信号处理基础第一章ppt

合集下载

信号分析与处理第1章

信号分析与处理第1章

隔取值,用 n 表示离散取值的时间
自变量。 n 叫序号,只取整数。
•值域不 连续
1.1.3 信号的分类 3、周期信号与非周期信号
(根据信号在某一区间内是否重复出现来分类)
周期信号: 按照一定的时间间隔 T 周而复始且无始无终
的信号。
如 :
非周期信号:信号在时间上不具有周而复始的特性,或者 说信号的周期趋于无穷大。
2 动态系统的线性判断 •例4 判断下列系统是否为线性系统。

•(1)
•(2)
•解(1)
•显然,
•不满足可分解性,故为非线性系统
•(2) • 由于
满足可分解性

•不满足零状态线性 • 故为非线性系统
•1.2.3 系统的性质 二、线性系统与非线性系统
• 3 线性系统另外三个重要特性:
•x(t
•y(t
)
•1.1.1 典型信号举例
• 例3: 每个钢琴键弹奏的音对应一个基波频率和许多谐波频 率。下图是钢琴CEG位置和对应的和弦信号的频谱。该频谱中 有三个尖峰,信号中每个音对应一个,中音C的尖峰位于262赫 兹,右边的E和G对应的尖峰位于较高频率处,分别为330赫兹和 392赫兹。这种情况下,用信号频域的频谱比用信号时域的波形 更能直观、清晰的体现信号的信息。
• (1)物理系统:如通信系统、雷达系统等。 • (2)因为系统是完成某种运算(操作)的,因而还可以 把软件编程也看成一种系统的实现方法(数学信号处理系统)。
• (3)系统的输入信号,称激励
,称响应

,系统的输出信号
•1.2.2 系统的概念 (4)连续时间系统:系统的输入和输出都是连续时间信号,且其 内部也没转换为离散时间信号。其时域数学模型是微分方程。举例 :RLC电路 (5)离散时间系统:系统的输入和输出都是离散时间信号。其 时域数学模型是差分方程。举例:如数字计算机。 (6)混合系统:离散时间系统经常与连续时间系统组和使用

数字信号处理第1章

数字信号处理第1章
A0 A1 z- 1 p1

x(n )
01 11
y(n )
11 21
z- 1 z- 1
并联型结构
0F 1F
1F 2F
z- 1 z- 1

数字信号处理基础-实现结构(IIR)
FIR的特点:
单位脉冲响应序列为有限个; 可快速实现; 可得到线性相位 滤波器阶数较高 IIR的特点: 滤波器阶数较低 可利用模拟滤波器现有形式
a N- 1 aN
x(n -N)
z- 1 b N
z- 1 y(n -N)
直接Ⅰ型结构

数字信号处理基础-实现结构(IIR)
y (n) bi x(n 1) ai y (n i )
i 0 i 1
b0 a1 a2 z- 1 z- 1 b1 b2 x(n ) y(n )
M
N
… … …
若ai不等于0,输出依赖于以前的输出信号, 称为递归系统(有反馈)
y(n) ai y (n i) bl x(n l )
i 1 i 0
N
M
通常此时n趋于无穷大时,h(n)也不为0,对 脉冲响应无限长的系统称为IIR(无限长单 位脉冲响应滤波器)
数字信号处理基础-系统实现结构
数字信号处理基础-实现结构(IIR)
y(n) bi x(n i) ai y (n i)
i 0 i 1
x(n) x(n- 1) x(n- 2) b0 z- 1 b 1 z
- 1
M
N
y(n ) a1 a2 z- 1 z
- 1
y(n- 1) y(n- 2)
b2



