第4章 杆梁结构的有限元分析原理.

合集下载

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

e
下面考察该简单问题的FEA求解过程。 (1) 离散化
两个杆单元,即:单元①和单元②
(2) 单元的特征及表达
对于二结点杆单元,设该单元的位移场为 么它的两个结点条件为
,那
设该单元的位移场具有模式(考虑两个待定系数)
利用结点条件,可以确定系数a0和a1,即
将系数a0和a1代入
,可将
表达成结点位移(u1, u2)的关系,即
其中, 为整体坐标系下的单元刚度矩阵, 为 整体坐标系下的结点力,即
由最小势能原理(针对该单元),将 对待定的 结点位移向量 取一阶极小值,有整体坐标系中 的刚度方程
对于本节给出的杆单元,具体有
4.3.3 空间问题中杆单元的坐标变换
就空间问题中杆单元,局部坐标系下的结点位移还 是 而整体坐标系中的结点位移为
这时由全部结点位移[0 u2 u3]分段所插值 出的位移场为全场许可位移场。
由最小势能原理(即针对未知位移u2和u3求 一阶导数),有
可解出
(5) 计算每个单元的应变及应力
在求得了所有的结点位移后,由几何方程
可求得各单元的应变
由方程 可求得各单元的应力
(6) 求结点1的支反力
就单元 ①的势能,对相应的结点位移求极值,可以 建立该单元的平衡方程,即
其中
由一维问题几何方程和物理方程,则该单元 的应变和应力为
其中
单元的势能
其中 叫做单元刚度矩阵。
叫做单元结点外载。
在得到“特征单元”的单元刚度矩阵和单元 结点外载后,就可以计算该单元的势能,因 此,计算各单元的矩阵 和 是一个关 键,下面就本题给出了个单元的 和 。
具体就单元①,有 单元①的结点位移向量
(5) 单元的刚度方程

第4章__梁理论与实例分解

第4章__梁理论与实例分解
Euler-Bernoulli梁理论没有考虑横向剪切变形的影响,而对于短而 粗的梁,这个影响显然不应被忽略。

2018/10/24
24-18

Timoshenko梁理论正是针对这一问题而提出的。该理论仍然保留 了前面的基本假定,即平截面假定,但认为梁变形后由于横向剪 力所产生的剪切变形引起梁的附加挠度,使原来垂直于中面的截 面变形后不再与其垂直。值得一提的是,这种假定的存在实际上 暗含了剪应力和剪应变在截面上均匀分布的假定,这与截面实际 的剪应力及剪应变分布显然并不相符,因此通常的做法是引入不 均匀程度校正因子加以修正。
在 ANSYS 中的6种梁单元 ( Beam3/ 4、beam23、beam54/44、beam24) 都可用定义实常数的方法按第一种方案考虑剪切变形的影响,而 直接应用方案二开发的则是beam188/ 189单元。
2018/10/24
24-20
4.2 ANSYS梁单元

ANSYS提供了多种梁单元库以适应不同的需要,它们的特点和适 用范围各不相同。了解这些单元之间的异同,有助于正确选择单 元类型和得到较为理想的计算结果。其中beam44为4-D 渐变非对 称截面梁,beam188和beam189为4-D有限应变梁,ANSYS的梁单 元在非线性分析方面具有先进性独特优势。
2018/10/24 24-23
4.3 位移函数推导梁单元的有限元格式

梁的有限元单元可以用直接刚度法和虚功原理两种。而杆的分析 主要采用直接刚度法,梁的分析主要采用虚功原理进行分析。下 面是对虚功原理的有限元分析的一般过程进行介绍。
2018/10/24
24-15
2018/10/24
24-16

Euler-Bernoulli梁理论即经典梁理论(也称工程梁理论),建立在如 下假定的基础上:

杆梁结构的有限元分析原理[详细]

