MIDAS连续梁计算书

合集下载

midas曲梁计算书

midas曲梁计算书

上部结构纵向计算A匝道A0~A4联4X30m(8.8m宽)计算依据及标准如下:设计方提供的初步设计图纸及设计原则《公路工程技术标准》JTG B01—2003《公路桥涵设计通用规范》JTG D60—2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG 025—86注:在设计方提供的施工图图纸中,该联中支点A1~A3处支座均为固定支座,经程序试算后应力及内力结果都与目标结果相差很远,也不符合一般连续梁支座常规布置形式,经调试支座布置形式后,建立此模型。

(一)主梁纵向计算1、计算内容根据设计方提供的主梁结构和预应力钢筋的设计图,按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)的要求,对结构持久状况截面极限承载能力、正常使用极限状态的截面抗裂、挠度以及使用阶段构件的应力等内容进行了全面的验算。

2、计算模型纵向计算按杆系理论,采用midas civil 2006进行分析,将箱梁纵向作为平面梁单元进行离散;并考虑支座布置及荷载横向分配等因素,考虑满堂支架上现浇、张拉等施工过程。

1)离散模型计算模型结构离散图见下图所示,共78个节点,70个单元。

图10.4.1-1 结构离散图2)材料混凝土:主梁采用C50混凝土,弹性模量E=3.45×104MPa,fck=32.4MPa,ftk=2.65 MPa,fcd=22.4 MPa,ftd=1.83 MPa。

普通钢筋:HRB335预应力钢束:采用Φj15.24钢绞线,弹性模量195000MPa,张拉控制应力0.75fpk=0.75×1860=1395MPa,松弛比0.035,孔道摩阻系数0.3,偏差系数0.0015,一端锚具回缩6mm。

3、计算参数1)恒载一期恒载:按构件实际截面计入,混凝土容重γ=26.25KN/m3(考虑5%的施工误差);二期恒载(公路桥面桥面系):沥青混凝土铺装厚度18cm,容重γ=25KN/m3,行车道宽8m;地袱栏杆每侧:单条每延米12.5KN/m;则:∑q=0.18X8x25+2x12.5=61KN/m横隔板:(厚50cm)Pt1::6.8KN支座沉陷:按5mm考虑。

迈达斯(midas)计算

迈达斯(midas)计算

迈达斯(midas)计算潇湘路连续梁门洞调整后⽀架计算书1概述原《潇湘路(32+48+32)m连续梁施⼯⽅案》中,门洞条形基础中⼼间距为7.5⽶,现根据征迁⼈员反映,为满⾜门洞内机动车辆通⾏需求,需将条形基础中⼼间距调整⾄8.5⽶。

现对门洞结构体系进⾏计算,调整后门洞横断⾯如图1-1所⽰。

图1-1调整后门洞横断⾯图门洞纵断⾯不作改变如图1-2所⽰。

图1-2门洞总断⾯图门洞从上⾄下依次是:I40⼯字钢、双拼I40⼯字钢、Ф426*6钢管(内部灌C20素混凝⼟),各结构构件纵向布置均与原⽅案相同。

2主要材料⼒学性能(1)钢材为Q235钢,其主要⼒学性能取值如下:抗拉、抗压、抗弯强度:[ =125MpaQ235:[σ]=215Mpa, ](2)混凝⼟采⽤C35混凝⼟,其主要⼒学性能取值如下:弹性模量:E=3.15×104N/mm2。

抗压强度设计值:f c=14.3N/mm2抗拉强度设计值:f t=1.43N/mm2(3)承台主筋采⽤HRB400级螺纹钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=360N/mm2。

(4)箍筋采⽤HPB300级钢筋,其主要⼒学性能如下:抗拉强度设计值:f y=270N/mm23门洞结构计算3.1midas整体建模及荷载施加Midas整体模型如图3.1-1所⽰。

图3.1-1MIDAS整体模型图midas荷载加载横断⾯图如图3.1-2所⽰。

3.1-2荷载加载横断⾯图荷载加载纵断⾯如图3.1-3所⽰。

图3.1-3荷载加载纵断⾯图3.2整体受⼒分析整体模型受⼒分析如图5.2-1~5.2-3所⽰。

图5.2-1门洞整体位移等值线图5.2-2门洞整体组合应⼒云图图5.2-3门洞整体剪应⼒云图由模型分析可得,模型最⼤位移D=3.2mm<[l/600]=14.1mm,组⼤组合应⼒σ=144.2Mpa<[σ]=215Mpa,最⼤剪应⼒σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满⾜要求。

Midas预应力混凝土连续箱梁分析算例课件

Midas预应力混凝土连续箱梁分析算例课件

MIDAS软件是一款功能强大的有限元 分析软件,可以对预应力混凝土连续 箱梁进行精确的建模和分析,为桥梁 设计提供可靠的技术支持。
预应力混凝土连续箱梁的设计和施工 需要综合考虑多种因素,包括结构形 式、材料特性、施工方法等,以确保 桥梁的安全性和经济性。
展望
随着科技的不断进步和工程实 践的积累,预应力混凝土连续 箱梁的设计和施工将不断得到
预应力体系
通过在混凝土浇筑前施加 预压应力,改善了结构的 受力性能,提高了梁的承 载能力和稳定性。
横向联系
连续箱梁采用横隔板和横 梁等横向联系构件,确保 了结构的整体稳定性。
预应力混凝土连续箱梁的设计原理
力学分析
根据结构力学原理,对连 续箱梁进行受力分析,确 定各截面的弯矩、剪力和 扭矩等。
预应力设计
特殊情况处理
针对模型中可能出现的特殊情况, 如施工阶段、预应力张拉等,说明 处理方法。
计算结果分析
01
02
03
04
变形分析
分析模型在受力后的变形情况 ,包括挠度、转角等。
应力分析
分析模型中的应力分布和大小 ,包括正应力和剪应力。
预应力张拉分析
针对预应力张拉的情况,分析 张拉后的应力分布和损失。
结果对比
优化和完善。
未来可以进一步研究新型材料 和结构形式在预应力混凝土连 续箱梁中的应用,以提高桥梁
的性能和耐久性。
有限元分析软件的功能和精度 将不断提升,为预应力混凝土 连续箱梁的分析和设计提供更 加可靠的技术支持。
未来可以通过加强科研合作和 技术交流,推动预应力混凝土 连续箱梁领域的创新和发展, 为我国桥梁事业的发展做出更 大的贡献。
05 参考文献
CHAPTER