数字信号处理 第一章

数字信号处理 第一章

x(n + N) = Asin[ω0 (n + N) +ϕ]
k N = (2π / ω0 ) K
13
具体正弦序列有以下三种情况: (1) 当2π/ω0为整数时,k=1,正弦序列是以 2π/ω0为周期的周期序列。
2π π π 例如, sin( n) , ω 0 = , = 16 , 该正弦序列 ω0 8 8
δ ( n)
1, δ (n) = 0,
n=0 n≠0
-2 -1 0
1
1 2
n
6
时域离散信号与系统 几种常见的序列 2.单位阶跃序列 2.单位阶跃序列 u (n) u(n)
1, u(n) = 0,

n≥0 n<0
...
-1 0 1 2 3 n
δ (n) = ∇u(n) = u(n) − u(n −1)
38
时域离散信号与系统
[例]:已知两线性时不变系统级联,其单位抽样响应 已知两线性时不变系统级联, 分别为h (n)=δ(n)-δ(n-4); 分别为h1(n)=δ(n)-δ(n-4);h2(n)=an u(n), |a|<1, x(n)=u(n)时 求输出y(n) y(n)。 当输入 x(n)=u(n)时,求输出y(n)。 [解 ]: x(n) w(n)
????
33
时域离散信号与系统
二:时不变系统
若系统响应与激励加于系统的时刻无关, 若系统响应与激励加于系统的时刻无关,则为时不变 系统,又称移不变系统。 系统,又称移不变系统。
T [ x ( n )] = y ( n ) T [ x ( n − m )] = y ( n − m )
例:判断y(n)=ax(n)+b所的系统是否为时不变系统? 判断y(n)=ax(n)+b所的系统是否为时不变系统? y(n)=ax(n)+b所的系统是否为时不变系统

数字信号处理基础-ppt课件信号分析与处理

数字信号处理基础-ppt课件信号分析与处理
3.a digital signal is said to lie in the time domain, its spectrum,which describes in frequency content,lies in the frequency domain.
4.filtering modified the spectrum of a signal by eliminating one or more frequency elements from it.
5.digital signal processing has many applications, including speech recognition,music and voice synthesis,image processing,cellular phones,modems,and audio and video compression.
2020/4/13
返回
第2章 模数转换和数模转换
2.1 简单的DSP系统(A Simple DSP System) 2.2 采样(Sampling) 2.3 量化(Quantization) 2.4 模数转换(Analog-to-Digital Conversion) 2.5 数模转换(Digital-to-Analog Conversion) 小结 (Chapter Summary)
2020/4/13
1.5 语音、音乐、图像及其他 1.5 SPEECH,MUSIC,IMAGES,AND MORE
DSP在许多领域都有惊人的应用,并且应用的数量与日俱增。
1)利用数字语音信号(speech signals)中的信息可以识别连续语 音中的大量词汇。
2)DSP在音乐和其他声音处理方面有着重要的作用。

数字信号处理第一章离散时间信号和离散时间

数字信号处理第一章离散时间信号和离散时间

离散卷积的计算
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和h(k),将h(k)以纵坐标为对称轴折 叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为正数时,右移n;当n为负数时,左 移n。 (3)相乘:将h(n-k)和x(k)的 对应取样值相乘。 (4)相加:把所有的乘积累加 起来,即得y(n)。
第一章 时域离散信号和时域离散系统
内容提要
离散时间信号和离散时间系统的基本概念 –序列的表示法和基本类型 –用卷积和表示的线性非移变系统 –讨论系统的稳定性和因果性问题 –线性常系数差分方程 –介绍描述系统的几个重要方式
离散时间信号的傅里叶变换和系统的频率响应 模拟信号的离散化
–讨论了模拟信号、取样信号和离散时间信号(数字 序列)的频谱之间的关系

根据线性系统的叠加性质 y(n) x(m)T[ (n m)] m
根据时不变性质:T[ (n m)] h(n m)

y(n) x(m)h(n m) x(n) h(n) m=-
(1.3.7)
通常把式(1.3.7)称为离散卷积或线性卷积。这一关系常用符 号“*”表示,即:
y(n n0 ) T[kx(n n0 )], 是移不变系统 (2) y(n) nx(n), 即y(n n0 ) (n n0 )x(n n0 ) 而T[x(n n0 )] nx(n n0 ) y(n n0 ),不是移不变系统
1.3.3 线性时不变系统及输入与输出的关系 既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。
§1. 2 时域离散信号

最新现代信号处理第1章ppt课件

最新现代信号处理第1章ppt课件
信号是传载信息的物理量,是信息的表现形式。
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展