杆梁结构的有限元分析原理[详细]

le
EAe
le
EAe
u1 u2
P1
le
P2
u1 u2
1 qeTK eqe PeTqe 2
刚度矩阵
节点力列阵
3)离散单元的装配
在得到各个单元的势能表达式后,需要进行离散单元的装配,以
求出整个系统的总势能,对于该系统,总势能包括两个单元部分
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2
第4章 杆系结构的有限元分析原理
杆梁单元概述
讨论杆梁单元和由它们组成的平面和空间杆梁结构系统. 从构造上来说其长度远大于其截面尺寸的一维构件 承受轴力或扭矩的杆件成为杆 杆梁问题都有精确解 承受横向力和弯矩的杆件称为梁 平面桁架 平面刚架 连续梁 空间刚架 空间桁架等 承受轴力或扭矩的杆件称为杆 将承受横向力和弯矩的杆件称为梁 变截面杆和弯曲杆件
单元节点条件:u(0)=u1, u(l)=u2
从而得
a0 ui ,
a1
uj
le
ui
i
1,
j
2
回代得
u(x) a0 a1x
ui
u j ui le
x
1
x le
ui
x le
u
j
Niui N ju j
其中Ni,Nj是形函数。
写成矩阵形式为
q Niu Nqe
N
ju
ui u j
1 2
u1
EA1
u2
l1 EA1
l1
EA1
l1
EA1
u1 u2
R1
l1
0
u1 u2
1 2
u2
EA2

杆梁结构有限元分析

杆梁结构有限元分析

3.1 杆梁结构的直接解法
机械分社
(1)平面压杆有限元法的直接法
由节点平衡有: 即有:
U1(1)u1 U1(1)u2 N1
U
u (1)
21
(U
(2 2
)
U
(1) 2
)u2
U
(2 2
)u3
F1
U
(2 3
)
u2
U
(2 3
)
u3
F2
EA1 l1
u1
EA1 l1
u2
N1
EA1 l1
u1
( EA1 l1
3.1 杆梁结构的直接解法
机械分社
杆梁结构是指长度远大于其横截面尺寸的构件组成的杆 件系统,例如机床中的传动轴,厂房刚架与桥梁结构中的梁 杆等,可以用杆单元或梁单元来进行离散化。
空间杆系:平面杆系是指各杆轴线和外力作用线位于一 个平面内,若各杆轴线和外力作用线不在一个平面内。 (1)平面压杆有限元法的直接法
单元刚度矩阵每一列元素表示一组平衡力系,对于平面 问题,每列元素之和为零。
3.1 杆梁结构的直接解法
机械分社
(2)平面梁单元有限元法的直接法 2)节点位移与节点力之间的关系
Ui
Vi
k11
k21
M i U j
k31
k41
V
j
M j
k51
k61
他们在轴和轴的投影之和等于零:
vi
6EI l2
i
12EI l3
vj
6EI l2
j
M
j
6EI l2
vi
2EI l
i
6EI l2
vj
4EI l

培训教程(有限元仿真分析 )(4)

培训教程(有限元仿真分析 )(4)

五 载荷与边界条件
惯性载荷
1.加速度:Acceleration
2.重力加速度:Standard earth Gravity
♣施加在整个喂型上,单位是长度比上时间的平方。 ♣加速度可以定义为分量或矢量的形式。 ♣物体运动方向为加速度的反方向。
3.角加速度:Rotational Velocity
♣根据所选的单位制系统确定它的值。 ♣重力加速度的方向定义为整体坐标系或局部坐标系的其中一个坐标轴方向。 ♣物体运动方向与重力加速度的方向相同。 ♣整个模型以给定的速率绕轴转动。 ♣以分量或矢量的形式定义。 ♣输入单位可以是弧度每秒(默认选项),也可是度每秒。
与面正交的方向施加在面上,指向面内为正,反之为 负。单位是单位面积的力。
2.静水压力:Hydrostatic Pressure
在面(实体或壳体)上施加一个线性变化的力,模拟结构 上的流体载荷。流体可能处于结构内部或外部,另外还需 指定:加速度的大小和方向、流体密度、代表流体自由面 的坐标系。壳体则需要指定顶面/底面。
四 连接关系
接触类型
对于理想无限大的Knormal , 零穿透. 但对于罚函数法, 这在数值计算中是不可能,但是只要Xpenetration 足够 小或可忽略,求解的结果就是精确的。
四 连接关系
接触类型
Pure Penalty 和Augmented Lagrange 公式使用积分点探测,Normal Lagrange 和MPC 公式 使用节点探测(目标法向)。节点探测在处理边接触时会稍好一些,但是,通过局部网格细化, 积分点探测也会达到同样的效果。
四 连接关系
信息检查
四 连接关系
连接矩阵图
信息检查
颜色标签
五 载荷与边界条件