现浇箱梁midas结构计算书

现浇箱梁midas结构计算书

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (2)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (9)3.1计算模型 (9)3.2短暂状况构件应力验算 (10)3.3上部结构计算小结 (24)4 横梁计算 (25)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;广东省公路勘察规划设计院/北京交科公路勘察设计研究院1(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

现浇箱梁midas结构计算书

现浇箱梁midas结构计算书

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (2)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (9)3.1计算模型 (9)3.2短暂状况构件应力验算 (10)3.3上部结构计算小结 (24)4 横梁计算 (25)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;广东省公路勘察规划设计院/北京交科公路勘察设计研究院1(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

现浇箱梁midas结构计算书

现浇箱梁midas结构计算书

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (2)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (9)3.1计算模型 (9)3.2短暂状况构件应力验算 (10)3.3上部结构计算小结 (24)4 横梁计算 (25)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

1.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

梁高1.6米,箱梁顶宽16.25m。

midas连续梁计算书

midas连续梁计算书

第1章 89#~92#预应力砼连续梁桥1.1结构设计简述本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。

箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。

主梁单侧悬臂长度为4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。

主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。

本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。

图11.1.1 箱梁构造图图11.1.2 箱梁断面图纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa。

中支点断面钢束布置如图11.1.3所示。

pk图11.1.3 中支点断面钢束布置图主要断面预应力钢束数量如下表墩横梁预应力采用采用φs15-19,单向张拉,如下图。

1.2主要材料1.2.1主要材料类型(1) 混凝土:主梁采用C50砼;(2) 普通钢筋:R235、HRB335钢筋;(3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、pk夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。

1.2.2主要材料用量指标本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。

表11.2.2-1 上部结构主要材料指标1.3 结构计算分析1.3.1 计算模型结构计算模型如下图所示。

图11.3.1-1 结构模型图有效分布宽度0.50.60.70.80.912.255.49.0612.916.819.523.22730.834.337.140.94447.551.155.158.662.565.168.972.776.179.4坐标Iyy 系数图11.3.1-2 箱梁抗弯刚度折减系数示意图1.3.2 支座反力计算本桥各桥墩均设三支座。

MIDAS连续梁计算书

MIDAS连续梁计算书

目录第1章设计原始资料 (1)1.1设计概况 (1)1.2技术标准 (1)1.3主要规 (1)第2章桥跨总体布置及结构尺寸拟定 (2)2.1尺寸拟定 (2)2.1.1 桥孔分跨 (2)2.1.2 截面形式 (2)2.1.3 梁高 (3)2.1.4 细部尺寸 (4)2.15 主要材料及材料性能 (6)2.2模型建立与分析 (7)2.2.1 计算模型 (8)第3章荷载力计算 (9)3.1荷载工况及荷载组合 (9)3.2作用效应计算 (10)3.2.1 永久作用计算 (10)3.3作用效应组合 (16)第4章预应力钢束的估算与布置 (20)4.1力筋估算 (20)4.1.1 计算原理 (20)4.1.2 预应力钢束的估算 (24)4.2预应力钢束的布置(具体布置图见图纸) (27)第5章预应力损失及有效应力的计算 (29)5.1预应力损失的计算 (29)5.1.1摩阻损失 (29)5.1.2. 锚具变形损失 (30)5.1.3. 混凝土的弹性压缩 (30)5.1.4.钢束松弛损失 (31)5.1.5.收缩徐变损失 (31)5.2有效预应力的计算 (32)第6章次力的计算 (33)6.1徐变次力的计算 (33)6.2预加力引起的次力 (33)第7章力组合 (35)7.1承载能力极限状态下的效应组合 (35)7.2正常使用极限状态下的效应组合 (38)第8章主梁截面验算 (41)8.1正截面抗弯承载力验算 (41)8.2持久状况正常使用极限状态应力验算 (44)8.2.1 正截面抗裂验算(法向拉应力) (44)8.2.2 斜截面抗裂验算(主拉应力) (46)8.2.3混凝土最大压应力验算 (49)8.2.4 预应力钢筋中的拉应力验算 (50)8.3挠度的验算 (51)小结 (53)第1章设计原始资料1.1 设计概况设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。