清华大学数字信号处理课件--第一章1离散时间信号与系统PPT演示文稿

清华大学数字信号处理课件--第一章1离散时间信号与系统PPT演示文稿
2
本章作业练习
P42:
2(2)(3)(4) 3 4(1) 6(2) 7 8(3)(4)(5)(6)(7) 10 12 14(1)(2)
3
第一章 离散时间信号与系统
一、离散时间信号—序列
序列:对模拟信号x a ( t ) 进行等间隔采样,采样间隔为T,
得到
xa(t)t n Txa(n T ) n
第一章
离散时间信号与系统
1
第一章学习目标
掌握序列的概念及其几种典型序列的定义,掌握序列的基本 运算,并会判断序列的周期性。
掌握线性/移不变/因果/稳定的离散时间系统的概念并会判 断,掌握线性移不变系统及其因果性/稳定性判断的充要条件。
理解常系数线性差分方程及其用迭代法求解单位抽样响应。 了解对连续时间信号的时域抽样,掌握奈奎斯特抽样定理, 了解抽样的恢复过程。
2)移位: h(m ) h(nm )
3)相乘: x (m )h (n m ) m n
4)相加: x(m)h(nm) m 14
举说明卷积过程
n-2, y(n)=0
15
n=-1
n=0
n=1
y(-1)=8
y(0)=6+4=10 y(1)= 4+ 3+ 6= 13
16
n=5
n=6
N 1
R N ( n ) ( n m ) ( n ) ( n 1 ) ... [ n ( N 1 ) ] m 0
22
4)实指数序列 x(n)anu(n)
a 为实数
23
5)复指数序列 x (n ) e ( j 0 )n e n e j 0 n
e n c o s (0 n ) j e n s i n (0 n )

数字信号处理-第一章(new)

数字信号处理-第一章(new)

2 n , n 3 x(n) 3 0, n 3 2 n 1 , n 2 x(n 1) 3 0, n 2 2 n 1 , n 4 x(n 1) 3 0, n 4
1数字信号处理第一章离散时间信号与系统11离散时间信号序列本节涉及内容序列的运算序列的周期性序列的能量几种常用序列用单位抽样序列表示任意序列2数字信号处理第一章离散时间信号与系统1离散时间信号定义??nntxnxnntxtxaanttan取整数3数字信号处理第一章离散时间信号与系统离散时间信号序列的表示形式nx表示离散时间信号序列如图1所示示0时刻的序列值表表示1时刻的序列值0x1x图14数字信号处理第一章离散时间信号与系统一序列的运算1移位m0时该移位
3、矩阵序列
RN (n) u(n) u(n N )
例如N=4
1,0 n N 1 RN ( n ) 0, 其它 n
19
数字信号处理-第一章 离散时间信号与系统
4、实指数序列
a 1 a 1
x(n) a u(n) x(n) 收敛
n
x ( n)
发散
例如a=1/2及a=2时
1 n , n 1 例: x ( n) 2 0, n 1
在-6<n<6范围内求: x(n) ,x(n)
9
数字信号处理-第一章 离散时间信号与系统 n01=-1; n02=0; ns=-5; nf=5; nf1=6; ns1=-6; n1=n01:nf1; n2=ns:nf; n3=ns:nf1; x=(1/2).^n1; x=[zeros(1,(n01-ns)),x]; for n=1:11 y1(1,n)=x(1,n+1)-x(1,n); end

