OC ∥,∴PNM OBC ∠=∠, ∴41tan tan 82OC PNM OBC OB ∠=∠===,∴2PN PM =,MN ,∴)221244MN m m m ⎫=−+=−+⎪⎭∵0<,∴当4m =时,线段MN 长的最大值为 (3)解:∵()20A −,,()80B ,,()04C −,, ∴对称轴为直线2832x −+==, ∴()30D ,,∴()325AD =−−=,5CD ==,AC == ∴5AD DC ==,作DG AC ⊥于点G ,∴12AG CG AC ===∴DG == ∴tan 2DG DCA CG ∠==, ∵tan 2OB BCO OC ∠==,∴DCA BCH ∠=∠,以H ,C ,B 为顶点的三角形与ACD 相似,则分BC BH =和BH CH =两种情况讨论,①当BC BH =时,∵BO CH ⊥,∴OH OC =,∴()04H ,,同理求得直线BH 的表达式为142y x =−+, 联立得241234412x x x −−−+=,解得14x =−,28x =(舍去),()14462y =−⨯−+=,∴点Q 的坐标为()46−,;①当BH CH =时,设()0H t ,,则2264BH t =+,()2224816CH t t t =+=++,∴2264816t t t +=++,解得6t =,∴()06H ,,同理求得直线BH 的表达式为364y x =−+, 联立得261434432x x x −−−+=,解得15x =−,28x =(舍去),()3395644y =−⨯−+=,∴点Q 的坐标为3954⎛⎫− ⎪⎝⎭,; 综上,点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,点的坐标表示三角形的面积,勾股定理,正切函数,解方程,熟练掌握待定系数法,勾股定理,正切函数是解题的关键.题型二 将军饮马河求二次函数中线段和最值问题【例1】(2024·天津津南·一模)综合与探究:如图,抛物线2y x bx c =−++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;(2)点P 是抛物线位于第一象限图象上的动点,连接AP ,CP ,当PAC ACM S S =△△时,求点P 的坐标;(3)将抛物线沿x 轴的负方向平移得到新抛物线,点A 的对应点为点A ',点C 的对应点为点C ',当MA MC ''+的值最小时,新抛物线的顶点坐标为 ,MA MC ''+的最小值为 .【答案】(1)()0,2M −,2722y x x =−++ (2)()2,5P(3)1181,1216⎛⎫− ⎪⎝⎭,【分析】(1)根据点M 在y 轴负半轴且2OM =可得点M 的坐标为()0,2M −,利用待定系数法可得抛物线的解析式为2722y x x =−++;(2)过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,用待定系数法求得直线AC 的解析式为122y x =−+,设点P 的横坐标为()04p p <<,则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭,故24(04)PE p p p =−+<<,先求得8ACM S =△,从而得到212882PAC S PE OC p p =⋅=−+=△,解出p 的值,从而得出点P 的坐标;(3)设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 右平移m 个单位长度得到点M ',由平移的性质可知,,MA M A MC M C ''''==,MA MC ''+的值最小就是M A M C ''+最小值,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,利用两点间的距离公式求这个长度,用待定系数法求出直线AC ''的解析式,从而确定M '的坐标,继而确定平移距离,将原抛物线的解析式化为顶点式,从而得到其顶点,继而确定新抛物线的顶点.【详解】(1)解:∵点M 在y 轴负半轴且2OM =,∴()0,2M −将()0,2A ,()4,0C 代入2y x bx c =−++,得:21640c b c =⎧⎨−++=⎩,解得722b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为2722y x x =−++(2)解:过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,设直线AC 的解析式为()0y kx m k =+≠,将()0,2A ,()4,0C 代入y kx m =+,得:240m k m =⎧⎨+=⎩,解得122k m ⎧=−⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =−+ 设点P 的横坐标为()04p p << 则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭, ∴2271224(04)22PE p p p p p p ⎛⎫=−++−−+=−+<< ⎪⎝⎭∵8ACM S =△,∴212882PAC S PE OC p p =⋅=−+=△,解得122p p ==, ∴()2,5P ;(3)1181,1216⎛⎫− ⎪⎝⎭,补充求解过程如下:设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 向右平移m 个单位长度得到点M ',作出图形如下:由平移的性质可知,,MA M A MC M C ''''==,∴MA MC ''+的值最小就是M A M C ''+最小值, 显然点M '在直线=2y −上运用,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,∵点C 关于直线=2y −C '',()4,0C ∴()4,4C ''−,∴()()min min MA MC M A M C AC ''''''+=+== 设直线AC ''的解析式是:11y k x b =+将点()0,2A ,()4,4C ''−代入得:111244b k b =⎧⎨+=−⎩,解得:11322k b ⎧=−⎪⎨⎪=⎩直线AC ''的解析式是:322y x =−+令3222y x =−+=−,解得:83x =, ∴8,23M ⎛⎫'− ⎪⎝⎭,∴平移的距离是83m = 又∵22778122416y x x x ⎛⎫=−++=−−+ ⎪⎝⎭, ∴平移前的抛物线的坐标是781416,⎛⎫ ⎪⎝⎭∴新抛物线的顶点坐标为7881,4316⎛⎫− ⎪⎝⎭即1181,1216⎛⎫− ⎪⎝⎭ 故答案是:1181,1216⎛⎫− ⎪⎝⎭,【例2】(2024·江苏宿迁·模拟预测)如图1,抛物线2y x bx =−+与x 轴交于点A ,与直线y x =−交于点()4,4B −,点()0,4C −在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =−+的表达式;(2)当BP =1中过点P 作PD OA ⊥交抛物线于点D ,连接PC OD ,,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ PC ,,求CP BQ +的最小值.