带原点平移的反幂法解特征值

合集下载

数值分析幂法和反幂法

数值分析幂法和反幂法
m1=m;
k=k+1;
end
在matlab输入面板,输入
A=rand(4);%产生一个4维随机矩阵
B=A+A’;
u=[1 1 1 1]’;%设立初始向量
[m,u,index,k]=pow(B,u,ep,it_max)%最多可省略2个参数
程序结束。
在M文件中可以通过改变m0的值改变原点位移,从而达到原点位移加速。
m =
2.6814
u =
0.8576
0.6934
0.5623
1.0000
index =
0
k =
1001
修改M0=0
m =
2.6820
u =
0.8577
0.6937
0.5624
1.0000
index =
1
k =
7
总结以上,幂法如下:
U
m0
m
u
index
k
[1 1 1 1]
0.0001
2.6813
[0.8576 0.6934 0.5623 1.0000]
2、对于幂法的定理
按式(1)计算出m 和u 满足
m = , u =
(二)反幂法算法的理论依据及推导
反幂法是用来计算绝对值最小的特征值忽然相应的特征向量的方法。是对幂法的修改,可以给出更快的收敛性。
1、反幂法的迭代格式与收敛性质
设A是非奇异矩阵,则零不是特征值,并设特征值为
| |≥| |≥…≥| |>| |
反幂法程序设计代码:
在matlab中建立一个M文件并保存。
%pow_inv.m
function[m,u,index,k]=pow_inv(A,u,ep,it_max)

七、矩阵特征值的乘幂方法和反乘幂方法

七、矩阵特征值的乘幂方法和反乘幂方法

1、用幂法计算矩阵A的主特征值和对应的特征向量。

function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1)lambda=0;k=1;Wc=1;jd=jd*0.1;state=1;V=V0;while((k<=max1)&(state==1))Vk=A*V;[m j]=max(abs(Vk));mk=m*sign(Vk(j));tzw=abs(lambda-mk);Vk=(1/mk)*Vk;txw=norm(V-Vk);Wc=max(txw,tzw);V=Vk;lambda=mk;state=0;if(Wc>jd)state=1;endk=k+1;endif(Wc<=jd)disp('迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:')elsedisp('迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:')endVk=V;k=k-1;Wc;>> A=[1 -1;2 4];>> V0=[1,1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =33lambda =3.0000Vk =-0.50001.0000Wc =8.6919e-007>> [V,D]=eig(A)V =-0.7071 0.44720.7071 -0.8944D =2 00 3>> Dzd=max(diag(D))Dzd =3>> wuD=abs(Dzd-lambda)wuD =1.7384e-006>> wuV=V(:,2)./VkwuV =-0.8944-0.8944>> A=[1 2 3;2 1 3;3 3 6];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =3lambda =9Vk =0.50000.50001.0000Wc =>> [V,D]=eig(A)V =0.7071 0.5774 0.4082-0.7071 0.5774 0.40820 -0.5774 0.8165D =-1.0000 0 00 -0.0000 00 0 9.0000>> Dzd=max(diag(D))Dzd =9>> wuD=abs(Dzd-lambda)wuD =>> wuV=V(:,2)./VkwuV =1.15471.1547-0.5774>> A=[1 2 2;1 -1 1;4 -12 1];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:k =100lambda =-0.0909Vk =1.00001.00001.0000Wc =1.9582>> [V,D]=eig(A)V =0.9045 -0.7255 -0.72550.3015 -0.2176 - 0.0725i -0.2176 + 0.0725i-0.3015 0.5804 - 0.2902i 0.5804 + 0.2902iD =1.0000 0 00 -0.0000 + 1.0000i 00 0 -0.0000 - 1.0000i>> Dzd=max(diag(D))Dzd =1.0000>> wuD=abs(Dzd-lambda)wuD =1.0909>> wuV=V(:,2)./VkwuV =-0.7255-0.2176 - 0.0725i0.5804 - 0.2902i(4)>> A=[-4 14 0;-5 13 0;-1 0 2];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =22lambda =6.0000Vk =1.00000.7143-0.2500Wc =8.1744e-007>> [V,D]=eig(A)V =0 0.7974 0.66670 0.5696 0.33331.0000 -0.1994 -0.6667D =2.0000 0 00 6.0000 00 0 3.0000>> Dzd=max(diag(D))Dzd =6.0000>> wuD=abs(Dzd-lambda)wuD =8.1744e-007>> wuV=V(:,2)./VkwuV =0.79740.79740.79742、用原点位移反幂法计算矩阵A的特征值和对应的特征向量。