梁的有限元分析原理

梁的有限元分析原理
y
j
·
x

Chapter 5 Bernoulli-Euler Beam
z
27
福州大学研究生课程-有限元程序设计
平面桁架杆单元(2D LINK1)
空间杆单元(3D
LINK8)
平面刚架,BEAM3 空间梁单元(BEAM4)
Chapter 5 Bernoulli-Euler Beam
28
福州大学研究生课程-有限元程序设计
举例说明
Chapter 5 Bernoulli-Euler Beam
18
福州大学研究生课程-有限元程序设计
这种高斯积分阶数低于被积函数所有项次精确 积分所需要阶数的积分方案称之为减缩积分。 实际计算表明:采用缩减积分往往可以取得较 完全积分更好的精度。这是由于: 精确积分常常是由插值函数中非完全项的 最高方次要求,而决定有限元精度的是完全多 项式的方次。这些非完全的最高方次项往往不 能提高精度,反而可能带来不好的影响。取较 低阶的高斯积分,使积分精度正好保证完全多 项式方次的要求,而不包括更高次的非完全多 项式的要求,其实质是相当用一种新的插值函 数替代原来的插值函数,从而一定情况下改善 19 Chapter 5 Bernoulli-Euler Beam 了单元的精度。
福州大学研究生课程-有限元程序设计
有限元程序设计
——梁单元,静力问题
谷 音 福州大学土木工程学院
2012
1
福州大学研究生课程-有限元程序设计
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆 受弯构件 flexural elements 梁 平面梁单元 plane beam element
Chapter 5 Bernoulli-Euler Beam

杆结构 分析的有限元方法(有限元)

杆结构   分析的有限元方法(有限元)
局部坐标系中的单元述
杆单元形状函数
杆单元刚度矩阵
平面问题中的坐标变换
梁结构分析的有限元方法
梁:承受横向荷载和弯矩的杆件。
梁的主要变形为挠度v
横截面变形前后都垂直于杆变形前的轴线x轴
中性层变形=0
纯弯曲没有剪力,只有弯矩
梁截面的惯性矩
杆结构分析的有限元方法
杆:承受轴向荷载的杆件
最基本的承力结构件:杆、梁
弹簧--简单的承受轴力的结构件
有限元方法中,每一个处理步骤都是标准化和规范化的,
因而可以在计算机上通过编程来自动实现。
F=kδ
k--刚性系数
位移的绝对变化量/杆件的伸长量δ=u2—u1
应力某截面上单位面积上的内力/内力的分布集度
应变相对伸长量单位长度的伸长量
杆单元的特性是节点位移及节点力的方向都是沿轴线方向。
杆结构的力学分析
铰接的杆结构----杆只受轴力-----杆件拉伸问题---可自然离散
两端为铰接的杆件只承受轴力。
各个单元研究(基于局部坐标系的表达)
各个单元研究
离散单元的集合、组装
杆单元及坐标变换
自由度:描述物体位置状态的每个独立变量。
对于杆单元,其节点位移有两个自由度。

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理杆梁结构是工程中常用的一种结构形式,它由多个杆件或梁组成,用于承担载荷和传递力量。