施工方式采用满堂支架现浇,采用变截面连续箱梁。

连续梁支架midas计算书

连续梁支架midas计算书

11 1#、4#墩桩基偏压检算 .......................................................................................... 29 12 结论 .................................................................................................................... 32
2 计算依据
(1) 《公路桥涵施工技术规范》 (JTGT F50-2011) ; (2) 《公路桥涵设计通用规范》 (JTJ021-04) ; (3) 《混凝土结构设计规范》 (GB50010-2010) ; (4) 《建筑施工碗扣式脚手架安全技术规范》 (JGJ 166-2008) ; (5) 《钢结构设计规范》 (GB 50017-2003) ; (6) 《木结构设计规范》 (GB50005-2003) (7) 《建筑施工模板安全技术规范》 (JGJ162-2008) ; (8) 《建筑地基基础设计规范》 (GB50007-2011) (9) 《公路桥涵地基与基础设计规范》 (JTG D63-2007) (10) 《装配式公路钢桥制造》 (JT/T728-2008) (11) 《装配式公路钢桥多用途使用手册》
XX 大道 XX 线 现浇连续梁支架计算书
1 工程概况
XX 大道 XX 线 XX 桥位于 XX 镇与 XX 镇交界处,全桥孔跨布置为 1× 25+(33+56+33)+1 × 25 预 应 力砼 简支 箱 梁和预 应 力砼 现 浇箱 梁, 起点 桩 号 K10+311,终点桩号 K10+491,桥梁全长 180 米,桥宽 80 米,横向布置为分离 式四幅,每幅宽 20m,桥梁与道路正交,设计纵坡 1.5%,桥面横坡为双向 1.5%。 主桥为 33+56+33 连续梁,横跨 XX 河,主墩基础为Φ1800 桩承台基础,桥 墩为拱形 3 柱式墩,设计桩长 18m,墩高 10.78m~13.00m。上部结构为变截面 预应力混凝连续箱梁, 每幅箱梁为单箱四室结构, 箱梁顶宽 20m, 底宽 14.985m, 腹板厚度 70cm、45cm,中间 5m 范围内过渡,主墩处梁高 6m,跨中及边墩处梁 高 1.7m,成 3 次抛物线过渡,底板厚度由 70cm 按三次抛物线变化至跨中 24cm, 单幅现浇 C50 砼 2900m³。 地质情况:主桥跨 XX 河,河床砂卵石覆盖层较薄 30~50cm,砂卵石以下约 2.5m 厚强风化砂岩,承载力 300kPa;强风化砂岩以下为中风化砂岩,承载力 700kPa。

midas_连续梁计算书

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥1.1结构设计简述本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。

箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。

主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。

主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。

本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。

图11.1.1 箱梁构造图图11.1.2 箱梁断面图纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。

中支点断面钢束布置如图11.1.3所示。

度pk图11.1.3 中支点断面钢束布置图主要断面预应力钢束数量如下表墩横梁预应力采用采用φs15-19,单向张拉,如下图。

1.2主要材料1.2.1主要材料类型(1) 混凝土:主梁采用C50砼;(2) 普通钢筋:R235、HRB335钢筋;(3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、pk夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。

1.2.2主要材料用量指标本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。

表11.2.2-1 上部结构主要材料指标1.3结构计算分析1.3.1计算模型结构计算模型如下图所示。

图11.3.1-1 结构模型图有效分布宽度0.50.60.70.80.912.255.49.0612.916.819.523.22730.834.337.140.94447.551.155.158.662.565.168.972.776.179.4坐标Iyy 系数图11.3.1-2 箱梁抗弯刚度折减系数示意图1.3.2 支座反力计算本桥各桥墩均设三支座。

midas建模计算(预应力混凝土连续箱梁桥)

midas建模计算(预应力混凝土连续箱梁桥)

midas建模计算(预应力混凝土连续箱梁桥)midas建模计算(预应力混凝土连续箱梁桥)纵向计算模型的建立1.设置操作环境1.1打开新项目,输入文件名称,保存文件1.2在工具-单位体系中将单位体系设置为“m”,“KN”,“kj”和“摄氏”。

2.材料与截面定义2.1 材料定义右键-材料和截面特性-材料。

C50材料定义如下图所示。

需定义四种材料:主梁采用C50混凝土,立柱、盖梁及桥头搭板采用C30混凝土,基桩采用C25混凝土。

预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。

钢绞线定义时,设计类型:钢材;规范:JTG04(S);数据库:strand 1860,名称:预应力钢筋2.2 截面定义2.2.1 利用SPC(截面特性值计算器)计算截面信息(1)在CAD中x-y平面内,以mm为单位绘制主梁所有的控制截面,以DXF 格式保存文件;绘图时注意每个截面必须是闭合的,不能存在重复的线段,并且对于组成变截面组的线段,其组成线段的个数应保持一致。

(2)在midas工具中打开截面特性计算器(SPC),在Tools-Setting中将单位设置为“KN”和“mm”;(3)从File-Import-Autocad DXF导入DXF截面;(4)从Model-Section-Generate中选择“Type-Plane”;不勾选“Merge Straight Lines”前面的复选框;Name-根据截面所在位置定义不同的截面名称从而生成截面信息;(5)在Property-Calculate Section Property 中设置划分网格的大小和精度,然后计算各截面特性;(6)从File-Export-MIDAS Section File导出截面特性文件,指定文件目录和名字,以备使用。