【答案】(1)抛物线的表达式为23y x x =−+ (2)平行四边形,见解析(3)【分析】(1)利用待定系数法将B 点坐标代入抛物线2y x bx =−+中,即可求解.(2)作辅助线,根据题意,求出PD 的长,PD OC =,PD OC ∥,利用一组对边平行且相等的四边形是平行四边形即可得证.(3)作出图,证明()SAS CBP MOQ ≌,CP BQ +的最小值为MB ,根据勾股定理求出MB 即可解答. 【详解】(1)解: 抛物线2y x bx =−+过点(4,4)B −,1644b ∴−+=−,3b ∴=,23y x x ∴=−+.即抛物线的表达式为23y x x =−+. (2)解:四边形OCPD 是平行四边形,理由如下:如图1,作PD OA ⊥交x 轴于点H ,连接PC 、OD ,点P 在y x =−上,OH PH ∴=,45POH ∠=︒,连接BC ,4OC BC ==,OB ∴= 2BP =OP OB BP ∴=−=2OH PH ∴===,当2D x =时,4322D DH y ==−+⨯=,224PD DH PH ∴=+=+=, (0,4)C −,4OC ∴=,PD OC ∴=,OC x ⊥Q 轴,PD x ⊥轴,PD OC ∴∥,∴四边形OCPD 是平行四边形.(3)如图2,由题意得,BP OQ =,连接BC ,在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,4OC BC ==,BC OC ⊥,45CBP ∴∠=︒,CBP MOQ ∴∠=∠,BP OQ =,CBP MOQ ∠=∠,BC OM ,(SAS)CBP MOQ ∴△≌△,CP MQ ∴=,CP BQ MQ BQ MB ∴+=+≥(当M ,Q ,B 三点共线时最短),CP BQ ∴+的最小值为MB ,454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,MB ∴即CP BQ +的最小值为答:CP BQ +的最小值为【点睛】本题主要考查待定系数法,二次函数图象与性质,平等四边形的判定,全等三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答醒的关键.1.(2024·宁夏银川·一模)如图,已经抛物线经过点()00O ,,()55A ,,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时;求点B 的坐标.(3)在(2)的条件下,P 是抛物线上的动点,求P 的坐标以及PA PB −的最大值.【答案】(1)24.y x x =- (2)()2,8B (3)()2,12,P - PA PB −的最大值为【分析】(1)根据题意可设抛物线为2,y ax bx =+再利用待定系数法求解抛物线的解析式即可; (2)设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx = 解得:1,k = 可得直线OA 为:,y x = 则()2,2,Q 利用()12OAB BOQ ABQ A O S S S BQ x x =+=⨯⨯−列方程,再解方程即可;(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,由勾股定理可得最小值,再利用待定系数法求解AB 的解析式,联立一次函数与二次函数的解析式,解方程组可得P 的坐标.【详解】(1)解: 抛物线经过点(0,0)O ,∴设抛物线为:2,y ax bx =+抛物线过(5,5)A ,且它的对称轴为2x =.2555,22a b b a +=⎧⎪∴⎨−=⎪⎩ 解得:1,4a b =⎧⎨=−⎩∴抛物线为:24.y x x =-(2)解:如图,点B 是抛物线对称轴上的一点,且点B 在第一象限,设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx =55,k \= 解得:1,k =∴ 直线OA 为:,y x =()2,2,Q ∴ ()12OAB BOQ ABQ A O SS S BQ x x ∴=+=⨯⨯− 12515,2y =−⨯=解得:8y =或4,y =−∵0,y > 则8,y =()2,8.B ∴(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,()()5,5,2,8,A BAB ∴=设AB 为:,y k x b ''=+ 代入A 、B 两点坐标,55,28k b k b '''+=⎧∴⎨+=⎩' ,解得:1,10k b =−⎧⎨='⎩'∴AB 为:10,y x =-+210,4y x y x x =−+⎧∴⎨=−⎩ 解得:52,,512x x y y ==−⎧⎧⎨⎨==⎩⎩()2,12.P ∴−【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定PA PB −最大时P 的位置是解本题的关键.2.(2024·湖南怀化·一模)如图1,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.【答案】(1)245y x x =−++,对称轴为直线2x =,顶点D 的坐标为()29,;(2)QAC △(3)直线MN 恒过定点,定点坐标为()28,.【分析】(1)求得点B 的坐标为()50,,点C 的坐标为()05,,利用待定系数法求解,再配成顶点式,即可得解;(2)先求得直线BC 的解析式,再求直线BC 与对称轴交点Q ,将AQ CQ +转化为BC ,在Rt AOC 中求AC ,在Rt BOC 中求BC 即可求解;(3)如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,证明MDH DNG ∽△△,求得()250mn m n −++=,再利用待定系数法求得直线MN 的解析式为()45y m n x mn =−−+++,据此求解即可. 