数字信号处理第四版(高西全)第1章

数字信号处理第四版(高西全)第1章
1第1章时域离散信号和时域离散系统第第11章章时域离散信号和时域离散系统时域离散信号和时域离散系统11引言引言12时域离散信号13时域离散系统14时域离散系统的输入输出描述法线性常系数差分方程15模拟信号数字处理方法习题与上机题第1章时域离散信号和时域离散系统11引言引言信号通常是一个自变量或几个自变量的函数
本章作为全书的基础,主要学习时域离散信号的表示 方法和典型信号、时域离散线性时不变系统的时域分析方
第1章 时域离散信号和时域离散系统
1.2 时域离散信号
实际中遇到的信号一般是模拟信号,对它进行等间
假设模拟信号为xa (t),以采样间隔T对它进行等间隔 采样,得到:
x(n) xa (t) tnT=xa (nT ) - n (1.2.1)
x(n) x(m) (n m) m
(1.2.12)
这种任意序列的表示方法,在信号分析中是一个很有用的
第1章 时域离散信号和时域离散系统
例如, x(n)={-0.0000 ,-0.5878 ,-0.9511,
-0.9511,-0.5878,0.0000,0.5878, 0.9511,0.9511,
0.5878,0.0000},相应的 n=-5, -4, -3,
序列x(n)的MATLAB表示如下:
in (π 8
n)
0
π 8
第1章 时域离散信号和时域离散系统
(2) 2π/ω0不是整数,是一个有理数时,设 2π/ω0=P/Q,式中P、Q是互为素数的整数,取k=Q,那么 N=P,则该正弦序列是以P为周期的周期序列。例如, sin(4πn/5), 2π/ω0=5/2, k=2, 该正弦序列是以5为周期的周
axis([-5, 6, -1.2, 1.2]); xlabel('n'); ylabel('x(n)')

数字信号处理第一章(1)

数字信号处理第一章(1)
数字信号处理 Digital Signal Processing
绪论
• 为何要上数字信号处理?
在当今科学技术迅速发展的时代,大量 数据和信息需要传递和处理,数字信号处理 就是研究用数学的手段,正确快速地处理数 字信号,提取各类信息的一门学科.
一、数字信号处理
1、信号 • 数字信号处理的研究对象为信号。 • 所谓信号就是信息传递的载体。 • 信号是随时间、空间或其它独立变量变化的物理量,为了便 于处理,通常都使用传感器把这些真实世界的物理信号----->电信号,经处理的电信号--->传感器--->真实世界的物理 信号。 • 例如:现实生活中最常见的传感器是话筒、扬声器 话筒(将声压变化)--->电压信号-->空气压力信号(扬声器) • 数学上,我们用一个一元或多元函数来表示信号,如 s1 (t ) 5t 这是一个时间轴上的一维信号。
用通用的可编程的数字信号处理器实现法—是目前 重要的数字信号处理实现方法,它即有硬件实现法 实时的优点,又具有软件实现的灵活性优点。
五、本课程教学内容
• 作为本课程,因受到各种条件的制约,只能向大家介 绍数字信号处理的基础理论和基本知识。具体内容见 课本的第一章~第三章。
第一章:我们主要介绍离散时间信号和系统的基本概念以及 傅利叶变换Z变换,它们是分析离散信号与系统的 基本数学工具。 第二章:我们讲解信号的离散傅利叶变换(DFT)和DFT的快速 算法(FFT),内容涉及课本第二章的1~5节。 第三章:介绍无限冲激响应(IIR)数字滤波器和有限冲激响 应(FIR)的设计方法,其中我们只介绍通过变换公 式逼近的经典设计方法。
第一章 离散时间信号、系统和Z变换
1-1 引言
x(t ) s(t ) n(t )

信号与系统基础-第1章

信号与系统基础-第1章
单位阶跃信号是从实际应用中抽象出来的。比如,图1-14中S 的在开t关 0 时刻闭合, 则理想情况下电阻R 上的电压uR (t) (t)
(t) 1
0
t
图1-12 单位阶跃信号
K
E 1V uR (t) (t) R
图1-13 单位阶跃信号实例
(t)
def
0, 1,
(t 0) (t 0)
确知信号虽然不用于通信,但可以作为基本信号对系统的特性进行分析研究, 其研究方法和结果可以直接推广或借鉴到随机信号的分析中去,这就是研究确知信号 的意义所在。
23
1.3 基本连续信号
现实生活中,信号的种类繁多,要想逐个研究是不可能的。因此,人们从各 种信号中挑选出一些基本信号加以研究。主要原因是
(1)基本信号可以通过数学手段去精确或近似表征其他信号,比如傅里叶级数 的基本形式是正弦和余弦信号,但它们可以表示绝大多数不同形式的周期信号( 详见第4章)。
11
1.2 信号的分类
S
f (t)
yS (t)
p(t)
0
t
0 Ts
t
0
t
(a)抽样概念示意图
F ( / f ) 低通型信号频谱
F ( / f ) 带通型信号频谱
0
fL
fH
/ f 0
fL fH
/ f
(b)低通、带通信号示意图
图1-4 抽样及低通、带通信号概念示意图
12
1.2 信号的分类
离散信号有以下主要特点: (1)虽然自变量取离散值,但因变量(幅值) 的取值可以是连续的(即有无穷个可能的取值), 也可以是离散的。 (2)其图形是出现在离散自变量点上的一系列 垂直线段。
1 2