有限元分析是一种通过将结构离散为许多小单元,利用数学方法对结构进行分析的技术。

下面将详细介绍杆梁结构的有限元分析原理。

一、杆件离散化在有限元分析中,首先需要将杆梁结构离散化为一组子结构,即离散化为一组离散的杆件。

离散后的每个杆件可以看作是一个子系统,每个子系统由两个节点组成,节点之间以杆件连接。

通过节点与杆件的连接方式,能够模拟出整个杆梁结构的受力特点。

离散化的过程中,需要确定杆件的几何形状、截面以及材料特性等参数,并根据实际情况设置合适的杆件单元数目。

通常,单元数目越多,离散程度越高,结果越接近真实情况,但计算成本也会增加。

二、有限元法的基本原理有限元方法的基本原理是将结构分成许多小的单元,每个单元内的行为可以用简单的数学函数来表示。

对于杆梁结构,常用的单元有梁单元和杆单元。

梁单元适用于承受弯曲强度较大的杆件,而杆单元适用于承受轴向载荷的杆件。

通过将结构分成小单元后,可以建立一个与原结构相似的离散模型,并在每个单元上建立相应的方程。

三、应力应变关系在进行有限元分析时,需要获得每个杆件的应变和应力。

应变与杆件的变形有关,而应力与应变之间的关系则与材料的本构关系有关。

对于线弹性材料,应力与应变之间可以通过胡克定律来描述。

胡克定律表明,应力与应变之间成线性关系,材料的弹性模量E、泊松比ν以及应变关系能够决定应力。

应根据结构中不同材料的应变特性来选择相应的材料模型。

四、施加边界条件在进行有限元分析前,需要施加适当的边界条件。

边界条件用于模拟实际情况中的约束和限制。

常见的边界条件有固定边界、弹性边界和施工阶段边界。

五、求解位移和应力当离散化杆梁结构、建立了位移和应变关系、施加了边界条件之后,可以通过数值求解方法,例如有限元法中的坐标变形法,计算得到结构的位移和应力。

坐标变形法能够基于得到的位移结果,进一步计算应力。

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析
杆件结构可分为桁杆和梁两类。 由杆件组成的结构体系称为杆系。由桁杆组成的杆系称为桁架; 由梁组成的杆系称为刚架。若杆系和作用力均位于同一平面内,则称 为平面桁架或平面刚架,否则称为空间桁架或空间刚架。
Finite Element Theory and Numerical Method
一、杆、梁的物理力学模型
拉压杆单元如图3-6所示,已知等直杆件杆长为 l 横截面面积为 A 材料弹性模量为 E 所受轴向分布载荷集度为 p(x) 杆端位移分别为 u1 u2
杆端力分别记为 F1 F2
1、建立位移场
F1, u1 xa
1
a p(x)
2 F2 , u2
x
设局部坐标系下杆中任意点a的坐标为 xa
因为只有两个边界条件 u1
形函数具有如下性质: 1)本端为1,它端为0 2)单元内任意一点总和为1
N1(0) 1
N1(1) 0
N2 (0) 0 N2 (1) 1
N1() N2 () 1
2、应变分析
du dx
dN dx
ue
dN1 dx
B为应变矩阵或者几何矩阵。
dN2 dx
u
e
1 l
1 l
ue
[B1
B2 ]ue Bue
图示所示桁架 l 2m
EA 1.2106 kN
试求1-2杆和1-4杆单元的局部坐标单元 刚度矩阵
1-2杆:抗拉刚度 EA / l 6106 kN/m
F1 10N 3
1
F2 20N 4
2
ke1
EA l
1 1
1
1
6
105
1 1
1
1
kN
/
m
1-4杆:抗拉刚度 EA /( 2l) 4.24264 105 kN/m

有限单元法课件第四章 杆件系统的有限元法

有限单元法课件第四章 杆件系统的有限元法
桁杆 梁
(a)
(b)
由杆件组成的结构体系称为杆系,如起重机,桥梁等。
由桁杆组成的杆系称为桁架。
由梁组成的杆系成为刚架。
若杆系和作用力均位于同一平面内,则称为平面桁架 或平面刚架,否则称为空间桁架或空间刚架。
由于杆件结构采用一维单元进行离散,所以杆系的网 格划分容易用半自动方法实现。当采用自动网格划 分方法时,杆系的几何模型是由杆件轴线构成的线框 模型。
R
e P
RiP R jP
R
lP
R
R
e F
RiF R jF
Rlx Rly NlT l R l
lF T l
Px dx (l i, j ) Py
e T
Bj dx
kii k ji
kij k jj
其中矩阵元素为
kst D Bt dx B as 0 EA 0 at 0 0 0 bs dx 0 EI 0 bt ct 0 cs 0 0 EAas at dx 0 EIb b EIb c s t s t EIcs bt EIcs ct 0
e
du dx e x 2 B Bi q x d v dx 2
Bj q
e
其中
ai 0 0 Bi 0 b c i i a j 0 0 Bj 0 b c j j 1 12 6 ai a j bi b j 3 x 2 l l l 4 6 2 6 ci 2 x cj 2 x l l l l