【详解】(1)解:∵5OB OC ==,∴点B 的坐标为()50,,点C 的坐标为()05,,∴25505b c c −++=⎧⎨=⎩,解得4b =,∴抛物线的解析式为245y x x =−++, ∵()224529y x x x =−++=−−+,∴对称轴为直线2x =,顶点D 的坐标为()29,; (2)解:∵点A 与点()50B ,关于直线2x =对称,∴直线BC 与对称轴的交点为Q ,则Q 为QA QC +最小时位置,设直线BC 的解析式为5y kx =+,代入点()50B ,得055k =+,解得1k =−,∴直线BC 的解析式为5y x =−+,当2x =,253y =−+=,∴()23Q ,,∵点()10A −,,∵ACAQ CQ CB +===∴QAC △(3)解:如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,垂足分别为H ,G ,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,∵顶点D 的坐标为()29,, ∴()()222945442MH m m m m m =−−++=−+=−,2DH m =−,()()222945442GN n n n n n =−−++=−+=−,2DG n =−,由题意得90H G MDN ∠=∠=∠=︒,∴90MDH NDG DNG ∠=︒−∠=∠, ∴MDH DNG ∽△△, ∴MH HD DG NG =,即()()222222m mn n −−=−−,∴()()221m n −−=−, ∴()250mn m n −++=,∵点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,设直线MN 的解析式为11y k x b =+,∴2112114545mk b m m nk b n n ⎧+=−++⎨+=−++⎩①②,−①②得()()()2214m n k m n m n −=−−+−, ∵m n ≠,∴14k m n =−−+,将14k m n =−−+代入①得()21445m m n b m m −−++=−++,求得15b mn =+;∴直线MN 的解析式为()45y m n x mn =−−+++, ∵()250mn m n −++=,即()25m n mn +=+, ∴()()428y m n x =−−+−+, ∴当20x −=即2x =时,8y =,∴无论m n 、为何值,直线MN 总会经过定点()28,, ∴直线MN 恒过定点,定点坐标为()28,.【点睛】本题考查了二次函数的综合运用.考查了待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握二次函数的图象与性质、轴对称的性质,添加适当的辅助线,是解题的关键.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2Ly ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.【答案】(1)3y x =−+,223y x x =−++;(2)点P 的横坐标为时,PD AD +有最大值; (3)2154y x x =−−+.【分析】(1)利用待定系数法解答即可求解;(2)设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+,先证明ACD 为等腰直角三角形,得到)AD t =−,进而得到2PD AD t ⎛+=−+ ⎝⎭,根据二次函数的性质即可求解;(3)设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得23()4x x m −+=−−+,整理得,22(21)10x m x m −++−=,设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,由B 为MN 的中点可得210m +=,求出m 即可求解;本题考查了二次函数与一次函数的交点问题,待定系数法求函数解析式,二次函数的性质,二次函数图象的平移,掌握二次函数的图象和性质是解题的关键.【详解】(1)解:抛物线2L y ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =,930312a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪−=⎩,解得123a b c =−⎧⎪=⎨⎪=⎩,∴抛物线L 的解析式为223y x x =−++;设直线AB 的解析式为3(0)y kx k =+≠,把(3,0)A 代入得,330k +=,解得1k =−,∴直线AB 的解析式为3y x =−+;(2)解:设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+, 3AC t ∴=−,23PD t t =−+,(3,0)A ,(0,3)B −,3OA OB ∴==,AOB ∴为等腰直角三角形,45OAB ∴∠=︒,PC x ⊥轴, ACD ∴为等腰直角三角形,)AD t ∴==−,∴223PD AD t t t ⎛+=−++=− ⎝⎭,∴当t =时,PD AD +有最大值,即点P的横坐标为32时,PD AD +有最大值;(3)解:由(1)可知,直线AB 的解析式为3y x =−+,抛物线L 为:2223(1)4y x x x =−++=−−+,∴设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得,()234y x y x m =−+⎧⎪⎨=−−+⎪⎩,23()4x x m ∴−+=−−+,整理得,22(21)10x m x m −++−=, 设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,1221x x m ∴+=+,∵B 为MN 的中点,∴120x x +=,∴210m +=, 解得12m =−,∴抛物线L '的解析式22115424y x x x ⎛⎫=−++=−−+ ⎪⎝⎭.题型三 胡不归求二次函数中线段和最值问题【例1】(新考法,拓视野)(2024·陕西西安·三模)已知抛物线2(,,y ax bx c a b c =++为常数,0)a ≠与x 轴交于点()A −、点B 两点,与y 轴交于点()0,2C,对称轴为x =(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限,过M 作MN AC ⊥于点N,求AN 的最大值.【答案】(1)22y x =−+(2)496【分析】(1)用待定系数法求解即可;(2)过点M 作MF y ∥轴,交AC 于点E ,先求出一次函数AC 的解析式,用解直角三角形的方法求出30OAC ∠=︒,表示出MN =,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,分别表示出EF ME AE MN ,,,,最后得到249=26AN m ⎛−+ ⎝⎭,求出最后结果即可.【详解】(1)解:点()A −,对称轴为x =(2a c ∴−−+=,2c =,2b a −=解得:1a =−,b = ∴抛物线的表达式为:22y x =−+;(2)如图,过点M 作MF y ∥轴,交AC 于点E ,设AC 的解析式为y kx b =+,02b b ⎧−+=⎪∴⎨=⎪⎩,2k b ⎧=⎪⎨⎪=⎩,∴AC的解析式为2y =+,2AO =2CO =,tan CO OAC AO ∴∠==,30OAC ∴∠=︒,90AFE MNE ∠=︒=∠,AEF MEN ∠=∠, 30M OAC ∴∠=∠=︒,2AE EF ∴=,12EN ME =,sin MN ME ACO ∴=⋅∠=,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,2EF ∴=+,2222ME m m ∴=−+−=−−,24AE EF ∴==+,21122EN ME m ==−,23MN m==−,AN ∴,AE EN=+2213422m m =+−−−224m =−+24926m ⎛=−++ ⎝⎭,20−<,∴当m =时,AN 的最大值为496.