《数字信号处理原理》PPT课件

《数字信号处理原理》PPT课件

•Digital signal and image filtering
•Cochlear implants
•Seismic analysis
•Antilock brakes
•Text recognition
•Signal and image compression
•Speech recognition
•Encryption
•Satellite image analysis
•Motor control
•Digital mapping
•Remote medical monitoring
•Cellular telephones
•Smart appliances
•Digital cameras
•Home security
Upper Saddle River, New Jersey 07458
All rights reserved.
FIGURE 1-4 Four frames from high-speed video sequence. “ Vision Research, Inc., Wayne, NJ., USA.
Joyce Van de Vegte Fundamentals of Digital Signal Processing
ppt课件
11
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Joyce Van de Vegte Fundamentals of Digital Signal Processing

数字信号处理第一章,序列

数字信号处理第一章,序列
m
x(m)h(n m)

等效为翻褶、移位、相乘和相加四个步骤。 1)翻褶: x(n) x(m) h(n) h(m) h(m) 2)移位: h(m) h(n m) 3)相乘: x(m) h(n m) m
第 一 章 离 散 时 间 信 号 与 系 统
第 一 章 离 散 时 间 信 号 与 系 统
1 1 1
x( m) xx 1(m) x(m)
1
线性卷积的计算
m m m m
-3 -2 -1 0 1 2 3 -3 -2 -1 -3 -2 -1 0 1 2 30 1 2 3 -3 -2-1 0 1 2 3 h(m )) h(-m) x (m 2 1h(-m) 1 1 1 -3 -2-1 0 -3 -2-1 0
如sin( n), 0 , 8 N 4 4 0 该序列是周期为8的周期序列


2
离 散 时 间 信 号 序 列 ——
第 一 章 离 散 时 间 信 号 与 系 统
1.1
2)当
2
0
为有理数时,
P 表示成 ,P,Q为互为素数的整数 0 Q 取k Q,则N P,x (n)即是周期为P的周期序列
1.1 离 散 时 间 信 号 序 列 ——
N 即满足 2 k,且N,k 为整数 6 而不论k取什么整数,N 12 k 都是一个无理数 x(n)不是周期序列
课堂练习 1.4(1)(2)
第 一 章 离 散 时 间 信 号 与 系 统
讨论: 若一个正弦序列是由连续信 号抽样得到,则抽样时间间 隔T 和连续正弦信号的周期 T0之间应是什么关系才能使 所得到的抽样序列仍然是周 期序列?
第一章 离散时间信号与系统

数字信号处理-第一章离散时间信号与系统ppt课件

数字信号处理-第一章离散时间信号与系统ppt课件

1
n0
δ(n)和u(n)间的关系为u(n)0
n0
(n )u (n ) u (n 1 )
u (n ) (n m ) (n ) (n 1 ) (n 2 )
令n-m=k代m 0 入上式,得(1-6)式
n
u(n) (k)
问:上两实的区别是什么?
k
实际系统一般无n<0的情况,但理论分析需要,故 实际信号可用理想信号乘阶跃序列来分析
如果y(n)=T[x(n)]满足比例性和可加性,则 该系统是增量线性系统。
.
24
1.2.2移不变系统
系统的输出随输入的位移而位移,则该系统为移 不变系统。
即若输入x(n)产生输出y(n),则输入x(n-m)产生 输出 y(n-m)
表达:移不变系统 y(n)T[x(n)]

y(nm )T [x(nm )]
1、交换律 卷积和与卷积序列的次序无关,有
y(n)=x(n)*h(n)=h(n)*x(n)
即:把单位冲击响应h(n)作为输入,将输入x(n) 作为系统单位冲击响应,其输出相同。
x(n) h(n) y(n) = h(n)
x(n)
y(n)
.
30
2、结合律(串联)
x(n)*h1(n)*h2(n)=[x(n)*h1(n)]*h2(n) =x(n)*[h1(n)*h2(n)]=[x(n)*h2(n)]*h1(n)
证明:
x(n)*[h1(n)h2(n)] x(m)[h1(nm)h2(nm)] m
x(m)h1(nm) x(m)h2(nm)
m
m
x(n)*h1(n)x(n)*h2(n)
x(n)
h1(n)
h2(n)
y(n)