幂法和反幂法

幂法和反幂法

此例中比值为 2 2 . 1 3
例2:用幂法计算下面矩阵的主特征值及对应的特征向量。
解: 取初始向量 01
2 4 A 3 9
4 16
v u 1 1 1 ,按(3.7)迭代5次得到数据T如下 表: 00
1 11
11
ukT
6 15 36
k
vkT
(规范化向量)
5 0.1859 0.4460 1 8.156 19.57 43.88
v (i) k 1 v (i) k
1?
即两相邻迭代向量的对应非零分量的比值一定收敛到主特征值?
不一定. 先讨论以下情况:
情形1: 设n n阶实矩阵A的特征值i (i 1, 2, , n) 满足 1 2 n 且与i (i 1, 2, , n)相应的特征
向量x1 , x2 , , xn 线性无关。
v (1) 2
v (1) 1
0.41 ,
v (2) 2
v (2) 1
0.41666,
v (1) 3
0.41260,
v (2) 3
0.41249,
v (1) 2
v (2) 2
v (1) 4
v (1) 3
0.41263,
v (2) 4
v (2) 3
0.41263,
问题:是否任何矩阵的幂法,当k比较大时,一定有
故按模特征值为:
1 43.88 对应的特征向量为:
u1 0.1859 0.4460 1.0000T
例3 用幂法求矩阵 的主特征值和主特征向量.
1 1 0.5 A 1 1 0.25
0.5 0.25 2
解 : 取初始向量u0 (1,1,1)T , 按(3.2)的计算结果如表9 1。

41第一节-幂法和反幂法

41第一节-幂法和反幂法

=a11v1 a22v2 annvn x2 Ax1 a11 Av1 a22 Av2 ann Avn
=a112v1 a222v2 ann2vn
即对 x0 a1v1 a2v2 anvn 用公式 xk Axk1, k 1, 2,
幂法的迭代公式为
xk Axk1 k 1, 2,
当k充分大时,有

xk
1ka1v1


1


xk1 i xk i
收敛速度取决于比值 2 ,比值越小,收敛越快. 1
3. 误差分析
幂法的迭代公式为 xk Axk1 k 1, 2,
当k充分大时, 有
xk 1ka1v1
称1为A的按摸最大特征值(也称主特征值).
任取非零向量
x0

( x1(0) ,
x(0) 2
,
,
x(0) n
)T,

x0 a1v1 a2v2 anvn
设 a10, 由A构造向量序列{xk}
xk Axk1, k 1, 2,
其中 x1 Ax0 a1 Av1 a2 Av2 an Avn
a1n a2n 0
an1
an2
ann
的根;求A的属于特征值的特征向量等价于求
非零解.
( E A)x 0
设为A∈Rn×n的特征值, x 称为A的与特 征值 相对应的一个特征向量,即Ax= x, (x≠0)
则有
(1) cx (c≠0为常数)也是 A的与特征值 相对 应的一个特征向量,即A(cx)=(cx);
4. 实用计算公式
yk Axk1
mk max yk

矩阵特征值的计算

矩阵特征值的计算
矩阵特征值的计算
物理、力学和工程技术中的许多问题在数学上都归结为求矩 阵的特征值和特征向量问题。
� 计算方阵 A 的特征值,就是求特征多项式方程:
| A − λI |= 0 即 λn + p1λn−1 + ⋅ ⋅ ⋅ + pn−1λ + pn = 0
的根。求出特征值 λ 后,再求相应的齐次线性方程组:
(13)
为了防止溢出,计算公式为
⎧ Ay k = xk −1
⎪ ⎨
m
k
=
max(
yk )
( k = 1, 2, ⋅ ⋅⋅)
⎪ ⎩
x
k
=
yk
/ mk
(14)
相应地取
⎧ ⎪
λ
n


1 mk
⎪⎩ v n ≈ y k ( 或 x k )
(15)
9
(13)式中方程组有相同的系数矩阵 A ,为了节省工作量,可先对
11
11
≤ ≤ ⋅⋅⋅ ≤
<
λ1 λ2
λn −1
λn
对应的特征向量仍然为 v1, v2 ,⋅⋅⋅, vn 。因此,计算矩阵 A 的按模
最小的特征值,就是计算 A−1 的按模最大的特征值。
� 反幂法的基本思想:把幂法用到 A−1 上。
任取一个非零的初始向量 x0 ,由矩阵 A−1 构造向量序列:
xk = A−1xk−1 , k = 1, 2, ⋅⋅⋅
如果 p 是矩阵 A 的特征值 λi 的一个近似值,且
| λi − p |<| λ j − p | , i ≠ j
1 则 λ i − p 是矩阵 ( A − pI )−1 的按模最大的特征值。因此,当给