有限元法_精品文档

有限元法_精品文档
这种方法要求能建立微分方程,并能给出边 界条件的数学表达式,因此,对于一些不规则的 几何形状和不规则的特殊边界条件难以应用。
12
一、有限元法的基本概念
1.什么是有限元法
我们实际要处理的对象都是连续体,在传统设 计思维和方法中,是通过一些理想化的假定后,建 立一组偏微分方程及其相应的边界条件,从而求出 在连续体上任一点上未知量的值。
25
4)具有灵活性和适用性,适应性强(它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题)
21
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。
梯子的有限元模型不到100个方程; 在ANSYS分析中,一个小的有限元模型可能有几 千个未知量,涉及到的单元刚度系数几百万个。 单元划分的精细程度,取决于工程实际对计算 结果精确性的要求。
22
4)有限元分析 有限元分析就是利用数学近似的方法对真实
5)在具体推导运算过程中,广泛采用了矩阵方法。
26
2.有限元法的作用 1)减少模型试验的数量(计算机模拟允许对大量
的假设情况进行快速而有效的试验); 2)模拟不适合在原型上试验的设计(例如:器官
移植、人造膝盖); 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出高可靠性、高品质的产品。
因为点是无限多的,存在无限自由度的问题, 很难直接求解这种偏微分方程用来解决实际工程问 题,因此需要采用近似方法来处理。

桥梁结构分析的杆系有限元法及结构模型的建立2015

桥梁结构分析的杆系有限元法及结构模型的建立2015

结构的离散化
确定了结构的全部 节点,也就确定了 结构的单元划分, 然后对结构进行单 元编号和节点编号, 通常单元编号用①, ②,……表示,节 点编号用1, 2,……表示,如图 所示。
6 67
5
4
3
5
4
1
2
1
2
3
单元杆端力与杆端位移的表示方法
• 平面桁架单元的局部坐标和整体坐标:
y
y
x
3
x2
2
y
1
结构分析的杆系有限元法
• 概述 • 有限单元法的概念及应用 • 结构的离散化 • 单元杆端力与杆端位移 • 逆步变换 • 单元刚度矩阵 • 总刚度矩阵 • 边界条件的后处理法 • 线性代数方程组的数值解法
结构分析的含义
• 结构分析的含义,不仅指在一定的已知条件下对结构的变 形和内力等进行计算,而且包括分析构件刚度变化对内力 变化的影响,对结构的几何组成进行分析,以及选择合理 的结构形式等等。
结构分析的有限元法
• 美国20世纪70年代推出的至今仍然是世界销售量最大的 NASTRAN(NAsa STRuctural Analysis,美国国家航空和 宇宙航行局结构分析程序系统)程序与当时西德推出的 ASKA(Automatic System for Kinematics Analysis,运动 分析的自动程序系统)齐名,同为当时最为著名和广泛应 用的程序,但几十年后的现在,ASKA已无法与 NASTRAN相比。原因是ASKA后来没有大规模的资金投 入,使程序不断得到滚动发展(维护)和组织推广、剌激 程序在竞争中不断改进各种功能。
向量
X
e i
Yi e
F
e
Fi e Fje