【例2】(2024·浙江·一模)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫⎪⎝⎭,,点M 在x 轴上,点E 在平面内,BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值. 【答案】(1)214433y x x =−−+(2)①()2,2E −−;②【分析】(1)将点B 、C 的坐标代入抛物线,利用待定系数法求得解析式;(2)①由Q 坐标求出BQ 解析式,然后根据四边形ANEM 是平行四边形和BME AOM ≌得出4BM OA ==,再分类讨论求得M 和E 的坐标;②求出AM 解析式,交点为P ,再求出H 坐标,然后由两点间距离公式求出BP 和BH 长度,因为旋转不改变长度,所以1BP长度不变,当H 旋转到x 轴上时,此时1OH 最短,所以此时1OH 等于BO BH −,然后代入计算即可.【详解】(1)解:①抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C , ∴366404240a b a b −+=⎧⎨++=⎩,解得:1343a b ⎧=−⎪⎪⎨⎪=−⎪⎩ ∴214433y x x =−−+;(2)解:214433y x x =−−+4∴=OA ,设直线BQ 的解析式为1y kx b =+, ()6,0B −,713Q ⎛⎫ ⎪⎝⎭,∴117360k b k b ⎧+=⎪⎨⎪−+=⎩,解得1132k b ⎧=⎪⎨⎪=⎩,∴直线BQ 的解析式为123=+y x ,N Q 为BQ 与y 轴交点, ()0,2N ∴,2AN ∴=,四边形ANEM 是平行四边形,∴AN EM ∥且2EM AN ==,且点E 在点M 下方, 点M 在x 轴上,点E 在平面内,BME AOM ≌,4BM OA ∴==, ()6,0B −, ()2,0M ∴−或()10,0−,若M 为()2,0−,90BME AOM ∠=∠=︒,故()2,2E −−, 若M 为()10,0−,2OM ME ==,此时10OM =,(矛盾,舍去),综上,点E 的坐标为()2,2−−;②如图,设AM 的解析式为,y kx b =+抛物线24y ax bx =++交y 轴于点A ,∴点A 的坐标为(0,4),将点()0,4A 、()2,0M −的坐标代入y kx b =+得:420b k b =⎧⎨−+=⎩,解得24k b =⎧⎨=⎩,AM ∴的解析式为24y x =+,AM 与BQ 相交于点P ,∴24123y x y x =+⎧⎪⎨=+⎪⎩,解得6585x y ⎧=−⎪⎪⎨⎪=⎪⎩, 所以点P 的坐标为68,55⎛⎫− ⎪⎝⎭,设直线BE 的解析式为y mx n =+,将点B 、E 的坐标代入直线BE 的解析式得:2260m n m n −+=−⎧⎨−+=⎩,解得123m n ⎧=−⎪⎨⎪=−⎩, 所以直线BE 的解析式为132y x =−−,BE 与AM 相交于点H ,∴24132y x y x =+⎧⎪⎨=−−⎪⎩,解得14585x y ⎧=−⎪⎪⎨⎪=−⎪⎩, ∴点H 的坐标为148,55⎛⎫−− ⎪⎝⎭,BP ∴==BH ==1BP ∴当H 旋转到x 轴上时,此时1OH 最短,∴16OH BO BH =−=116BP ∴==⎭∴11BP的最小值为1.(2024·河南洛阳·一模)在平面直角坐标系中,抛物线212y x bx c =−++交x 轴于()4,0A 、B 两点,交y 轴于点()0,4C .(1)求抛物线表达式中的b 、c ;(2)点P 是直数AC 上方抛物线上的一动点,过点F 作PF y 轴交AC 于点E ,作PE AC ∥交x 轴于点F ,求PE 的最大值及此时点P 的坐标; (3)将该抛物线沿射线CA方向平移1y ,请直接写出新抛物线1y 的表达式______.【答案】(1)1b =,4c =(2)PE 取得最大值为254,此时335,28P ⎛⎫ ⎪⎝⎭.(3)()2115322y x =−−+【分析】本题考查了二次函数的综合,待定系数法求函数解析式: (1)利用待定系数法即可求解;(2)延长PE 交x 轴于H ,根据题意求得直线AC 的解析式为4y x =−+,OC OA =,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p ,证得PHF是等腰直角三角形,从而求得232524PE PE PH p ⎛⎫=+=−−+⎪⎝⎭,即可求解; (3)先求得CA =,根据1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到,进而可求解;掌握待定系数法求函数解析式及利用数学结合是解题的关键.【详解】(1)解:抛物线212y x bx c =−++交于()4,0A 和()0,4C ,8404b c c −++=⎧∴⎨=⎩,解得:14b c =⎧⎨=⎩. (2)延长PE 交x 轴于H()4,0A ,()0,4C ,∴直线AC 的解析式为4y x =−+,OC OA =, PE y ∥Q 轴,PE x ∴⊥轴, 90AOC ∴∠=︒,45OAC ∴∠=︒,PFAC ,45OFP ∴∠=︒,2PH PF ∴=,PE PE PH ∴+=+,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p , ()221144222PE p p p p p ∴=−++−−+=−+,2142PH p p =−++,222211325243422224PE PF PE PH p p p p p p p ⎛⎫∴+=+=−+−++=−++=−−+⎪⎝⎭,PE ∴+的最大值为254,此时点P 的坐标为325,24⎛⎫ ⎪⎝⎭.(3)()4,0A ,()0,4C ,CA ∴=将抛物线y 沿射线CA 方向平移1y ,∴1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到, ()2115322y x ∴=−−+,故答案为:()2115322y x =−−+.2.(2024·海南海口·一模)如图,抛物线2y ax bx c =++过点()1,0A −,()3,0B ,()0,3C .(1)求抛物线的解析式;(2)设点P 是第一象限内的抛物线上的一个动点, ①当P 为抛物线的顶点时,求证:PBC 直角三角形; ②求出PBC 的最大面积及此时点P 的坐标;③过点P 作PN x ⊥轴,垂足为N ,PN 与BC 交于点E.当PE 的值最大时,求点P 的坐标.【答案】(1)223y x x =−++(2)①PBC 是直角三角形;②315,24P ⎛⎫ ⎪⎝⎭;③57,24P ⎛⎫ ⎪⎝⎭【分析】(1)把A 、B 、C 三点坐标代入2y ax bx c =++求解即可; (2)①作PH y ⊥轴于点H ,易证PCH △和BOC 是等腰直角三角形,即可求出90PCB ∠=︒; ②先求出直线BC 的解析式,过点P 作PD x ⊥轴于点D ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,23922PBC S x x ∆=−+,然后根据二次函数的性质求解即可; ③过点P 作PN x ⊥轴于点N ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,判断BEN是等腰直角三角形得出BE =,即可求出25PE x x =−+,然后根据二次函数的性质求解即可. 