北航数值分析计算实习题目一 幂法 反幂法 求矩阵特征值

北航数值分析计算实习题目一 幂法 反幂法 求矩阵特征值

《数值分析》计算实习题目第一题:1. 算法设计方案(1)1λ,501λ和s λ的值。

1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。

2)使用反幂法求λs ,其中需要解线性方程组。

因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。

(2)与140k λλμλ-5011=+k 最接近的特征值λik 。

通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。

(3)2cond(A)和det A 。

1)1=nλλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。

2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。

由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。

2.全部源程序#include <stdio.h>#include <math.h>void init_a();//初始化Adouble get_an_element(int,int);//取A 中的元素函数double powermethod(double);//原点平移的幂法double inversepowermethod(double);//原点平移的反幂法int presolve(double);//三角LU 分解int solve(double [],double []);//解方程组int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角U 数组double (*l)[502]=new double[502][502];//单位下三角L 数组double a[6][502];//矩阵Aint main(){int i,k;double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;double lambda[40];init_a();//初始化Alambdat1=powermethod(0);lambdat2=powermethod(lambdat1);lambda1=lambdat1<lambdat2?lambdat1:lambdat2;lambda501=lambdat1>lambdat2?lambdat1:lambdat2;presolve(0);lambdas=inversepowermethod(0);det=1;for(i=1;i<=501;i++)det=det*u[i][i];for (k=1;k<=39;k++){mu[k]=lambda1+k*(lambda501-lambda1)/40;presolve(mu[k]);lambda[k]=inversepowermethod(mu[k]);}printf("------------所有特征值如下------------\n");printf("λ=%1.11e λ=%1.11e\n",lambda1,lambda501);printf("λs=%1.11e\n",lambdas);printf("cond(A)=%1.11e\n",fabs(lambdat1/lambdas));printf("detA=%1.11e \n",det);for (k=1;k<=39;k++){printf("λi%d=%1.11e ",k,lambda[k]);if(k % 3==0) printf("\n");} delete []u;delete []l;//释放堆内存return 0;}void init_a()//初始化A{int i;for (i=3;i<=501;i++) a[1][i]=a[5][502-i]=-0.064;for (i=2;i<=501;i++) a[2][i]=a[4][502-i]=0.16;for (i=1;i<=501;i++) a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i); }double get_an_element(int i,int j)//从A中节省存储量的提取元素方法{if (fabs(i-j)<=2) return a[i-j+3][j];else return 0;}double powermethod(double offset)//幂法{int i,x1;double u[502],y[502];double beta=0,prebeta=-1000,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0;//设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;for (x1=1;x1<=501;x1++){u[x1]=0;for (int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(get_an_element(x1,x2)-offset):get_an_element(x1,x2))*y[x2] ;}prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);}double inversepowermethod(double offset)//反幂法{int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0; //设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;solve(u,y);prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];beta=1/beta;if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);int presolve(double offset)//三角LU分解{int i,k,j,t;double sum;for (k=1;k<=501;k++)for (j=1;j<=501;j++){u[k][j]=l[k][j]=0;if (k==j) l[k][j]=1;} //初始化LU矩阵for (k=1;k<=501;k++){for (j=k;j<=min(k+2,501);j++){sum=0;for (t=max(1,max(k-2,j-2)) ; t<=(k-1) ; t++)sum=sum+l[k][t]*u[t][j];u[k][j]=((k==j)?(get_an_element(k,j)-offset):get_an_element(k,j))-sum;}if (k==501) continue;for (i=k+1;i<=min(k+2,501);i++){sum=0;for (t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(get_an_element(i,k)-offset):get_an_element(i,k))-sum)/u[k][k];}}return 0;}int solve(double x[],double b[])//解方程组{int i,t;double y[502];double sum;y[1]=b[1];for (i=2;i<=501;i++){sum=0;for (t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for (i=500;i>=1;i--){sum=0;for (t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}int max(int x,int y){return (x>y?x:y);}int min(int x,int y){return (x<y?x:y);}3.计算结果结果如下图所示:部分中间结果:给出了偏移量(offset),误差(err),迭代次数(k)4.讨论迭代初始向量的选取对计算结果的影响,并说明原因使用u[i]=1(i=1,2,...,501)作为初始向量进行迭代,可得出以上结果。

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量-附Matlab程序

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量-附Matlab程序

矩阵的特征值与特征向量的计算摘要物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。

矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。

幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。

其基本思想是任取一个非零的初始向量。

由所求矩阵构造一向量序列。

再通过所构造的向量序列求出特征值和特征向量。

反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。

本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。

计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。

然后通过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。

关键词:矩阵;特征值;特征向量;冥法;反冥法THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIXABSTRACTPhysics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix computation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value.Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence.The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use the inverse power method to calculate the minimum eigenvalue of a matrix and its corresponding eigenvalues. The basic idea of calculating the minimum characteristic vector of a matrix is to transform it to the maximumc haracteristic vector of the modulus of the inverse matrix. Then, according to the model, the minimum feature vector of the original matrix is introduced.Key words: Matrix ;Eigenvalue ;Eigenvector ;Iteration methods;目录1引言 (1)2相关定理。

幂法和反幂法求矩阵特征值课程知识讲解

幂法和反幂法求矩阵特征值课程知识讲解

v (k ) =Au (k 1) ,m =max(v (k ) ), u (k ) = v (k ) / m
k
k
(3)若|
m= k
m k 1 |<
,则停止计算(m k 作为绝对值最大特征值 1 ,u (k) 作为
相应的特征向量)否则置 k=k+1,转(2)
2、反幂法算法
(1)取初始向量 u (0) (例如取 u (0) =(1,1,…1) T ),置精度要求 ,置 k=1.