数字信号处理第一章

数字信号处理第一章

时间ms
量化误差
0
数字信号代码: 0 1 1
101
110
111
111
111
110
101
011 010
数字代码流: 011101110111111111110101011010
图1.1.6 三比特A/D转换及串行数字比特流
一般地说,用离散时域序列x(n)表示数字信号更好,因为x(n)直观的反映了信号的增减 变化,而编码后的数字信号则不能。因此,在对数字信号分析时大多采用离散时域序列x(n) 进行分析。在不混淆的情况下,我们也将离散时间序列称为数字信号。 对于数字序列,一个重要的概念就是数字频率。如果x(n)是由一个周期为Ta = 2π 的模 Ωa
图1.1.11 图1.1.10 数字图像灰度值
数字信号处理及实现方法
信号处理的目的就是对观测到的信号进行分析、变换、 综合、估计和识别等,使之容易为人们所使用,如语 音识别、语音合成、图像压缩、地震波分析及高清晰 电视等。数字信号处理就是对数字信号用数值计算的 方法来实现信号处理的,这里“处理”的实质是“运 算”。 模拟信号处理也可用数字信号处理系统来完成,但处 理系统需要增加模数(A/D)转换器和数模(D/A)转换器, 图1.1.12反映了模拟信号的数字信号处理过程。
图1.1.10 16 × 16 × 256 数字灰度图
222 207 193 181 171 163 158 158 159 164 171 181 194 204 225 246 207 190 177 161 150 140 133 137 144 150 169 177 186 200 225 244 195 176 166 155 144 133 120 115 103 100 135 147 159 168 199 200 188 176 166 153 140 132 110 101 115 120 135 140 145 156 168 188 177 164 153 142 140 130 101 099 066 077 083 096 120 136 148 155 168 155 149 132 122 110 088 076 057 059 071 073 086 099 120 133 155 140 130 111 101 099 078 064 023 025 026 055 074 084 092 101 130 120 110 100 098 076 066 053 024 010 023 025 036 047 066 088 130 120 110 100 098 076 066 053 024 010 026 025 036 047 066 088 155 140 130 111 101 099 078 064 023 025 026 055 074 084 092 101 168 155 149 132 122 110 088 076 057 059 071 073 086 099 120 133 177 164 153 142 140 130 101 099 066 077 083 096 120 136 148 155 188 176 166 153 140 132 110 101 115 120 135 140 145 156 168 188 195 176 166 155 144 133 120 115 103 100 135 147 159 168 199 200 207 190 177 161 150 140 133 137 144 150 169 177 186 200 225 244 222 207 193 181 171 163 158 158 159 164 171 181 194 204 225 246

信号分析与处理 第1章(01)

信号分析与处理 第1章(01)

信号分析与处理
华北电力 大 学
1.1 连续时间信号
一 信号的描述与分类
信号:是信息传输过程的载体,是一个自变量或几个
自变量的函数。如 f1(t),f2(n1, n2)。 • 物理上: 信号是信息寄寓变化的形式 • 数学上: 信号是一个或多个变量的函数 • 形态上:信号表现为一种波形
与函数一样,一个实用的信号除用解析式描述外, 还可用图形、测量数据或统计数据描述。 通常,将信号的图形表示称为波形或波形图。
(t ) (t )
华北电力 大 学

t

( )d u(t )
d dt
u (t ) (t )