【详解】(1)解:将点()1,0A −,()3,0B ,()0,3C 代入解析式得:09303a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得:123a b c =−⎧⎪=⎨⎪=⎩,∵抛物线的解析式为223y x x =−++;(2)解:①配方得()222314y x x x =−++−−+∴点P 的坐标为()1,4,作PH y ⊥轴于点H ,则1PH CH ==,∴45HCP ∠=︒又∵在Rt BOC 中,3OB OC ==, ∴45OCB ∠=︒, ∴90PCB ∠=︒∴PCB 是直角三角形②设直线BC 的解析式为y kx b =+,将点B 、C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =−⎧⎨=⎩, ∴直线BC 的解析式为3y x =−+, ∵()3,0B ,∴3OB =, 设点()2,23P x x x −++(03x <<),过点P 作PD x ⊥轴于点D ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x=−++−−+=−+,∴()22211393327332222228PBCSPE OB x x x x x ⎛⎫=⨯⨯=⨯−+⨯=−+=−−+ ⎪⎝⎭,当32x =时,PBC 的最大面积为278,2915233344x x −++=−++=,∴315,24P ⎛⎫⎪⎝⎭③设点()2,23P x x x −++(03x <<),过点P 作PN x ⊥轴于点N ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x =−++−−+=−+, ∵()0,3C ,()3,0B ,∴3OC OB ==,3BN x =−,∴45OBC OCB ∠=∠=︒,∴45NEB OBC ∠=∠=︒,∴BE ==,∴()CE BC BE =−==,∴22525524PE x x x ⎛⎫=−+=−−+ ⎪⎝⎭, ∴当52x =时,PE 有最大值,此时57,24P ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,面积问题,线段问题,掌握二次函数的性质是解题的关键.3.(2023·山东济南·一模)抛物线()21122y x a x a =−+−+与x 轴交于(),0A b ,()4,0B 两点,与y 轴交于点()0,C c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若14PMB AMB S S =V V ,求点P 的坐标; (3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为9(0)0αα︒<<︒,连接E B ',E C ',求34E B E C ''+的最小值. 【答案】(1)2a =,2b =−,4c = (2)53,2P ⎛⎫ ⎪⎝⎭(3)【分析】(1)利用待定系数法求解即可;(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,求得BC l 的解析式,设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+,利用相似三角形的判定与性质可得答案; (3)在y 轴上取一点F ,使得94OF =,连接BF ,由相似三角形的判定与性质可得34FE CE ''=,可得34E B E C BE E F '''+'+=,即可解答.【详解】(1)解:将()4,0B 代入()21122y x a x a =−+−+,得()84120a a −+−+=,2a ∴=,∴抛物线的解析式为2142y x x =−++,令0x =,则4y =,4c ∴=,令0y =,则21042x x =−++,14x ∴=,22x =−,()2,0A ∴−,即2b =−; ∴2a =,2b =−,4c =(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,设BC l :y kx b =+,将()0,4,()4,0代入得440b k b =⎧⎨+=⎩解得:4b =,1k =−,BC l ∴:4y x =−+, 设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+, ()221144222P D PD y y m m m m m =−=−++−−+=−+,PD HA ∥,AMH PMD ∴∽,PM PD MA HA ∴=,将2x =−代入4y x =−+,6HA ∴=,112142PMB AMBPM h S PM S AM AM h ⋅===⋅, 164PD PD HA ∴==,32PD ∴=, 231222m m ∴=−+,11(m ∴=舍),23m =,53,2P ⎛⎫∴ ⎪⎝⎭;(3)在y 轴上取一点F ,使得94OF =,连接BF ,根据旋转得性质得出:3OE OE '==,∵9494OF OC ⋅=⨯=, 2OE OFOC '∴=⋅,∴OE OC OF OE '=',COE FOE ''∠=∠,∴FOE E OC ''∽,。
二次函数应用型试题解题策略
△D F中LF D是直角 , E E
.
.
段B C上 的动点 ( 与 B, 不 C重 合 )连 接 D 作 E . E, F上D E E, F 与射线 B A交于点 F, C ,F= 设 E= B ( ) Y关于 的函数关系式 ; 1求 图1
要使 AD F是等腰三角形 , 只能是 E E E 则 F= D,
’ ,= —————- .
m
() : 时,: 兰 2 当m 8 y
,
试题 进行 整理归纳 , 并举例评析.
1 以点 ( 或线段、 三角 形、 正方 形等 ) 运动 为背景 , 设计 几何变 量 。 探求 几何变 量之 间的 函数 关 系。 并利用该 函 数关系求某些情 形下的几何变量 的值 例 1 ( 苏南通 ) 图 , 江 如 在矩形 佃 c D中,B=m( 是 A m
.
一
。 E —C ’ ‘C D “ 8 —X 2
‘ . .
丝 Ⅱ 一 上
一 m
’
计新 颖 、 富有创 意的 当属 两类 : 一类是用 二 次函数 的知
识 与方法解决运动 型几何 问题 ; 另一类是 用二次 函数的 知识 与方法解决现实生活 中的实际 问题. 本文对这 两类
设、 a 的解析式为y , = 把点A 1 ,√ ) (24 的坐标代
人得 4 =1k 2。
・ . .
() 2 由题意 , 一lx + 0 x一 0 0 2 0 , 得 O 70 100= 0 0
解这个方程得 。 3 , = 0 = 0 4 . 2 ( )‘ 3 ’口=一1 O . 0< ,
此时 , t 髓 R △C , R△ t 肋
’
. .