2.选择合适问题求解的数值计算方法;

3.设计程序并进行计算;
4.对结果进行解释说明;
对于幂法和反幂法求解矩阵特征值和特征向量的问题将从问题分析,算 法设计和流程图,理论依据,程序及结果进行阐述该问题。
一.问题的分析:
求 n 阶方阵 A 的特征值和特征向量,是实际计算中常常碰到的问题,如:

机械、结构或电磁振动中的固有值问题等。对于 n 阶矩阵 A,若存在数 和
按式(1)计算出 m 和 u (k ) 满足 k
lim
k
m
k
=
1
,
lim u (k ) = x1
k
max( x1 )
(二)反幂法算法的理论依据及推导
反幂法是用来计算绝对值最小的特征值忽然相应的特征向量的方法。是对 幂法的修改,可以给出更快的收敛性。 1、反幂法的迭代格式与收敛性质
设 A 是非奇异矩阵,则零不是特征值,并设特征值为 | 1 |≥| 2 |≥…≥| n1|>| n |
则按 A 1 的特征值绝对值的大小排序,有
| 1 |>| 1 |≥…≥| 1 |
n
n 1
1

用幂法求解矩阵特征值和特征向量

用幂法求解矩阵特征值和特征向量

x= -0.3930 -0.9774 0.2921 1.0000 第五题 A=[-1 2 1; 2 -4 1; 1 1 -6 ]; v0=[1 1 1]'; tol=1e-4; [lda,x]=mifa(A,v0,tol) lda = -6.4209
第4页
数值分析实验指导
x= -0.0463 -0.3746 000
( 1, 0, 1, 0, 0, 1 )T 105
1 21.30525 6 1.62139 x1 0.8724,0.5401,0.9973,0.5644,0.4972,1.0 T
第1页
数值分析实验指导
2 1 1 2 1 (3) A= 1 2 1 1 2 1 1 2 T 0 104 取 =( 1, 1, 1, 1, 1 ) 参考结果: 3.7321 3 4 2 1 1 3 1 5 (4) A= 3 1 6 2 4 5 2 1 T 2 取 0 =( 1, 1, 1, 1 ) , 10 。
第3页
数值分析实验指导
x= 0.5000 -0.8660 1.0000 -0.8660 0.5000 第四题 A=[2 1 3 4; 1 -3 1 5; 3 1 6 -2; 4 5 -2 -1 ]; v0=[1 1 1 1]'; tol=1e-2; [lda,x]=mifa(A,v0,tol) lda = -8.0136
下面再考虑主特征值 1 的的计算,用 (vk )i 表示 vk 的第 i 个分量,则
( x ) ( k 1 )i (vk 1 )i 1 1 1 i , (vk )i 1 ( x1 )i ( k )i

反幂法求特征值例题

反幂法求特征值例题

反幂法求特征值例题在矩阵理论中,特征值是一个非常重要的概念。

特征值可以描述矩阵的许多性质,例如矩阵的稳定性、对称性等。

因此,求解特征值是矩阵理论中的一个重要问题。

在矩阵理论中,反幂法是一种求解特征值的方法。

反幂法的基本思想是,对于一个矩阵A和一个向量x,我们可以通过迭代的方式求解Ax=kx中的k,其中k就是矩阵A的特征值之一。

具体来说,反幂法的迭代公式为:x_{k+1} = frac{1}{lambda_{k}} A^{-1} x_{k}其中,x_{k}表示第k次迭代的向量,lambda_{k}表示x_{k}对应的特征值。

由于反幂法需要求解A的逆矩阵,因此在实际应用中需要注意矩阵是否可逆。

下面,我们通过一个例题来介绍反幂法的具体求解过程。

例题:给定矩阵A =begin{bmatrix} 2 & -1 & 0 -1 & 2 & -1 0 & -1 & 2end{bmatrix}求解A的特征值和对应的特征向量。

解析:根据特征值的定义,我们需要求解方程Ax=lambda x,其中x为非零向量,lambda为特征值。

由于A是一个3阶矩阵,因此我们需要求解3个特征值。

我们可以使用反幂法来求解A的特征值。

首先,我们需要选择一个初始向量x_{0},并将其归一化。

在本例中,我们选择x_{0} = [1, 1, 1]^{T}作为初始向量。

则有:x_{1} = frac{1}{lambda_{1}} A^{-1} x_{0}其中,lambda_{1}表示第一个特征值,A^{-1}表示A的逆矩阵。

由于A是一个对称矩阵,因此可以使用Cholesky分解来求解A 的逆矩阵。

Cholesky分解的具体过程不在本文的讨论范围内,读者可以自行了解。

在本例中,我们已经计算得到A的逆矩阵为:A^{-1} =begin{bmatrix} 3/4 & 1/2 & 1/4 1/2 & 1 & 1/2 1/4 & 1/2 & 3/4 end{bmatrix}将x_{0}和A^{-1}代入上式,可以得到:x_{1} =begin{bmatrix} 1/2 1 1/2 end{bmatrix}接下来,我们需要计算x_{1}的模长,即:left| x_{1} right| = sqrt{sum_{i=1}^{3} x_{1i}^{2}} 其中,x_{1i}表示x_{1}的第i个分量。

3-1特征值与特征向量的计算(一)