(t t 0 ) f (t ) dt





f (t 0 ) (t t 0 ) dt f (t0 )
• 检零



(t ) f (t )dt f (0)
信号分析与处理
华北电力 大 学
信号基本概念
• • 什么是信号? 物质的一切运动或状态变化都是一种信号( signal),即信号是物质运动的表现形式。例 如: 机械振动产生力信号、位移信号和噪声信号; 雷电过程产生声、光信号; 大脑、心脏分别产生脑电和心电信号; 通信发射机产生电磁波信号等; 图像信号; 人口数;银行存款;气温等.
f (t) 1
f(t) 1
2

t
0
3
t
信号分析与处理
华北电力 大 学
f1 (t ) A sin(t )
f1 (t) A
f2(t)在t=0处有间 断点
Ae (t t0 ) (t t0 ) f 3 (t ) 0 (t t0 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号处理:为达到特定的目的而对信号进行 的某种加工或变换。
信 号 理 论
信号处理基础( Basic Theory of Signal processing )
信号处理 对信号进行某种加工或变换。 目的: •消除信号中的多余内容; •滤除混杂的噪声和干扰; •将信号变换成容易分析与识别的形式,便 于估计和选择它的特征参量。
信号处理基础( Basic Theory of Signal processing )
§1.2 信号的分类
一、信号的分类 信号的分类方法很多,可以从不同的角度对 信号进行分类。 •按实际用途划分: 电视信号、雷达信号、控制信号、通信信号、 广播信号…… •按所具有的时间特性划分
信号处理基础( Basic Theory of Signal processing ) 1、确定性信号与随机信号
衰减正弦信号:
et sin(t )
t
O
t
信号处理基础( Basic Theory of Signal processing ) 3、复指数信号
信号处理基础( Basic Theory of Signal processing ) 4、抽样信号(Sampling Signal) 性质 ① ② ③
信号处理基础( Basic Theory of Signal processing ) 2、定义二
信号(Signal):传载信息的事物。 信息(Information):有价值的消息。
消息(Message):就是关于情况的报道。
情况(Situation):就是事物发展的状态。
信号的另一种定义就是:传载信息的函数称为信号
信号处理基础( Basic Theory of Signal processing ) 3、连续时间信号和离散时间信号 连续时间信号:信号存在的时 间范围内,任意时刻都有定义 (可以有有限个间断点)。 用t表示连续时间变量。 离散时间信号:在时间上是离 散的,只在某些不连续的规定 瞬时给出函数值,其他时间没 有定义。 用n表示离散时间变量。
1、在冲激信号的抽样特性中,其积分区间不一定 都是(-,+),但只要积分区间不包括冲激 信号(t-t0)的t=t0时刻,则积分结果必为零。 2、对于(at+b)形式的冲激信号,要先利用冲激 信号的展缩特性将其化为(t+b/a) /|a|形式后, 方可利用冲激信号的抽样特性与筛选特性。
信号处理基础( Basic Theory of Signal processing ) 四、 “单位冲激偶”信号 定义:
§ 1.1 信号的定义
一、信号处理基础的主要研究内容 信号的分析与处理方法(时域、频域); 系统的分析方法(时域、频域) ;
信号处理基础( Basic Theory of Signal processing ) 二、信号的基本概念
1、定义一
消息(Message):在通信系统中,一般将语 言、文字、图像或数据统称为消息。 信号(Signal):指消息的表现形式与传送载体。 信号是消息的表现形式与传送载体,消息是信号的 传送内容,例如电信号传送声音、图像、文字等。

t (5) (t 3t ) δ( 1)dt 2 3
2 2
(2) e
2
6
3
5t
δ(t 1)dt
δ(t 8)dt
(6)(t 2t 3) δ(t 2)
3 2
(3) e
4