第04讲-有限元分析方法及桥梁常用单元类型、单元选择

第04讲-有限元分析方法及桥梁常用单元类型、单元选择
• 有限元分析理论已有100多年的历史,是悬索桥和蒸汽锅炉进行手算评核的基础。
May,19,2009
湖南大学·土木·桥梁
4-6
节点和单元
荷载
节点: 空间中的坐标位置,具有一定自由度和 存在相互物理作用。
单元: 一组节点自由度间相互作用的数值、矩阵 描述(称为刚度或系数矩阵)。单元有线、 面或实体以及二维或三维的单元等种类。
May,19,2009
湖南大学·土木·桥梁
4-27
2009-5-24
Mass21单元
¾ 动力分析中,如横隔板的质量,均可以采用质量单元予以考虑。 ¾ Mass21单元实常数也需要根据单元自由度数量的多少进行确定
(Keyout(3)的值而定)。
¾ 质量单元不适应静力分析(静力分析是通过施加静力荷载考虑的)。除 非具有加速度或旋转加载时、或者惯性解除时(IRLF)。
第四讲 有限元分析 (FEA) 方法
桥梁结构常用单元的选择
May,19,2009
湖南大学·土木·桥梁
4-1
内容及目标
Part F. Combine系列 Combine14:空间弹簧单元
Part G. BEAM系列 BEAM3:二维梁单元 BEAM54 :二维变截面梁单元 BEAM4:三维梁单元 BEAM44:三维变截面梁单元 BEAM188:三维梁单元 BEAM189:三维梁单元 梁单元截面
线性Leabharlann 二次9 壳体结构——桥面板、腹 板、横隔板等薄结构模拟板 壳元,如shell63、shell93、 shell91/99(250层复合壳) 等。
9 实体结构——桥墩、桥台、桩基 等实体结构模拟实体单元,如 solid45、solid95、silod65(加 筋混凝土单元,可以计算混凝土 压溃、开裂及其破坏后的工作状 态)等。

杆梁结构有限元分析(第四章)

杆梁结构有限元分析(第四章)
在机械结构中,杆、梁、板是主要的承力构件,关于它们的 计算分析对于机械结构设计来说具有非常重要的作用,对杆、梁 、板的建模将充分考虑到实际结构的几何特征及连接方式,并需 要对其进行不同层次的简化,可以就某一特定分析目的得到相应 的1D、2D、3D模型。
由于在设计时并不知道结构的真实力学性能(或许还没有实验 结果,或许还得不到精确的解析解),仅有计算分析的一些结果, 因此,一种进行计算结果校核或验证的可能方法,就是对所分析 对象分别建立1D、2D、3D模型,来进行它们之间的相互验证和核 对;图4-1给出一个建筑结构中的杆梁框架以及建模简化过程。
c F EA
1D问题的最小势能原理求解
先介绍最小势能原理的基本表达式。设有满足位移边界条件BC(u)的许 可位移场,计算该系统的势能为
(u) U W
其中U为应变能,W为外力功,对于如图4-2所示的算例,有
U
1 2
x (u(x)) x (u(x))d
W Pu(x l)
4.2 杆件有限元分析的标准化标准与算例
4.1 杆梁结构分析的工程概念
图4-1 建筑结构中的杆梁框架以及建模简化过程
4.2 杆件有限元分析的标准化标准与算例
1 基本力学原理 杆件是最常用的承力构件,它的特点是连接它的两端一般都是铰
接接头,因此,它主要是承受沿轴线的轴向力,因两个连接的构件在 铰接接头处可以转动,则它不传递和承受弯矩。
有一个左端固定的拉杆,其右端承受一外力P。该拉杆的长度为l, 横截面积为A,弹性模量为E,如图4-2所示,这是一个一维问题,下 面讨论该问题的力学描述与求解。
K T eT K eT e
节点力阵
e
p T eT pe
刚度方程
ee
e

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理杆梁结构是一种常见的工程结构,广泛用于建筑、桥梁、机械等领域。