3-1特征值与特征向量的计算(一)
u k Au k 1 , k 1,2, u 0 R n , u 0 0
u 0 1 x1 2 x2 n xn
其中系数 i 不全为零。
u k Au k 1 A 2 u k 2 A k u 0 A k 1 x1 2 x2 n xn
例题1:用幂法求矩阵
12 6 6 A 21 3 24 12 12 51
按模最大的特征值及对应的特征向量,要求 k k 1
k 0.0001 。
二、降阶法(收缩法) 采用幂法可以求出矩阵A按模最大的特征值及相应的特征向量, 能否在此基础上继续求出按模次大的特征值及相应的特征向量并依
T
r T s s 2 z B z
rT z 1 s r z 2 s s 2 1
rT z ~ u 2 2 1 z
~ 从而矩阵A的对应于模次大的特征值 2 对应的特征向量 u 2 Tu 2 。
k 2 k k 11 x1 2 k x2 n k xn 1 1 x1 2 x2 n n 2 n 1 1 k xn
k (1) 设 1 0 , 当 k 充分大时 , u k 11 x1 c1 x1 , 1
1 引入 T y
1
1 0T , T 1 y I n 1
0T I n 1
a11 r T y T AT t a y yr T y A y 11 22
又因为 Au1 1u1 ,即
T A22 yr rT

反幂法求矩阵特征值

反幂法求矩阵特征值

一. 问题描述用幂法与反幂法求解矩阵特征值求n 阶方阵A 的特征值和特征向量,是实际计算中常常碰到的问题,如:机械、结构或电磁振动中的固有值问题等。

对于n 阶矩阵A ,若存在数λ和n 维向量x 满足 Ax=λx (1) 则称λ为矩阵A 的特征值,x 为相应的特征向量。

由线性代数知识可知,特征值是代数方程 |λI-A|=λn+a 1λ1-n +…+a 1-n λ+a n =0 (2)的根。

从表面上看,矩阵特征值与特征向量的求解问题似乎很简单,只需求解方程(2)的根,就能得到特征值λ,再解齐次方程组(λI-A )x=0 (3) 的解,就可得到相应的特征向量。