2.2.2 建立模型截面(1)右键-材料和截面特性-截面-添加-设计截面,选择设计用数值截面。

单击“截面数据”选择“从SPC导入”,选择刚导出的截面特性文件,并输入相应的设计参数。

midas连续梁计算书

midas连续梁计算书

4 gLCB4
激活
相加
整体升温( 1.400) +
降温梯度( 1.400) +
支座沉降( 0.500)
+
恒荷载( 1.200) +
钢束二次( 1.200) +
徐变二次( 1.000)
+
收缩二次( 1.000)
--------------------------------------------------------------------------------------------
本计算书模板是依据 2004 年 10 月颁布的《公路钢筋混凝土及预应力混凝土桥涵 设计规范》(JTG D62-2004)[以下简称《公桥规》]编写的。适用于公路桥梁上部结 构计算。文中以沿江高速淡水河特大桥主桥(82+2x140+82)m 连续刚构为例进行计算, 相关参数仅为参考。
望读者在使用本计算书模板的同时,一定要认真阅读《公桥规》(JTG D62-2004) 中的相关内容及要求。
(3)施工方案
纵向钢束布置情况
顶板钢束
腹板钢束
23-7φ5/19-7φ5 18x3=54 1339
23-7φ5 16x3=48
1395
中跨底板钢束
19-7φ5 11x3=33
1339
边跨底板钢 束
17-7φ5 5x3=15 1339
连续刚构采用对称逐段悬臂灌注和支架现浇两种施工方法。先托架浇注 0 号块,
由于编者水平有限,对《公桥规》(JTG D62-2004)理解还不够深透,有不少认 识有待深化,难免有缺失和错漏之处,恳请读者批评指正。
编者 2010 年 12 月

现浇连续弯桥midas计算书

现浇连续弯桥midas计算书

**高速公路结构设计计算书中国北京二〇二〇年六月七日目录1.设计资料 (1)1.1桥跨 (1)1.2梁 (1)1.3荷载 (1)1.1.1.恒载 (1)1.1.2.活载 (1)1.1.3.温度荷载 (1)1.1.4.支座沉降 (1)1.1.5.荷载组合 (1)1.4主要材料设计参数表 (2)2.设计依据 (2)2.1规范条文 (2)2.2软件工具 (2)3.上部结构总体计算 (3)3.1计算模式 (3)3.2持久状况承载能力极限状态计算 (3)3.3持久状况应力计算 (5)3.4持久状况正常使用极限状态短期抗裂计算 (7)3.5持久状况正常使用极限状态长期抗裂计算 (9)3.6持久状况正常使用极限状态主拉应力抗裂验算 (10)4.上部结构横向计算 (11)4.1桥墩墩顶横梁 (11)4.1.1计算模式 (11)4.1.2持久状况承载能力极限状态计算 (12)4.1.3持久状况正常使用极限状态抗裂计算 (13)4.2桥台横梁 (13)4.2.1 (13)4.2.2持久状况承载能力极限状态计算 (13)4.2.3持久状况正常使用极限状态抗裂计算 (14)5.下部结构计算 (14)5.1桥墩墩柱 (14)5.1.1持久状况承载能力极限状态计算 (14)5.1.2持久状况正常使用极限状态抗裂计算 (15)5.2桥墩桩基础 (15)1.设计资料1.1桥跨桥型布置为3×38+27m现浇预应力混凝土连续箱梁。

按A类预应力混凝土构件验算1.2梁箱梁高2.3m1.3荷载1.1.1.恒载A.一期恒载包括主梁自重,混凝土主梁按照实际断面尺寸取值,容重取26kN/ m3,主梁横隔板以集中力计入。

B.二期恒载二期恒载包括人行道、栏杆和桥面铺装:桥面铺装采用15m整体化混凝土,钢筋混凝土容重为26kN/m3。

栏杆或防撞护栏:栏杆二期恒载13.2 kN/m;防撞护栏二期恒载35.1kN/m;1.1.2.活载A.汽车荷载公路-I级,汽车荷载的横向分布系数:边梁:0.816;中梁:0.679。

现浇箱梁midas结构计算书.

现浇箱梁midas结构计算书.

从化至东莞高速公路第一合同段沙浦枢纽立交广惠高速跨线桥左幅第四联连续箱梁验算报告计算复核审核二〇一〇年六月目录1工程概况 (1)1.1概述 (1)1.2主要设计标准 (1)1.3主要材料 (2)1.4结构形式简述 (3)2计算模型及计算参数选取 (3)2.1计算模型建立 (3)2.2计算荷载 (5)2.3计算工况及验算内容 (7)3上部结构计算 (10)3.1计算模型 (10)3.2短暂状况构件应力验算 (11)3.3上部结构计算小结 (25)4 横梁计算 (26)广惠高速跨线桥左幅第四联连续箱梁验算报告1工程概况1.1概述本联为跨径组合为(3×25)m的连续箱梁,上部结构采用连续箱梁,梁高等高为1.6m,悬臂宽度2.3m,桥面横坡通过箱梁整体旋转形成,箱梁顶、底板始终保持平行,边腹板保持2.75:1的斜率不变。

箱梁顶宽16.25m,采用单箱双室。

本桥预应力砼连续箱梁按照部分预应力混凝土A类构件设计。

下部结构采用板式桥墩,支座采用盆式支座。

1.2主要设计标准(1)设计荷载:公路—I级;(2)桥面宽度:桥宽16.25米;(4)横坡:2%。

广东省公路勘察规划设计院/北京交科公路勘察设计研究院1(5)地震加速度为0.05g,对应地震基本烈度Ⅵ度;(6)环境类别:Ⅰ类环境(7)安全等级:一级1.3主要材料(1)混凝土现浇箱梁采用C50砼;护栏采用C30砼。