当 E 2时 , C B 6 C= m= D= E= ;
二次函数综合题型解题策略与技巧研究
二次函数综合题型解题策略与技巧研究发表时间:2020-09-27T11:24:17.883Z 来源:《教学与研究》2020年9月上作者:徐桂文陈福建[导读] 在素质教育下,初中数学学习迎来了更高的要求,学生不仅要掌握基础的理论性知识,同时还要引导将知识点有效的串联起来,全面的分析问题,尤其在二次函数的综合题的解题中,其对初中学生的数学综合能力进行了考察,需要学生结合多个方面的知识点,化解题目,得到正确的结果。
福建省泉州市安溪县金火中学徐桂文指导老师:陈福建摘要:在素质教育下,初中数学学习迎来了更高的要求,学生不仅要掌握基础的理论性知识,同时还要引导将知识点有效的串联起来,全面的分析问题,尤其在二次函数的综合题的解题中,其对初中学生的数学综合能力进行了考察,需要学生结合多个方面的知识点,化解题目,得到正确的结果。
本文以一道二次函数的综合题为例,探究了多种解题方式,以便强化初中学生的综合性数学思维。
关键词:二次函数;策略;技巧;综合题二次函数是初中数学教学中的重要知识点之一,而综合型题则是将多个知识点整合起来,对学生进行考察,需要学生利用逻辑思维能力,探究能力,抽丝剥茧的化解题目,找到解题的关键,并理清在二次函数综合性题目解答中的对应关系,进而通过分析与应用,才能够掌握解答综合型题目的方法和技巧。
一、题目展示已知二次函数y=ax2+bx+c的图像经过(-1,4),并且其和直线y=- x+1,分别交于A B两点,点A在y轴上,过点B作x轴的垂线,C(-3,0)为垂足(如下图)。
分别回答以下问题:1.求二次函数的解析式;2.已知点N为图像上的一点,并且位于AB的上方,过N作x轴的垂线,P为垂足,与AB交点为M,求MN的最大值;3.在(2)成立下,分析N在哪一位置时,BM和NC垂直且平分,求N的坐标。
二、分析问题,解答问题此题是二次函数的综合性题目,对抛物线、坐标、直线以及几何关系等都有涉及,每一小问都有不同的侧重点,因此在解答题目时,需要抓住每一问的关键,分别对其解析式、最大值以及坐标等进行解答,可以采用树形结合的方式分析题目,并综合性的借助几何问题和函数知识等,将复杂的题目转化为比较简单的问题。
二次函数综合题型解题策略与技巧
数理化解题研究2019年第14期总第435期二次函数综合题型解题策略与技巧李金华(云南省曲靖市麒麟区第七中学655000)摘要:作为初中数学中的重点和难点,二次函数综合题是很多学生学习过程中的“拦路虎”.教师应在平时在教学实践中注意总结一些典型的解题策略及技巧,并使学生切实掌握,从而有效提高其解决题能力.本文结合具体题例探讨了两种重要的二次函数综合题型解题策略,希望对相关教育工作者有所助益.关键词:初中数学;二次函数综合题;解题策略;解题技巧中图分类号:G632文献标识码:A文章编号:1008-0333(2019)14-0006-02一、抓准临界点信息,恰当分类,巧妙切入众所周知,分类思想是初中数学中最重要的思想方法之一,从初一开始学习有理数到初三复习函数综合题,整个教学过程中无不渗透着分类思想,或者说分类思想在初中数学解题中有着极其重要的应用.事实上,如果留心就不难发现,不管是中考压轴题还是平时的模拟题,绝大多数二次函数综合题都或深或浅地涉及到分类思想,并且往往是以恰当的分类为切入点,学生如果分类讨论的意识淡薄或是做不到合理分类也就无法顺利解题.而这其中的关键就在于仔细分析题意,抓准临界点信息,从而恰当分类,巧妙切入.下面我们来看一道比较典型的例题:例1设函数y=-x2+(m-2)x+3(m+l),试解答以下三问:①判断该函数与x轴有几个交点,并给予证明;②若该函数图象与y轴的交点为C,与x轴的交点为A、B (虫在B左侧),厶CAB与厶CBA其中之一为钝角,求m的取值范围;③设该函数图象的顶点为P,在求得m取值范围的前提下,若△円。
与△ABC的面积相等,求该二次函数的表达式.解析前两问难度不大,关键是第三问.由于人2两点的位置不是唯一确定的,故须分为两种情况加以讨论,其大体解答过程如下:令y=+(m-2)x+3(m+l) =0,可得;ti=m+1,x2=3,则不难得到顶点P的坐标为(专,(m:4)\.此时考虑到久b两点的位置关系,须分成两种情况进行讨论:第一种情况是当/1的坐标为(m +1,0),B的坐标为(-3,0)时,根据△PAO与ZUBC的面积相等得到*(m+l)X*(-m-4)x3(m+1),解得m=-16,故所求函数表达式为y=-/-18x-45.第二种情况是当/1的坐标为(-3,0),B的坐标为(m+1,0)时,根据△PM与ZUBC的面积相等得到* x3x3"“;4=*(m+4)x[3(m+l)],解得m= -J■,故所求函数表达式为y=-x--简评通过以上的解题可以看出,此题难度不高但属于较为典型的二次函数综合题,其以二次函数的基本运用为基础综合了几何知识,第三问解答的切入点和关键点就在于依据两点的未知情况进行分类讨论.在二次函数的综合题型中,像这样涉及到到分类讨论思想的题目数不胜数,我们应多加注意.二、理清隐含条件,数形结合,直击要害在二次函数综合题中,函数图象的性质历来是考查的重点之一,而以之为基础也常常与方程、不等式或一些几何知识进行综合,因此数形结合能力在二次函数综合题的解答过程中就显得至关重要,尤其是在需要将一些复杂而抽象代数问题图形化时,正确的数形结合是解答题目的基础和关键.事实上,很多学生在面对二次函数综合题时的最大短板就是图形转化能力低,尤其是对题目中的一些隐含信息,无法通过数形结合标示出来进而充分利用,因此,在习题教学中教师应特别重视使学生掌握“代数图形化“策略,能够理清隐含信息,通过数形结合直击要害•我们来看一道例题:已知在平面直角坐标系中,直线y=层与二次函数y=ax2-(a+l)x图象的一个交点为4(4,8),试解答以下三问:①求出该直线和二次函数的解析式;②若点P 为线段0A上一点,过该点做y轴的平行线交本题中二次函数图象于点Q,则线段PQ的最大长度为多少?③设本题中二次函数图象的顶点为M,点N为二次函数图象上一点,若使四边形AOMN为梯形,则点N的坐标及梯形AOMN的面积收稿日期:2019-02-15作者简介:李金华(196&9-),男,本科,学士,中学高级教师,从事中学数学教育教学及研究.—6—2019年第14期总第435期数理化 解题研究分别是多少?解析首先要说的是本题的原题是没有给出图形 的,需要学生在平面直角坐标系中画出直线和二次函数 的图象,并根据题意标出重要的点,在此基础上进行分析 和解答.