上述方法对于n 很小时是可以的。

但当n 稍大时,计算工作量将以惊人的速度增大,并且由于计算带有误差,方程(2)未必是精确的特征方程,自然就不必说求解方程(2)与(3)的困难了。

幂法与反幂法是一种计算矩阵主特征值及对应特征向量的迭代方法, 特别是用于大型稀疏矩阵。

这里用幂法与反幂法求解带状稀疏矩阵A[501][501]的特征值。

二. 算法设计1. 幂法(1)取初始向量u )0((例如取u)0(=(1,1,…1)T),置精度要求ε,置k=1.(2)计算v)(k =Au)1(-k , m k =max(v)(k ), u)(k = v)(k / m k(3)若| m k -m 1-k |<ε,则停止计算(m k 作为绝对值最大特征值1λ,u )(k 作为相应的特征向量)否则置k=k+1,转(2) 2. 反幂法 (1)取初始向量u)0((例如取u)0(=(1,1,…1)T),置精度要求ε,置k=1.(2)对A 作LU 分解,即A=LU (3)解线性方程组 Ly )(k =u)1(-k ,Uv)(k =y)(k(4)计算mk =max(v)(k), u)(k= v)(k/ mk(5)若|mk -m1-k|<ε,则停止计算(1/m k作为绝对值最小特征值nλ,u)(k作为相应的特征向量);否则置k=k+1,转(3).三.程序框图1.主程序2.子程序(1). 幂法迭代程序框图(2). 反幂法迭代程序框图四. 结果显示计算结果如下:矩阵A 的按模最大特征值为:-1.070011361487e+001 矩阵A 的按模最小特征值为:-5.557910794230e-003 矩阵A 最大的特征值为:9.724634101479e+000 矩阵A 最小的特征值为:-1.070011361487e+001与各k μ(1,2,...,39)k =最接近的ik λ(用[]V k 表示)的值如下:v[ 1]=-1.018293403315e+001 u[ 1]=-1.018949492196e+001 v[ 2]=-9.585707425068e+000 u[ 2]=-9.678876229054e+000 v[ 3]=-9.172672423928e+000 u[ 3]=-9.168257536145e+000v[ 4]=-8.652284007898e+000 u[ 4]=-8.657638843237e+000 v[ 5]=-8.0934********e+000 u[ 5]=-8.147020150328e+000 v[ 6]=-7.659405407692e+000 u[ 6]=-7.636401457419e+000 v[ 7]=-7.119684648691e+000 u[ 7]=-7.125782764510e+000 v[ 8]=-6.611764339397e+000 u[ 8]=-6.615164071601e+000 v[ 9]=-6.0661********e+000 u[ 9]=-6.104545378693e+000 v[10]=-5.585101052628e+000 u[10]=-5.593926685784e+000 v[11]=-5.114083529812e+000 u[11]=-5.0833********e+000 v[12]=-4.578872176865e+000 u[12]=-4.572689299966e+000 v[13]=-4.096470926260e+000 u[13]=-4.062070607058e+000 v[14]=-3.554211215751e+000 u[14]=-3.551451914149e+000 v[15]=-3.0410********e+000 u[15]=-3.040833221240e+000 v[16]=-2.533970311130e+000 u[16]=-2.530214528331e+000 v[17]=-2.003230769563e+000 u[17]=-2.019595835422e+000 v[18]=-1.503557611227e+000 u[18]=-1.508977142514e+000 v[19]=-9.935586060075e-001 u[19]=-9.983584496049e-001 v[20]=-4.870426738850e-001 u[20]=-4.877397566962e-001 v[21]=2.231736249575e-002 u[21]=2.287893621262e-002 v[22]=5.324174742069e-001 u[22]=5.334976291214e-001 v[23]=1.052898962693e+000 u[23]=1.044116322030e+000 v[24]=1.589445881881e+000 u[24]=1.554735014939e+000 v[25]=2.060330460274e+000 u[25]=2.065353707848e+000 v[26]=2.558075597073e+000 u[26]=2.575972400756e+000 v[27]=3.080240509307e+000 u[27]=3.086591093665e+000 v[28]=3.613620867692e+000 u[28]=3.597209786574e+000 v[29]=4.0913********e+000 u[29]=4.107828479483e+000 v[30]=4.603035378279e+000 u[30]=4.618447172392e+000 v[31]=5.132924283898e+000 u[31]=5.129065865300e+000 v[32]=5.594906348083e+000 u[32]=5.639684558209e+000 v[33]=6.080933857027e+000 u[33]=6.150303251118e+000 v[34]=6.680354092112e+000 u[34]=6.660921944027e+000 v[35]=7.293877448127e+000 u[35]=7.171540636935e+000 v[36]=7.717111714236e+000 u[36]=7.682159329844e+000 v[37]=8.225220014050e+000 u[37]=8.192778022753e+000 v[38]=8.648666065193e+000 u[38]=8.703396715662e+000 v[39]=9.254200344575e+000 u[39]=9.214015408571e+000五.程序#include<stdio.h>#include<math.h>#define N 501void main(){double Q[5][501];double mifa(double A[5][501]);double fanmifa(double A[5][501]);double lm,lmax,lmin,ls,delta,u[39],v[39];int i,j,k;double A[5][501];A[0][0]=A[0][1]=A[1][0]=A[3][500]=A[4][499]=A[4][500]=0.0;//输入*501矩阵for(i=2;i<N;i++)A[0][i]=-0.064;for(i=1;i<N;i++)A[1][i]=0.16;for(i=0;i<N;i++)A[2][i]=(1.64-0.024*(i+1))*sin(0.2*(i+1))-0.64*exp(0.1/(i+1));for(i=0;i<500;i++)A[3][i]=0.16;for(i=0;i<499;i++)A[4][i]=-0.064;for(i=0;i<5;i++)//保存Afor(j=0;j<501;j++)Q[i][j]=A[i][j];lm=mifa(A);//按模最大特征值,函数mifa()不会改变矩阵A的值,不需还原for(i=0;i<N;i++) //平移A{A[2][i]=A[2][i]-lm;}lmax=mifa(A);//平移后A的按模最大特征值lmax=lmax+lm;//最大特征值或最小特征值if(lmax<lm){lmin=lmax;lmax=lm;}elselmin=lm;for(i=0;i<N;i++)//还原Afor(j=0;j<5;j++)A[j][i]=Q[j][i];ls=fanmifa(A);//按模最小特征值for(i=0;i<N;i++)//还原Afor(j=0;j<5;j++)A[j][i]=Q[j][i];for(k=0;k<39;k++)//计算u1-u39u[k]=lmin+(k+1)*((lmax-lmin)/40);for(k=0;k<39;k++){for(j=0;j<N;j++)A[2][j]=A[2][j]-u[k];v[k]=fanmifa(A)+u[k];for(i=0;i<N;i++)//还原Afor(j=0;j<5;j++)A[j][i]=Q[j][i];}printf("矩阵的按模最大特征值为:%.12e",lm);printf("\n");printf("矩阵的按模最小特征值为:%.12e",ls);printf("\n");printf("矩阵最大的特征值为:%.12e",lmax);printf("\n");printf("矩阵最小的特征值为:%.12e",lmin);printf("\n");for(k=0;k<39;k++){printf("v[%2d]=%.12e ",k+1,v[k]);printf("u[%2d]=%.12e",k+1,u[k]);printf("\n");}}double sgn(double a)//符号函数{if(a>0)return 1;else if(a=0)return 0;else return -1;}int max2(int a,int b){return a>b?a:b;}int max3(int a,int b,int c)return max2(a,b)>c?max2(a,b):c;}int min(int a,int b){return a<b?a:b;}void LU(double A[5][501],double u[501],double B[501])//LU分解法{double X[501];int i,j,k,t,l;double m=0,n=0;for(k=1;k<=N;k++)//求L,U{for(j=k;j<=min(N,k+2);j++)//U{m=0;for(t=max3(1,k-2,j-2);t<=k-1;t++){m+=A[k-t+2][t-1]*A[t-j+2][j-1];}A[k-j+2][j-1]=A[k-j+2][j-1]-m;}for(i=k+1;i<=min(N,k+2);i++)//Lif(k<N){n=0;for(l=max3(1,i-2,k-2);l<=k-1;l++){n+=A[i-l+2][l-1]*A[l-k+2][k-1];}A[i-k+2][k-1]=(A[i-k+2][k-1]-n)/A[2][k-1];}}for(i=2;i<=N;i++)//回代过程{m=0;for(t=max2(1,i-2);t<=i-1;t++)m+=A[i-t+2][t-1]*B[t-1];B[i-1]=B[i-1]-m;}X[N-1]=B[N-1]/A[2][N-1];//回代过程for(i=N-1;i>=1;i--){n=0;for(t=i+1;t<=min(N,i+2);t++)n+=A[i-t+2][t-1]*X[t-1];X[i-1]=(B[i-1]-n)/A[2][i-1];}for(i=1;i<=N;i++)//输出方程结果{u[i-1]=X[i-1];}}double mifa(double A[5][501])//幂法{int i,j,l=0;double u[501],t[501];double y[501];double h,b,c;c=0;for(i=0;i<N;i++)//幂法初始向量u[i]=1;while(1){for(i=0;i<N;i++)t[i]=0;h=u[0];for(i=0;i<N;i++)//无穷范数{if(fabs(h)<fabs(u[i])){h=u[i];l=i;}}for(i=0;i<N;i++)y[i]=u[i]/fabs(h);for(i=2;i<499;i++){for(j=i-2;j<=i+2;j++){t[i]=t[i]+A[i-j+2][j]*y[j];}u[i]=t[i];u[0]=A[2][0]*y[0]+A[1][1]*y[1]+A[0][2]*y[2];u[1]=A[3][0]*y[0]+A[2][1]*y[1]+A[1][2]*y[2]+A[0][3]*y[3];u[499]=A[4][497]*y[497]+A[3][498]*y[498]+A[2][499]*y[499]+A[1][N-1]*y[N-1];u[N-1]=A[4][498]*y[498]+A[3][499]*y[499]+A[2][N-1]*y[N-1];b=sgn(h)*u[l];if((fabs(b-c)/fabs(b))<=1e-12){//printf("幂法成功!");//printf("\n");break;}c=b;}return b;}double fanmifa(double A[5][501])//反幂法{double u[501],y[501];double P[5][501],Y[501];//LU分解前用于保存A和y的值double m=0,n=0,b=0,c=0;int i,j;for(i=0;i<N;i++)//反幂法初始向量u[0]=1;while(1){b=0;n=0;for(i=0;i<N;i++)n=n+u[i]*u[i];n=sqrt(n);for(i=0;i<N;i++)y[i]=u[i]/n;for(i=0;i<N;i++)//保存A和y{Y[i]=y[i];for(j=0;j<5;j++){P[j][i]=A[j][i];}}LU(A,u,y);//LU分解法,会改变A,y,u的值(目的只需求出u)for(i=0;i<N;i++)//还原A和yy[i]=Y[i];for(j=0;j<5;j++){A[j][i]=P[j][i];}}for(i=0;i<N;i++)b=b+y[i]*u[i];if((fabs(b-c)/fabs(b))<=1e-12){//printf("反幂法成功!");//printf("\n");break;}c=b;}return 1/b;}。