具体以细部图纸为准。

(2)钢筋钢筋应符合GB13013-1991和GB1499-1998的规定。

凡钢筋直径≥12mm者,均采用HRB335钢筋;凡钢筋直径<12mm者,均采用热轧R235钢筋。

(3)钢绞线钢绞线采用GB/T5224-2003标准生产的低松弛高强度钢绞线。

单根钢绞线直径15.20mm,公称面积140mm2,标准强度1860MPa,弹性模量1.95×105MPa。

广东省公路勘察规划设计院/北京交科公路勘察设计研究院21.4结构形式简述本联组合跨径为(3×25)m ,上部结构均采用预应力混凝土斜腹板连续箱梁。

MIDAS检算现浇梁支架计算书3-1.1-整体模型

MIDAS检算现浇梁支架计算书3-1.1-整体模型

目录1 计算依据 (1)2 工程概况 (1)3 施工方案综述 (2)4 现浇支架计算 (2)4.1 支架设计 (2)4.2 设计参数及材料强度 (3)4.2.1 设计参数 (3)4.2.2 材料设计强度 (4)4.3 荷载分析 (4)4.3.1 荷载类型 (4)4.3.2 荷载组合 (4)4.3.3 箱梁混凝土自重 (5)4.3.4 模板自重 (6)4.3.5 分配梁12.6工字钢自重 (6)4.3.6 单片贝雷梁荷载统计 (6)4.4 建立模型计算分析 (6)4.4.1 模型单元 (6)4.4.2 边界条件 (7)4.4.3 模型荷载 (7)4.4.4 支架体系计算模型 (7)4.4.5 计算结果 (7)5 结论 (11)32.6m简支箱梁现浇支架计算书1 计算依据(1)连续梁相关施工图(2)《钢结构设计规范》GB50017-2003(3)《建筑结构荷载规范》(GB50009-2012)(4)《桥梁临时结构设计》中国铁道出版社(5)《路桥施工计算手册》人民交通出版社(6)《装配式公路钢桥多用途使用手册》(7)Midas设计手册2 工程概况32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。

箱梁正视图、断面图分别如图2.1.1所示。

图2.1.1 简支箱梁正视图图2.1.2 简支箱梁断面图3 施工方案综述简支梁现浇施工工序为施工准备→支架搭设→支架预压→调整模板→绑扎钢筋→安装内模→浇筑混凝土→养护→支架拆除,具体施工流程简图3.1.1所示。

施工准备测量放样支架搭设安装底模及外模支座安装支架预压沉降观测调整模板安装、绑扎钢筋安装内模测量中线及标高检查合格浇筑混凝土及预应力养护支架拆除图3.1.1 简支梁现浇流程图4 现浇支架计算4.1 支架设计现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。

迈达斯(midas)计算

迈达斯(midas)计算

潇湘路连续梁门洞调整后支架计算书1概述原《潇湘路(32+48+32)m连续梁施工方案》中,门洞条形基础中心间距为7.5米,现根据征迁人员反映,为满足门洞内机动车辆通行需求,需将条形基础中心间距调整至8.5米。

现对门洞结构体系进行计算,调整后门洞横断面如图1-1所示。

图1-1调整后门洞横断面图门洞纵断面不作改变如图1-2所示。

图1-2门洞总断面图门洞从上至下依次是:I40工字钢、双拼I40工字钢、Ф426*6钢管(内部灌C20素混凝土),各结构构件纵向布置均与原方案相同。

2主要材料力学性能(1)钢材为Q235钢,其主要力学性能取值如下:抗拉、抗压、抗弯强度:[ =125MpaQ235:[σ]=215Mpa, ](2)混凝土采用C35混凝土,其主要力学性能取值如下:弹性模量:E=3.15×104N/mm2。

抗压强度设计值:f c=14.3N/mm2抗拉强度设计值:f t=1.43N/mm2(3)承台主筋采用HRB400级螺纹钢筋,其主要力学性能如下:抗拉强度设计值:f y=360N/mm2。

(4)箍筋采用HPB300级钢筋,其主要力学性能如下:抗拉强度设计值:f y=270N/mm23门洞结构计算3.1midas整体建模及荷载施加Midas整体模型如图3.1-1所示。

图3.1-1MIDAS整体模型图midas荷载加载横断面图如图3.1-2所示。

3.1-2荷载加载横断面图荷载加载纵断面如图3.1-3所示。

图3.1-3荷载加载纵断面图3.2整体受力分析整体模型受力分析如图5.2-1~5.2-3所示。

图5.2-1门洞整体位移等值线图5.2-2门洞整体组合应力云图图5.2-3门洞整体剪应力云图由模型分析可得,模型最大位移D=3.2mm<[l/600]=14.1mm,组大组合应力σ=144.2Mpa<[σ]=215Mpa,最大剪应力σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满足要求。