为了研究杆梁结构的力学性能和设计优化,常用的方法之一是有限元分析。

有限元分析是一种数值计算方法,通过将连续结构离散化为一个个有限的单元(元素),再通过计算单元之间的相互作用来近似表示整个结构的力学性能。

下面将逐步介绍杆梁结构的有限元分析原理。

1.离散化:首先,将杆梁结构离散化为一个个的单元,通常可以选择线性单元、二次单元等。

线性单元简单且计算效率高,而二次单元更准确但计算开销较大。

根据具体工程需求和分析要求,选择合适的单元进行离散化。

每个单元由节点和单元梁组成。

2.建立本地坐标系:为了方便计算,对于每个单元,可建立本地坐标系。

本地坐标系是以单元的一个节点为原点,并建立与该节点有关的坐标轴。

通过本地坐标系可以方便地描述单元内部的各种力和力矩。

3.单元刚度矩阵计算:对于每个单元,需要计算其刚度矩阵。

刚度矩阵描述了单元内部的相互作用,包括节点间的弯曲刚度和剪切刚度等。

通过根据材料的力学特性和几何信息,可以得到单元刚度矩阵。

4.装配全局刚度矩阵:将所有单元的刚度矩阵按照它们的几何关系组装成全局刚度矩阵。

全局刚度矩阵描述了整个杆梁结构的力学行为。

5.施加边界条件和加载情况:根据具体问题的边界条件和加载情况,在全局刚度矩阵中添加与之对应的约束和加载项。

边界条件通常涉及到约束的位移和力的平衡,加载情况则涉及到外界施加在结构上的力。

6.求解杆梁结构的位移:通过求解全局刚度矩阵与位移的乘积等式,可以得到结构的位移。

位移是描述结构变形的重要参数,可以用来计算应力、应变和变形等。

7.计算应力和应变:通过已知的位移以及杆梁的几何信息,可以计算单元内部的应力和应变。

应力和应变是评估杆梁结构受力情况的重要指标,在结构设计和安全评估中具有重要作用。

8.结果后处理:最后,可以通过后处理技术对有限元分析的结果进行处理和展示。

例如,可以绘制位移云图、应力云图等,以方便工程师对结构的力学性能进行评估和优化。

第3讲、杆梁问题的有限单元法

第3讲、杆梁问题的有限单元法

M yi
MT zi
(d)
单元刚度方程为
K e e Fe
(e)
其中:单元刚度矩阵
k1,1
K e
k2,1
k12,1
k1,2 k2,2
k12,2
k1,12
k2,12
k12,12
(f)
单元刚度矩阵元素根据其物理意义分析如下:
⑴ ui 1,其他结点自由度方向位移为0(如图32),生成单元刚度矩阵的第一列元素。
同样
vi ui cos y, x vi cos y, y i cos y, z i ui cos z, x vi cos z, y i cos z, z
图13
图14
这种转换关系如图14所示,写成矩阵形式,即
ui
vi
cos c os
x, y,
x x
i cos z, x
l32 m32 n32
由于 l1, m1, n1,l2, m2, n2 ,l3, m3, n3 实际上是用整体
坐标表示的沿局部坐标系三个坐标轴方向的三个单
位矢量,它们两两相互垂直,由矢量数量积的性质
可知
1 0 0
t t 0 1 0 I
0 0 1

t t t t 1
故 t 为正交矩阵。显然,由此又可得出转换矩阵T
0
0 1
则单元的坐标转换矩阵
T
t0
0
0
t0
显然也是正交矩阵。
也为正交矩阵的结论:
T T 1
(3-15)
则(3-11)式成为
K e T T KeT
(3-16)
⑵平面杆单元的坐标转换矩阵
先考察结点线位移的坐标转换,由 ui vi 转换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l1
EA1

u1 u2



R1
l1
0
u1 u2


1 2
u2
EA2

u3


l2 EA2
l2
EA2
l2
EA2

u2 u3



0
l 2
F3

u2 u3

EA1

l1

1 2
u1
u2
u3


EA1 l1

0

EA1 l1
EA1 l1

EA2 l2

EA2 l2
0

EA2 l2
EA2

u1 u2 u3



R1
0
u1
F3

u2

u3
l2

4)边界条件的处理
处理边界条件是获取可能位移场,将左端的约束条件,即u1=0代入 上式可以得到简化的势能表达式
本章主要内容
4.1有限元分析的完整过程 4.2有限元分析的基本步骤及表达式 4.3杆单元及其坐标变换 4.4梁单元及其坐标变换
4.1有限元分析的完整过程
E1=E2=2E7Pa A1=A2=2cm2 l1=l2=10cm
P3为10N作用下二杆结构的变形。
问题的解题思路: 1)用标准化的分段小单元来逼近原结构 2)寻找能够满足位移边界条件的许可位移场 3)基于位移场的最小势能原理来求解
节点位移列阵
应力矩阵或者是应力转换矩阵
势能的表达
e U e W e
1 2
e ij ij d
P1u1 P2u2
1 2
le 0
Bq e
T