(完整word版)幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量(word文档良心出品)

(完整word版)幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量(word文档良心出品)

数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。

矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21≥≥≥>(2) 存在n 个线性无关的特征向量,设为n x x x ,...,,211.1计算过程:i ni i i u xx αα,1)0()0(∑==,有对任意向量不全为0,则有1111112211211111111011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k ni ik i i ni i i k )(k (k))(k αλλλλλα++++=+=+++≈⎥⎦⎤⎢⎣⎡+++======∑∑ 可见,当||12λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=⇒⎪⎩⎪⎨⎧==+++(k )(k k(k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。

2 算法实现.,, 3,,1 , ).5()5(,,,,||).4();max(,).3()(max(;0,1).2(,).1()()()(停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←=←←k k N k y x Ay x x abs x y k N x A k k k3 matlab 程序代码function [t,y]=lpowerA,x0,eps,N) % t 为所求特征值,y是对应特征向量k=1;z=0; % z 相当于λy=x0./max(abs(x0)); % 规范化初始向量x=A*y; % 迭代格式b=max(x); % b 相当于βif abs(z-b)<eps % 判断第一次迭代后是否满足要求t=max(x);return;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=x./max(abs(x));x=A*y;b=max(x);end[m,index]=max(abs(x)); % 这两步保证取出来的按模最大特征值t=x(index); % 是原值,而非其绝对值。

计算方法5矩阵特征值和特征向量的计算

计算方法5矩阵特征值和特征向量的计算

A1
RART
a(1) 11 0
a(0212),
RT
c
s
s
c
RT的两个列向量是相应的特征向量。
1 0 2

考虑三阶矩阵
A 0
0
2
1
2 1 1
将A 中(3,1)和(1,3)位置上的元素变成0, 0
0.707 0 0.707
取R 0
0
1
0
0.707 0 0.707
做正交相似变换后得到
A-1u
k