大型设计院跨高速公路顶推钢箱梁midas计算书

大型设计院跨高速公路顶推钢箱梁midas计算书

目录1. 纵向计算 (1)1。

1概算 (1)1.2设计参数 (4)1。

2.1 结构重力 (4)1.2。

2 基础变位作用 (5)1。

2.3 汽车荷载、人群荷载 (5)1.2。

4 汽车荷载冲击力系数 (5)1。

2.5 温度作用 (5)1.2.6 抗震要求 (5)1。

2。

7 桥梁设计基准期 (5)1。

2.8 桥梁设计使用年限 (5)1.2.9 桥梁设计安全等级 (6)1.2.10 环境类别 (6)1.2。

11 材料性能 (6)1。

3计算分析 (6)1。

3.1 支承反力 (6)1。

3.2 刚度 (6)1.3.3 内力 (7)1.3.4 截面 (8)1.3。

5 应力 (9)2。

普通横隔板计算 (10)2.1计算模式 (10)2。

2截面及截面特性 (10)2。

3设计荷载 (10)2.3.1 结构重力 (10)2。

3。

2 汽车荷载 (11)2。

4强度检算 (11)2。

5稳定检算 (12)3。

中支点横隔板 (12)3.1计算模式 (12)3.2强度检算 (12)3。

3稳定检算 (13)4. 端支点横隔板 (13)4。

1计算模式 (13)4。

2强度检算 (14)4。

3稳定检算 (15)5。

左侧悬臂托架 (15)5。

1计算模式 (15)5.2截面及截面特性 (16)5。

3设计荷载 (16)5。

3。

1 结构重力 (16)5。

3.2 汽车荷载 (17)5。

4内力 (17)5.5强度检算 (17)5。

5。

1 正应力 (18)5.5。

2 剪应力 (18)5。

5。

3 稳定检算: (18)6. 右侧悬臂托架 (18)6。

1计算模式 (18)6.2截面及截面特性 (18)6.3设计荷载 (19)6.3。

1 结构重力 (19)6.3.2 汽车荷载 (20)6.4内力 (20)6。

5强度检算 (20)6.5.1 正应力 (20)6.5.2 剪应力 (21)6。

5.3 稳定检算: (21)7. 支承加劲肋检算 (21)7。

1计算模式 (21)7.2强度核算 (21)7。

MIDAS连续梁计算书

MIDAS连续梁计算书

MIDAS连续梁计算书⽬录第1章设计原始资料 (1)1.1设计概况 (1)1.2技术标准 (1)1.3主要规范 (1)第2章桥跨总体布置及结构尺⼨拟定 (2)2.1尺⼨拟定 (2)2.1.1 桥孔分跨 (2)2.1.2 截⾯形式 (2)2.1.3 梁⾼ (3)2.1.4 细部尺⼨ (4)2.15 主要材料及材料性能 (6)2.2模型建⽴与分析 (7)2.2.1 计算模型 (8)第3章荷载内⼒计算 (9)3.1荷载⼯况及荷载组合 (9)3.2作⽤效应计算 (10)3.2.1 永久作⽤计算 (10)3.3作⽤效应组合 (16)第4章预应⼒钢束的估算与布置 (20)4.1⼒筋估算 (20)4.1.1 计算原理 (20)4.1.2 预应⼒钢束的估算 (24)4.2预应⼒钢束的布置(具体布置图见图纸) (27)第5章预应⼒损失及有效应⼒的计算 (29)5.1预应⼒损失的计算 (29)5.1.1摩阻损失 (29)5.1.2. 锚具变形损失 (30)5.1.3. 混凝⼟的弹性压缩 (30)5.1.4.钢束松弛损失 (31)5.1.5.收缩徐变损失 (31)5.2有效预应⼒的计算 (32)第6章次内⼒的计算 (33)6.1徐变次内⼒的计算 (33)6.2预加⼒引起的次内⼒ (33)第7章内⼒组合 (35)7.1承载能⼒极限状态下的效应组合 (35)7.2正常使⽤极限状态下的效应组合 (37)第8章主梁截⾯验算 (41)8.1正截⾯抗弯承载⼒验算 (41)8.2持久状况正常使⽤极限状态应⼒验算 (44)8.2.1 正截⾯抗裂验算(法向拉应⼒) (44)8.2.2 斜截⾯抗裂验算(主拉应⼒) (46)8.2.3混凝⼟最⼤压应⼒验算 (49)8.2.4 预应⼒钢筋中的拉应⼒验算 (50)8.3挠度的验算 (51)⼩结 (53)第1章设计原始资料1.1 设计概况设计某预应⼒混凝⼟连续梁桥模型,标准跨径为35m+50m+35m。

【精品】现浇箱梁支架计算书-(midas计算稳定性)概要

【精品】现浇箱梁支架计算书-(midas计算稳定性)概要

现浇箱梁支架计算书-(m i d a s计算稳定性)概要温州龙港大桥改建工程满堂支架法现浇箱梁设计计算书计算:复核:审核:中铁上海工程局温州龙港大桥改建工程项目经理部2015年12月30日目录1 编制依据、原则及范围 ···························································································· - 1 -1.1 编制依据················································································································- 1 -1.2 编制原则················································································································- 1 -1.3 编制范围················································································································- 1 -2 设计构造 ··················································································································· - 2 -2.1 现浇连续箱梁设计构造 ························································································- 2 -2.2 支架体系主要构造································································································- 2 -3 满堂支架体系设计参数取值····················································································· - 7 -3.1 荷载组合················································································································- 8 -3.2 强度、刚度标准····································································································- 8 -3.3 材料力学参数········································································································- 8 -4 计算··························································································································· - 9 -4.1 模板计算················································································································- 9 -4.2 模板下上层方木计算··························································································- 10 -4.3 顶托上纵向方木计算··························································································- 11 -4.4 碗扣支架计算······································································································- 13 -4.5 地基承载力计算··································································································- 16 -温州龙港大桥改建工程现浇连续梁模板支架计算书1 编制依据、原则及范围1.1 编制依据1.1.1 设计文件(1)《温州龙港大桥改建工程两阶段施工图设计》(2013年8月)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章设计原始资料 (1)设计概况 (1)技术标准 (1)主要规范 (1)第2章桥跨总体布置及结构尺寸拟定 (2)尺寸拟定 (2)桥孔分跨 (2)截面形式 (2)梁高 (3)细部尺寸 (4)主要材料及材料性能 (6)模型建立与分析 (7)计算模型 (8)第3章荷载内力计算 (9)荷载工况及荷载组合 (9)作用效应计算 (10)永久作用计算 (10)作用效应组合 (16)第4章预应力钢束的估算与布置 (20)力筋估算 (20)计算原理 (20)预应力钢束的估算 (24)预应力钢束的布置(具体布置图见图纸) (27)第5章预应力损失及有效应力的计算 (29)预应力损失的计算 (29)摩阻损失 (29)锚具变形损失 (30)混凝土的弹性压缩 (30)钢束松弛损失 (31)收缩徐变损失 (31)有效预应力的计算 (32)第6章次内力的计算 (33)徐变次内力的计算 (33)预加力引起的次内力 (33)第7章内力组合 (35)承载能力极限状态下的效应组合 (35)正常使用极限状态下的效应组合 (38)第8章主梁截面验算 (41)正截面抗弯承载力验算 (41)持久状况正常使用极限状态应力验算 (44)正截面抗裂验算(法向拉应力) (44)斜截面抗裂验算(主拉应力) (46)混凝土最大压应力验算 (49)预应力钢筋中的拉应力验算 (50)挠度的验算 (51)小结 (53)第1章设计原始资料设计概况设计某预应力混凝土连续梁桥模型,标准跨径为35m+50m+35m。