2t
(7)e4t δ(2 2t )
(8)e2t u(t ) δ(t 1)
1、单位样值信号(unit sample)
( n)
1 (n 0) (n) 0 (n 0)
时移性
0
n
(n n0 )
1 (n n0 ) (n n0 ) 0 (n n0 )
0
n0
n
信号处理基础( Basic Theory of Signal processing )
信号处理基础(Basic Theory of Signal processing) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
第一章 绪 论
信号的定义
信号的分类
周期信号与非周期信号 能量有限信号与能量无线信号 常见的典型信号 信号的分解
系统
系统的分类
信号处理基础( Basic Theory of Signal processing )
信号处理的应用已遍及许多科学技术领域。
信号处理基础( Basic Theory of Signal processing ) 四、课程学习的基本方法 1、着重掌握信号与系统分析的原理与方法,将 数学概念、物理概念及其工程概念相结合。
2、注意提出问题,分析与解决问题的认知过程。
3、加强实践环节(学会用MATLAB进行信号分析), 通过实验加深对理论与概念的理解。 4、通过练习、复习和归纳等深刻理解基本概念, 掌握分析与解决问题的方法。
信号处理基础( Basic Theory of Signal processing ) 冲激函数的性质
1)抽样性(筛选性) 如果f(t)在t = 0处连续,且处处有界,则有
信号处理基础( Basic Theory of Signal processing ) 对于移位情况:
2、奇偶性 3、尺度特性
通常把 称为指数信号的时间常数,记作,代表信号 增长或衰减速度,具有时间的量纲。 重要特性:其对时间的微分和积分仍然是指数形式。
信号处理基础( Basic Theory of Signal processing ) 2、正弦信号 振幅:K 周期: 频率:f 角频率: 初相:
信号处理基础( Basic Theory of Signal processing )
信号处理基础( Basic Theory of Signal processing ) §1.5 常见的典型信号 §1.5.1 连续信号 1、指数信号 直流(常数), 指数衰减,
A
ቤተ መጻሕፍቲ ባይዱ
l l l
0
指数增长
O
信号处理基础( Basic Theory of Signal processing ) 单边指数信号
R 连续时间周期信号定义: t ,存在正数 T,使

f (t T ) f (t ) 成立,则 f(t) 为周期信号。
满足上述条件的最小的正T称为信号的基本周期。 对于离散信号,其周期性也有类似的定义。
不满足周期信号定义的信号称为非周期信号。 伪随机信号 貌似随机而遵循严格规律产生的信号(伪随机码)。
(4) e t δ(2 2t )dt
信号处理基础( Basic Theory of Signal processing )
解:
π π (1) sin t δ(t )dt sin( ) 2 / 2 4 4

(2) e 5t δ(t 1)dt e 5 1 1 / e5
离散信号
离散信号 数字信号
信号处理基础( Basic Theory of Signal processing ) 4、能量信号与功率信号
能量信号: 0 < W < ,P = 0。 功率信号: W ,0 < P < 。
归一化能量W 与 归一化功率P 的计算
lim f (t ) dt 连续信号 W T T
信号处理基础( Basic Theory of Signal processing ) 定义2
面积1; 脉宽↓;
脉冲高度↑;
则窄脉冲集中于 t=0 处。 ★面积为1
三个特点: ★宽度为0

信号处理基础( Basic Theory of Signal processing ) 描述
时移的冲激函数
若面积为k,则强度为k。
I R ( x, y ) I ( x, y ) I ( x , y ) G I B ( x, y )
信号处理基础( Basic Theory of Signal processing )
4、信号理论 信号分析:研究信号的基本性能,如信号 的描述、性质等。
信号处理基础( Basic Theory of Signal processing ) 3、表示方法
数学解析式或图形 语音信号:空气压力随时间变化的函数。
语音信号 “信号” 的波形
信号处理基础( Basic Theory of Signal processing ) 静止的彩色图象: 三基色红(R)、绿(G)、蓝(B)随空间位置变化的信号。
2
3
(3) e2t δ(t 8)dt 0
4
6
1 1 (4) e δ(2 2t )dt e δ(t 1) dt 2 2e
t t
信号处理基础( Basic Theory of Signal processing )
比例性
c (n), c (n n0 )
f ( n) ( n) f (0) ( n)
抽样性
注意: ( t )用面积 强度表示, t 0,幅度为 ;
( n)在n 0取有限值不是面积。
信号处理基础( Basic Theory of Signal processing )
dδ(t ) δ' (t ) dt
δ' (t ) (1)
0
冲激偶信号的图形表示
t
信号处理基础( Basic Theory of Signal processing )
冲激偶的性质
① 时移,则 ② ③
信号处理基础( Basic Theory of Signal processing ) §1.5.2 离散信号
相关文档
最新文档