前两问很简单,在此从略.第 三问的大体解答过程如下:从第一问 求出的二次函数的解析式y = x 2 - 2x 可知顶点M 的坐标为(1, -1),过点 M 作直线OA 的平行线交二次函数图 象于点N,如图所示,四边形AOMN 为 梯形,直线MN 可看作是由直线OA 向下平移b 个单位得到,由此可得直线MN 的方程为y = 2x-b.将M 点的坐标代入此方程得到b=3,故直线MN 的方程为y=2x-3.将此式与二次函数的表达式y = d - 2x 联立可得x, = 1 ,x 2 = 3.据此易知MN 与二次函数的交 点N 的坐标(3,3).如图,分别过点M 、N 作y 轴的平行线 交直线CM 于G 、H,四边形MM7G 显然为平行四边形,据 此可得到G 、H 两点的坐标分别为(1,2)和(3,6).由图可 知,所求梯形面积等于△OMC'AAAW 与梯形MNHG 的面 积之和.求三者面积所需的关键点的坐标都已有了,根据 面积公式分别求出其面积然后相加即可得到最后答案.简评该题综合二次函数、一次函数与一些相关几 何知识,属于比较典型的二次函数综合题.其新颖点在 于,以二次函数与一次函数的图象相交形成的图形框架 为载体巧妙融合进几何知识,而原题并不给出图形,需要 学生自主画图,并挖掘题目中的隐含信息进而善加利用. 整个解题过程中所彰显出来的正是一种典型的“数形结 合,直击要害”的解题策略,需要我们好好体会和借鉴.综上所述,我们结合具体题例探讨了初中二次函数 综合题型的两种基重要解题策略,即“抓准临界点信息, 恰当分类,巧妙切入”“理清隐含条件,数形结合,直击要 害” •事实上,初中二次函数综合题型解题策略与技巧时 一个同时具有一定深度和广度的话题,除本文所述外当 然还有其他一些有效的策略及技巧,这就需要我们一线 教师在教学实践中多加留心和勤于总结.参考文献:[1]王新.数学思想方法研究综述[J ].中学数学教学 参考:中旬刊,2016(10).[责任编辑:杨惠民]关注差异发展差异性思维张爱华(江苏省南通田家炳中学226000)摘 要:初中数学的学习是学生思维能力的起点,初中题目的解题思路需要学生对思维有很深的认识.追 求不同的思维方式的人,往往对于学习有着极大的兴趣,对于问题解法的探索也有着自己认识,相对应的,他 也有着更为独立的性格.关键词:个性独特;逻辑思维;思维锻炼;课堂氛围;差异性思维中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2019)14 -0007 -02其实不难看出,这些年的教学地点已经不仅仅局限 于课堂上,教学内容也不仅仅局限于书本和习题了,慢慢 进化成学生成为课堂的主宰者,学生提出问题,学生解决 问题,而老师则变成了这种教育方式的引导者.这就是一 种教育的改变与创新,这种教育方式更有利于学生能力 的发展,而这种教育方式的重中之重就是对于学生思维 能力的帮助,对于学生追求不同思维的帮助.对于追求差 异性思维的过程大致分为三步:一、差异性思维需要学生拥有“独特的个性”1.不能完全否定独特的个性刚刚步入初中阶段的学生,思维方式还是比较单一 的,比较纯朴的,因为学生所经历的教育方式,大多还是 “听说读写”的较多•大家所会的也是老师所说的,千篇一 律,很少有人有自己的“野路子”.独特的个性,并不是行 为的独特,而是思维的独特.这类人,对于问题有自己的收稿日期:2019 -02 -15作者简介:张爱华(1974.3 -),女,本科,高级教师,从事初中数学教学研究.—7—。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
□ 孙朝仁 朱松林
二次函数既是中考的重点内容,也是热点问题.而二次函数综合题在各级各类考试中都属于难度较大的问题,要求同学们不但对于二次函数本身的内容掌握要牢固,而且还要善于将二次函数和其他的有关知识(方程、不等式以及几何等知识)“攀亲”,搞好关系,这样问题的综合层次和要求都比较高 .解决这类问题的关键就是要“沉得住气”,认真仔细地将题目中所提供的信息进行加工梳理,有条不紊地进行“抽丝剥茧”,最终解决问题 .下面略举几例,谈谈二次函数综合题的常见的解题策略 .
一、得意知“形”,由“形”想“数”
例1 已知函数y =x 2+bx +2的图象经过点(3,2).
(1)求这个函数的关系式;
(2)画出它的图象;
(3)根据图象指出:当x 取何值时,y ≥2?
分析 首先,利用待定系数法,可以求出b 的值,
从而获得函数表达式;其次,根据函数关系式不难知“形”——
用描特殊点法画出函数图象;第三,借助函数图象,由“形”想
“数”,要“确定y ≥2时,x 的取值范围”就是要求位于“直线
y=2上方”图象的自变量取值范围.
解 (1)根据题意,得 2=9+3b +2,
解得 b =-3.
∴函数关系式为y =x 2-3x +2.
(2)易求该抛物线与x 轴的两个交点坐标为(1,0)、(2,0),与y 轴的交点坐标为(0,2),对称轴为2
3 x .函数y =x 2-3x +2的图象如图1所示. 图1
(3)根据图象可得,当y =2时,对应的x 的值为0和3 .因此,当x ≤0或x ≥3时,y ≥2.
评析 充分利用函数图象的直观性,分析解决问题是体现“数形结合”思想一个重要方面.本题还可以直接指出“当x 取何值时,y ≤2?”以及根据图象写出“不等式x 2
-3x +2≤0的解集”,这两个问题,请同学们自行写出. 二、函数与方程“攀亲”,由方程求函数
例2 如图2,一元二次方程0322
=-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标;
(3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标.
分析 (1)求出方程的两个根,就相当于知道了B ,C 两
点的坐标,进而由A ,B ,C 三点的坐标,利用待定系数法,很
让容易求出二次函数的解析式;(2)要求交点Q 的坐标,只要
函数与方程“攀亲”,将该抛物线的“对称轴方程”与“直线
AC 的解析式”联立得方程组,解这个方程组就可得到;(3)要
求“MQ+MA ”的最小值,只需作点A 关于x 轴的对称点即可,用
对称性及“两点之间线段最短”的几何知识加以解决.
解 (1)解方程0322=-+x x ,得1x =-3,2x =1. ∴抛物线与x 轴的两个交点坐标为:C (-3,0),B (1,0).