1
因为A1 的计算
比较麻烦,而且往往不能保持矩阵A 的一些好性质
(如稀疏性),因此,反幂法在实际计算时以求解
方程组
Auk
u
k
,代替迭代
1
uk
A-1uk1求得uk,每
迭代一次要解一线性方程组。 由于矩阵在迭代过
程中不变,故可对A 先进行三角分解,每次迭代只 要解两个三角形方程组。
反幂法规范后的计算格式
满足 1 2 n 0 ,所对应的 n 个特征向量
x1 , x2 ,L , xn线性无关。 任取非零的初始向量u0,构造向量序列uk Auk1
向量uk逼近A的主特征值(按模最大的)对应的
特征向量,1
uk j uk-1 j
存在不全为零的常数(i i 1, 2,L , n),(这里假设1 0),
Jacobi算法的基本思想:
d1
Ak +1 = Rk L
R2 R1 AR1T R2T L
RkT
=
RART
d2 O
dn
记R Rk L R2 R1,RT的每个列向量是对应的特征向量。
二、 雅可比过关法

逆幂法结合原点平移加速求解特征值的精确化计算

逆幂法结合原点平移加速求解特征值的精确化计算

逆幂法结合原点平移加速求解特征值的精确化计算作者:周玉娟秦菲菲江山来源:《课程教育研究》2018年第37期【摘要】针对非奇异方阵,使用逆幂法求其接近于某给定值的误差最小近似特征值,结合原点平移方案,选择合理的平移值p,从数学理论、数值算例两方面验证方法的有效性,故而达到加速收敛、精确计算特征值的目的。

【关键词】幂法逆幂法原点平移加速收敛特征值精确化【基金项目】国家自然科学基金资助项目(11301462);江苏省高校青蓝工程优秀青年骨干教师资助项目;“南通大学教学改革研究课题”。

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2018)37-0124-02特征值是代数学的一个重要概念,在数学、物理、化学、生物、计算机、设计优化等领域有广泛应用和悠久历史,近来又在扰动分析、微分方程、并行计算等方面展现新的研究价值。

若非奇异矩阵A的阶数为n,则有n个特征值与其对应的特征向量。

当矩阵为高阶时,要精确地求出所有特征值十分困难、或代价太大而变得没有必要。

在实际工程计算中,往往采用数值方法精确化求出其中具有代表性的部分特征值,比如用幂法求最大特征值、用逆幂法求最小特征值,用对分法或QR分解求特殊矩阵的全部特征值等。

而这些数值法有时收敛速度过慢、迭代次数过多,在本文中我们考虑结合原点平移方案,合理选择平移值,从而实现特征值的加速收敛与计算精确。

一、方法的数学理论矩阵的特征值问题Ax=?姿x,若直接求解行列式方程det(A-?姿I)=0计算量会非常巨大,且对高于五次的含?姿多项式不存在通用的求根公式。

因而对于高阶矩阵A,人们往往追求其满足精度要求、足够精确的近似特征值及其对应的特征向量。

幂法的过程是假设特征值满足|?姿1|>|?姿2|≥|?姿3|≥…|?姿n|,取x0=?琢1 1+?琢2 2+…+?琢n n,使?琢1≠0,由迭代格式xk=Axk-1=?姿1k?琢1 1+?姿2k?琢2 2+…+?姿nk?琢n n=?姿1k?琢1 1+ ?琢2 2+…+ ?琢n n。

反幂法的原点移位法

反幂法的原点移位法

反幂法的原点移位法
反幂法的原点移位法是一种用于解决函数在原点附近特征根的方法。

在求解某些特定的微分方程或差分方程时,我们经常遇到需要求解函数的特征根的问题。

而反幂法的原点移位法能够有效地解决这一问题。

反幂法的原点移位法是基于幂级数展开的思想。

根据函数在原点附近的性质,我们可以将函数表示为一个幂级数的形式。

而反幂法的原点移位法的核心思想就是将原方程的特征根转化为新方程的特征根,从而简化问题的求解过程。

具体而言,反幂法的原点移位法是通过将原方程的特征根移动到新方程的原点位置,从而消除方程中的负幂项。

这样一来,我们可以利用幂级数的性质,将原问题转化为新问题的求解过程。

通过适当的变换和计算,我们可以得到新方程的解析解或者数值解,从而求解原问题。

反幂法的原点移位法在解决特征根问题时具有较高的精度和稳定性。

由于特征根的求解往往与矩阵的特征值计算有关,而特征值计算是一类复杂的数值计算问题,因此,反幂法的原点移位法能够有效地提高求解特征根的精度和稳定性,从而得到更可靠的结果。

需要注意的是,反幂法的原点移位法是一种数值计算方法,其结果的精度和稳定性受到计算机数值计算的限制。

因此,在具体应用中,我们需要根据实际情况选择合适的计算参数和算法,以保证求解结果的准确性和可靠性。

总之,反幂法的原点移位法是一种用于解决函数在原点附近特征根的方法。

通过将特征根移动到新方程的原点位置,我们可以利用幂级数的性质,简化问题的求解过程。

这种方法具有较高的精度和稳定性,在解决特征根问题时具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档