施工方式采用满堂支架现浇,采用变截面连续箱梁。

技术标准公路等级:一级公路,双向2车道;设计荷载:公路-I级;桥面宽度:×2+×2;安全等级:二级;主要规范1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);2)《公路桥涵设计通用规范》(JTG D60-2004);3)《公路工程技术标准》(JTG B01-2003);4)《公路桥梁抗震设计细则》(JTG/T B02-01-2008);5)《公路桥涵地基与基础设计规范》(JTG D63-2007);6)《城市桥梁设计规范》(CJJ11-2011);第2章桥跨总体布置及结构尺寸拟定尺寸拟定本设计方案采用三跨一联预应力混凝土变截面连续梁结构,全长120m。

设计主跨为50m。

2.1.1 桥孔分跨连续梁桥有做成三跨或者四跨一联的,也有做成多跨一联的,但一般不超过六跨。

对于桥孔分跨,往往要受到如下因素的影响:桥址地形、地质与水文条件,通航要求以及墩台、基础及支座构造,力学要求,美学要求等。

若采用三跨不等的桥孔布置,一般边跨长度可取为中跨的—倍,这样可使中跨跨中不致产生异号弯矩,此外,边跨跨长与中跨跨长之比还与施工方法有着密切的联系,对于采用现场浇筑的桥梁,边跨长度取为中跨长度的倍是经济合理的。

但是若采用悬臂施工法,则不然。

本设计跨度,主要根据设计任务书来确定,其跨度组合为:(35+50+35)米。

基本符合以上原理要求。

2.1.2 截面形式1)立截面从预应力混凝土连续梁的受力特点来分析,连续梁的立面应采取变高度布置为宜;在恒、活载作用下,支点截面将出现较大的负弯矩,从绝对值来看,支点截面的负弯矩往往大于跨中截面的正弯矩,因此,采用变高度梁能较好地符合梁的内力分布规律,另外,变高度梁使梁体外形和谐,节省材料并增大桥下净空。

但是,在采用顶推法、移动模架法、整孔架设法施工的桥梁,由于施工的需要,一般采用等高度梁。

等高度梁的缺点是:在支点上不能利用增加梁高而只能增加预应力束筋用量来抵抗较大的负弯矩,材料用量多,但是其优点是结构构造简单、线形简洁美观、预制定型、施工方便。

一般用于如下情况:① 桥梁为中等跨径,以40—60米为主。

采用等截面布置使桥梁构造简单,施工迅速。

由于跨径不大,梁的各截面内力差异不大,可采用构造措施予以调节。

② 等截面布置以等跨布置为宜,由于各种原因需要对个别跨径改变跨长时,也以等截面为宜。

③ 采用有支架施工,逐跨架设施工、移动模架法和顶推法施工的连续梁桥较多采用等截面布置。

双层桥梁在无需做大跨径的情况下,选用等截面布置可使结构构造简化。

结合以上的叙述,所以本设计中采用满堂支架施工方法,变截面的梁。

2)横截面梁式桥横截面的设计主要是确定横截面布置形式,包括主梁截面形式、主梁间距、主梁各部尺寸;它与梁式桥体系在立面上布置、建筑高度、施工方法、美观要求以及经济用料等等因素都有关系。

当横截面的核心距较大时,轴向压力的偏心可以愈大,也就是预应力钢筋合力的力臂愈大,可以充分发挥预应力的作用。

箱形截面就是这样的一种截面。

此外,箱形截面这种闭合薄壁截面抗扭刚度很大,对于弯桥和采用悬臂施工的桥梁尤为有利;同时,因其都具有较大的面积,所以能够有效地抵抗正负弯矩,并满足配筋要求;箱形截面具有良好的动力特性;再者它收缩变形数值较小,因而也受到了人们的重视。

总之,箱形截面是大、中跨预应力连续梁最适宜的横截面形式。

常见的箱形截面形式有:单箱单室、单箱双室、双箱单室、单箱多室、双箱多室等等。

单箱单室截面的优点是受力明确,施工方便,节省材料用量。

拿单箱单室和单箱双室比较,两者对截面底板的尺寸影响都不大,对腹板的影响也不致改变对方案的取舍;但是,由框架分析可知:两者对顶板厚度的影响显着不同,双室式顶板的正负弯矩一般比单室式分别减少70%和50%。

由于双室式腹板总厚度增加,主拉应力和剪应力数值不大,且布束容易,这是单箱双室的优点;但是双室式也存在一些缺点:施工比较困难,腹板自重弯矩所占恒载弯矩比例增大等等。