将 A (3,6),B (1,0),C (-3,0)代入抛物线的解析式,得
⎪⎩⎪⎨⎧=+-=++=++.039,0,639c b a c b a c b a 解这个方程组,得 ⎪⎪⎩
⎪⎪⎨⎧-===.23,1,21c b a
∴抛物线解析式为2
3212-+=x x y . x
) ) 图2
(2)由2)1(2
1232122-+=-+=
x x x y ,得抛物线顶点P 的坐标为(-1,-2),对称轴为直线x=-1. 设直线AC 的函数关系式为y=kx+b,将A (3,6),C (-3,0)代入,得
⎩⎨⎧=+-=+.03,63b k b k 解这个方程组,得 ⎩
⎨⎧==.1,3k b ∴直线AC 的函数关系式为y=x+3.
由于Q 点是抛物线的对称轴与直线AC 的交点,
故解方程组⎩⎨⎧+=-=.3,1x y x 得⎩⎨⎧=-=.
2,1y x ∴点Q 坐标为(-1,2).
(3)作A 点关于x 轴的对称点)6,3(/-A ,连接Q A /,Q A /
与x 轴交点M 即为所求的点. 设直线Q A /
的函数关系式为y=kx+b. ∴⎩⎨⎧=+--=+.2,63b k b k 解这个方程组,得⎩⎨⎧-==.
2,0k b ∴直线Q A /的函数关系式为y=-2x. 令x=0,则y=0.∴点M 的坐标为(0,0).
评析 求两个函数图象的交点问题,其实就是求两个函数关系式联立的方程组的解的问题.点与函数图象的关系是,若点的坐标满足函数关系式,则点在函数图象上,反之也成立.本题中的第(3)问改为“若在y 轴上有一动点N ,当NQ+NA 取得最小值时,求N 点的坐标”,请同学们做做看.
三、函数与几何“联姻”,由图形性质建立函数关系式
例3 如图3,在锐角ABC △中,9BC =,AH BC ⊥于点H ,且6AH =,点D 为AB 边上的任意一点,过点D 作DE BC ∥,交AC 于点E .设
ADE △的高AF 为(06)x x <<,以DE 为折线将ADE △翻折,
所得的A DE '△与梯形DBCE 重叠部分的面积记为y (点A 关于DE 的对称点A '落在AH 所在的直线上).
(1)分别求出当03x <≤与36x <<时,y 与x 的函数关系
图3
式;
(2)当x 取何值时,y 的值最大?最大值是多少?
分析 本题所求的“y 与x 之间的函数关系式”分两种情况:一是点A 关于DE 的对称点A '在ABC △内,一是点A 关于DE 的对称点A '在ABC △外.对于第一种情况,其重叠部分就是A DE '△的面积(也即ADE △的面积),此时只要依据相似三角形的性质把高AF ,底边DE 用含x 的关系式表示出来即可;而第二种情况,其重叠部分是一个梯形,求梯形EDPQ 的面积即可.最后,要求出重叠部分面积的最大值,同样也需要分两种情况,把每种情况下的最大面积都求出来,然后进行比较.
解 (1)①当03x <≤时,由折叠得到的A ED '△落在ABC △内部,如图4(1),重叠部分为A ED '△.
DE BC Q ∥,
ADE B AED C ∴∠=∠∠=∠,.
ADE ABC ∴△∽△.
DE AF BC AH ∴=.96
DE x ∴=. 即32
DE x =.又FA FA x '==, ∴2/43232121x x x F A DE y =⨯⨯=⨯=. ②当36x <<时,由折叠得到的A ED '△有一部分落在ABC △外部,如图4(2),重叠部分为梯形EDPQ .
66FH AF x =-=-Q ,
∴(6)26A H A F FH x x x ''=-=--=-.
又DE PQ Q ∥, A PQ A DE ''∴△∽△. PQ A H DE A F '∴='. 263(3)32
PQ x PQ x x x -∴==-,. 1()2y DE PQ FH ∴=+⨯133(3)(6)22x x x ⎡⎤=+-⨯-⎢⎥⎣⎦=2718492-+-x x . 图4
F
(2)当03x <≤时,y 的最大值22133273444
y x =
=⨯=; 当36x <<时,由22991827(4)944y x x x =-+-=--+可知,当4x =时,y 的最大值29y =.
12y y <Q ,∴当4x =时,y 有最大值9y =最大.
评析 二次函数与几何图形相结合的问题,其解题模式是,先根据几何图形本身的性质,表示出线段之间的关系,进而恰当设出变量,得出函数关系式,再根据题目要求得出最终的结论. 同时,在几何图形中求函数关系问题具有一定的实际意义,因此对函数关系式中自变量的取值范围必须认真考虑,一般有约束条件.
综上所述,二次函数综合题,是一类对同学们能力要求高,知识覆盖面广,解题难度大的问题,要求在解题过程中冷静分析,缜密思考,耐心梳理,正确把握解题策略才有可能顺利解决.下面给出两题,请同学们一试身手!
练习:
1.已知:抛物线y=-x 2
+4x-3与x 轴相交于A ,B 两点(A 点在B 点的左侧),顶点为P .
(1)求A ,B ,P 三点坐标;
(2) 在直角坐标系内画出此抛物线的简图,并根据简图写出当x 取何值时,函数值y 大于零;
(3)确定此抛物线与直线y=-2x+6公共点的个数,并说明理由.
2.已知:m ,n 是方程的两个实数根,且,抛物线的图象经过点A(m ,0),B(0,n ). (1)求这个抛物线的解析式;
(2) 设(1)中抛物线与轴的另一交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标和△BCD 的面积;
(3)P 是线段OC 上的一点,过点P 作PH ⊥轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.
参考答案:
1.(1)A(1,0),B (3,0), P (2,1); (2)画图象略, 当1<x <3时,y>0;(3)抛物线
与直线有唯一的公共点.
2.(1)542+--=x x y ;(2)C 点的坐标为(-5,0),D 点坐标为(-2,9),15=∆BCD S ;
(3)P 点的坐标为)0,23(-或)0,32(-.。