Sqe

Aedx


P1u1

P2u2

1 2
le qeT BT EBqe Aedx
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2

1 2
u2
u3

EA1 l1

EA2 l2

EA2 l2

EA2 l2
EA2

u2 u3


0
l 2
F3

u2 u3


P1
P2

u1 u2


1 2
u1
EAe

u2


le EAe
le
EAe
le
EAe

u1 u2



P1
le
P2

u1 u2

1 qeTK eqe PeTqe 2
刚度矩阵
节点力列阵
3)离散单元的装配
第4章 杆系结构的有限元分析原理
杆梁单元概述
讨论杆梁单元和由它们组成的平面和空间杆梁结构系统. 从构造上来说其长度远大于其截面尺寸的一维构件 承受轴力或扭矩的杆件成为杆 杆梁问题都有精确解 承受横向力和弯矩的杆件称为梁 平面桁架 平面刚架 连续梁 空间刚架 空间桁架等 变截面杆和弯曲杆件
q Niu Nqe
N
ju

ui u j

形函数矩阵
根据几何方程可得应变的表达
x

du dx

a1

1 le
u j ui
写成矩阵形式为
Niu
简记为
N ju

ui u j


1 le
1
1
ui u j
单元节点条件:u(0)=u1, u(l)=u2
从而得
a0 ui ,
a1

uj
le
ui
i
1,
j

2
回代得
u(x) a0 a1x
ui
u j ui le
x

1
x le

ui

x le
u
j
Niui N ju j
其中Ni,Nj是形函数。
写成矩阵形式为
0
P1u1 P2u2
1 qeT BT EBqe Aele
2
P1u1 P2u2
写成矩阵形式为
e 1 qeT BT EBqe Aele
2
P1u1 P2u2

1 2
u1
u2

1 le
1

1 Βιβλιοθήκη EAel e1 le
1
1
u1 u2


Bqe
几何函数矩阵或者是应变转换矩阵
根据物理方程可得应力的表达
x

E
du dx

E le
u j ui
写成矩阵形式为
E Niu
简记为
N
ju

ui u j


E le
1
1
ui u j

Sqe


0

F3

l2
6)求解节点位移 将结构参数和外载荷代入上式有
3EA2

l2


EA2 l2

EA2 l2
EA2

u2 u3


0

F3

l2
2E4
3 1
1
1

u2 u3


0 10

5)建立刚度方程 由于上式是基于许可位移场的表达的系统势能,这是由全部节点位
移分段所插值出的位移场为全场许位移场,且基本未知量为节点位 移,根据最小势能原理(即针对未知位移求一阶导数)有

EA1 l1

EA2 l2


EA2 l2

EA2 l2
EA2

u2 u3
在得到各个单元的势能表达式后,需要进行离散单元的装配,以
求出整个系统的总势能,对于该系统,总势能包括两个单元部分
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2

1 2
u1
EA1

u2


l1 EA1
l1
EA1
基本变量为:
节点 位移
(1)
内部各 点位移
(2)
应变
(3)
应力
完整的求解过程
1)离散化 该构件由两根杆件做成,因此可以自然离散成2个杆单元。
假定以这类单元位移的特征为两个端点位移,就这两个离散单元给出 节点编号和单元编号。
单元1:i=1,j=2 单元2:i=2,j=3
2)单元分析
单元位移模式:u(x)=a0+a1x
求解得(单位m)
u2 u3


2.5E 7.5E

4 4
7)计算单元应变
1 Niu
N
ju

ui u j
1

1 l1
1
1
uu12

2.5E 3
相关文档
最新文档