本设计是一座公路连续箱形梁,采用的横截面形式为单箱单室。

2.1.3 梁高根据经验确定,预应力混凝土连续梁桥的中支点主梁高度与其跨径之比通常在1/15—1/25之间,而跨中梁高与主跨之比一般为1/40—1/50之间。

当建筑高度不受限制时,增大梁高往往是较经济的方案,因为增大梁高只是增加腹板高度,而混凝土用量增加不多,却能显着节省预应力钢束用量。

连续梁在支点和跨中的梁估算值:等高度梁: H=(151~301)l ,常用H=(181~201)l 变高度(曲线)梁:支点处:H=(161~201)l ,跨中H=(301~501)l 变高度(直线)梁:支点处:H=(161~201)l ,跨中H=(221~281)l 而此设计采用变高度的直线梁,端支点处梁高为 2.5米,中支点处梁高为3.5米,跨中梁高为2.0米。

2.1.4 细部尺寸1) 顶板与底板箱形截面的顶板和底板是结构承受正负弯矩的主要工作部位。

其尺寸要受到受力要求和构造两个方面的控制。

支墩处底板还要承受很大的压应力,一般来讲:变截面的底板厚度也随梁高变化,墩顶处底板为梁高的1/10-1/12,跨中处底板一般为200-250mm 。

底板厚最小应有120mm 。

箱梁顶板厚度应满足横向弯矩的要求和布置纵向预应力筋的要求。

本设计中采用双面配筋,且底板由支点处以抛物线的形式向跨中变化。

底板在支点处设计为实心箱型截面,在跨中厚25cm.顶板厚30cm 。

2) 腹板和其它细部结构① 箱梁腹板厚度 腹板的功能是承受截面的剪应力和主拉应力。

在预应力梁中,因为弯束对外剪力的抵消作用,所以剪应力和主拉应力的值比较小,腹板不必设得太大;同时,腹板的最小厚度应考虑力筋的布置和混凝土浇筑要求,其设计经验为:a: 腹板内无预应力筋时,采用200mm。

b: 腹板内有预应力筋管道时,采用250—300mm。

c: 腹板内有锚头时,采用250—300mm。

大跨度预应力混凝土箱梁桥,腹板厚度可从跨中逐步向支点加宽,以承受支点处交大的剪力,一般采用300—600mm,甚至可达到1m左右。

本设计支座处腹板厚取40cm.,跨中腹板厚取30cm。

②承托在顶板和腹板接头处须设置承托。

承托的形式一般为1:2、1:1、1:3、1:4等。

承托的作用是:提高截面的抗扭刚度和抗弯刚度,减少扭转剪应力和畸变应力。

此外,承托使力线过渡比较平缓,减弱了应力的集中程度。

本设计中,根据箱室的外形设置了宽20mm,长20mm的上部梗腋,而下部采用1:1的承托。

3)横隔梁横隔梁可以增强桥梁的整体性和良好的横向分布,同时还可以限制畸变;支承处的横隔梁还起着承担和分布支承反力的作用。

由于箱形截面的抗扭刚度很大,一般可以比其它截面的桥梁少设置横隔梁,甚至不设置中间横隔梁而只在支座处设置支承横隔梁。

因此本设计没有加以考虑,而且由于中间横隔梁的尺寸及对内力的影响较小,在内力计算中也可不作考虑。

跨中截面及中支点截面示意图如下所示:(单位为cm)图2-1 端支点截面图2-2中支点截面图2-3 跨中截面主要材料及材料性能1)混凝土表2-1 混凝土表格强度等级弹性模量(MPa)容重(kN/m3)线膨胀系数fck(MPa) ftk(MPa) fcd(MPa) ftd(MPa)C40325002)普通钢筋表2-2 普通钢筋表格普通钢筋弹性模量(MPa)容重(kN/m3)fsk(MPa) fsd(MPa) f'sd(MPa)R235210000235195195 HRB335200000335280280 HRB4002000004003303303)预应力材料表2-1 预应力材料表格4)其他材料钢板:锚头下垫钢板、灯具连接板等采用低碳钢;预应力管道:采用波纹管成型;支座:采用GPXZ系列盆式橡胶支座;伸缩缝:采用D60型伸缩装置;模型建立与分析满堂支架施工的预应力混凝土连续梁桥,采用有限元计算可按两阶段建模,第一阶段建模是为了估算预应力钢束数量;根据钢束估算量,配置预应力钢束,并考虑施工过程与结构体系及截面特性的匹配关系,形成第二阶段模型,然后进行相应的计算和验算。

2.2.1 计算模型图2-4 结构简图(1)节点数量:137 ;(2)单元数量:120 ;(3)边界条件数量:8 ;(4)施工阶段数量:3 ,施工阶段步骤如下:施工阶段1 :满堂支架施工,持续时间12天;施工阶段2 :张拉预应力钢束,持续时间12天;施工阶段3 :拆除满堂支架,持续时间12天;第3章荷载内力计算荷载工况及荷载组合1)恒载①一期恒载为梁部自重。

混凝土容重取25KN/m3,箱梁按实际断面计取重量。

②二期恒载为桥面铺装集度与防撞护栏集度之和,其中桥面铺装层宽15m,厚8cm;护栏按每10m长度3.01m3混凝土计,混凝土重度为25KN/m3,混凝土重度为25KN/m3。

荷载集度为:桥面铺装集度+防撞栏集度=⨯⨯+⨯⨯=0.0815250.30122545.05KN/m2)汽车荷载汽车荷载采用公路—I级荷载,考虑多车道加载时的横向折减系数为:按规范规定2车道为,并考虑汽车荷载偏载增大系数(未计入冲击系数)。

相关文档
最新文档